The fourth assignment covers depth-first search and minimum spanning trees. As usual, check blackboard for any updates and corrections.

1. Rewrite the pseudo-code for depth-first search so as to eliminate recursion, and analyze its running time.

2. Explain how a vertex u of a directed graph G can end up in a depth-first tree containing only u even though u has both incoming and outgoing edges in G.

3. Describe a dynamic programming for the weighted interval scheduling problem in which there are k identical resources that can be assigned to interval requests. In your answer, give appropriate pseudo-code, a proof of correctness, and a running time analysis.

4. Let $G=(V, E)$ be an undirected graph with real weights $w: V \rightarrow \mathbb{R}$ associated to each vertex. Define $n=|V|$, $m=|E|$. Let $S \subseteq V$ be a subset of vertices called the source vertices and $T \subseteq V$ be a subset of vertices called the target vertices. A set of target vertices $A \subseteq T$ is said to be admissible if there are $|A|$ vertex-disjoint paths from S onto A. For example, a single target vertex u is admissible if there is a path from S to u. As another example, two target vertices u and v are admissible if there is a path P_u from S to u, a path P_v from S to v, and the two paths P_u and P_v contain different vertices. Assume that you have a black box function that returns the $|A|$ disjoint paths if they exist, or false otherwise. The disjoint path function takes $O(m^{3/2})$ time. Describe a greedy algorithm that finds the admissible set of maximum weight. Give appropriate pseudo-code, a running time analysis, and a proof of correctness that uses an exchange argument.

5. Give a linear-time algorithm that takes as input a DAG $G=(V, E)$ and two vertices s and t, and returns the number of paths from s to t in G. Your algorithm only needs to count the paths, not list them. In your answer, give appropriate pseudo-code, a proof of correctness, and a running time analysis. (Hint: use topological sort.)

6. Let $G=(V, E)$ be a connected undirected graph. Each edge $\{i, j\}$ has a weight $w(i, j)$. An Euclidean minimum spanning tree (EMST) is a spanning tree T of G that minimizes

$$\sqrt{\sum_{\{i, j\} \in T} w^2(i, j)}$$
Describe an algorithm to find the EMST. In your answer, give appropriate pseudo-code, a proof of correctness, and a running time analysis.