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Abstract

In this thesis, we develop and evaluate machine learning algorithms that can learn effectively
from data with complex interactions and ambiguous labels. The need for such algorithms is
motivated by such problems as protein-protein binding and drug activity prediction.

In the first part of the thesis, we focus on the problem of myopia. This problem arises
when greedy learning strategies are applied to learn from data with complex interactions.
We present skewing, our approach to alleviating myopia. We describe theoretical results
and empirical results on Boolean data that show that our approach can learn effectively
from data with complex interactions. We investigate the effects of various parameter choices
on our approach, and the effects of dimensionality and class-label noise. We then propose
and evaluate a variant that scales better to high-dimensional data. Finally, we propose and
evaluate an extension that is able to learn from non-Boolean data with similar complex
interactions as in the Boolean case.

In the second part of the thesis, we focus on the multiple-instance (MI) problem. This
problem arises when the class labels or responses of individual instances are unknown, but
there are constraints relating the labels of collections of instances (bags). We first describe an
empirical evaluation of several multiple-instance and supervised learning methods on several
MI datasets. From our study, we derive several useful observations about the accuracy
of supervised and MI methods on MI data. We next design and evaluate an approach to
learning combining functions from data. These functions are used to combine predictions on
each instance into a prediction for a bag. Finally, we consider the problem of regression in a
multiple-instance setting. We show that an exact solution to this problem is NP-hard, and
develop and evaluate approximation algorithms for MI regression on synthetic and real-world
drug activity prediction problems. Our experiments show that there is value in considering
the MI setting in regression as well as in learning combining functions from data.
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Chapter 1

Introduction

In recent years, the science of biology has been revolutionized by large-scale data collection
methods. Large databases are now available that store protein and DNA sequences, three
dimensional protein structures, genetic maps of organisms, expression levels of genes from
microarray experiments and various other kinds of data collected from high-throughput ex-
periments (Galperin, 2005). Further, this data is often not easily analyzable by humans. For
example, given the expression levels of thousands of genes in an organism’s cell under certain
experimental conditions, it is difficult to manually determine which genes are participating in
the same cellular processes. Thus, the scale and nature of the available data has stimulated
research in automated analysis methods. In particular, methods of machine learning (ML)
have proven to be quite effective at analyzing biomedical data.

Certain domain characteristics make the application of automated methods to biomedical
problems especially challenging. The target concepts we seek to model often contain complex
interactions. They may involve many participating entities, leading to high-dimensional data.
We often cannot directly measure all the quantities of interest, so the data has hidden states.
Moreover, what we can measure tends to be noisy. Finally, to accurately model biological
processes, our algorithms may need to handle complex data representations.

In this thesis, we address two computational problems that arise when applying ML
algorithms to biomedical applications. While the initial motivation arises from biology, the
problems addressed in this work also arise in more general settings, and therefore the methods
developed are also applicable in general – they are not specific to the motivating biological
problems. In fact, we develop our methods for suitable abstractions of the initial (biological)
problem. These abstractions allow us to apply our methods to similar problems in other
domains as well. Below we briefly describe each computational problem and the biomedical
application that motivates it.

1.1 Algorithms for Data with Complex Interactions

The first computational problem we consider is that of complex interactions between variables.
Specifically, we consider the kinds of interactions that lead to myopia in greedy learning
algorithms. In machine learning, greedy algorithms are often employed to learn concepts.
These algorithms make a sequence of choices, such as choosing a feature to split on when

1
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building a decision tree, or choosing an edge to add to a Bayesian network. They commit to
choices that are locally optimal according to functions such as information gain (Quinlan,
1997), in the case of decision trees, or the Bayesian information criterion (Raftery, 1986),
in the case of Bayesian networks. Greedy learning strategies have several advantages – they
are computationally efficient, simple to implement and often work well in practice.

While greedy learning strategies have many advantages, they are known to suffer from
myopia. This refers to the fact that these algorithms are easily misled when the locally
optimal choice is not globally optimal. For example, consider a dataset described by one
hundred Boolean features, where the target is a parity function over two of those features.
A greedy decision tree learner such as ID3 using information gain will be unlikely to choose
the correct pair of features, because every feature at the first choice point is equally likely
to be locally optimal, even though only two of them are globally optimal choices.

The first set of contributions of this thesis centers around an approach to solving the
myopia of greedy learning strategies.

• We present a probabilistic polynomial-time algorithm that alleviates the problem of
myopia for learning Boolean functions. We demonstrate that our approach is:

1. at least as accurate as current state-of-the-art greedy methods when learning
Boolean functions sampled uniformly at random from the set of all Boolean func-
tions of a specified size,

2. significantly more accurate than current methods for learning “hard” Boolean
functions and

3. incurs at most a linear penalty in runtime over current methods.

• We explore the effect of parameters and response to noise of our approach.

• We summarize theoretical results that prove that, under certain ideal conditions, our
approach always succeeds.

• We propose and evaluate a variant of the above algorithm that scales better to high-
dimensional data.

• We propose and evaluate an extension of our approach that learns functions over
continuous and nominal attributes with similar complex interactions.

We note that the method we propose is quite general and is applicable to any problem that
can be abstracted as learning Boolean functions.

The problem of myopia arises in biology, for example, when inferring regulatory networks
of genes (Pe’er, 2005). Given a set of experimental conditions and microarray expression
data for a set of genes in an organism, we would like to reconstruct a network of interactions
that explains how these genes influence each other in the cell. However, genetic networks
have complex interactions. There are examples (described in Chapter 2) where pairs of
genes work together to regulate a third in a way that the expression level of neither appears
independently correlated with the regulated gene. If we represent the interaction using a
Boolean function, we would observe the function to be similar to an exclusive-OR function.
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Similar interactions are also observed elsewhere; for example, when two proteins bind, the
binding surfaces may be oppositely charged, which can be represented using exclusive-OR
functions.

1.2 Algorithms for Multiple-Instance

Classification and Regression

In the second part of this thesis, we consider the problem of complex data representations. In
particular, the second set of contributions of this thesis consists of advances to the state of
the art for algorithms for multiple-instance (MI) classification and regression. The multiple-
instance setting was introduced by Dietterich et al. (1997) in the context of drug activity
prediction. In a multiple-instance problem, instances are naturally organized into bags (i.e.,
multisets) and it is the bags, instead of individual instances, that are labeled for training. MI
learners assume that every instance in a bag labeled negative is actually negative, whereas at
least one instance in a bag labeled positive is actually positive. Note that a positive bag may
contain negative instances. Further, this setting contains standard supervised learning as a
special case – if every set has exactly one element, we have a standard supervised learning
problem.

The MI setting was motivated using the task of drug activity prediction. Drugs are
typically small molecules that function by binding to a specific target protein. The task of
finding a novel drug that exhibits a desired activity is difficult and expensive. Large numbers
of molecules need to be screened in order to find a few that are active. The use of ML
methods can help to reduce the time and expense by identifying possible interaction-causing
groups, called pharmacophores, that the active molecules possess, thus enabling chemists
to focus on molecules that possess these pharmacophores. The task is complicated by the
fact that the molecules being tested typically have more than one three-dimensional shape,
or conformation, in solution. However, it is typically unknown which conformation is the
“active” one (there could also be more than one active conformation). Thus, each molecule
can be represented by a set of conformations. Each such set is labeled positive or negative
depending on whether the molecule was active or inactive. We know that for a set labeled
positive, at least one element (conformation) in that set is positive, i.e. binds to the target.
Conversely, for a set labeled negative, none of the elements bound to the target. The task is
to learn a model of a pharmacophore that allows a molecule to bind to a target.

While the initial motivation for this setting arises in a biomedical problem, various other
tasks have since been formulated as MI problems. For example, the MI representation has
been used in content-based image retrieval (CBIR) (Zhang et al., 2002), where the task is to
retrieve images that contain objects from a certain category, such as mountains or tigers. In
this domain, each image constitutes a bag, and segments of the image constitute individual
instances. Thus, an image has an object if at least one segment of it has the object. The
MI representation has also been used in text categorization (Andrews et al., 2003), where
a document constitutes a bag and passages in the document constitute instances. Here, a
document belongs to a certain category (say, finance) if some passage in it belongs to that
category. Another domain where the MI approach has been used is protein family modeling
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(Tao et al., 2004). In this task, a protein constitutes a bag and fixed-length windows of
residues constitute instances. A protein is assumed to belong to a family if some window of
residues has characteristics specific to the family.

The contributions to the MI problem presented in this thesis are as follows.

• We present an empirical analysis of state-of-the art algorithms for MI classification and
a comparison to standard supervised methods.

• We propose and evaluate a novel algorithm that adapts the logistic regression algorithm
to the MI setting.

• We propose and evaluate an approach to learning combining functions from data. These
functions are used by most MI methods to combine predictions of labels for individual
instances in each bag to a prediction for the bag as as a whole. While state-of-the-art
methods use pre-defined functions such as noisy-or (Pearl, 1988), we show that learning
these functions from data can result in more accurate models.

• We propose and evaluate an algorithm for regression tasks in an MI setting. While it
is useful to be able to separate active from inactive molecules in the drug discovery
process, it is more useful to be able to predict the true activity levels of each molecule.
We devise an algorithm that extends standard multiple linear regression to the MI
setting. We show that exact solution of the modified objective is NP-complete and
propose an approximation algorithm. We evaluate the behavior of this algorithm on
synthetic data. Finally, we extend this algorithm by incorporating learned combining
functions, and evaluate the approach on real-world drug activity prediction tasks.

1.3 Thesis Statement

We propose and evaluate machine learning algorithms for (i) learning “hard” Boolean func-
tions with interacting variables and (ii) classification and regression in a multiple-instance
setting. We hypothesize that our methods for learning Boolean functions are significantly
more accurate than the state-of-the-art methods when learning Boolean functions such as
parity, while remaining at least as accurate for other Boolean functions. Further, our method
has a computational cost that is no more than a small polynomial factor times the state-
of-the-art. In the multiple-instance setting, we hypothesize that (i) learning combining
functions results in more accurate multiple-instance models and (ii) our multiple-instance
regression approach results in more accurate predictions than previous approaches.

1.4 Outline

The remainder of this thesis is divided into two parts. Chapters 2 through 5 describe our
approach to learning “hard” Boolean functions:

• Chapter 2 provides background material for the thesis. It gives a precise definition of
“hard” Boolean functions. We give several examples where these functions arise, and



5

discuss theoretical bounds on the number of these functions. We also discuss previous
approaches to learning such functions.

• Chapter 3 introduces our method, which we call Skewing, for learning hard functions
from data. We describe and evaluate the algorithm, and summarize some theoretical
results.

• Chapter 4 motivates and describes a variant of the algorithm, called sequential skewing,
that scales better to high-dimensional data. The trade-off is that this method does not
work for a subset of the hard functions.

• Chapter 5 motivates and describes an extension of the sequential skewing algorithm,
called generalized skewing, that learns hard functions described by nominal and con-
tinuous variables as opposed to Boolean variables only.

In the second part of the thesis (Chapters 6 through 8), we describe algorithms for
multiple-instance classification and regression:

• In Chapter 6, we evaluate the accuracy of several state-of-the-art MI methods on several
MI data sets, along with the novel multiple-instance logistic regression algorithm. We
compare their performance to standard supervised learning algorithms, and discuss our
results.

• In Chapter 7, we describe and evaluate our approach to learning combining functions
from data.

• In Chapter 8, we describe and evaluate our algorithm for regression in the MI setting.

Finally, in Chapter 9, we summarize our contributions and discuss future directions for this
work.



Chapter 2

Background

In this chapter, we provide some background material for the rest of the thesis. We start
with a brief review of the ID3 decision tree algorithm. Next, we give a precise definition of
a “hard” Boolean function and discuss depth-k Lookahead. Finally, we briefly review the
Probably Approximately Correct (PAC) model of learnability. We note that, in this thesis,
we use the terms “variable” and “feature” interchangeably.

Results described in this chapter on the number of hard Boolean functions appear in
Rosell et al (2005).

2.1 Review of the ID3 algorithm

In this section, we briefly review the ID3 algorithm (Quinlan, 1983) for top-down induc-
tion of decision trees from Boolean data. We will use this algorithm as a context to describe
our approach to learning hard Boolean functions and as a baseline in our experiments in later
chapters. We select ID3 because its simplicity allows for ease of analysis. In later chapters,
when we consider data described by continuous and nominal variables, we shall use ideas
from other tree induction algorithms, including C4.5 (Quinlan, 1997) and CART (Breiman
et al., 1984).

