Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells

Hongping Zhao,1,3,4 Guangyu Liu,1 Jing Zhang,1 Jonathan D. Poplawsky,2 Volkmar Dierolf,2 and Nelson Tansu1,5

1Center for Optical Technologies, Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
2Department of Physics, Center for Optical Technologies, Lehigh University, Bethlehem, Pennsylvania 18015, USA
3Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, Ohio 44106, USA
4hongping.zhao@case.edu
5tansu@lehigh.edu

Abstract: Optimization of internal quantum efficiency (IQE) for InGaN quantum wells (QWs) light-emitting diodes (LEDs) is investigated. Staggered InGaN QWs with large electron-hole wavefunction overlap and improved radiative recombination rate are investigated for nitride LEDs application. The effect of interface abruptness in staggered InGaN QWs on radiative recombination rate is studied. Studies show that the less interface abruptness between the InGaN sub-layers will not affect the performance of the staggered InGaN QWs detrimentally. The growths of linearly-shaped staggered InGaN QWs by employing graded growth temperature grading are presented. The effect of current injection efficiency on IQE of InGaN QWs LEDs and other approaches to reduce dislocation in InGaN QWs LEDs are also discussed. The optimization of both radiative efficiency and current injection efficiency in InGaN QWs LEDs are required for achieving high IQE devices emitting in the green spectral regime and longer.

©2011 Optical Society of America

OCIS codes: (230.3670) Light-emitting diodes; (230.0250) Optoelectronics; (040.4200) Multiple quantum well.

References and links

III-Nitride semiconductors have significant applications for solid state lighting and lasers [1–20], power electronics [21], thermoelectricity [22,23], and solar cells [24–26]. The InGaN quantum wells (QWs) employed as active region for nitride light-emitting diodes (LEDs) covers the wide spectral regime from near ultraviolet to near infrared [1–20]. As the emission wavelength of the InGaN QWs extends from blue to green and red spectral regimes, the

1. Introduction

III-Nitride semiconductors have significant applications for solid state lighting and lasers [1–20], power electronics [21], thermoelectricity [22,23], and solar cells [24–26]. The InGaN quantum wells (QWs) employed as active region for nitride light-emitting diodes (LEDs) covers the wide spectral regime from near ultraviolet to near infrared [1–20]. As the emission wavelength of the InGaN QWs extends from blue to green and red spectral regimes, the
internal quantum efficiency (IQE) in InGaN QWs LEDs decreases significantly due to (1) high dislocation density results from the lattice mismatch between the sapphire substrate and GaN / InGaN leading to large non-radiative recombination rate, and (2) charge separation from the polarization fields in the QW leading to reduction of the electron-hole wavefunction overlap ($\Gamma_{e,\text{hh}}$) and radiative recombination rate (R_{sp}) in particular for green-emitting QWs. Recent works have reported the growths of highly-abrupt interfaces between InGaN QWs and GaN barriers with no indium clustering [27]. In addition, the existence of spontaneous and piezoelectric polarization fields in InGaN QWs [28–34] led to charge separation effect, which in turn impacts both the radiative recombination rate and carrier dynamics in the QWs [35–37]. In order to maximize the external quantum efficiency of nitride LEDs, the optimizations of both extraction efficiency and IQE of the LEDs are of great importance. Various methods have been pursued to optimize the light extraction efficiency in nitride LEDs [15–20].

It is important to note that the reduction in dislocation densities in nitride alloy is also instrumental in reducing the non-radiative recombination rate in the LEDs, which will also lead to enhancement in the radiative efficiency of the devices [38–42]. Recently, the elimination of V-defect in InGaN QWs had been reported resulting in enhancement in the IQE of the LEDs [38,39]. Recent works had reported a threading dislocation density reduction in blue- and green-emitting InGaN LEDs grown on nanopatterned sapphire substrates [41,42].

Recently, several approaches have been proposed to suppress the charge separation issue by employing novel QWs with improved electron-hole wavefunction overlap ($\Gamma_{e,\text{hh}}$) such as (1) nonpolar InGaN QWs [43–45], (2) staggered InGaN QW [46–58], (3) InGaN QW with δ-AlGaN layer [59,60], (4) type-II InGaN QW [61–63], (5) InGaN-delta-InN QW [64], and (6) triangular QWs [65]. These approaches used various methods to engineer the InGaN QWs in order to obtain structures with large optical matrix elements, which in turn lead to significantly improved radiative recombination rate. Other approach based on strain compensated InGaN QW design [66] had also been proposed to enhance the IQE of the LED, and recent experimental works [67] showed good agreement with theory. Recently, the use of staggered QWs [46–58] had also been implemented in ZnO / ZnMgO QWs structures [68].

