
1

Smart Grid Communication and Co-Simulation
Vincenzo Liberatore, Member, IEEE Computer, Ahmad Al-Hammouri

Abstract—The smart power grid will extensively rely on
networked control to increase efficiency, reliability, and safety;
to enable plug-and-play asset integration, such as in the case of
distributed generation and alternative energy sources; to support
market dynamics as well as reduce peak prices and stabilize costs
when supply is limited. In turn, network control requires an
advanced communication infrastructure with support for security
and real-time communication.

This paper reviews the major challenges in smart grid com-
munication, and proposes PowerNet, a system of heterogeneous
yet interoperable networks that provides adequate levels of real-
time performance, reliability, and security, and that exploits
current investments in software and hardware. Smart grid
communication involves disparate designs and complex issues,
and it can be effectively evaluated through co-simulation. The
paper describes a co-simulator that combines extensive support
for power device models and for communication models, and
highlights current work in the area.

I. INTRODUCTION

The smart power grid will consist of intelligent devices
that use advanced communication methods, which in turn will
improve situational awareness and enable networked control.
Networked control will increase efficiency, reliability, and
safety; will enable plug-and-play asset integration, such as
in the case of distributed generation and alternative energy
sources; will support market dynamics as well as reduce peak
prices and stabilize costs when supply is limited.

Networked smart devices currently include smart meters at
the customer site and phasor measurement units (syncronopha-
sors) in the transmission and distribution grids. In the future,
smart appliances will adjust their functions depending on
instantaneous electricity cost, and a host of communicating
devices will enable the feedback-loop networked control of
the smart grid.

In this paper, Section II will briefly review the main objec-
tives and technical challenges for the communication infras-
tructure that will enable networked control of the smart grid;
propose PowerNet, a communication framework for the smart
power grid; Section III will discuss metrics and objectives.
Section IV will outline an evaluation methodology based on
the co-simulation of the grid physics with the communication
infrastructure. We will then outline future directions.

II. POWERNET:
A SMART GRID COMMUNICATION NETWORK

Smart grid communication should protect users’ privacy
and security. Networked control requires adequate real-time

V. Liberatore is with the Department of Electrical Engineering and Com-
puter Science, Case Western Reserve University, Cleveland, OH 44106-7071.
E-mail: vl@case.edu.

A. Al-Hammouri is with the Department of Network Engineering and
Security, Jordan University of Science and Technology, Irbid, 22110, Jordan.
E-mail: hammouri@just.edu.jo.

performance and reliability. Communication should use ex-
isting infrastructure whenever possible, due to (1) the large
cost of deploying a new communication infrastructure, (2) the
substantial investments made in the past (e.g., dark fiber) or
currently underway in hardware (e.g., universal broadband)
and software (e.g., secure real-time middleware), and (3)
the potential for widespread technology adoption, which will
result into increased grid responsiveness and larger economic
benefits.

In the end, smart grid devices can communicate over a
variety of substrates with different properties. Furthermore,
different media may be appropriate in different circumstances.
For example, smart appliances in the home can exploit existing
Ethernet home local area networks (LANs), 802.11 home
wireless LANs (WLANs), or powerline home networks. At the
other end, if a synchronophasor is deployed in the transmission
grid, it may be better served by wide-area wireless, such as
a mesh network or a powerline wide-area network. Since the
smart grid will exploit different types of data from a variety
of devices communicating over heterogeneous networks, com-
munication should be possible across various media, which in
turn requires a convergence layer, such as the Internet Protocol
(IP).

The smart grid will share pre-existing communication net-
works so as to exploit previous and current investments. For
example, a smart dishwasher may use a home WLAN that
had been previously installed to serve traditional types of
network traffic (e.g., Web browsing, e-mail, and multi-media).
A shared infrastructure will lead to substantial savings, to
plug-and-play installation, and eventually should result into a
deeper penetration of smart grid technology. However, a shared
environment poses significant risks due to potential security
vulnerabilities and to the potential lack of real-time Quality-
of-Service (QoS). The problem can be addressed, for example,
through virtualization, in which the communication resources
are split into multiple and isolated virtual private networks
(VPNs). For example, the same home network hardware
(firewalls, network address translators, wireless gateways) may
be logically subdivided into multiple virtual networks, each
securely isolated from the others and providing its own QoS
service level agreement (SLA). As a result, a smart grid
communication network would preserve security and real-time
performance while being completely hidden from a concurrent
traditional home network even though both use the same
physical infrastructure.