The ID3 algorithm employs a top-down greedy search procedure through the space of
possible decision trees. Each internal node of the tree is labeled with a test on a variable
and each leaf node is labeled with a class value. Given a set of examples, the algorithm
first checks if the examples are pure, i.e. belong to the same class. If so, it creates a leaf
node labeled with that class and returns. If not, it chooses a variable xt that scores the
best according to the information gain measure I: xt = arg maxi I(f |xi) (information gain is
described in the next section). For each value vj of xt, it creates a subset of the data where
the examples satisfy xt = vj, and recursively calls itself with this subset. Each such call
results in a subtree for which the internal node labeled with xt is a parent. The pseudocode
for ID3 is shown in Algorithm 1.

To predict the class of a new instance, each internal node xt is used as a test. If xt = vj,
the instance is sent to the jth child. The process continues until a leaf node is encountered.
The instance is then labeled with the class of that leaf node.

The average case time complexity of this algorithm is O(nm log m), where m is the

6
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Algorithm 1 ID3 Algorithm

Input: A matrix D of m instances over n Boolean variables, labeled with target f , a set of
variables A ⊆ [1, . . . , n]

Output: A decision tree that correctly classifies D
1: Let R be the (empty) root node
2: N1 ⇐ the number of instances with label 1
3: if N1 > m − N1 then
4: M ⇐ 1 [M is the majority class]
5: else
6: M ⇐ 0
7: if N1 = m then [Pure nodes]
8: R.label ⇐ 1
9: return R

10: else if N1 = 0 then
11: R.label ⇐ 0
12: return R
13: if A = φ then [No variables to partition data]
14: R.label ⇐ M
15: return R
16: xt ⇐ variable with max gain in D according to I, the information gain measure
17: R.test ⇐ xt

18: for each value vj of xt do
19: Dj ⇐ examples in D where xt = vj

20: if Dj = φ then
21: R.child[j] = leaf node with label M
22: else
23: R.child[j] = ID3(Dj, A − {xt}) [Recursive call]

number of instances and n is the number of variables. This follows from the fact that
the time taken to perform a split at node i is O(nimi), where mi and ni are the number
of instances and variables at node i. Thus the time taken to build a tree on average is∑log m

d=0 2d · m
2d · (n − d), which is O(nm log m).

2.2 Hard Boolean functions

In this section, we give a precise definition of a “hard” Boolean function. Intuitively, we are
trying to capture the class of functions that greedy tree learning algorithms have trouble
with, such as parity. For these functions, even given a complete data set, no variable “has
gain” according to purity measures like information gain. After characterizing these functions
formally, we discuss theoretical bounds on the number of these functions. We then present
examples of problems where these functions might arise in practice, and discuss prior work
on learning these functions from data. In what follows, we use algorithms for top-down
induction of decision trees (TDIDT) as the context for describing these functions. However,
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these functions are also problematic for other machine learning or statistical algorithms
that employ (explicitly or implicitly) a linear inductive bias to gain efficiency or generalize
well. Such models include perceptrons, logistic regression, linear support vector machines,
Fischer’s linear discriminant and naive Bayes. They also include any of a variety of data
analysis approaches that employ an information gain or Kullback-Leibler divergence filter to
do variable selection or to control computation time, for example as in the Sparse Candidate
algorithm for learning Bayesian networks (Friedman et al., 1999).

We consider two-class learning problems where the features are Boolean. Instances are
truth assignments over variables, and targets are Boolean functions. Let f(x1, . . . , xn) be a
Boolean function that maps {0, 1}n to {0, 1}. An assignment a = (a1, . . . , an) to the variables
x1, . . . , xn is an element of {0, 1}n. For a ∈ {0, 1}n and i ∈ [1 . . . n], a(i) denotes the ith
bit of a and a¬xi

denotes the assignment obtained from a by negating the ith bit of a. A
truth table for a function f over n variables is a list of all 2n assignments over the variables,
together with the value f(a) for each assignment a. Variable xi is a relevant variable of f
if there exists a ∈ {0, 1}n such that f(a) 6= f(a¬xi

), and an irrelevant variable otherwise.
For i ∈ [1 . . . n] and b ∈ {0, 1}, fxi←b denotes the function on n − 1 variables produced by
“hardwiring” the ith variable of f to b. That is, fxi←b : {0, 1}n−1 → {0, 1} such that for all
a ∈ {0, 1}n−1, fxi←b(a) = f(a1, a2, . . . , ai−1, b, ai, ai+1, . . . , an−1).

For any probability distribution D over {0, 1}n and any A ⊆ {0, 1}n, we denote by
PrD(A) the sum of the probabilities, under D, of assignments in A. Where the distribution
D is clear from context, we write Pr(A). Further, a dataset A of examples from {0, 1}n

defines a probability distribution over {0, 1}n, in which the probability of a ∈ {0, 1}n is the
relative frequency of a in the dataset, i.e. (number of occurrences of a in dataset)/(number of
examples in dataset). In this section, we view a dataset as being equivalent to the distribution
it defines.

Greedy decision tree learners such as ID3 partition a dataset recursively, choosing a
“split variable” at each step. They differ from one another primarily in their measures
of “goodness” for split variables. One such measure is information gain (Quinlan, 1997),
which we now review. For any Boolean function f , let P = {a ∈ {0, 1}n|f(a) = 1} and
N = {a ∈ {0, 1}n|f(a) = 0}. The entropy of f under a distribution D is

HD(f) =
(
−Pr

D
(P ) log2 Pr

D
(P ) − Pr

D
(N) log2 Pr

D
(N)

)
. (2.1)

For any potential variable xi that we might use to partition this data, the entropy conditional
on xi is the weighted sum of the entropies of the child nodes resulting from a split on xi:

HD(f |xi) =
(
Pr
D

(xi = 0)HD(fxi←0) + Pr
D

(xi = 1)HD(fxi←1)
)

. (2.2)

Then the information gain of xi for distribution D and function f is

ID(f |xi) = HD(f) − HD(f |xi). (2.3)

A similar measure of goodness is GINI gain (Breiman et al., 1984). As before, for any
Boolean function f , let P = {a ∈ {0, 1}n|f(a) = 1} and N = {a ∈ {0, 1}n|f(a) = 0}. The
GINI score of f under a distribution D is

GINID(f) =
(
Pr
D

(P ) · Pr
D

(N)
)

. (2.4)
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For any potential variable xi that we might use to partition this data, the GINI score
conditional on xi is the weighted sum of the GINI scores of the child nodes resulting from a
split on xi:

GINID(f |xi) =
(
Pr
D

(xi = 0)GINID(fxi←0) + Pr
D

(xi = 1)GINID(fxi←1)
)

. (2.5)

Then the GINI gain of xi for distribution D and function f is

GD(f |xi) = GINID(f) − GINID(f |xi). (2.6)

To partition a dataset, a greedy tree learner ranks all available variables xi by a measure
of goodness, such as I(f |xi). It then chooses the variable xt that has the highest score, and
constructs the two datasets fxt←0 and fxt←1. If either of these sets has HD(f) > 0, the
algorithm will recursively split that set. Notice that in the recursive call, xt is no longer
available as a potential split variable.

Now we can define what we mean by a hard function. Let f be a Boolean function on
{0, 1}n. Let U be the uniform distribution on {0, 1}n. We say that f is a hard function if
for each variable xi of f , IU(f |xi) = 0. It can be shown that

ID(f |xi) > 0 ⇐⇒ Pr
D

(f = 1|xi = 1) 6= Pr
D

(f = 1|xi = 0), (2.7)

for any distribution D. Thus the condition

IU(f |xi) > 0

can be replaced by the combinatorial condition:

|{a ∈ {0, 1}n | f(a) = 1 and a(xi) = 1}| 6= |{a ∈ {0, 1}n | f(a) = 1 and a(xi) = 0}|. (2.8)

This is important because it can be shown that various other goodness criteria, including
the GINI gain described above, are also nonzero iff this condition is satisfied. In other
words, even though we have defined hard functions with respect to information gain, these
functions are also hard to learn with other common goodness measures used by greedy
learning strategies.

What makes such a function hard to learn? Notice that if xi is a variable that is irrelevant
to a target function f , ID(f |xi) = 0. Since, for a hard function, the measure of goodness
is zero for all variables that are relevant to the target, the learning algorithm can no longer
distinguish between variables that are relevant and variables that are irrelevant. In such a
situation, the algorithm will typically make a random split. In practice, we are likely to have
data that are described by many more irrelevant variables than relevant ones. In this case,
a random choice for a split will most likely be incorrect, and the learner will be led astray.

It is natural to ask how many n-variable Boolean functions are hard. The asymptotic
behavior of this number (as a function of n) is unknown. However, the number of hard
functions on n variables has been computed for n ≤ 6 in previous work (Palmer et al., 1992)
(in this work, hard functions are called balanced colorings). A lower bound of 22n−1

is implicit
in that work and can be shown as follows. Let f be a Boolean function on {0, 1}n such that
for all a ∈ {0, 1}n, f(a) = 1 iff f(ā) = 1, where ā is the bitwise complement of a. There are
2n−1 pairs {a, ā}, and hence 22n−1

such functions, all of them hard. We have the following
upper bound.
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Theorem 2.1 The number of hard functions on n variables is at most 22n−n.

Proof Sketch. Let yi be a variable representing the truth value for each assignment ai,
and construct a matrix A of assignments ai where 0s are replaced with −1s. Then a function
f = (y1, . . . , y2n) is hard iff yA = 0. A has rank n. If we assign 0 or 1 to n linearly
independent rows of A, we get 2n − n solutions for the remaining yi, which may or may not
be 0/1. Thus the number of 0/1 solutions is upper bounded by 22n−n, and each 0/1 solution
is a hard function f . �

We note that, while the fraction of functions that are hard drops as 1
2n as n increases,

the absolute number of such functions is large and is a doubly-exponential function of n.
However, since the number of hard functions for n = 3 is 18, the above upper and lower
bounds are not tight even for n = 3. Obtaining tight bounds for the number of these hard
functions remains a major open question.

How frequent are functions like these in the real world? We have observed several in-
stances of such functions in genetics:

• In Drosophila (fruit fly), whether the fly survives is known to be an exclusive-OR
function of the fly’s gender and the expression of SxL gene (Cline, 1979).

• During brain development in quail chicks, the Fgf8 gene, which is responsible for or-
ganizing the midbrain, is expressed only in regions where neither or both of the genes
Gbx2 and Otx2 are expressed (Joyner et al., 2000). This is an exclusive-NOR function.
This behavior is an instance of antagonistic repressors – Gbx2 and Otx2 are repressors
of Fgf8; however, they are also antagonistic – when they are both expressed, they
repress each other.

• A two-gene, four-allele model to explain “handedness” in humans has been proposed
(Levy & Nagylaki, 1972). This model posits an exclusive-OR interaction between these
genes.

Such functions also arise in problems outside of genetics. For example, consider the task
of predicting whether two proteins bind to each other. An important predictor of binding
is the presence of regions in the proteins that are oppositely charged. Such a function is
an exclusive-OR of features representing the charge on regions of the proteins: like charges
repel, and thus hinder binding, while opposite charges attract, and thus facilitate binding.

2.3 Review of Lookahead for Hard Functions

Recall that for the various node purity functions employed by different TDIDT algorithms,
splitting on a variable xi can yield a non-zero gain only if the class distribution changes for
at least one of the values (or ranges) that xi can take. If the distribution of classes is the
same for every value of xi (or range) then xi will have zero gain according to any node purity
measure in common usage. As an example, in Table 1 the variable x1 has non-zero gain
according to either GINI or entropy, whereas the variables x2 and x3 have zero gain.

Consider a data set drawn from a uniform distribution over binary-valued variables
x1, x2 · · · x100, labeled according to the target function x99⊕x100 (⊕ denotes the exclusive-OR
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x1 x2 x3 f
0 0 0 1
1 0 1 0
1 1 0 0
0 1 1 1

Table 1: A “hard” Boolean function. For subfunctions at each of x2 = 0, x2 = 1, x3 = 0 and
x3 = 1, the fraction of assignments that are positive is 1

2
, as for f itself. Hence x2 and x3

have zero gain, while x1 has nonzero gain according to both entropy and GINI.

