I. Do element equations
\[
\begin{align*}
\mathcal{V}_A &= V_0 \quad \text{given source} \\
\mathcal{V}_1 &= i_1 R_1 \quad \text{Ohm's Law} \\
\mathcal{V}_2 &= i_2 R_2 \quad \text{Ohm's Law}
\end{align*}
\]
we will shortly start assuming these.

II. Do connection equations: KCL @ each node, KVL for loop.
\[
\begin{align*}
\text{KCL @ A:} & \quad \sum i = 0 \quad -i_A - i_1 = 0 \\
\text{KCL @ B:} & \quad \sum i = 0 \quad i_1 - i_2 = 0 \\
\text{KVL} & \quad \sum \mathcal{V} = 0 \quad -\mathcal{V}_A + \mathcal{V}_1 + \mathcal{V}_2 = 0
\end{align*}
\]

III. Substitute element equations into connection equations
Using
\[
-\mathcal{V}_A + \mathcal{V}_1 + \mathcal{V}_2 = 0
\]
\[
-(V_0) + (i_1 R_1) + (i_2 R_2) = 0
\]
from (1) \quad \uparrow \quad \text{from (2)} \quad \text{from (3)}

Now use (5) to reduce this to one unknown
\[-V_0 + i_1 R_1 + i_1 R_2 = 0 \quad i_1 = \frac{V_0}{R_1 + R_2}
\]

Given V_0, R_1, R_2 all variables can now be found.
Exercise 2-6

Given: 30V, 100Ω, 200Ω, 300Ω

(a) Write the complete set of element equations.

1. \(\sum I = 0 \)
 \[30 = 100i_1 \]
 \[200i_2 = 300i_3 \]

(b) Write the complete set of connection equations.

It is two nodes and two loops.

KCL @ node A

\[\sum I = 0 \quad -i_A - i_1 = 0 \]

KCL @ node B

\[\sum I = 0 \quad +i_1 - i_2 = 0 \]

KVL @ loop 1

\[\sum V = 0 \quad -v_A + v_3 = 0 \]

KVL @ loop 2

\[\sum V = 0 \quad -v_3 + v_1 + v_2 = 0 \]

(c) Solve these equations.

Substitute everything into (8)

\[-(v_A) + (100i_1) + (200i_2) = 0 \]

From (1), from (2), from (3)

\[-30 + 100i_1 + 200i_2 = 0 \]

From (6) \(i_1 = i_2 \implies -30 + 100i_1 + 200i_1 = 0 \)

\[i_1 = \frac{30}{100 + 200} = \frac{30}{300} = 0.1A = 100mA \]

All other variables can now be solved for.
How do you assign reference marks?

1. Draw currents from + to - nodes of voltage sources or aligned with current sources if possible.

2. Align element currents with loop currents.

REQUIRED

3. Follow passive sign convention

4. When in doubt just do (3)

Consider

![Circuit Diagram]

Draw loop current from + to -. Follow with passive sign convention for elements.

Note source current was aligned with that of loop. This requires v_s to be in opposite direction to given polarity.

Finalize by assigning nodes and reference (ground).

![Circuit Diagram]

This can now be solved:

\[
\begin{align*}
v_s &= -1.5 \\
v_1 &= 500i_1 \\
v_2 &= 1000i_2
\end{align*}
\]

Element equations

Connection equations

\[
\begin{align*}
\text{KCL @ A:} & \quad \sum i = 0 \quad +i_s - i_1 = 0 \\
\text{KCL @ B:} & \quad \sum i = 0 \quad +i_1 - i_2 = 0 \\
\text{KVL} & \quad \sum v = 0 \quad +v_s + v_1 + v_2 = 0
\end{align*}
\]
EQUIVALENT CIRCUITS
As circuits get more complex we want to replace parts of the circuit with equivalent but simpler circuits.

Circuits are equivalent if they have the same i-v characteristics at a specified pair of terminals.

Equivalent Resistances
Source Transformations

Equivalent resistance (series)

\[\begin{align*}
\text{rest of the circuit} & \quad \begin{array}{c}
\text{A} \quad R_1 \\
+ \quad + \quad + \\
\text{B} \quad - \quad + \quad + \\
\text{rest of the circuit}
\end{array} \\
\text{v} & \quad = \quad i
\end{align*} \]

\[R_{EQ} = R_1 + R_2 \]

KVL from A to B

\[\sum V_x - V + V_1 + V_2 = 0 \]

\[V = V_1 + V_2 \]

but \[i_1 = i_2 = i \]

\[v = i_1 R_1 + i_2 R_2 \]

\[v = i R_1 + i R_2 \]

\[v = i (R_1 + R_2) \]

For this circuit we simply use Ohm's Law

\[v = i R_{EQ} \]

These are identical if \[R_{EQ} = R_1 + R_2 \]
Equivalent resistance (parallel)

KCL @ upper node: \(\sum i = 0 \)

\[i - i_1 - i_2 = 0 \]

\[i = i_1 + i_2 \]

Using Ohm’s Law:

\[i = \frac{V_1}{R_1} + \frac{V_2}{R_2} \]

But \(V = V_1 = V_2 \) since these are in parallel

\[i = \frac{V}{R_1} + \frac{V}{R_2} = V \left(\frac{1}{R_1} + \frac{1}{R_2} \right) \]

For this equivalent circuit:

\[i = \frac{V}{R_{eq}} \]

These circuits will be equivalent if

\[\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} \]

This can be put in a more common form by simply inverting:

\[R_{eq} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}} = \frac{R_1 R_2}{R_1 + R_2} \]