In conclusion, we envisage a communication network that
we call PowerNet and that

1) Consists of heterogeneous networks that are interopera-
ble via a convergence layer

2) Provides adequate levels of real-time Quality-of-Service
(QoS), reliability, and security to support networked

2

control
3) Maximally exploits pre-existing or concurrent invest-

ments in software (e.g., real-time secure middleware)
and hardware (e.g., home networks), possibly through
virtualization.

Since PowerNet involves heterogeneous designs and complex
interoperability and security issues, it is essential that solu-
tions be designed and evaluated carefully prior to large scale
deployment.

III. EVALUATION METHODOLOGY: METRICS

Real-time distributed systems have been analyzed assuming
(1) purely network-related metrics, such as delays or jitter,
or with (2) control-theoretical objectives, such as stability,
but under simplified network characteristics. These evaluation
approaches promote the isolation of different areas of exper-
tise. The compartmentalization of research makes intricate
problems more tractable, but at the same its limitation is
that it can decrease the potential effectiveness of a networked
smart grid, and reduces the opportunities for multi-disciplinary
research. The challenge is to formulate a methodology that
maps networked-oriented metrics into systems performance.
An analogous process has been accomplished in Voice-over-
IP (VoIP), where ITU standards associate delays, jitter, loss
rates, and bandwidth with MOS (Mean-Opinion Score) ratings
that denote the user’s satisfaction with a certain level of voice
quality. A milestone for the next 5–10 years is to direct re-
search in disparate communities toward a shared set of metrics
and goals. The objective is to create an evaluation method that
is analogous to an ITU standard for VoIP and that translates
network-related metrics into user-perceived performance. A
promising direction is the set of benchmarks and metrics
for distributed haptics: the evaluation framework aims at the
semi-automatic evaluation of distributed haptics over various
network configurations [1]. Another promising direction is
the emphasis on disturbance rejection to evaluate play-back
buffer effectiveness [2]. Additional issues include metrics for
scalability, security, interoperability, and metrics’ impact on
requirements-services interfaces.

IV. CO-SIMULATION

The smart grid will consist of heterogeneous communi-
cating devices, and it will involve complex issues in the
areas of safety, security, interoperability, and performance.
Consequently, it is essential that smart grid communication
and control be designed and evaluated carefully prior to
demonstration and large scale deployment. However, current
simulation software is incapable of accurate smart grid evalu-
ation because it lacks fine-grained models of complex grid
devices or of communication protocols. On-going work is
developing a co-simulation platform for the smart grid that
tightly integrates fine-grained models of power grid devices
and of communication dynamics.

A. Background

Several simulators make it possible to evaluate power sys-
tems, but only with minimal communication models (e.g.,

controller

Generator

Network

Cross traffic

Line

sensor
Voltage

PI

voltage
LoadDC

Armature

Rotational

speed

Fig. 1. Example of information flow in a simple model of a power system
with networked controllers.

Modelica’s Spot, Optimal’s Smartgrid). Others simulators en-
able extensive communication protocol simulations but with
no power grid component (e.g., ns-2, Opnet).

A co-simulator enables system evaluation that encompasses
network communication properties (such as real-time QoS),
networked control methods, sensors, actuators, and their ef-
fects on the physical world [3]. Co-simulations are essen-
tial for the evaluation of the smart grid in that the overall
system dynamics depend both on network and control and
on the physical properties of the power system. The Thyme
co-simulator [4] has been used to test dynamic electricity
pricing methods [5]. In another early project, we have built
a prototype co-simulator and used it to evaluate the impact of
networked control on simple smart grid scenarios [6]. Our co-
simulator combines the ns-2 network simulator with a power
grid simulator based on Modelica. The co-simulator benefits
from the extensive array of power devices that are available in
the Modelica libraries, and from the communication protocols
that are available in ns-2, as well as from the extensibility and
graphical interfaces of both simulators.

B. An Example

Figure 1 shows an example of simulations that are enabled
by our co-simulation tool. In this particular simulation, a time-
varying stochastic rotation speed is applied to a generator (i.e.,
a wind turbine). The generator can supply varying amounts
of electric power depending on the armature voltage, which
is a tunable quantity. The resulting electric power is trans-
mitted over a DC line, that includes a model of capacitance
effects. The load is also time varying. A sensor measures
the voltage at an intermediate point of the transmission line.
Sensor readings are transmitted back to the generation site
through a communication network, which is potentially subject
to failures and to congestion caused by cross-traffic. A PI
controller uses the voltage readings to dynamically set the
voltage on the generator armature, thereby regulating the
amount of generated power. The objective of the controller
is to keep the measured voltage constant, which effectively
means that the generated power matches the load. A main
obstacle is that communication may be subject to delays and
to time-varying jitter, which make it hard to achieve real-time
data delivery.