In this paper, we investigated the approaches based on quantum well structures with large overlap design to enhance the internal quantum efficiency (IQE) for InGaN QWs based LEDs. The optimization of both radiative efficiency and current injection efficiency for InGaN QWs is crucial for the enhancement of the IQE of the QWs. Staggered InGaN QWs are analyzed as active region for nitride LEDs with enhanced electron-hole wavefunction overlap ($\Gamma_{e,\text{hh}}$). The effect of abruptness of interface in staggered InGaN QWs on $\Gamma_{e,\text{hh}}$ and radiative recombination rate (R_{sp}) is studied. In addition, the effect of current injection efficiency on efficiency droop in InGaN QWs is studied. Novel structures designed by employing thin large band gap barrier materials surrounding the InGaN QWs to suppress the efficiency droop are discussed. The optimization of both radiative efficiency and current injection efficiency in InGaN QWs enables the realization of high internal quantum efficiency for nitride based LEDs emitting in the green wavelength region and longer.

The organization of this paper is presented as follows. Section 2 introduces the concept of band structure engineering for InGaN QWs with large electron-hole wavefunction overlap / large momentum matrix element. In Section 3, the staggered InGaN QWs for high internal quantum efficiency green LEDs are presented. The effect of abruptness of interface in staggered InGaN QWs is discussed in Section 4. Section 5 presents the epitaxy and characteristics of linearly-shaped staggered InGaN QWs. Section 6 discusses the issues and approaches to address the efficiency droop in InGaN QWs LEDs, as well as other important issues related to the internal quantum efficiency enhancement in InGaN QWs LEDs.
wavefunction overlap (Γ_{e,hh}) [35–37]. The charge separation issue becomes more severe for InGaN QWs with emission wavelength extended in the green and longer spectral regimes.

![Diagram of Conventional and Novel QW/QD](image)

Conventional QW
- Low electron-hole wavefunction overlap (Γ_{e,hh})
- Large built-in Quantum Confined Stark Effect
- Low spontaneous emission rate and optical gain
- Large threshold carrier / current density

Novel QW / QD
- High electron-hole wavefunction overlap (Γ_{e,hh})
- Reduces Quantum Confined Stark Effect
- Enhances spontaneous emission rate and optical gain
- Reduces threshold carrier / current density

Fig. 1. The concept of novel InGaN QWs / QDs structures with improved electron-hole wavefunction overlap.

To resolve the fundamental issue for the conventional InGaN QW based LEDs due to the low electron-hole wavefunction overlap (Γ_{e,hh}), novel QW structures with enhanced overlap Γ_{e,hh} are important to achieve active regions with large spontaneous emission radiative recombination rate (R_{sp}) [43–65]. As illustrated in Fig. 1, by employing novel QW designs, the shift of the electron and hole wavefunctions toward the center of the QW leads to the reduction of the charge separation and enhancement of the electron-hole wavefunction overlap (Γ_{e,hh}). Based on the Fermi’s golden rule, the transition matrix element is proportional to the square of the electron-hole wavefunction overlap (|Γ_{e,hh}|²) [46]. Thus, with the enhanced Γ_{e,hh}, the spontaneous emission radiative recombination rate will be enhanced. The improved optical matrix element leads to high R_{sp}, which in turn enables the realization of high brightness nitride LEDs emitting in green spectral regime or beyond.

3. Staggered InGaN QWs for high internal quantum efficiency green LEDs

The purpose of using the staggered InGaN QW design is to enhance the electron-hole wavefunction overlap (Γ_{e,hh}) by engineering the band lineups of the InGaN QW, hence leading to an increase in the radiative recombination rate (R_{sp}) of the QW for LEDs application. The concept of staggered InGaN QW has been introduced in references 46–58, which can be implemented as active regions in typical nitride-based LED devices [15–20].