1 010

0

0 0 11

1

1 010

0

0 0 11

1

x99x100

x99

x100

x100

x99

Figure 1: Two trees representing x99 ⊕ x100.

function). Even if we are fortunate enough to have a complete data set — one occurrence
of each truth assignment over x1 · · · x100 — it is clear that for every variable xi, the class
distribution is exactly the same whether xi is 0 or 1. So, regardless of how large a uniform
sample we choose to draw, a variable will have non-zero gain only because of chance. Thus,
the probability that one of the correct variables (x99 or x100) will have a higher gain than
every one of the incorrect variables is extremely low. Hence the learning task is virtually
impossible for a standard TDIDT algorithm.

A method that has been proposed in previous work to solve such problems is depth-k
lookahead (Norton, 1989). This method performs an exhaustive search over trees of depth
up to k at each choice point. It records the information gain for each such tree and returns
the variable at the root for the tree with the highest gain. Thus, with depth-2 lookahead
the preceding task becomes trivial (we consider the root node to be at depth 1). A depth-2
lookahead from a given node chooses not only the next split variable, but also the split
variables at the next level. A TDIDT algorithm augmented in this way will consider among
the possible depth-2 trees the two shown in Figure 1, each of which has the maximum possible
gain. For any reasonably large data set, with high probability all other depth-2 trees will
have gain only marginally different from zero. Hence we see that with depth-2 lookahead, 2-
variable exclusive-OR becomes easy. Because depth-2 lookahead is repeated at every step in
tree construction, many other functions that have 2-variable exclusive-OR as a subfunction
become easy.

Of course, depth-k lookahead comes with a price. Where n is the number of variables and
m is the number of examples, the time to choose the split goes from O(mn) to O(mn2k−1).
Thus, depth-2 lookahead takes time O(mn3), because splits have to be selected for three
nodes from among n variables. Furthermore, there are many functions that require a greater
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Table 2: Six of the 12 functions over three variables that are problematic even using depth-2
lookahead. The other six problematic functions are the inverses of these.

x1 x2 x3 f1 f2 f3 f4 f5 f6

0 0 0 0 0 0 0 1 0
0 0 1 1 1 1 0 0 0
0 1 0 1 0 1 1 0 0
0 1 1 0 0 0 0 0 1
1 0 0 0 0 1 0 0 1
1 0 1 1 0 0 1 0 0
1 1 0 1 1 0 0 0 0
1 1 1 0 0 1 0 1 0

degree of lookahead than depth-2. For example, suppose we have examples constructed from
variables x1 · · · x100 and the target is one of the functions in Table 2 involving x1, x2, and x3.
Even with depth-2 lookahead, TDIDT is highly likely to choose incorrect variables. These
problems can be solved with depth-3 lookahead, but the time to choose a split becomes
O(mn7), and other problematic targets remain even then. Further, lookahead is sensitive to
noise and prone to overfitting, even when only lookahead of depth 2 is considered, because it
examines so many alternatives during search (Murthy & Salzberg, 1995; Quinlan & Cameron-
Jones, 1995).

One can imagine a variant of lookahead where the cost does not scale super-exponentially
with n. In this “leveled” lookahead, we assume that every node at the same level of the tree is
labeled with the same variable. In other words, instead of an exhaustive search, we consider
all subsets of variables of size k before choosing a split. Thus, the time taken to choose
a split is O(m ·

(
n

k

)
). This method is still impractical unless k is very small, and since it

examines only a subset of trees that depth-k lookahead examines, it will also fail on those
functions for which depth-k lookahead fails.

2.4 Review of PAC-learnability

In this section, we briefly review the Probably Approximately Correct (PAC) model of learn-
ability (Valiant, 1984), which we will refer to in later chapters. Let X be the space of
instances. A concept over X is a subset c ⊆ X. A concept class C is a collection of concepts
over X. In the PAC model, a learning algorithm L has access to positive and negative ex-
amples of a target concept t, chosen from a known concept class. These examples are drawn
from X according to a probability distribution D. L represents c ∈ C using a hypothesis
that has size size(c) and returns a hypothesis h. The error of h with respect to t is given by
error(h) = PrD(h(x) 6= t(x)).

Let C be a concept class over X. We say that C is PAC-learnable if there exists an
algorithm L such that ∀D and c ∈ C, and ∀ε, δ ∈ (0, 1

2
), L runs in time polynomial in 1

ε
, 1

δ

and size(c) and with probability 1− δ outputs a hypothesis h such that error(h) ≤ ε. Thus,
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if C is PAC-learnable, a learning agorithm L returns a hypothesis which is approximately
correct with high probability. The parameters ε and δ control two types of error: ε is the error
due to a finite sample, while δ is the error due to an unrepresentative sample (for example,
a sample drawn from a uniform distribution where all points are identical). Note that the
basic PAC model does not account for noise in the sample. Extensions of the basic model,
such as PAC learnability with one- and two-sided class noise, have been formulated to cover
this scenario (Angluin & Laird, 1988).

Various concept classes have been shown to be PAC-learnable, for example, conjunctions
of Boolean variables (monomials), k-CNF formulae and the class of axis-parallel rectangles in
Rn (for fixed n) (see for example (Kearns & Vazirani, 1997)). However, we note that the class
of all Boolean formulae is known not to be PAC-predictable1, unless certain cryptographic
assumptions are false (i.e., factoring is not hard) (Kearns & Valiant, 1989). We also note
that it is unknown whether decision trees are PAC-learnable. They are, however, known
to be PAC-learnable with membership queries (Angluin, 1988), which is an extension to the
basic PAC model where the learner is allowed to ask an oracle for the labels to a polynomial
number of additional examples, of the learner’s choice.

1This is a model of learnability where the hypothesis class is allowed to be different from the concept
class, provided h(x) is computable in time polynomial in the size of x. Therefore, if a concept class is not
PAC-predictable, this implies that it is not PAC-learnable as well.



Chapter 3

Skewing

In this chapter, we first describe the key ideas behind our approach to efficiently learning
hard Boolean functions. We then present our algorithm and summarize theoretical results
that prove that, in certain idealized situations, the approach always succeeds in recovering
the target function. Next, we present experiments that measure the effect of the algorithm’s
parameters in some ideal settings. We then present experiments on synthetic and real data
to evaluate the accuracy of the algorithm. Finally, we discuss related approaches.

The work described in this chapter appears in Page & Ray (2003) and Rosell et al (2005).

3.1 Motivation

Consider the target function x1 ⊕ x2, but now suppose the data are distributed differently
from uniform. For example, we might introduce dependencies not present in the uniform
distribution: for every odd number i, 1 ≤ i ≤ 99, if xi is 0 then xi+1 has probability 0.99 of
being 1. Or we might suppose all variables are independent as in the uniform distribution,
but every variable has probability only 1

4
of taking the value 0. In either case, with a large

enough sample we expect that the class distribution among examples with x1 = 0 will differ
significantly from the class distribution among examples with x1 = 1, which will cause a
TDIDT algorithm to split on this variable, at which point the remainder of the learning task
becomes trivial.

We work through an example to illustrate this. For simplicity, consider a situation where
we have examples defined by three variables, x1, x2 and x3, the target function is again
f = x1⊕x2, and we are given all 8 examples and their function values, as shown in Figure 2.
We use the GINI score in this example; similar results can be obtained with any other
purity measure, such as Information Gain. We use GINI(f ; xi = a) to denote the GINI
score of f when we only consider the subset of assignments for which xi = a (a ∈ {0, 1}).
Under the uniform distribution, each assignment has probability 1

8
, and we observe that

GINI(f) = GINI(f ; xi = 0) = GINI(f ; xi = 1) = 0.25. Thus, using Equation 2.6, we see
that no variable has gain under the uniform distribution. Now consider the examples drawn
from an alternative “skewed” distribution where the probability of any variable taking on
the value 0 is 1

4
. In this case the probabilities for each example are as shown in the “Skewed”

14
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Figure 2: Tables for worked example of the skewing approach. The table at the top shows
the data and their probabilities under the uniform and skewed distributions. The target
function is f = x1 ⊕x2, x3 is an irrelevant variable. The two tables to the left of the vertical
bar are used when scoring a split on x1. The tables to the right are used when scoring a
split on x3.

column of the top table in Figure 2. Now

GINI(f) =
1 + 3 + 9 + 27

64
·
3 + 9 + 3 + 9

64
=

60

256
.

Next, using the two tables to the left of the vertical bar in Figure 2, we get

GINI(f ; x1 = 0) =
1 + 3

1 + 3 + 3 + 9
·

3 + 9

1 + 3 + 3 + 9
=

1

4
·
3

4
=

48

256

and

GINI(f ; x1 = 1) =
3 + 9

3 + 9 + 9 + 27
·

9 + 27

3 + 9 + 9 + 27
=

1

4
·
3

4
=

48

256
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also. Therefore, using Equation 2.6, we see that x1 has gain under this alternative distribu-
tion. Next, using the two tables to the right of the vertical bar in Figure 2, we get

GINI(f ; x3 = 0) =
1 + 9

1 + 9 + 3 + 3
·

3 + 3

1 + 9 + 3 + 3
=

10

16
·

6

16
=

60

256
.

Similarly, GINI(f ; x3 = 1) = 60
256

. Thus, under the alternative distribution, the irrelevant
variable x3 still has no gain. A similar result can be obtained even when the number of
irrelevant variables is large.

Notice that our second distribution changed the marginal distribution for every variable,
not just for those in the target. It would have revealed the correct variables if the target
function had been x4 ⊕ x25 or even a hard function of three variables. Notice also that the
important aspect of the second distribution is that it changed the frequency distributions for
the variables; the specific change for any variable could have been different, say, to probability
2
3

of taking value 0, and it still would have given non-zero gain to exactly the variables in
the target.

From the preceding discussion we conclude that if we have access to two distributions
that are “different enough,” then choosing good variables to split on becomes easy. However,
in real-world problems we rarely have access to two different distributions over the data, or
the ability to request data according to a second distribution that we choose. Instead,
in practice, we simulate a second distribution different from the first by attaching various
weights to the existing examples. We call this procedure skewing. We next present the
details of the skewing procedure for binary-valued variables (extensions to continuous and
nominal variables are discussed in later chapters).

3.2 Skewing Algorithm

The desired effect of the skewing procedure is that the skewed data set should exhibit signif-
icantly different frequencies of values for each variable from the original data set. Because
we cannot draw new examples, we change the frequency distributions for variables by at-
taching various weights to the existing examples. The procedure initializes the weight of
every example to 1. We may assume that every variable takes the value 0 in at least one
example and takes the value 1 in at least one example — otherwise, the variable carries no
information and can be removed. For each variable xi, 1 ≤ i ≤ n, we randomly, uniformly
(independently for each variable) select a “favored setting” vi of either 0 or 1. We then
double the weight of each example in which xi takes the value vi.

At the end of this process, each example has a weight between 1 and 2n. It is likely that
each variable has a significantly different weighted frequency distribution than previously,
as desired. But this is not guaranteed. For example, suppose the original data set consists
of 100 truth assignments over variables x1 and x2. Suppose further that in half of these
examples x1 = 0 and x2 = 1, and in the other half x1 = 1 and x2 = 0. If the favored setting
for each variable happens to be 1, then all examples get assigned weight 2, so the new
frequency distribution for each variable is the same as the original frequency distribution.
In addition to this potential difficulty, a second difficulty is that this process can magnify
idiosyncrasies in the original data. For instance, suppose we have a data set over x1, ..., xn,



17

Algorithm 2 Skewing Algorithm

Input: A matrix D of m data points over n Boolean variables, gain fraction G,
number of trials k, skew parameter 1

2
< s < 1

Output: A variable xi to split on, or −1 if no variable with sufficient gain could be found
1: N ⇐ entropy of class variable in D
2: v ⇐ variable with max gain in D
3: g ⇐ gain of v in D
4: if g < G × N then
5: v ⇐ −1 [No variable has enough gain under the original distribution]
6: for i = 1 to n do
7: F (i) ⇐ 0

[begin skewing loop]
8: for t = 1 to k do
9: for i = 1 to n do

10: V (i) ⇐ randomly chosen favored value for xi

11: for e = 1 to m do
12: W (e) = 1 [Initialize weight of example]
13: for i = 1 to n do
14: if t > 1 then
15: if D(e, i) = V (i) then
16: W (e) ⇐ W (e) × s [Favored value found, increase example’s weight]
17: else
18: W (e) ⇐ W (e)× (1−s) [Favored value not found, decrease example’s weight]
19: N ⇐ entropy of class variable in D under skewed distribution W
20: for i = 1 to n do
21: E ⇐ gain of xi under skewed distribution W
22: if E ≥ G × N then [Variable has high gain under this skewed distribution]
23: F (i) ⇐ F (i) + 1 [Increment counter]

[end skewing loop]
24: j ⇐ arg max F (i)
25: if F (j) > 0 then
26: return xj [This variable had high gain under several skewed distributions]
27: else
28: return v [No variable had sufficient gain under any skewed distribution, fall back to

original distribution]

and (for simplicity) the favored setting for each variable is 1. If we happen to have one
example with many variables set to 1, it will get an inordinately high weight compared with
other examples, potentially giving some insignificant variable a high gain. Can we mitigate
these potential problems with the skewing procedure?