3

Fig. 2. Output voltage when the communication network is uncongested.

Fig. 3. Output voltage when the communication network is congested.
(Vertical scale differs from Figure 2.)

Figures 2 and 3 show voltage as a function of time. The
voltage is expected to track the 780V set point as the load
undergoes large step changes. Figure 2 is the scenario when
cross-traffic consumes less than 10% of available bandwidth
in the networked control path. In this case, the voltage tracks
reasonably well the set point, although some transients are
visible at the time instants when the load undergoes step
changes. Figure 3 is the scenario when cross-traffic uses more
than 80% of the available bandwidth. In this case, the system is
effectively unstable and voltage exhibits persistent oscillation
of 1000-2000V.

C. Base Simulators

For the network, we chose ns-2 [7] among other alterna-
tives because

• ns-2 is a free, widespread packet-level simulator.
• ns-2 simulates the exact dynamics and events of indi-

vidual packets while traversing network elements, e.g.,
communication links and routers.

• ns-2 supports various routing, transport, and application
protocols.

• ns-2 is capable of simulating wired, wireless, local- and
wide-area networks.

• ns-2 is evolvable by exposing well-defined APIs that
greatly facilitate developing new protocols and algo-

rithms.
As for the electric grid, we chose Modelica [8] among other

candidates because
• Modelica is a modeling language for large-scale complex

physical systems.
• Modelica is an object-oriented language and supports

model construction and reusability.
• Modelica allows acausal modeling.
• Several ready Modelica libraries are available for differ-

ent domains, including electrical, electronic, and electric
power systems.

• Several commercial and open source simulation environ-
ments are available for Modelica.

D. Inter-process Communication

1) Basic Synchronization: Modelica and ns-2 run as two
separate processes. The communication between the two pro-
cesses is achieved via UNIX named pipes. In general, when
combining two or more simulators, where each runs as a
separate process, the major issue becomes how to synchronize
their simulated clocks. To illustrate, consider the following
example of only two simulators, S1 and S2. Both S1 and S2

start at simulation time t0 and, at simulation time t1, S1 needs
to convey data to S2. Intuitively, we cannot let S1 and S2

freely run because it might happen that S2 passes t1 before
S1, which will lead to erroneous operations. Next, we discuss
three mechanisms to synchronize S1 and S2.

a) Predetermined Communication Time: The race condi-
tion between S1 and S2 can be solved easily if the time instant
t1 is predetermined and known beforehand. In such case, we
allow S1 and S2 to run freely until t1, at which point they
both pause, exchange data, and then resume execution until
the next predetermined communication time instant t2, and
so on. However, in realistic simulations, not all time instants
at which communication between the two simulators must
occur are known a priori. For example, in most cases, the
communication between the two simulators is triggered by
internal events inside one or both simulators depending on
meeting some conditions, which might be stochastic or even
deterministic, but not known a priori.

b) Real-time Synchronization: Several simulators, in-
cluding ns-2, possess the capability of synchronizing their
simulated clocks with real-life time, i.e., the wall-clock time.
If the two simulators have this real-time synchronization
feature, the race condition and synchronization between the
two simulators is completely resolved because both simulators
will advance at the same rate (the wall-clock rate) and they
will never outpace one another. Effectively, each simulator sees
the other as a (simulated) hardware in the loop. However,
this functionality is unimplemented in some simulators and
is experimental and correct operation is not guaranteed in
others, e.g., ns-2 [7], [9]. Another disadvantage of real-time
synchronization is that simulations will progress at the pace
of real-life clocks and thus may take a long time to finish,
i.e., an hour-long simulation will take exactly one real hour
to finish no matter how powerful the hardware on which it
is running. Consequently, this removes a major advantage of

4

simulation—the ability to compress long time into a shorter
period [10].

2) Synchronization: In general, achieving synchronization
between distributed simulators is a challenging issue. There-
fore, in [6], [3], we relaxed some constraints on the require-
ments the combined tool must meet. In particular, while the
tool fully supports communication that depend on ns-2’s
internal events, it does not support communication events that
depend on internal events inside Modelica.