![Diagram of InGaN QW structures](image)

Fig. 2. Schematics of the (a) conventional In_{x}Ga_{1-x}N-GaN QW; (b) two-layer staggered In_{x}Ga_{1-x}N/In_{y}Ga_{1-y}N QW; and (c) three-layer staggered In_{x}Ga_{1-x}N / In_{x}Ga_{1-x}N / In_{x}Ga_{1-x}N QW structures [47].
Figure 2 shows the schematics of (a) a conventional In$_{z}$Ga$_{1-z}$N QW; (b) a two-layer staggered In$_{x}$Ga$_{1-x}$N / In$_{y}$Ga$_{1-y}$N QW and (c) a three-layer staggered In$_{x}$Ga$_{1-x}$N / In$_{y}$Ga$_{1-y}$N / In$_{z}$Ga$_{1-z}$N QW structures, which are surrounded by the GaN barriers [47]. Note that the three structures were designed with identical total QW thickness (d_{QW}) for comparison purpose. The studies of the characteristics of these staggered InGaN QW LEDs were presented in references 47 and 48, and the analysis indicated that the use of green-emitting staggered InGaN QW active region leads to significant enhancement in the radiative recombination rate by ~5-6 times for the optimized three-layer staggered InGaN QW structure [47]. These results in turn correspond to ~1.5-2.5 times enhancement in the expected increase in the radiative efficiency of the InGaN QWs LEDs [47].

![Fig. 3. The electroluminescence spectra for (a) conventional InGaN QW and (b) three-layer staggered InGaN QW LEDs emitting with peak wavelengths at 520-525 nm, as function of injection current levels.](image)

![Fig. 4. Light output power vs current density for conventional InGaN QW and three-layer staggered InGaN QW LEDs at λ~520–525 nm, with the band lineups schematic of three-layer staggered InGaN QW [48].](image)

In order to carry out the experimental studies of the three-layer staggered InGaN QW LEDs, the use of graded growth temperature technique in metalorganic chemical vapor deposition (MOCVD) was employed for the epitaxy of the active region [48]. The detail of the growth method was presented in reference 48. Figures 3(a) and 3(b) show the electrical luminescence (EL) for the conventional InGaN QWs LED and three-layer staggered InGaN QWs LED emitting at 520-525 nm, measured under continuous wave (CW) operation at room.
Both devices were based on bottom-emitting square device, with area size of 510 \(\mu \text{m} \times 510 \mu \text{m} \). The enhancement of the peak EL for the three-layer staggered InGaN LED as compared to the conventional LED is 1.8 times (1.3 times) at \(I = 100 \text{ mA} \) \((I = 200 \text{ mA}) \). The FWHMs of the EL spectra for the three-layer staggered InGaN QW LEDs were measured as larger [Fig. 3(b)], in comparison to those of the conventional LEDs. The larger FWHMs of the EL spectra were more obvious for increasing current density, which can be attributed to the less abrupt interfaces in the three-layer staggered InGaN QW active region. The output powers versus the inject current density for conventional and three-layer staggered InGaN LEDs measured under continuous wave operation were shown in Fig. 4. The output power of the three-layer staggered InGaN QW LED was measured as \(\sim 2.0 \) times higher in comparison to that measured from conventional LEDs at high current density. The findings obtained from experiments are in good agreement with that predicted from theory.

![Fig. 5. Time resolved measurements on both 3-layer staggered InGaN QW and conventional InGaN QW LED samples, with peak emission wavelength at 520-525 nm. The measurements were carried out by employing 430-nm excitation lasers with pulse duration of 25 ps [48].](image)