The difficulties in the preceding paragraph occur for some data sets and some choices
of favored settings. Other selections of favored settings for the same data set may leave
other variables’ frequencies unchanged, but it is relatively unlikely they will leave the same
variables’ frequencies unchanged. Furthermore, while other selections of favored settings
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may magnify other idiosyncrasies in the data, it is unlikely they will magnify the same
idiosyncrasies. Therefore, instead of using skewing to create only a second distribution, we
use it to create k additional distributions, for small values of k such as 9 to give a total of 10
distributions. The k different distributions are computed by randomly (without replacement)
selecting k different combinations of favored settings for the n variables according to a
uniform distribution.

To ensure that tree construction is not thrown off course by any single bad distribution
(either original or skewed), the tree construction process is modified as follows. Suppose we
have k + 1 weightings of the data (the original data set plus k reweighted versions of this
data set), and we are considering a split. We score each of the n variables against each of the
k + 1 weightings of the data. A variable that is not part of the target function should have
nearly zero gain on every weighting, although as already noted, it may occur that on some
weightings some of these variables can achieve high gain. But only variables that appear
in the target should have significantly non-zero gain on most of the weightings (though not
necessarily on all). Therefore, we set a gain threshold, and the variable that exceeds the gain
threshold for the greatest number of weightings is selected as the split variable. In case of
a tie, the variable with the highest gain on the original data is selected in the tiebreaker.
Our expectation is that the selected variable is highly likely to be correct in the sense that
it actually is a part of the target function. Yet the time for choosing the split remains
O(mn), in contrast to lookahead. We have increased the run-time only by a small constant.
Pseudocode for this procedure is shown in Algorithm 2.

We hypothesize that in practical experiments, the new algorithm will rarely produce
trees with lower accuracy than those of an ordinary TDIDT algorithm. It will often produce
trees with slightly to moderately higher accuracy – when the target contains one or more
problematic subfunctions. It will sometimes produce trees with much higher accuracy – when
the target is itself a problematic function. When the target is a problematic function over
many variables, even after skewing the gain of any individual variable in the target is likely
to be small. Therefore, we also conjecture that unless the data set is large, the benefits of the
skewing approach will not apply to problematic target functions of five or more variables.
Note that while a large number of variables in the target is a problem, the number of variables
in the examples is not a major factor. Further, the new algorithm will run only a constant
factor slower than an ordinary TDIDT algorithm. In the following sections, we first examine
the behavior of our approach in an idealized setting – one where we have access to the full
truth table of a function. This analysis gives us some insight about why the procedure might
work in practice. Next, we describe experiments on both synthetic and real data to test the
preceding conjectures.

3.3 A Theoretical Analysis of Skewing

In this section, we summarize a theoretical analysis of skewing in an idealized setting – when
the available data consists of the truth table of a Boolean function. We denote a skew by a
pair (σ, s) where σ ∈ {0, 1}n is an assignment, and s ∈ (0, 1). We refer to σ as the orientation
of the skew, and s as the weight factor. Each skew (σ, s) induces a probability distribution
D(σ,s) on the 2n assignments in {0, 1}n as follows. Let τs : {0, 1} × {0, 1} → {s, 1 − s} be
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such that for b, b′ ∈ {0, 1}, τs(b, b
′) = s if b = b′ and τs(b, b

′) = 1 − s otherwise. For each
a ∈ {0, 1}n, distribution D(σ,s) assigns probability Πn

i=1τs(σ(i), a(i)) to a. Notice that D(σ,s)

is a product distribution. Given a skew (σ, s) and a function f , the gain of a variable xi

with respect to f under distribution D(σ,s) is thus equivalent to the gain that is calculated
by applying skew (σ, s) (using the procedure described above) to a dataset consisting of the
entire truth table for f . We say that variable xi has gain for (f, σ, s) if the gain of xi with
respect to f under D(σ,s) is non-zero.

Recall that we are interested in the following question: When skewing is applied to
a hard function, will it cause a relevant variable to have non-zero gain under the skewed
distribution? When we have complete data, the answer is “yes” for nearly all skews. In
this section, we describe the key ideas behind the proof; the details are published elsewhere
(Rosell et al., 2005).

We consider skewing a data set consisting of the full truth table for a Boolean function f .
The goal of skewing is to distinguish relevant from irrelevant variables; a skew works when
some relevant variable xi has non-zero gain but the irrelevant ones have zero gain. A skew
gives xi non-zero gain iff the weighted fraction of positive assignments is different for xi = 0
than for xi = 1, under that skew (Equation 2.7). The difference in these fractions can be
expressed as a polynomial in the variable s, where s is the weight factor associated with
the skew. It can be shown that if this polynomial is non-zero, the variable xi has non-zero
gain under the skew. Further, for a fixed orientation and a relevant xi, the polynomial is
not identically zero for almost all s, and thus xi has non-zero gain. If xi is irrelevant, the
polynomial is identically zero.

As an example of this polynomial, consider the Boolean function f on 5 variables whose
positive assignments are (0, 0, 0, 1, 0), (0, 0, 1, 0, 0), (0, 0, 1, 1, 0), and (1, 0, 0, 0, 1). Consider
the skew where the favored setting of every variable is 0, and s is the weight factor. Then
the probabilities (weights) of the positive assignments are Pr(0, 0, 0, 1, 0) = Pr(0, 0, 1, 0, 0) =
s4(1 − s) and Pr(0, 0, 1, 1, 0) = s3(1 − s)2. Therefore,

Pr(f = 1|x1 = 0) =
Pr(f = 1 ∧ x1 = 0)

Pr(x1 = 0)
=

2s4(1 − s) + s3(1 − s)2

s
= 2s3(1− s) + s2(1− s)2,

and Pr(f = 1|x1 = 1) = s3(1 − s). The difference is thus

Pr(f = 1|x1 = 0) − Pr(f = 1|x1 = 1) = s3(1 − s) + s2(1 − s)2,

which is a polynomial in s of degree 4, and has at most 4 roots. Therefore, if the value of s
is chosen at random, with probability 1 we get Pr(f = 1|x1 = 1) − Pr(f = 1|x1 = 0) 6= 0,
implying that x1 has non-zero gain under the skew. The phrase “with probability 1” refers
to the fact that for a given σ, there are a finite number of values of the parameter s that
can cause the approach to fail; however since there are infinitely many choices for s, the
probability of the method failing is infinitesimal.

Observe that in the polynomials for Pr(f = 1|x1 = 0) and Pr(f = 1|x1 = 1), the
coefficient of each sj(1− s)(n−1−j) is the number of positive assignments where x1 = 0 (or 1),
and exactly j of the remaining variables have the preferred setting of 0. Thus the coefficients
of the sj(1 − s)(n−1−j) count certain positive assignments, a fact we exploit in our proof.
These counts are exactly what the skewing approach is modifying in the reweighting process
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– intuitively, skewing tries several favored settings and weights so that the coefficents of
the sj(1 − s)(n−1−j) will not all be equal in the expressions for Pr(f = 1|x1 = 0) and
Pr(f = 1|x1 = 1) respectively. It can be shown that skewing almost always succeeds in
doing this, leading to the following theorem.

Theorem 3.1 Let f be a non-constant Boolean function on {0, 1}n. Let σ ∈ {0, 1}n be an
orientation, and let s be chosen uniformly at random from (0, 1). Then with probability 1
there exists at least one variable xi such that xi has gain for (f, σ, s).

We note that the proof of Theorem 3.1 only uses the characterization of gain given by
Equation 2.7. Thus, the skewing technique will work for any gain measure that can be
characterized as such. This includes commonly used measures such as GINI and information
gain. However, the magnitude of the gain, and the identity of the variable(s) showing gain
may vary depending on the function and on the skew.

3.4 Experiments with Synthetic Data

Theorem 3.1 analyzes our approach in an ideal setting, where we have access to the full truth
table for f . In practice, this is unlikely to be true. In this case, even in a noiseless situation
where examples are all labeled correctly according to a function f , we cannot compute the
exact gain of a variable with respect to D(σ,s) defined by the skew. We can only estimate
that gain. Moreover, in practice we cannot also sample from D(σ,s). Instead, we simulate
D(σ,s) by reweighting our sample. These situations are difficult to analyze in a theoretical
framework. In this section, we empirically analyze the behavior of the skewing algorithm
with synthetic data, where only samples from the truth table table are available. We first
discuss experiments designed to test the following conjectures: our proposed algorithm will
be (i) at least as accurate as an ordinary TDIDT algorithm on random Boolean targets, (ii)
be significantly more accurate than an ordinary TDIDT algorithm on hard Boolean targets,
and (iii) run somewhat slower than an ordinary TDIDT algorithm, but only by a constant
factor. In addition, the question arises of whether problematic functions or subfunctions
occur with high enough frequency in the set of all Boolean functions to justify the additional
work of skewing. The experiments in this section also address that question. In later sections,
we discuss the effect of parameters on the skewing algorithm.

We begin with a discussion of experiments using synthetic data where target functions as
well as examples are drawn randomly and uniformly with replacement. In these experiments
we compare standard ID3 against ID3 with skewing. The parameters input to the skewing
algorithm (Algorithm 2) are T = 30, s = 3

4
and G = 0.05. These parameters were chosen

before the experiments and are held constant across all experiments. In the following sections,
we investigate the effect of different parameter values on the skewing algorithm.

In the first set of experiments with synthetic data, examples are generated according to
a uniform distribution over 30 binary variables. Target functions are drawn by randomly
generating DNF formulae over subsets of 3 to 6 of the 30 variables. The number of terms in
each target is drawn randomly, uniformly from between 1 and 25, and each term is drawn by
choosing for each variable whether it will appear negated, unnegated, or not at all (all with
equal probabilities). All targets are ensured to be satisfiable. Examples over the 30 variables
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Figure 3: Learning curves for ID3 with and without skewing for 4-variable (top), 5-variable
(middle) and 6-variable (bottom) targets. The left column shows accuracy when the targets
are random Boolean functions. The right column shows accuracy when the targets are hard
Boolean functions.

that satisfy the target are labeled positive, and all other examples are labeled negative. The
left column of Figure 3 shows learning curves for different target sizes. Each point on each
curve is the average over several runs, each with a different target and with a different sample
of the specified size.

In general, these figures fit our expectations. Both algorithms perform well but skew-
ing provides slightly yet consistently better results (we note that the differences are not
statistically significant). The observed difference may be because skewed ID3 is less likely
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Figure 4: Time complexity of ID3 with skewing relative to standard ID3 for hard targets.
The y axis represents the ratio of the average time taken by ID3 with skewing to induce a
tree against the same quantity for standard ID3 for hard targets.

than ordinary ID3 to include irrelevant variables, particularly when faced with problematic
functions. One observation is that the graphs indicate that an ordinary TDIDT algorithm
outperforms skewing on average when the sample size is small relative to target size. As
sample size grows, a crossover point is reached after which skewing consistently outperforms
the ordinary TDIDT algorithm. Furthermore, the sample size required for effective skewing
grows with the number of variables in the target. This observation implies a limitation of this
algorithm — it may be undesirable for learning tasks with small samples or target concepts
that potentially employ many variables.

The next set of experiments focuses on the problematic functions alone. The methodology
is the same as before, with the following exception. Targets are drawn randomly from
functions that can be described entirely by variable co-references (equalities and inequalities)
together with the standard logical connectives and, or, and not. Many such functions exist,
and for all such functions, even given a complete data set, no variable has gain. Examples
of such functions are exclusive-OR and exclusive-NOR, and all those in Table 2. The right
column of Figure 3 show the results for these experiments.