To elaborate, consider the following example. Suppose that
this tool is used to simulate the simplest form of a system
consisting of a single physical plant and a remote controller,
such as the one in Figure 1. The sensor samples the values
of physical quantities, writes them in a packet, and sends
the packet over the network to the controller. The controller
examines the received sample to generate a control signal
that is then sent to the actuator (in this case, the generator).
When we first developed the tool, we based it on common
assumptions: the plant is time driven (and most often the
sampling times are uniform) and the controller is event driven
and its computation time is negligible or constant; see for
example [11] and the references therein. So, in reference to
the example of Figure 1:

• The voltage sampling events are dealt with inside ns-2
not inside Modelica. The sampling intervals can be regu-
lar or irregular. However, the next sampling time cannot
depend on some quantity or variable inside a Modelica
model (e.g., sending a packet once a Modelica variable
crosses some threshold).

• The computation delay of a controller is assumed to be
zero. Then, when ns-2 delivers the packet carrying the
sampled data to the controller modeled inside Modelica,
ns-2 collects the output of the controller instantly.
Notice that the tool can still support the case in which
the controller has a delay independent of any Modelica
variable, for example, a known constant delay or a delay
that changes based on a predefined trend. This delay
should be “coded” inside ns-2, though.

Due to such assumptions, the design choice has been to
enslave Modelica to ns-2 in that ns-2 controls and deter-
mines all time instants at which the communication between
Modelica and ns-2 should occur. However, the converse, i.e.,
enslaving ns-2 inside Modelica, was ruled out because if
Modelica were to control the communication events between
the two simulators, the communication between Modelica and
ns-2 could not depend on internal events inside ns-2. In
turn, unpredictability and nondeterminisim of communication
networks would be eliminated and unsupported by such de-
sign choice. In the adopted choice, on the other hand, the
unpredictability of physical systems is unsupported, at least
as far as inter-simulator events are concerned. We opted to
support nondeterminisim in networks over nondeterminisim
in physical systems for the following two reasons:

1) The time instants of data delivery from Modelica to
ns-2 (e.g., a voltage reading or collecting a control
signal) are often assumed predictable and can be coded
inside ns-2.

ns−2

Read

Write

Control

Modelica

Fig. 4. The read and the write operations between Modelica and ns-2.

2) In general, the time instants when data needs to be deliv-
ered from ns-2 to Modelica (e.g., arrival of packets) are
unpredictable due to random delays, presence or absence
of cross traffic, uncontrolled losses that the simulated
packets incur.

To make the inter-simulator communication feasible, the
following detailed steps are executed. It is realized that the
flow of data between Modelica and ns-2 occurs in both
directions: data flows from Modelica to ns-2 and vice versa.
When data is to be sent from ns-2 to Modelica, we refer to
this process as a write event (using the ns-2 side convention).
Conversely, a read event is when data is sent from Modelica
to ns-2; see Figure 4.

1) Without loss of generality, we assume that both Model-
ica and ns-2 start from a common time, ti.

2) While Modelica is pausing at ti, ns-2 runs until the
time of the first event that mandates communication with
Modelica, ti+1 ≥ ti.

3) ns-2 executes the respective event, it pauses at ti+1,
and it instructs Modelica to run until ti+1, at which point
• If the event is a read operation, ns-2 instructs

Modelica to write to the named pipe. Then, ns-2
reads the data.

• If the event is a write operation, ns-2 instructs
Modelica to read from a named pipe.

4) Steps 2 and 3 are then repeated with ti+1 until the end
of simulation. These step are illustrated in Figure 5.

The simulation time of ns-2 is always leading that of
Modelica. Note that when ns-2 is progressing in time (i.e.,
running), Modelica is pausing; and when Modelica is pro-
gressing, ns-2 is pausing. So, at a given time either ns-2
or Modelica is running and the other is pausing. One way
to interpret this method is that, while Modelica is pausing,
ns-2 is searching for events that require communication with
Modelica. Modelica and ns-2 pausing mechanism is achieved
by blocking reading from an empty named pipe; see Figure
4. Additionally, the method reduces the amount of parallelism
potentially available in a co-simulation.