In order to obtain the understanding of the carrier dynamic and recombination from the staggered InGaN QW LEDs, the time resolved photoluminescence (TR-PL) measurements were performed for both conventional and three-layer staggered InGaN QW LED samples emitting at 520-525 nm [48]. The TR-PL measurements were carried out by utilizing a Nd:YAG laser that is doubled and tripled in frequency and whose ultraviolet output pumps an optical parametric generator/amplifier system that ultimately delivers short optical pulses with a wavelength than can be tuned from 420 nm up to 2 \(\mu \text{m} \) in the infrared. The excitation laser wavelength of 430-nm was employed for the measurements of the InGaN QWs samples. The pulse duration, repetition rate, output power and beam diameter for the excitation laser were 25 ps, 10 Hz, 30 \(\mu \text{J} \) / pulse, and \(\sim 300 \mu \text{m} \), respectively. The emission from the InGaN QW LEDs was detected by a photomultiplier tube (Thermo Oriel Instruments 70705). The time evolution of photoluminescence from the InGaN QWs was collected and displayed by the Lecroy LT584 oscilloscope (1 GHz bandwidth). As shown in Fig. 5, the TR-PL measurements for both staggered (\(\tau_{\text{staggered}} = 12.3 \) ns) and conventional (\(\tau_{\text{conventional}} = 18.9 \) ns) InGaN LEDs indicated a 35% reduction of carrier lifetime for the staggered In aN QW LEDs. The TR-PL measurements for PL samples (with no p-GaN cap layer) show the similar reduction of the carrier lifetime for the staggered InGaAs QWs. As compared with the conventional InGaN QW LEDs, the staggered InGaN QW LEDs show enhanced radiative efficiency, output power, and reduced carrier lifetime, which indicated that the increase in radiative recombination rate from the enhanced electron-hole wavefunction overlap is a dominant factor for the improved device performance.
Based on the following parameters, the carrier density in the InGaN QW active region during the carrier lifetime measurement is estimated: (1) the 430-nm excitation laser power (30 μJ / pulse), (2) the laser beam diameter (~300 μm), (3) the absorption coefficient for InGaN material $(\alpha_{\text{QW}} \approx 2 \times 10^3 \text{ cm}^{-1})$ [69], and (4) the total thickness of the InGaN 4-QWs active region of 12 nm. Thus, the estimated carrier density in the InGaN QW is in the range of mid-1019 cm$^{-3}$. In order to estimate the monomolecular recombination coefficient (A) and Auger recombination coefficient (C) for the conventional and staggered InGaN QWs, the total carrier lifetimes are calculated for both conventional InGaN QW and three-layer staggered InGaN QW emitting at ~525 nm at different carrier density as shown in Fig. 6. Based on the carrier lifetime measurements for both conventional ($\tau_{\text{conventional}} = 18.9$ ns) and staggered ($\tau_{\text{staggered}} = 12.3$ ns) InGaN QWs, the estimated carrier density in InGaN QW active region is about $n \approx 5 \times 10^{19}$ cm$^{-3}$. In our analysis, we have made the assumption that the monomolecular coefficient (A) and Auger coefficient (C) for both conventional and staggered InGaN QWs are identical. From Fig. 6, the estimated monomolecular recombination coefficient (A) and Auger coefficient (C) that match with the experimental measurements are A $\approx 1.6 \times 10^7$ s$^{-1}$ and C $\approx 5 \times 10^{-33}$ cm6s$^{-1}$. Based on the estimated monomolecular coefficient and Auger coefficient, the radiative carrier lifetimes (τ_{rad}) for both three-layer staggered InGaN QWs and conventional InGaN QWs emitting at $\lambda \approx 520-525$ nm can be estimated as ~18.58 ns and ~39.35 ns, respectively, for carrier density $n \approx 5 \times 10^{19}$ cm$^{-3}$. The finding indicates that the use of three-layer staggered InGaN QWs leads to ~2.12 times increase in radiative recombination rate, in comparison to that measured for conventional InGaN QWs.

![Fig. 6](https://example.com/fig6.png)

Fig. 6. Total carrier lifetime as a function of carrier density for conventional InGaN QW and staggered InGaN QW at monomolecular coefficient A $\approx 1.6 \times 10^7$ s$^{-1}$ and Auger coefficient C $\approx 5 \times 10^{-33}$ cm6s$^{-1}$.

Note that the approaches of suppressing charge separation effect in InGaN QWs discussed here are also applicable for InGaN quantum dots (QDs) active regions [70–72]. Several approaches by engineering the InGaN QDs have been pursued in order to achieve higher spontaneous emission rate by achieving structures with larger optical matrix elements [70–72]. In contrast to InGaN QWs, one of key limitations for AlGaN-based deep- and mid-UV LEDs and lasers is related to the valence band arrangement of heavy-hole (HH) and crystal-field split-off hole (CH) bands [73–75]. Thus, the optimization for AlGaN QWs requires other method focusing on the use of novel QW structures that allow valence band lineups engineering in the active region [76].
4. Effect of abruptness of interface for staggered InGaN QWs