We observe that if the target is a problematic function, skewing outperforms standard ID3
by a wide margin. The difference in accuracy is statistically significant — the 95% confidence
intervals around each sample point in these graphs do not overlap once the sample sizes
become moderately large. We repeated the experiment with 6-variable hard targets with
5000 examples to verify that skewing does indeed achieve 100% accuracy (in our noise-free
setting) in this case. We also verified this behavior for 7 and 8 variable targets.

In the experiments reported in Figure 3, the run-time for ID3 with skewing is on average
a constant times the run-time for ordinary ID3, regardless of sample size or target size. This
constant is (roughly) equal to our value for T in Algorithm 2, which is 30. In the experiments
involving hard targets, we observe that as sample size increases, ID3 with skewing becomes
more efficient relative to ID3. This can be explained by the fact that though it takes more
time to choose a split, ID3 with skewing chooses many fewer splits when the target is a
hard function. In this case, the constant-factor overhead for skewing is significantly smaller
than T . This behavior is shown in Figure 4. Thus in all cases, provided the sample is
sufficiently large, skewing provides benefits similar to lookahead, but with only a constant
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Table 3: Difference between maximum and minimum accuracy of ID3 as the orientation σ
is varied for different sets of hard functions on n variables. Examples are described by 30
variables. Training sample size is 1000 examples.

n Random Antipodal Parity
5 11.12% 20.35% 11.02%
6 16.82% 39.08% 17.60%

increase in run-time.

3.5 Effect of Parameters and the Induced Distribution

In this section, we empirically analyze the effects of the key skew parameters: the orienta-
tion σ and the weight factor s. We first present experiments showing the effect of varying
orientation σ and weight factor s, assuming we can sample directly from distribution D(σ,s).
Next, we present experiments that compare the accuracy of the approach when we simulate
D(σ,s) by skewing the input distribution versus actually sampling from D(σ,s).

3.5.1 Effect of varying σ

First, we describe experiments measuring the effect of picking different orientations σ while
keeping the weight factor, s, constant. For these experiments, we fix s to be 0.75. We consider
hard Boolean functions of n = 5 and 6 variables, with an additional 30−n irrelevant variables
present in each example. For each function, we perform 2n trials, one for each of 2n distinct
orientations σ. These σ all have the value 1 for the irrelevant variables, but vary over all
2n values for the relevant variables. In each trial, we select a sample of 1000 examples from
the distribution D(σ,s) induced by (σ, s), use standard ID3 to learn a tree from that sample,
and then test the resulting tree on a test set of 1000 examples drawn from the uniform
distribution. For each n, we report the difference between the largest and smallest test set
accuracy obtained on each function over the 2n trials. If the choice of σ is important, we
would expect this difference to be large.

In Table 3, we report the difference between the largest and smallest accuracy for three
sets of functions. The first column shows the difference averaged over 100 random hard
n-variable Boolean functions. The second column shows the difference averaged over the
n-variable antipodal functions (functions having exactly two satisfying assignments, a and
ā). The third column shows the difference for n-variable odd parity.

From Table 3, we observe that as σ is varied, the accuracy achieved by ID3 can change
dramatically, even when the sample is drawn according to the distribution induced by (σ, s).
Therefore, the choice of σ is important, and in fact increases in importance as n increases.
Further, some hard functions, such as the antipodal functions, show more variation than
others as σ changes. Given the full truth table of the function, we expect any σ to provide
high accuracy; however, with a small training sample and a large number of irrelevant
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Figure 5: Accuracy as s is varied for different sets of hard functions on 5 variables. Examples
are defined on 30 variables. Training sample size is 1000 examples.

variables, this is no longer the case.
When n is 4 or less, there is no difference between maximum and minimum accuracy for

these experiments. The difference in accuracy for n = 5 or more is the result of the relevant
variables having varying amounts of gain as σ is changed. With a small training sample, a
large number of relevant variables, and a number of irrelevant variables, the variance in gain
can translate to a variance in accuracy. However, when these conditions are not satisfied (for
example, with few relevant variables and a large sample), any σ will result in gain that is
large enough to accurately recover the target function. For this reason, we see no difference
between maximum and minimum accuracy for n = 4.

3.5.2 Effect of varying s

In this section, we describe experiments that measure the effect of picking different values
of s, the weight factor, while keeping σ fixed. We look at hard Boolean functions of 5
variables. We generate training sets of 1000 examples, where each example is described by
30 variables (25 irrelevant). We draw the examples from distributions induced by choosing σ
to be 111 . . . 1 and letting s range from 0.51 to 0.95. We use ID3 to learn a tree from each
training set, and test each tree using a test set of 1000 examples drawn according to the
uniform distribution. We track the test set accuracy of ID3 as the value of s changes. If the
choice of s is important, we expect some values of s to perform better than other values.

We show the accuracy for three sets of functions in Figure 5. First, we show the average
accuracy as s varies over a random sample of 100 hard 5-variable Boolean functions. Next, we
show the average accuracy for 5-variable antipodal functions. Finally, we show the accuracy
for 5-variable odd parity.

From the figure, we observe that the accuracy of ID3 changes significantly as s varies.
In Section 3.3, we showed that in an idealized setting, almost any s yields high accuracy.
However, when we only have a sample, this is no longer the case. Values close to 0.5 or 1
result in poor accuracy. Interestingly, a value of s around 2

3
seems to yield the highest

accuracy for all three sets of hard functions. Analyzing why this is so is an interesting
direction for future work.
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3.5.3 Skewing versus Sampling from D(σ,s)

In this section, we describe experiments that evaluate the effect of simulating D(σ,s), as done
by the skewing algorithm, versus sampling from it. We consider hard Boolean functions of
5 variables, where examples are described by 30 variables. We vary the training set size and
compare how often the first split chosen is relevant to the target function for three methods:
(1) ID3 with a sample drawn according to a uniform distribution, (2) ID3 modified to use
one iteration of skewing, with a sample drawn according to a uniform distribution, and (3)
ID3 with a sample drawn according to the distribution induced by the skew used in (2). For
comparison purposes, we also show the behavior of using 30 iterations of skewing, as is done
in our skewing algorithm. In this case, the skews chosen in each trial are not related to the
skew used in (2) above.

The result of this experiment is shown in Figure 6. As expected, sampling directly
from D(σ,s) allows ID3 to almost always choose a relevant split. However, given a uniform
distribution, the first split is usually chosen randomly (i.e. it is correct about 5

30
= 16.67%

of the time). Skewing, or simulating D(σ,s), increases the likelihood of choosing a relevant
split, even if done only once. Further, the chance of selecting a relevant split increases as
the number of skews is increased. However, even with 30 skews (which are used in practice),
there is still a drop in performance as compared to sampling directly from D(σ,s).

Finally, as one may expect, the differences in how often a relevant variable is chosen as
the first split translate directly into differences in test-set accuracy for these methods. This is
illustrated in Figure 7, where we plot the accuracies of full decision trees constructed by the
various methods. In this case, the skewing procedure simulates a product distribution once
at each node in the tree, with varying sample sizes. We observe that skewing a single trial
results in some improvement in accuracy over standard ID3. This improvement increases as
we perform more iterations of skewing (i.e., more simulations of D(σ,s) with varying σ and
s). As before, even with 30 trials, there is still a loss in accuracy as compared to sampling
directly from D(σ,s).
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Figure 8: Learning curves for ID3 with and without skewing for 5-variable (top) and 6-
variable (bottom) hard targets, when examples are described by 30 variables. The left
column shows accuracy with 5% uniform two-sided class noise. The right column shows
accuracy with 10% uniform two-sided class noise.

3.6 Effect of Noise

In this section, we investigate the effect of noise on our approach. As with ML algorithms
in general, we expect that the presence of noise will cause the accuracy of our approach to
degrade. However, it is of interest to analyze the rate at which the accuracy degrades. In
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particular, we wish to assure ourselves that our approach will not collapse as soon as noise is
added to the data. To verify this, we construct learning curves from data labeled with hard
Boolean functions, where the class labels are inverted with some probability (i.e., two-sided
uniform label noise). The results of this experiment are shown in Figure 8 (note that we do
not prune the trees produced).

From the results, we observe that while our method does not fail immediately upon the
introduction of label noise, it is quite sensitive to noise in the data. In particular, for a target
of 6 or more variables, a class label noise of 10% or more causes accuracy to degrade to the
level of standard ID3. This is perhaps expected with hard targets, since the signal we are
looking for is small. This may however affect the accuracy of the approach for real-world
data, where noise is likely to be present. Improving the noise-tolerance of the approach is
an important direction for future work.

3.7 Experiments with Real-World Data

In this section, we present the results of experiments on a number of real-world data sets.
Among our data sets, there are several where tree induction algorithms and logistic regression
are known to perform poorly (Perlich et al., 2003). Note that we do not know if the target
function is hard for any of these data sets. However, the fact that greedy tree induction
algorithms and logistic regression (which employs a linear inductive bias) do not have very
high accuracy on some of them indicates that it is possible that a subfunction in the target
(or the target itself) may be hard. The datasets we use are: Contraceptive Method Choice
(CMC), German Credit (German), Cleveland Heart Disease (Heart), voting-records (Voting),
pima-indians-diabetes (Diabetes), breast-cancer-wisconsin (BCW), Glass, Promoters, Yeast,
Abalone, Credit and Spam from the UCI repository (Blake & Merz, 1998); Internet Shopping
(Int. Shop.) and Internet Privacy (Int. Priv.) from previous work (Perlich et al., 2003); and
ribosome binding site prediction in E. coli (RBS) (Opitz & Shavlik, 1996). Some statistics
about each dataset are shown in Table 4. Here we list, for each dataset, the number of
instances it has, the number of variables, the number of nominal variables (including Boolean
variables) and the majority class fraction.

We compare ID3 versus ID3 with skewing on each dataset. To apply these methods,
we first have to convert all variables to Boolean (we discuss extending our approach to the
general case in a later chapter). We perform the conversion by first binning each continuous
variable into 16 bins, and then representing each nominal variable with v values using dlog2 ve
binary variables. We use 10-fold stratified cross-validation (except Promoters and Glass,
which have few examples, so we use 3 folds). Within each train-test fold, we use 5-fold
cross validation for post-pruning the trees produced (this is not possible for Promoters and
Glass, so we do not prune the trees in these cases). We report the average accuracy of each
algorithm and the size of the tree constructed by each. We also report the ratio of the time
taken by ID3 with skewing to the time taken by standard ID3 to induce a tree on each data
set. These results are shown in Table 5.

From the results, we observe that our approach outperforms standard ID3 in several
cases (9 of 15 datasets), and often builds smaller decision trees as well. However, there are
no statistically significant improvements in accuracy. This could be due to several reasons:
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Table 4: Summary of datasets we use in our experiments.

Data Set Instances Dimensions Nominal Maj. Class
Glass 214 9 0 0.59
BCW 699 9 0 0.66
Promoters 106 57 57 0.50
Credit 690 15 9 0.56
RBS 1877 49 49 0.81
Heart 303 13 8 0.54
Voting 435 16 16 0.61
Diabetes 768 8 0 0.65
German 1000 20 17 0.70
Spam 4601 57 0 0.61
Abalone 4177 8 1 0.50
Yeast 1484 8 0 0.69
Int. Priv. 13600 15 15 0.63
CMC 1473 9 7 0.57
Int. Shop. 16303 15 15 0.61

first, the target functions in these domains may not be hard, in which case the expected
improvement in accuracy is small. Second, even if the target is hard, the algorithm may be
led astray if the data is noisy or high-dimensional. We will discuss the issue of dimensionality
further in the next chapter.

We have also run our approach on the Monk’s problems in the UCI data repository. These
are three artificial datasets where the first two involve problematic subfunctions. In these
cases, we observed significant improvements in accuracy over standard ID3 in the first two
cases. However, since these are artificial datasets, we do not include our results on them.

We next compare ID3 against ID3 with skewing on the task of SH3 domain binding. A
major part of working out the “circuitry” of an organism — the metabolic, signaling and
regulatory pathways — is identifying which proteins interact with one another. Such protein-
protein interactions, much like drug-receptor bindings, are based primarily on smaller elec-
trostatic interactions (opposite charges attracting) and hydrophobic interactions (two fatty,
or “water-avoiding,” groups of atoms interacting to keep each other from their environment).