E. Current Work

Due to the fact that ns-2 determines the communication
times between the two simulators, Modelica cannot determine
when to deliver data to ns-2 and it is ns-2 that determines
on behalf of Modelica when it should communicate with

5

current sim time

1

ns−2
Modelica

ns−2
Modelica

2

ns−2
Modelica

3

t_i

ns−2 future events

t_i t_i

t_i+1 t_i+1 t_i+1

time time time time timetime

current sim time

current sim time

Fig. 5. Illustration of Modelica and ns-2 pausing and progressing steps.

ns-2. Therefore, sending data between Modelica and ns-2 in
response to events generated inside Modelica is not supported.
That is, aperiodic control and alarm signals that are generated
in response to events triggered exclusively inside the physical
system (i.e., inside Modelica) are not accounted for. Further,
the current methodology fails to fully exploit the parallelism
inherent in the co-simulation approach.

Although the tool in [3] provided a very general tool that is
sufficient to simulate myriad of smart grid scenarios, there is
still a need for a more comprehensive tool that addresses all
these limitations.

ACKNOWLEDGMENTS

Research supported in part by NSF CCR-0329910, Depart-
ment of Commerce TOP 39-60-04003, and Department of
Energy DE-FC26-06NT42853.

REFERENCES

[1] V. Liberatore, M. C. Cavusoglu, Q. Cai, and Y. Yoo, “Evaluation
methods of a middleware for networked surgical simulations,” in 14th
annual Medicine Meets Virtual Reality (MMVR) conference, 2006.

[2] V. Liberatore, “A play-back algorithm for networked control,” in Pro-
ceedings of the Twentififth Annual Joint Conference of the IEEE Com-
puter and Communications Societies (INFOCOM 2006), 2006.

[3] A. Al-Hammouri, M. Branicky, and V. Liberatore, “Co-simulation for
networked control systems,” in 2008 Hybrid Systems: Computation and
Control (HSCC 2008), pp. 16–29.

[4] J. Nutaro, P. T. Kuruganti, M. Shankar, L. Miller, and S. Mullen,
“Integrated modeling of the electric grid, communications, and control,”
International Journal of Energy Sector Management, vol. 2, no. 3, pp.
420–438, 2008.

[5] J. Nutaro and V. Protopopescu, “The impact of market clearing time
and price signal delay on the stability of electric power markets,”
Transactions on Power Systems.

[6] A. Al-Hammouri, D. Agrawal, V. Liberatore, H. Al-Omari, Z. Al-Qudah,
and M. S. Branicky, “Demo abstract: A co-simulation platform for
actuator networks,” in Sensys 2007.

[7] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A. Helmy,
P. Huang, S. McCanne, K. Varadhan, Y. Xu, and H. Yu, “Advances
in network simulation,” Computer, vol. 33, no. 5, pp. 59–68, May 2000.

[8] M. M. Tiller, Introduction to Physical Modeling with Modelica.
Springer, 2001.

[9] T. Kohtamäki, M. Pohjola, J. Brand, and L. M. Eriksson, “Piccsim
toolchain—design, simulation and automatic implementation of wireless
networked control systems,” in Proc. of the 2009 IEEE International
Conference on Networking, Sensing and Control, Okayama, Japan, Mar.
2009.

[10] J. Banks, J. Carson, B. L. Nelson, and D. Nicol, Discrete-Event System
Simulation. Pearson Prentice Hall, 2005.

[11] W. Zhang, “Stability analysis of networked control systems,” Ph.D.
dissertation, Case Western Reserve, Aug. 2001.

Vincenzo Liberatore is an Associate Professor in CS at CWRU. He holds a
Laurea degree in EE from Univ. of Rome “La Sapienza” and a Ph.D. in CS
from Rutgers Univ. Previous appointments include research positions at Bell
Labs and Univ. of Maryland, College Park. He has published extensively in
networking, theoretical computer science, compilers, and security. Research
interests include networked control systems, with applications to Internet
robotics and distributed simulations. He served on the program committees
of the Workshop on Factory Communication Systems and the Intl. Conf. on
Mobile Data Management.

Ahmad Al-Hammouri is an Assistant Professor in the Department of
Network Engineering and Security at Jordan University of Science and
Technology. He received the B.S. degree with first-class honors in Electrical
Engineering from Jordan University of Science and Technology, Irbid, Jordan,
in 2001; and the M.S. and the Ph.D. degrees in Computer Engineering
from Case Western Reserve University, Cleveland, Ohio, in 2004 and 2008,
respectively. He has held research positions at Case Western Reserve Univer-
sity’s Netlab. His Research interests are in cyber-physical systems, congestion
control, and middleware for real-time sense-and-respond systems.