In this section, the effect of interface linear grading on the electron-hole wavefunction overlap and spontaneous emission radiative recombination rate will be analyzed for the staggered InGaN QWs. Here we assume that the interface between the staggered InGaN QWs sub-layers contains the transition InGaN layer with linearly-graded In-content profile. Five staggered InGaN QWs structures with various thicknesses of transition InGaN layers (2-Å, 4-Å, 6-Å, 8-Å and 10-Å interface In-content linear-grading) are compared with the staggered InGaN QWs with abrupt In-content interface (0-Å interface In-content linear-grading). Figure 7 shows the energy band lineups and the corresponding electron and hole wavefunctions for the staggered InGaN QWs with: (a) 0-Å interface In-content linear-grading, and (b) 6-Å interface In-content linear-grading.

From Fig. 7, we observed that the band lineups for the staggered InGaN QWs with a linear gradient of the In-content linear-grading [Fig. 7(b)] are significantly-less abrupt as compared to those for the staggered InGaN QWs with abrupt In-content interface [Fig. 7(a)]. However, both electron and hole wavefunctions exhibited relatively similar distribution for both staggered InGaN QWs with abrupt and less abrupt interfaces. Thus, the electron-hole wavefunction overlap ($\Gamma_{e,\text{hh}}$) for the staggered InGaN QWs shown in Fig. 7(b) have relatively minor modification.

Fig. 8. R_e spectra for staggered InGaN QWs with less abrupt interface by In-content linear-grading.

\[n = 1 \times 10^{19} \text{ cm}^{-2} \]
To investigate the effect of the In-content linear-grading on the spontaneous emission radiative recombination rate (R_{sp}), the calculations of R_{sp} were performed for the six staggered InGaN QWs structures as discussed. The comparison of the R_{sp} spectra calculated at the carrier density of $n = 1 \times 10^{19}$ cm$^{-3}$ for staggered InGaN QWs is shown in Fig. 8. From Fig. 8, we observe slight modification on the R_{sp} spectra including slight modification on the spontaneous emission peak intensity and integrated intensity. Slight blue shifts in the peak wavelength are also observed for the staggered InGaN QWs with less abrupt interfaces. Thus, the In-content with linear-grading between the InGaN sub-layers in the staggered InGaN QWs will not lead to the degradation of the QW performance. The graded growth temperature technique introduced for the metalorganic chemical vapor deposition (MOCVD) of the staggered InGaN QWs [48,49] is expected to introduce less-abrupt interface in the sub-layers of the QWs. However, our finding shows that the introduction of less-abrupt interface does not lead to any reduction in spontaneous emission rate in the QW, which shows that the use of graded growth temperature approach is practical for manufacturing of staggered QW LEDs.

5. Linearly-shaped staggered InGaN QWs

5.1 MOCVD of linearly-shaped (LS) staggered InGaN QWs

Similar to the concept of three-layer staggered InGaN QW, QWs designed with local minima in the center will result in the shift of both electron and hole wavefunction toward the center of the QW region, which leads to significant enhancement in the electron-hole wavefunction overlap ($\Gamma_{e\cdot h}$) and spontaneous emission rate.

By controlling the growth temperature during the InGaN QW layers epitaxy, various In-content can be obtained in the InGaN QWs. By using the current control mode to control the growth temperature during the staggered InGaN QWs growths, the real growth temperature profile for the staggered InGaN QWs shows stable temperature control as well as fast temperature modification. The ability to achieve very precise good control of the growth temperature by using the current control mode led to the ability to achieve higher degree of control in the Indium contents in the sub-layers of the staggered InGaN QWs.

![Fig. 9. Schematics of the growth temperature, TMIn-flow rate, and In-content for the LS-1 staggered InGaN QW [Fig. 9(a)] and the corresponding real growth temperature profiles [Fig. 9(b)].](image)

Figures 9–11 show the schematics of three different linearly-shaped (LS) staggered InGaN QWs [LS-1 staggered QW (Fig. 9), LS-2 staggered QW (Fig. 10) and LS-3 staggered QW (Fig. 11)]. The left figures [Figs. 9(a), 10(a) and 11(a)] correspond to the schematics of the designed growth temperature profiles and the In-content profiles. Note that the TMIn flow was kept constant for all the experiments. The bottom figures [Figs. 9(b), 10(b) and 11(b)] show the real growth temperature profiles by MOCVD using the current control mode. By comparing Figs. 9(a), 10(a), 11(a) with Figs. 9(b), 10(b) and 11(b), the real growth temperature profiles for the staggered InGaN QWs are shown to be stable and in good control.
temperature profiles match very well with the schematics. In contrast to the LS staggered InGaN QW, the conventional InGaN QWs contain constant In-content for the InGaN QW, where the growth temperature for the conventional InGaN QW is constant.