Many of the important protein-protein interactions occur when a short segment of one
protein, 6-10 amino acid residues long, here called the ligand, interacts with a domain on
the other protein. A domain is a longer segment (30-60 residues long), variations of which
appear in a variety of proteins. Therefore, one way to predict protein-protein interactions
is to predict what possible ligands will bind to which specific instantiations, or variations,
of a given domain. Here, we investigate the binding properties of SH3 domains, which
are implicated in cancer. Ligand-domain binding is a process where we may expect hard
functions to arise naturally. For instance, binding may occur if some atoms on the domain
have charges of the opposite sign to those of some atoms on the ligand, and will not occur
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Table 5: Accuracies and tree sizes of standard ID3 and ID3 with skewing on real-world data
sets. Also shown is the time taken by ID3 with skewing to induce a tree for each data set,
relative to the same time for standard ID3. Bold values indicate best accuracy results on
each dataset.

Data Set Accuracy (%) Tree size (Nodes) Time Ratio
ID3/skew ID3 ID3/skew ID3

Glass 80.37 74.77 55.0 62.3 15.4
BCW 93.28 92.42 23.4 19.4 9.7
Promoters 74.70 74.70 20.3 20.3 23.9
Credit 83.86 84.64 72.8 38.2 19.0
RBS 82.00 81.30 32.4 19.6 29.5
Heart 74.26 72.94 49.0 42.4 23.2
Voting 95.63 95.63 41.8 41.8 30.0
Diabetes 72.01 72.14 27.6 47.0 21.2
German 72.50 71.10 73.0 87.6 22.9
Spam 84.70 85.35 530.2 537.5 11.1
Abalone 75.70 75.10 225.2 232.6 14.9
Yeast 67.32 66.71 131.6 120.6 19.2
Int. Priv. 63.32 63.32 5.0 5.0 28.6
CMC 64.29 63.54 90.6 96.5 18.9
Int. Shop. 64.95 64.74 226.8 303.6 19.9

if the charges are of the same sign.
We investigate SH3 domains from eight proteins using data generated by an experiment

performed by Sparks et al. (1996). From their work, we obtain, for each SH3 domain, a
complete list of ligands that bind to that domain. We then generate a sample of non-
binding ligands from peptides (short sequences of amino acid residues) of length eight. These
peptides are based on the same position-dependent frequency distribution as the positives,
and therefore can be considered to be “near misses.” Next, we align the domains and
locate the positions in the domains which are believed to be important for binding, following
Brannetti et al. (2000). We construct each instance by juxtaposing these domain positions
from each protein with a proposed ligand, and label it according to whether the ligand binds
to the domain. Thus, each instance is a sequence of 33 amino acids of which the first 25
represent amino acids in the domain, and the last eight represent amino acids in the ligand.
Each amino acid is then translated into a seven-digit binary code, where each digit represents
a feature of that amino acid, such as charge or hydrophobicity. The final data set consists
of 897 instances, 97 positive, each instance being described by 231 binary-valued features.
This is thus a fairly high-dimensional data set. The added difficulty is that the classes are
substantially imbalanced.

In our experiments, we perform eight-fold cross validation as follows. For each fold, all the
examples corresponding to one protein constitute the test set. The examples corresponding
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Table 6: Experiment results on the SH3 binding problem for ID3 and ID3 with skewing
(ID3/S). For each method, we show the average over 8 folds of percentage accuracy and
weighted accuracy and tree size in nodes.

Experiment Accuracy (%) Weighted Accuracy (%) Tree size (Nodes)
ID3/S ID3 ID3/S ID3 ID3/S ID3

Replicated/Pruned 67.84 65.15 49.62 47.16 46.14 46.75
Replicated/Unpruned 83.50 80.60 51.90 48.80 95.20 89.71

Unreplicated/Unpruned 83.20 80.20 50.58 51.30 116 104

to the other seven proteins form the training set. We do this because performing ordinary
cross-validation in this domain may give overly optimistic results. To estimate performance
on a new protein, we need to instead perform “leave-one-protein-out” cross-validation. Thus,
on average, each training set has 785 examples, 85 of which are positive.

We compare standard ID3 against ID3 with Skewing in our experiments. We report
the average accuracy, weighted accuracy and the tree size for the three methods for each
experiment. Weighted accuracy is defined as the average of the true positive and true
negative rates (this is equivalent to a misclassification cost that is inversely proportional to
the ratio of classes). Since the domain is imbalanced, it is easy to achieve high accuracy by
always predicting negative. Thus, weighted accuracy may be the most informative measure
of performance on this data set.

We perform three experiments on this domain. In our first experiment, we replicate the
positive examples so that there are equal numbers of positives and negatives in the training
set. Further, we hold aside a prune set of 150 examples that is used to greedily post-prune
the trees generated by all algorithms. However, holding aside a prune set exacerbates the
data sparsity problem. Therefore, in our second experiment, we replicate the positives, but
do not hold out a prune set, or prune the trees produced. Finally, we investigate the effect of
learning the trees without either replicating the positives or pruning. We present the results
of these experiments in Table 6.

As in the previous experiments, we observe that ID3 with skewing generally outperforms
standard ID3; however, the improvements are also not statistically significant. One possible
cause here is dimensionality, since this data is fairly high-dimensional. We will discuss the
issue of dimensionality further in the next chapter. We also run C5.0 (www.rulequest.com)
on this data, with a differential cost file that stipulates a false negative misclassification
penalty of 10 units. This algorithm achieves a average weighted accuracy of 46.52%, with
an average tree size of 76.5 nodes. Comparing this to the Replicated/Pruned experiment,
we observe that C5.0 is outperformed by ID3 with skewing. However, because C5.0 uses
a different split selection criterion and a different pruning method from what we use, the
accuracy difference may not be attributable solely to the fact that it does not use skewing.
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Figure 9: Accuracy of different reweighting methods as training set size is varied for random
hard functions on 5 variables. Examples are described by 30 variables.

3.8 Related Work

A natural question to ask of the preceding results is whether they could as easily be ob-
tained by other techniques that effectively re-weight the data. We know of two such related
techniques: bagging (Breiman, 1996) and boosting (Freund & Schapire, 1997). We briefly
describe these approaches. Bagging and boosting are methods that construct an ensemble of
classifiers by reweighting the data in different ways. Given a dataset, bagging constructs an
ensemble by subsampling uniformly at random from the data and building a classifier with
each sample. There are various boosting procedures, with the following basic functionality.
Boosting constructs an ensemble by increasing the weight of misclassified instances made
by each classifier at each iteration. Thus, in iteration (i + 1) the weight of a misclassified
instance is Wi · g(errori), where Wi is its weight in iteration i and g(errori) is a function
of the error rate of the ith classifier that is greater than 1. For the first iteration, all in-
stances have the same weight. An ensemble of classifiers usually predicts the class of a new
example by voting (as in bagging), or weighted voting (as in boosting, where the weights
are inversely proportional to the function g). While these techniques were not developed to
enable tree induction algorithms to address problematic functions, it is possible that their
re-weighting schemes might nevertheless be successful in this task. Therefore, we run ID3
with each of these re-weighting techniques on hard targets, using the same methodology as
in Section 3.4. We also run ID3 with a procedure that randomly reweights the data. In
this approach, in each iteration, the weight of each data point is assigned by sampling from
a Gaussian distribution with mean 1. This is similar to the data perturbation approaches
of Elidan et al. (2002) for escaping local maxima during learning. The results of this ex-
periment are shown in Figure 9. We observe that ID3 with each of the three re-weighting
schemes performs on average no better than ordinary ID3. We can offer some intuition for
this result. In the case of bagging, note that, given a large enough sample, we will be con-
structing (in essence) a set of trees each of which has accuracy no better than chance. Thus,
the accuracy of this procedure as a whole is expected to be no better than chance, as the
experiments suggest. In the case of boosting, note that the first iteration will usually build a
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tree with accuracy no better than chance. The boosting procedure will increase the weights
of instances misclassified by this tree; however, these instances may not be related in any
meaningful way. If there is not any systematic error in the misclassified examples, increasing
their weight may result in another tree with accuracy no better than chance. From these
experiments, we conclude that the benefit of skewing comes from the type of re-weighting
being performed, not merely from the general notion of re-weighting.

The task of identifying relevant variables when examples are labeled by arbitrary Boolean
functions has also received attention in the theoretical literature. Here, the general prob-
lem goes by the name of “learning juntas.” A theory paper contemporaneous with our
work (Mossel et al., 2003) considers the general junta learning problem. Its main result is
an algorithm that applies to examples drawn from the uniform distribution; the algorithm
is based on deep structural properties of Boolean functions. The paper also includes a short
proof of a result1 similar to the theoretical result we summarize for skewing, but for random
product distributions, instead of the random skewed distributions treated in our theorem.
Since random product distributions have different properties than random skewed distribu-
tions, their proof does not suffice for our setting. We have not seen any empirical studies
based on this work.

3.9 Chapter Summary

In this chapter, we have introduced the approach of skewing. This approach alleviates the
myopia of greedy learning strategies when learning hard Boolean functions by reweighting
the data in a specific manner. In particular, we assign variables in the data a set of “preferred
values”, and increase the weight of those instances where the variables match their preferred
values. We have:

1. summarized a theoretical result that shows that, when the full truth table of a function
is available, this approach will work with probability 1,

2. shown empirically using synthetic data that this approach works as well as ID3 for
random targets, while significantly outperforming ID3 for hard targets,

3. shown that the approach is only a constant factor more computationally expensive
than the standard ID3 algorithm,

4. discussed the effect of skew orientation and weighting factors and sampling from the
induced distribution,

5. shown some improvement in accuracy in real-world experiments over the baseline ap-
proach; however, the improvements are not statistically significant.

In succeeding chapters, we will expand upon this foundation in two ways. First, we will
consider in more detail the effect of dimensionality on our algorithm. Next, we will investigate
how to extend our approach to more general and realistic settings, where functions can be
described by non-Boolean variables.

1The result as stated in their paper is not quite correct, but can be fixed fairly easily.



Chapter 4

Sequential Skewing

In the previous chapter, we introduced the skewing approach. In our experiments, we eval-
uated this approach using Boolean targets of four to six variables, where the examples were
described by 30 variables (the remaining variables were irrelevant to the target). In this
chapter, we discuss the effect of dimensionality on our approach in more detail, and present
a variant of the basic approach that scales better to high-dimensional data.

The work described in this chapter appears in Ray & Page (2004) and Rosell et al (2005).

4.1 Motivation

Many real-world datasets are high-dimensional in nature. For example, when constructing
regulatory networks of genes, we typically have datasets with microarray expression data
for thousands of genes in an organism. The SH3 domain binding problem introduced in the
last chapter is similarly high-dimensional with more than 200 attributes. Machine learning
algorithms typically find high-dimensional data problematic, and the skewing algorithm is
no exception. In our approach, we assign each example a weight that is the product over the
set of matches and mismatches for all variables. As the dimensionality of examples increases,
it becomes more likely that some examples will get a very high weight relative to the others,
because several variables match their preferred values chosen for that iteration. In this case,
the algorithm will overfit to these examples. This problem can be somewhat mitigated if we
allow more iterations of skewing, since it is unlikely that the same examples will be highly
weighted each time. However, it is unclear how many iterations we might need for a given
example size. Further, this increases the computational complexity of the approach.

In order to investigate the effect of dimensionality on our approach, we design a set
of experiments where the size of the target is kept constant while the number of variables
describing the examples is varied. We consider both random and hard targets described by
6 Boolean variables, and let examples be described by 40, 60 and 80 variables. The results
of this experiment are shown in Figure 10. We observe that the accuracy of the skewing
approach decreases as the dimensionality of the examples increases, everything else held
constant. When the targets are hard functions, and examples are described by 80 variables,
we no longer see the large improvement in accuracy we saw in our earlier results. Further, we
observe that on random Boolean functions, the accuracy of Algorithm 2 drops once examples

33
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Figure 10: Learning curves for ID3 with skewing for 6-variable targets, when examples are
described by 40, 60 and 80 variables. The left graph shows accuracy when the targets
are random Boolean functions. The right graph shows accuracy when the targets are hard
Boolean functions. For reference, we have plotted the results for ID3 without skewing when
examples are described by 80 variables.

with many features are considered. One possible reason for this is that, as was observed in
the previous chapter, there is a “crossover point” in terms of training set size below which
Algorithm 2 performs worse than ID3 with gain. This crossover point can be seen in the top
left graph in Figure 3, at a sample size of 400 examples. It may be that the sample size at
which the crossover occurs increases not only as a function of the target size, but also the
example size. Another contributing factor may be the gain fraction G in Algorithm 2, which
may need to be tuned as the dimensionality of the examples increases.

