Superposition

Output can be found by finding the contribution to the output from each source.

1. "Turn off" all independent sources except one and find output from that one alone.

2. Repeat 1 for each independent source.

3. Algebraically sum all outputs from each source.

Turning off an independent voltage source means replacing it by a short.

Move v_s to origin to be "off".

This is electrically identical to a "short".

Move i_s to zero to turn it off.

This is electrically identical to an "open".
Solve for V_0 using superposition.

(a) "Turn off" i_s and find output due to V_s.

$v_0 = \frac{R_2}{R_1 + R_2} v_s$

i_s becomes an "open" and the circuit is a voltage divider.

(b) "Turn off" v_s and find output due to i_s.

This looks like two resistors in parallel.

$v_0 = i_s \frac{R_1 R_2}{R_1 + R_2}$

$\therefore v_0 = v_{0,v} + v_{0,i} = \frac{R_2}{R_1 + R_2} v_s + \frac{R_1 R_2}{R_1 + R_2} i_s$
Example 3-12.

Show that the output is a weighted sum of the inputs V_{S1}, V_{S2}, and V_{S3}.

Turn off V_{S2} and V_{S3}.

Redrawing

$$V_o = \frac{R/2}{R + R/2} V_{S1} = \frac{R/2}{3R/2} V_{S1} = \frac{1}{3} V_{S1}$$

The other two source calculations are identical.

$$V_o = V_{o1} + V_{o2} + V_{o3} = \frac{1}{3} V_{S1} + \frac{1}{3} V_{S2} + \frac{1}{3} V_{S3}$$