During the MOCVD growth, TMGa / TEGa, TMIn, and NH₃ were used as gallium, indium, and nitrogen precursors, respectively. Cp₂Mg and dilute SiH₄ were used as p- and n-type dopant sources, respectively. The growth of InGaN active layer employs TMIn, TEGa and NH₃ as the precursors, and N₂ gas was employed as carrier gas. The V/III and [TMIn] / [III] molar ratios for the growth of InGaN layers were kept constant at 20700 and 0.56, respectively. Both conventional and LS staggered InGaN QW LEDs emitting at 460-480 nm were grown on 2.5 μm thick n-doped GaN (n = 4x10¹⁸ cm⁻³) on c-plane double-side polished sapphire substrate, employing a low temperature 30-nm GaN buffer layer. Both conventional and linearly-shaped staggered InGaN QW structures consist of 4-period of InGaN QWs with 10 nm undoped GaN barriers. The conventional InGaN QW was grown at 750 °C, and the LS staggered InGaN QWs were grown at varied temperature profiles as shown in Figs. 9(b), 10(b) and 11(b) ranging between 738 °C and 760 °C. The thickness of the LS staggered InGaN QW is calibrated as 3 nm, which is similar to that of conventional InGaN QW. On top of the InGaN QWs, 200 nm p-GaN (p = 3x10¹⁷ cm⁻³) were employed as p-type layer.
5.2 Cathodoluminescence measurement of linearly-shaped staggered InGaN QWs

The luminescence characteristics of both conventional and linearly-shaped staggered InGaN QWs samples were studied by power-density-dependent cathodoluminescence (CL) measurements performed at T = 300K. We utilized a 10 keV electron beam in spot mode (area $= 2.0 \times 10^{-9}$ cm2) to excite the InGaN QWs active region. To study the effect of the excitation power on the CL intensity for both conventional and linearly-shaped staggered InGaN QW LEDs, different excitation power density levels were applied on both conventional and linearly-shaped staggered InGaN QW LED samples. The various excitation power densities for a constant volume were obtained by varying the electron beam current (with constant accelerating voltage of 10 keV) from 20 nA up to 800 nA.

![Fig. 12. (a) CL spectra of conventional, LS-1 staggered, LS-2 staggered, and LS-3 staggered InGaN QWs emitting at 460-480nm with various CL excitation currents; (b) Integrated CL intensity of conventional, LS-1 staggered, LS-2 staggered, and LS-3 staggered InGaN QW versus CL excitation currents at T = 300K.](image)

Figure 12(a) shows the measured CL spectra plotted against CL pump current (shown for 200 nA and 500 nA) of the conventional, LS-1 staggered InGaN QW, LS-2 staggered InGaN QW, and LS-3 staggered InGaN QW. The linearly-shaped staggered InGaN QW samples exhibit improved peak luminescence by 2.8-5.1 times of that of the conventional InGaN QW. Note that the linearly-shaped staggered InGaN QWs show slight blue shift as compared to the conventional InGaN QW due to the ramping up of the growth temperature during the growths of QWs, which requires further optimization of the growth temperature profile to match the emission wavelength to that of the conventional InGaN QWs. Integrated CL intensities for...
both QWs LEDs were obtained by integration of the CL spectra data over the photon energy [Fig. 12(b)]. The LS-1 (LS-2, and LS-3) staggered InGaN QW exhibited improvement by 1.35-3.2 (1.8-2.7, and 2.1-2.6) times of the integrated CL intensity as compared to that of the conventional QW. Both conventional and LS staggered InGaN QWs LEDs show blue-shift in emission wavelengths as the pumping current increases due to the carrier screening effect.