From these experiments, we conclude that while Algorithm 2 is effective when examples
are not high-dimensional, it does not scale well with increasing numbers of variables. One
possible solution that comes to mind is simply to increase the iterations of skewing performed.
This might increase the sensitivity of the algorithm for the following reason. As we saw in
Section 3.5, the gain of any variable depends on the orientation σ, of which there are 2n

possible, where n is the dimensionality of the examples. Thus the number of orientations
increases with example dimensionality, but Algorithm 2 samples a constant number of these.
Thus the higher the dimensionality of the examples, the more likely the algorithm is to miss
the “good” orientations that cause a relevant variable to have a large gain. To remedy this
issue, one possibility is to consider performing n iterations of skewing. We show in later
experiments that in this case, there is an improvement in accuracy overall. However, the
improvement is not large, so that the problem of high-dimensional data remains even in this
case. Thus, we modify Algorithm 2 itself to be more robust to high-dimensional data.

4.2 Sequential Skewing

In this section, we describe the modifications we make to Algorithm 2 in order to improve its
scaling properties. As before, we wish the skewed data set to exhibit significantly different
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Figure 11: Histogram of gain of relevant variables for a sample of 4-variable hard Boolean
targets, when a single relevant variable is skewed. Examples are represented by 6 variables,
two being irrelevant.

frequency distributions from the original. In Algorithm 2, we achieved this by selecting a
preferred value for every variable and multiplying the assigned weights. This procedure works
well when the example sizes are small. However, when examples are represented by a hundred
or more variables, it leads to two problems. First, on any given iteration, it is possible for
some data point to get a weight value that is much larger than the others by chance. This
can lead to overfitting. Second, underflow problems arise when the example sizes are large.
We can avoid these problems if, instead of skewing all the variables simultaneously, we skew
one variable at a time. We call this approach sequential skewing. In this approach, we
perform multiple iterations of skewing. In each iteration, we choose a single variable, xi, and
choose a preferred value for it. Each example is now reweighted according to the value taken
by xi in the example. We then calculate the gain of each variable under the new frequency
distribution. The variable to split on is the variable that shows maximum gain over all the
different skewed distributions.

In Figure 11, we provide empirical justification for the claim that sequential skewing is
able to siolate relevant variables, even when the target is hard. Here, we look at complete data
sets over 6-variable examples labeled according to several 4-variable hard Boolean targets
(the other two variables are irrelevant). For such data sets, no variable has gain a priori.
In the figure, we show a histogram of the fraction of relevant variables that have a given
gain when a variable relevant to the target is skewed. We observe that, after the sequential
skewing process, there are variables that have nonzero gain. One of these variables would be
chosen by the sequential skewing algorithm as the split variable. Note that given a complete
data set, no variable that is irrelevant to the target will have gain when either a relevant or
an irrelevant variable is skewed.

When the function we are trying to learn is already “easy” according to the original
data distribution, and we do not have a complete data set (class assignments for every
possible variable combination), the sequential skewing approach can sometimes choose the
wrong variable. This happens when skewing a single variable causes a variable that does
not appear in the target to show high gain by chance. We resolve this issue by inserting a
gain threshold. If any variable clears this threshold in the unweighted data set, we pick that
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Algorithm 3 Sequential Skewing Algorithm

Input: A matrix D of m data points over n Boolean
variables, gain threshold f , skew parameter 1

2
< s < 1

Output: A variable xi to split on, or −1 if no variable with sufficient gain could be found
1: N ⇐ Entropy of class variable in D
2: v ⇐ Variable with min entropy split in D
3: e ⇐ Entropy of v in D
4: if e < f × N then
5: return v
6: if e = N then
7: v ⇐ −1
8: for i = 1 to n do
9: G(i) ⇐ 0

10: maxgain ⇐ 0 [begin skewing loop]
11: for t = 1 to n do [Each variable’s distribution is changed in turn]
12: V ⇐ Randomly chosen favored value for xt

13: for e = 1 to m do
14: if D(e, t) = V then
15: W (e) ⇐ s [Favored value found, increase example’s weight]
16: else
17: W (e) ⇐ (1 − s) [Favored value not found, decrease example’s weight]
18: N ⇐ entropy of class variable in D under W
19: for i = 1 to n do
20: E ⇐ gain of xi under distribution W
21: if E

N
> maxgain then

22: maxgain ⇐ E
N

23: maxgainvar ⇐ xi

24: if E
N

> G(i) then
25: G(i) ⇐ E

N

[end skewing loop]
26: if maxgain = 0 then
27: return v
28: return maxgainvar

variable without entering the skewing procedure.
Unlike Algorithm 2, the number of iterations needed by sequential skewing depends on

the number of variables. Thus, the time taken by this algorithm to find a split variable is
O(mn2), where m is the number of examples and n is the number of variables. This is less
efficient than Algorithm 2 and information gain-based selection, both of which are O(mn).
However, it is still more efficient than depth-2 lookahead, which is O(mn3). It has the same
time complexity as “leveled” depth-2 lookahead, which we described in Section 2.3.

We can analyze this algorithm using the same framework as described in Section 3.3,
when we have complete data, as follows. For each iteration, there is a chosen variable xi, a
preferred setting c for xi, and a weight factor s. We thus define a sequential skew to be a
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triple (i, c, s), where i ∈ [1 . . . n], c ∈ {0, 1}, and p ∈ ( 1
2
, 1). Define the distribution D(i,c,s)

on {0, 1}n such that for a ∈ {0, 1}n, D(i,c,s) assigns probability s · ( 1
2
)n−1 to a if a(i) = c,

and (1 − s) · ( 1
2
)n−1 otherwise. Thus D(i,c,s) is the distribution that would be generated by

applying sequential skewing, with parameters xi, c and s, to the entire truth table.
Let f be a Boolean function on {0, 1}n. We say that f yields pairwise independence

if under the uniform distribution on {0, 1}n, variables x1, . . . , xn are pairwise independent
given f , i.e. Pr((xi = α) ∧ (xj = β)|f = γ) = Pr(xi = α|f = γ) · Pr(xj = β|f = γ) for
all pairs i 6= j, and α, β, γ ∈ {0, 1}. Constant functions f ≡ 1 and f ≡ 0 yield pairwise
independence, as does the parity function on n ≥ 3 variables.

We say that variable xj that has gain for f under distribution D(i,c,s) if ID(f |xj) > 0.
From Equation 2.7, xj has gain for f under distribution D(i,c,s) iff PrD(f = 1|xj = 1) 6=
PrD(f = 1|xj = 0). The following theorem shows that, when complete data is available,
sequential skewing works except when applied to functions that yield pairwise independence.
We note that the approach described in the previous chapter does not have this limitation.
The proof of this theorem is described elsewhere (Rosell et al., 2005).

Theorem 4.1 Let f be a hard Boolean function on {0, 1}n and let c ∈ {0, 1}. Let s be
chosen uniformly at random from ( 1

2
, 1). If the function f yields pairwise independence,

then for all j ∈ [1 . . . n], xj has no gain under D(i,c,s). Conversely, if f does not yield
pairwise independence, then for some j ∈ [1 . . . n], xj has gain for D(i,c,s) with probability 1.

We observe that depth-2 lookahead also fails for this class of functions as well. Thus, this
result reveals a connection between our approach and “leveled” depth-2 lookahead: when
complete data is available, these approaches will converge. We argue that it is still valuable to
view this approach as distinct from this version of lookahead, for two reasons. First, complete
data is a special case, because the amount of gain is irrelevant; the only relevant question is
whether the gain is nonzero. In empirical scenarios, where complete data is not available,
the methods can lead to varying amounts of gain for variables describing the instances.
In particular, the gain shown with the sequential skewing approach is parameterized by the
weight factor s. Second, we shall extend the basic sequential skewing idea in the next chapter
to apply to functions described by continuous and nominal variables. In this case, we shall
observe that this approach leads to an algorithm that is much more efficient than 2-step
lookahead, “leveled” or not, would be in this situation.

4.3 Empirical Evaluation

In this section, we present experiments comparing the performance of ID3 using the infor-
mation gain split selection function, the skewing algorithm described in Algorithm 2, and
the sequential skewing algorithm. We present experiments using synthetic data, followed by
results on real-world datasets and the task of SH3 domain binding. For these experiments,
the parameters input to the sequential skewing Algorithm are s = 3

4
and f = 0.85. The

parameters input to Algorithm 2 are s = 3
4
, G = 0.05 and k = 30. These parameters are

chosen before the experiments were performed and are held constant across all experiments.
Improved results could perhaps be obtained by tuning these parameters.
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Sequential skewing will perform n skews, where n is the number of variables in the exam-
ples. Because ordinary skewing always performs k skews (with k = 30 in our experiments),
it is possible that sequential skewing will outperform ordinary skewing when n > 30 merely
because it is permitted more skews. To control for this difference in the following experi-
ments, when n > 30, we also run a variant of ordinary skewing that performs n skews rather
than k = 30 skews. We call this variant skewing with n trials.

4.3.1 Experiments with Synthetic Data

In the first set of experiments with synthetic data, examples are generated according to a
uniform distribution over 30, 100 and 200 binary variables. Target functions are drawn by
randomly generating DNF formulae over subsets of 6 of these variables. The number of
terms in each target is drawn randomly, uniformly from between 1 and 25, and each term
is drawn by choosing for each variable whether it will appear negated, unnegated, or not
at all (all with equal probabilities). All targets are ensured to be satisfiable. Examples
that satisfy the target are labeled positive, and all other examples are labeled negative. The
left column of Figure 12 shows learning curves for different example sizes. Each point on
each curve is the average over 100 runs, each with a different target and with a different
sample of the specified sample size. The second set of experiments is identical to the first,
except that the target functions were drawn from the set of functions that can be described
entirely by variable co-references, or equalities among variables, together with the standard
logical connectives and, or, and not. For such functions, even given a complete data set,
no variable has gain. The right column of Figure 12 shows learning curves for different
example sizes for this experiment. In each figure, “Gain” represents the results for ID3 with
information gain, “Seq. Skewing” represents Algorithm 3, “Skewing” represents Algorithm 2,
and “Skewing(n)” represents skewing with n trials.

From the figures, we observe that on random Boolean functions, sequential skewing is
at least as accurate as ID3 using information gain, over a range of example sizes. When
the sample is drawn from hard functions, we find that the sequential skewing algorithm
outperforms ID3 by a large margin. Further, we observe that while permitting n trials does
improve the accuracy of Algorithm 2 (shown as Skewing(n)), nevertheless skewing with n
trials does not perform as well as sequential skewing. As the dimensionality of the examples
increases, the accuracies of all algorithms decrease when learning hard functions. However,
the sequential skewing approach is still much more accurate than its counterparts. These
results indicate that this approach scales better with high-dimensional data. We note that it
is possible that some of the drop in accuracy when learning hard functions is due to functions
that cannot be learned using this approach. However, we observe that in the 30-variable
case, when the targets are hard, the sequential skewing approach is at least as accurate as
Algorithm 2 (differences are not statistically significant). This indicates that the functions
on which the approach fails are not dense in the set of hard Boolean functions.

4.3.2 Experiments with Real-World Data

In this section, we describe our experiments with real-world datasets. We use the same
datasets as described in the previous chapter (Perlich et al., 2003), and our experimental
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Figure 12: Learning curves for ID3 with and without skewing for 6-variable targets, where
examples are described by 30 (top), 100 (middle) and 200 (bottom) variables. The left
column shows accuracy when the targets are random Boolean functions. The right column
shows accuracy when the targets are hard Boolean functions. Note that for the 30-variable
case, skewing and skewing(n) are the same algorithm.

methodology is the same as before. The only difference is that in this case, we compare
ID3 to ID3 with sequential skewing. The results of this experiment are shown in Table 7.
From these experiments, we observe that ID3 with sequential skewing fairly consistently
outperforms standard ID3 (10 out of 15 datasets). However, none of these improvements are
statistically significant. We observe, though, that ID3 with sequential skewing consistently
builds smaller trees than standard ID3 (sometimes much smaller). These trees may therefore
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Table 7: Accuracies and tree sizes of standard ID3 and ID3 with sequential skewing on real-
world data sets. Also shown is the time taken by ID3 with sequential skewing to induce a
tree for each data set, relative to the same time for standard ID3. Bold values indicate best
accuracy results for each dataset.

