Application to non-linear loads

Thevenin

\[i = \frac{V_T - V}{R_T} \]

\[i' = -\frac{1}{R_T} V + \frac{V_T}{R_T} \]

\[V = 0 \]

\[i = \frac{V_T}{R_T} \]

\[i_c = \frac{V_T}{R_T} \]

\[V_c = V_T \]

\[V = 0 \]

\[i = 0 \]

\[V_c = V_T \]

\[i = -\frac{1}{R_T} V + \frac{V_T}{R_T} \]

set of all possible outputs.

called a load line but really is a source line

Q-point (operating point)

Example 3-18

\[V_T = V_c = \frac{100}{100 + 100} \cdot 5 = 2.5V \]

\[R_T = 100 \parallel 100 = 50 \]

\[i_N = i_c = \frac{V_T}{R_T} = \frac{2.5}{50} \]

\[= 50 \text{mA} \]

If you know the diode will operate at 1.7 volts:

\[P_D = V_i = (1.7)(0.018) = 30.6 \text{mW} \]
3.5 Maximum signal transfer

Consider the power being delivered to the load.

At the interface

\[V = \frac{R_L}{R_L + R_T} V_T \]

\[I = \frac{V_T}{R_L + R_T} \]

\[P = V I = \frac{R_L V_T}{R_L + R_T} \cdot \frac{V_T}{R_L + R_T} = \frac{R_L V_T^2}{(R_L + R_T)^2} \]

When do we get maximum power to the load, i.e., the value of \(R_L \)

\[\frac{\partial P}{\partial R_L} = \frac{V_T^2}{(R_L + R_T)^2} + \frac{R_L V_T^2 (-2)}{(R_L + R_T)^3} = 0. \]

\[\frac{(R_L + R_T) - 2R_L \cdot V_T^2}{(R_L + R_T)^3} = 0 \]

\[R_L + R_T - 2R_L = 0 \]

\[R_T - R_L = 0 \]
Example 3-19

Given measurements find max output.

\[
\begin{align*}
4 &= \frac{5V}{50 + R_T} \\
200 + 4R_T &= 50V_T \\
\frac{200 + 4R_T}{50} &= \frac{375 + 5R_T}{75} \\
(200)(75) + (75)(4)R_T &= (375)(50) + (50)(5R_T) \\
(75)(4)R_T - (50)(5)R_T &= (375)(50) - (200)(75) \\
300R_T - 250R_T &= 18750 - 15000 \\
50R_T &= 3750 \\
R_T &= 75 \Omega \\
4 &= \frac{50}{50 + 75} \\
\frac{(125)(4)}{50} &= V_T = 10.
\end{align*}
\]

Max voltage out = \(V_{\text{DC}} = 10 \text{ volts} \)

Max current out = \(I_{\text{DC}} = \frac{10V}{75\Omega} = 133 \text{ mA} \)

Max power out occurs at \(R_L = 75\Omega \),

@ \(R_L = 75\Omega \)

\[
\begin{align*}
V_{\text{OUT}} &= \frac{75}{75 + 75} \times 10 = 5 \text{ volts} \\
P_{\text{OUT}} &= \frac{(V_{\text{OUT}})^2}{R_L} = \frac{(5)^2}{75} = \frac{25}{75} = 333 \text{ mW}.
\end{align*}
\]
At this point resistors are the only elements we can use to design interface circuits.

Examples of interface circuits.
These are often called two-port circuits.
Design Example 3-23

Design the two-port interface circuit so the load "sees" a Thévenin resistance of 50Ω between terminals (C) and (D), while simultaneously the source "sees" a load resistance of 300Ω between (A) and (B).

Design: We can try different interface circuits.

Series

\[R_T = 300\Omega \quad \text{OK} \]

\[R_T = 550 \gg 50 \quad \text{NOT OK} \]

Parallel

\[R_T \ll 50 \quad \text{NOT OK} \]

\[R_T = 60 \parallel 300 = 50 \quad \text{OK} \]

Try two resistor circuits

Want source to see larger resistance than 50Ω so this requires a series R.

Design

\[R_1 + \frac{50 R_2}{R_2 + 50} = 300 \]

Non-linear equations with solutions \(R_1 = 273.9 \) and \(R_2 = 54.8 \)Ω.