5.3 Numerical Simulation of Linearly-Shaped Staggered InGaN QWs

To numerically study the effect of the linearly-shaped staggered InGaN QWs on the spontaneous emission radiative recombination (R_{sp}), the R_{sp} properties of LS-3 staggered InGaN QW is calculated and compared to that of the conventional InGaN QW. Figure 13 shows the band lineups for (a) conventional 30-Å In$_{0.25}$Ga$_{0.75}$N QW and (b) LS-3 staggered InGaN QW, with the design wavelength at λ~500 nm. The detailed structure for LS-3 staggered InGaN QW is shown in Fig. 13(c), which comprises two side layers of 5-Å In$_{0.18}$Ga$_{0.82}$N layers and linearly-shaped In$_{x}$Ga$_{1-x}$N layers (0.18<x<0.4). From Figs. 13(a) and 13(b), the electron-hole wavefunction overlap ($\Gamma_{e,h}$) is significantly enhanced from 17.3% (conventional InGaN QW) to 32.8% by utilizing the LS-3 staggered InGaN QW. The enhancement of the $\Gamma_{e,h}$ is due to the shift of both electron and hole wavefunctions toward the center of the QW region from the band lineups engineering. The use of LS staggered InGaN QWs can be practically implemented by using graded growth temperature approach.

![Image](image.png)

Fig. 13. Band lineups and electron and hole wavefunction for (a) conventional 30-Å InGaN QWs and (b) LS-3 staggered InGaN QW. (c) Schematic of the conduction band lineup without the polarization field for LS-3 staggered InGaN QW with GaN barriers, where the sub-layers at side contain 5-Å In$_{0.18}$Ga$_{0.82}$N, and the linearly-shaped 10-Å In$_{x}$Ga$_{1-x}$N contain InGaN layers with In-content linearly modified from 0.18 to 0.4.

The spontaneous emission spectra are calculated for both conventional InGaN QW and LS-3 staggered InGaN QW. Figure 14(a) shows the spontaneous emission spectra for both two structures at carrier density from $n = 1x10^{18}$ cm$^{-3}$ up to $n = 2x10^{19}$ cm$^{-3}$. Both structures are designed emitting at the similar wavelength (~500 nm). From Fig. 14(a), we observe significant enhancement in the spontaneous emission at different carrier density. In addition, the LS-3 staggered InGaN QW shows less blue-shift of the peak emission wavelength as the...
carrier density increases as compared to that of the conventional InGaN QW. Figure 14(b) shows the comparison of the spontaneous emission rate \(R_{sp} \) for both conventional and LS-3 staggered InGaN QWs. The \(R_{sp} \) is obtained by integrating the spontaneous emission spectrum over the photon energy. The \(R_{sp} \) for the LS-3 staggered InGaN QW shows 3.2-3.9 times enhancement as compared to that of the conventional InGaN QW at different carrier density.

![Spontaneous emission spectra for conventional InGaN QW and LS-3 staggered InGaN QW](image)

Fig. 14. (a) Spontaneous emission spectra for conventional InGaN QW and LS-3 staggered InGaN QW with carrier density from \(1 \times 10^{18} \) cm\(^{-3} \) up to \(2 \times 10^{19} \) cm\(^{-3} \); (b) spontaneous emission radiative recombination rate \(R_{sp} \) for conventional InGaN QW and LS-3 staggered InGaN QW at different carrier density up to \(2 \times 10^{19} \) cm\(^{-3} \).

6. Other issues for IQE in InGaN QW LEDs—defects and efficiency droop

In addition to the approaches to address the charge separation in InGaN QWs, the reduction of threading dislocation and V-defects in InGaN QW is also of great importance for ensuring high radiative efficiency and IQE of the devices [38–42]. Recent works by growing on nanopatterned sapphire substrates have resulted in threading dislocation density reduction [41,42]. The uses of low-dislocation substrates and novel growth methods have resulted in reduction in V-defects in InGaN QWs [38–40]. In addition to the optimization of the radiative efficiency \(\eta_{\text{Radiative}} \) by increasing the radiative recombination rate and reducing the non-radiative recombination rate, the IQE optimization for InGaN QWs also require careful consideration of the current injection efficiency \(\eta_{\text{Injection}} \) for high current density operation.

It is widely observed that c-plane InGaN QW based LEDs suffer from the reduction in efficiency at high operating current density, i.e., “efficiency droop” [77]. Experimental studies show that the efficiency of the InGaN QW LEDs reaches peak value at low injection current \((J=5-20 \text{ A/cm}^2) \), which reduces as the injection current increases [77]. Up to date, the origin of this phenomenon is still controversial and inconclusive. Various possible explanations were proposed as the mechanisms for the efficiency droop in high current operated devices as follows: (1) carrier leakage [78,79], (2) large Auger recombination rate at high carrier density [80–82], (3) decreased carrier localization at In-rich regions at high injection densities [83], (4) hole transport impediment and consequent electron leakage [84,85], and (5) junction heating [86]. Kim, et al. and Schubert, et al. reported that the efficiency droop in InGaN QW LEDs was related to the recombination of carriers outside the MQW region [78,79]. Shen and associates reported a large Auger recombination coefficient \(C_{\text{Auger}} \sim 1.4-2 \times 10^{-30} \text{ cm}^6/\text{s} \) in InGaN materials [80]. However, the calculated Auger coefficient for direct Auger process indicated \(C_{\text{Auger}} \sim 10^{-34} \text{ cm}^6/\text{s} \) [87]. Recent works based on first principle method indicated that the Auger coefficient in InGaN materials as \(C_{\text{Auger}} \sim 2 \times 10^{-30} \text{ cm}^6/\text{s} \) [80] and \(C_{\text{Auger}} \sim 3-4 \times 10^{-31} \text{ cm}^6/\text{s} \) [82], attributed to the interband Auger and indirect Auger processes, respectively. In addition, recent works by Chow and associates have also suggested the possibility of electron plasma heating in the QW as the primary carrier leakage mechanism [88]. Although it
is uncertain of the origin of the efficiency droop in InGaN QW LEDs, the carrier-dependent droop phenomenon is clear that leads to efficiency droop at high injection level.

Several possible solutions to address the efficiency droop have also been presented as follow: (1) the use of thicker InGaN active layer [89], (2) the use of polarization-matched barrier materials [78,79], and (3) the use of larger bandgap barrier materials [90–92]. The use of thicker InGaN active layer in LED devices have led to significantly lower carrier density in the active layer, which in turn leads to peak efficiency up to current density above 200 A/cm² [89]. The use of polarization-matched AlInGaN barrier material also enables the suppression of efficiency-droop in InGaN QW LEDs. An important consideration in the pursuit of the approaches to suppress efficiency droop in nitride LEDs is the growth compatibility in implementing the approach. An interesting approach to suppress or reduce the efficiency droop at high current density in InGaN QW LEDs is by employing thin lattice-matched Al0.83In0.17N barrier layers [90] surrounding the InGaN QW active region [as shown in Fig. 15(a)]. As shown in Fig. 15(b), the use of thin AlInN barrier layers is expected to lead to efficiency-droop suppression up to high current density (J > 450 A/cm²) [90]. Recently, Choi, et al. and Kim and associates reported significant improvement in the electroluminescence emission intensity in InGaN LEDs by employing the In0.18Al0.82N electron block layer, which led to suppression of droop up to J ~200 A/cm² [91,92]. These findings indicated that the suppression of carrier leakage is crucial for reducing the efficiency droop in InGaN QWs [90–92], and optimizing the current injection efficiency is important for enabling high IQE devices at high current density.

7. Summary

In summary, the staggered InGaN QWs with enhanced radiative efficiency are analyzed as improved active region for LEDs application. Various issues related to the use of large overlap QWs for addressing low IQE in green spectral regime were reviewed. The less-abrupt interface in staggered InGaN QWs due to the graded growth temperature approach will not affect the performance of the staggered InGaN QWs detrimentally. The epitaxy of linearly-shaped staggered InGaN QWs was presented. The finding indicates that the use of LS staggered InGaN QWs can be relatively practically implemented by using graded growth temperature technique under current control mode. Other important issues in optimizing the IQE of InGaN QW LEDs related to defect reduction and efficiency droop suppression were discussed. The employment of thin large band gap barrier materials surrounding the InGaN QWs leads to significant enhancement of current injection efficiency, which suppresses the efficiency droop in III-Nitride LEDs. The optimization of both radiative efficiency and current
injection efficiency enables the realization of high internal quantum efficiency for nitride based LEDs emitting in the green wavelength region and longer.

Acknowledgments

The authors acknowledge supports from US National Science Foundation (Grant No. ECCS # 0701421, ECCS # 1028490), US Department of Energy (Grant No. DE-FC26-08NT01581), and Class of 1961 Professorship Funds. This manuscript is an invited journal paper as part of the Energy Express focus issue.