Data Set Accuracy (%) Tree size (Nodes) Time Ratio
ID3/ seq.skew ID3 ID3/ seq. skew ID3

Glass 78.04 74.77 62.3 62.3 5.7
BCW 93.57 92.42 16.0 19.4 1.4
Promoters 74.70 74.70 20.3 20.3 2.4
Credit 84.64 84.64 12.0 38.2 5.7
RBS 82.31 81.30 29.0 19.6 16.4
Heart 74.59 72.94 39.0 42.4 4.0
Voting 96.32 95.63 30.8 41.8 4.0
Diabetes 72.01 72.14 18.8 47.0 7.4
German 72.50 71.10 56.4 87.6 12.3
Spam 85.35 85.35 530.2 497.8 57.7
Abalone 75.46 75.10 200.8 232.6 4.7
Yeast 68.40 66.71 69.6 120.6 6.0
Int. Priv. 63.33 63.32 5.0 5.0 14.4
CMC 64.71 63.54 76.8 96.5 4.5
Int. Shop. 65.04 64.74 220.4 303.6 13.6

be more comprehensible and may generalize better to unseen data.
Next, we evaluate the sequential skewing approach on predicting SH3 domain binding.

The dataset used is described in Section 3.7, and the experimental methodology is also the
same as before. We perform three experiments in this domain. In our first experiment, we
replicate the positive examples so that there are equal numbers of positives and negatives
in the training set. Further, we hold aside a prune set of 150 examples that is used to
greedily post-prune the trees generated by all algorithms. However, holding aside a prune
set exacerbates the data sparsity problem. Therefore, in our second experiment, we replicate
the positives, but do not hold out a prune set, or prune the trees produced. Finally, we
investigate the effect of learning the trees without either replicating the positives or pruning.
The results of these experiments are reported in Table 8.

In these experiments, we observe that ID3 with sequential skewing outperforms standard
ID3. Because of the small size of the data set and the fact that we could only carry out
8-fold cross validation (this was dictated by the number of proteins for which we had data),
we obtained statistical significance only for some of our results, according to a two-tailed
paired t-test, at the 95% confidence level. The significant values are shown in bold in
Table 8. We note that weighted accuracy is the most important measure on this data set,
and sequential skewing achieves the best weighted accuracy overall. As before, we observe
that our approach also constructs smaller trees on average. Comparing these results to
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Table 8: Experiment results on the SH3 binding problem for ID3 and ID3 with sequential
skewing (ID3/SS). For each method, we show the average over 8 folds of percentage accuracy
and weighted accuracy, and tree size in nodes. Bold values indicate statistically significant
improvements over standard ID3.

Experiment Accuracy (%) Weighted Accuracy (%) Tree size (Nodes)
ID3/SS ID3 ID3/SS ID3 ID3/SS ID3

Replicated/Pruned 74.47 65.15 58.84 47.16 34.88 46.75
Replicated/Unpruned 82.30 80.60 51.60 48.80 80.14 89.71

Unreplicated/Unpruned 82.26 80.20 51.43 51.30 93.25 104

the results for ID3 with skewing in Table 6, we observe that this approach outperforms
Algorithm 2 on this dataset. This provides a further indication that the modified approach
scales better to high-dimensional data.

4.4 Chapter Summary

In this chapter, we have discussed the effect of dimensionality on the skewing algorithm.
We noted that the accuracy of the algorithm proposed earlier generally decreases as the
dimensionality of the data increases. Further, allowing more iterations of skewing (upto a
factor of n, the number of variables), while improving accuracy, does not solve the problem.
We then modified the original approach to skew one variable at a time. In our empirical
evaluation, we observed that this resulted in improved scaling characteristics. In particular,
on the high-dimensional SH3 binding dataset, this approach was able to significantly outper-
form standard ID3. A theoretical analysis of this approach revealed that there was a class of
hard functions for which this approach does not work; however, the empirical evaluation on
synthetic data suggests that this class of functions is fairly small (though not negligible). In
the following chapter, we will extend this approach to handle hard functions on non-Boolean
variables.



Chapter 5

Generalized Skewing

In previous chapters, we have looked at applying the skewing approach to learning functions
described by Boolean variables. In this chapter, we describe an extension to the approach
that allows it to be applied when learning targets that are described by continuous and
nominal variables.

The work described in this chapter appears in Ray & Page (2005).

5.1 Motivation

Most real-world data is best described by variables that are non-Boolean – the variables may
vary in a continuous manner (usually over some given interval of the real line), for example,
or they may take on any value from a finite set of possible values. In principle, such variables
can be transformed into binary-valued attributes. Indeed, we evaluated skewing on data sets
from the UCI machine learning repository (Blake & Merz, 1998) by first transforming the
data into binary valued attributes using techniques such as 1-of-N and binning. The 1-of-N
transformation replaces a variable V with N possible values with a set of N Boolean variables
(B1, . . . , BN ). For an instance where V takes on the jth value, it sets Bj = 1 and all others
to 0. The binning transformation replaces a continuous variable C with Boolean variables
by dividing the range of C into K bins. Each bin is then associated with a Boolean variable;
for a instance where the value of C falls in the jth bin, the corresponding variable is set to
1 while the others are set to 0. Other techniques are also possible, for example, the log N
transform represents each value (or bin) as a binary number from 1 to the base-2 logarithm
of the maximum number of values (or bins). This has the advantage of a more compact
representation, however, the resulting trees can be harder to interpret.

While the above transformations allow learning algorithms for Boolean variables to be
applied to general data sets, they also have potential problems. Information is lost when
continuous variables are discretized using these techniques. Further, such transformations
can greatly increase the dimensionality of the data. We have previously noted that the
accuracy of the skewing approach tends to decrease as the dimensionality of the problem
grows. Finally, these transformations impose strong dependencies among the transformed
attributes, which were absent in the original data. These dependencies can lead tree learners
astray and make the resulting trees harder to interpret. Because of these problems, we
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Figure 13: A hard function over two continuous variables. The function is defined by f =
(x1 · x2) > 0. For every possible splitpoint for x1 or x2, about half the examples less than
the split are positive while half are negative, and the same is true for examples greater than
the split.

would like the skewing approach to apply directly to functions described by nominal and
continuous attributes. In this section, we describe an extension to the previously proposed
skewing algorithm that achieves this goal. We first describe the extension to the case of
continuous variables, followed by the case of nominal variables, and then empirically evaluate
these approaches.

5.2 Skewing for Continuous Variables

When examples have continuous variables, algorithms such as C4.5 (Quinlan, 1997) and
CART (Breiman et al., 1984) determine a set of possible splitpoints from the data for every
such variable. They then consider partitioning the data into two sets based on the criteria
x < s and x ≥ s, for every continuous variable x and every candidate splitpoint s. The
(x, s) combination with the highest gain is then selected. The concept of hard functions
— those for which relevant variables show no gain — arises in this continuous setting in a
straightforward way. Consider a function such that Pr(f = 1|x < s) = Pr(f = 1) for every
continuous variable x and every possible split s, such as shown in Figure 13. “Chessboard”
functions are familiar examples of such functions. In such cases, the correct (x, s) pair has
gain only by chance according to measures like information gain or GINI gain.

We can generate some such hard functions as follows. Let each continuous variable take
on values in (−1, 1) with the correct splitpoint at 0, and map values greater than 0 to 1 and
values less than 0 to 0. This maps an example over continuous values to an example over
Boolean values. Now if the Boolean valued examples are labeled according to a hard Boolean
function, then the corresponding labels over the continuous examples creates a hard function
as well. Note that this procedure implies that each Boolean hard function can be used to
generate infinitely many hard functions over continuous variables. Further, note that this
procedure is not complete – there are many other hard continuous functions, such as those
with multiple splitpoints for each axis. This procedure will not generate such funcitons.
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A complication arises with hard continuous functions, such as chessboard functions, that
does not arise with hard Boolean (or nominal) functions. Since in practice we have only a
finite training sample, for any variable x, relevant or irrelevant, a splitpoint close enough
to the maximum or minimum value for x almost always shows gain. To see this, let x be
a continuous variable, and suppose, without loss of generality, that the example with the
highest value for x is positive. Assuming no other example takes exactly this same value
for x, splitting between this value and the second highest value will yield a pure node and
hence provide non-zero gain. If the example with the second highest value for x happens to
be positive also, the gain will be yet higher. These “spurious splits” are unique to the case
of functions described by continuous variables. Therefore, hard continuous functions are
especially hard to learn for greedy tree learners, because not only do the correct splitpoints
not show gain, some spurious splitpoints almost always do. In other words, these functions
are hard to learn even if no irrelevant variable is present.

Applying the sequential skewing approach to functions defined over continuous variables
is not as straightforward as the case for Boolean variables, because the relevant splitpoints
are unknown. If they were known, this case would be identical to the case of functions
described by Boolean variables. We could make the distribution around a split s different
by choosing “greater than s” as the “favored setting”, and reweighting accordingly. Since
the correct splitpoint is unknown, we attempt to alter the input distribution so that it is
asymmetric about every splitpoint. Further, we wish to down-weight the (possibly) spurious
splits – those with extreme values for the variable. An appropriate distribution that has
these properties, and is familiar in machine learning, is the β distribution with parameters
a and b such that a 6= b. The probability density function for the beta distribution, for any
a, b > 0, is defined on x ∈ (0, 1) as follows:

βa,b(x) =
Γ(a + b)

Γ(a)Γ(b)
xa−1(1 − x)b−1.

Here Γ(y) =
∫∞
0

xy−1e−xdx. For a positive integer y, Γ(y) = (y − 1)!. The probability
density function for the beta distribution with a and b positive integers has the same form as
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Figure 14: Beta distributions with a = 4 and b = 8 (solid line) and with a = 8 and b = 4
(dashed line). Larger values for a and b together result in a higher peak and stronger skew.
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the binomial distribution, except we vary the probability of “success” (base of the exponent)
rather than varying the number of “successes” (exponents). Hence this distribution is often
used in machine learning to represent a probability distribution over parameter settings based
on data (for example, learning parameters in Bayesian networks (Heckerman et al., 1995)).
Figure 14 shows two example β distributions. Other asymmetric unimodal distributions may
work as well, provided they have relatively low probabilities near the extreme values, but we
have not tested other distributions.

To skew based on a β distribution, we rank the values of the continuous variable x in
our data. The ranks are then translated uniformly into the (0, 1) interval. An example
is reweighted with the value of the β density at the translated rank of the value taken by
variable x in that example. Translating the ranks instead of values ensures that outliers in the
data will not affect the spread of the weights. Further, in practice, we use two distributions
to reweight the data: βa,b and βb,a. This is for two reasons: first, if the true splitpoint is
translated to the mean of βa,b, it is possible for it to not show gain. Using two distributions
prevents this effect, since the mean of βa,b is not the same as that of βb,a. Second if the true
splitpoint is translated to a value close to 1, we may not discover it using βa,b, a < b, since it
reduces the weights of instances in this region. This procedure is outlined in lines 15 to 22
in Algorithm 4.

5.3 Skewing for Nominal Variables

When considering a nominal variable as a split variable, one possibility is to consider the
entropy before and after partitioning the data on every value taken by the variable, as
done by C4.5. This approach is biased towards variables with many values; therefore, in
practice, an ad-hoc corrective factor is introduced based on the number of values a variable
can take. The combined split criterion is known as GainRatio (Quinlan, 1997). A second
possibility is to consider possible subsets of values of the variable, and introduce binary
splits of the form x ∈ S and x /∈ S, where S is some subset of values for x. This is the
procedure followed by the CART algorithm. In this case, the subset S of values which gives
the highest gain for some nominal variable can be computed using an efficient algorithm
(Breiman et al., 1984). In either case, a variable x shows gain on the data iff for some value
v, Pr(f = 1|x = v) 6= Pr(f = 1). In our algorithm, we adopt the procedure followed by
CART. We note that this procedure can also be used by the C4.5 program if invoked with
a special command-line argument.

The concept of Boolean hard functions extends to functions over nominal variables in a
straightforward way. Consider a function f such that Pr(f = 1|xi = vj) = Pr(f = 1) for
every variable xi and every value vj. In such a case, none of the variables will show any gain
(according to either the GainRatio criterion or the CART criterion), and the function will
be hard to learn for a greedy tree learner when variables irrelevant to the target are present.
An example of such a function is shown in Figure 15. Some such nominal hard functions can
be generated using the following procedure. Assume that each nominal variable takes on 2r
values. Divide these values into two random sets each of size r. Map one of the sets to 0
and the other to 1. This establishes a mapping from an example over nominal values to an
example over Boolean values. Now if the Boolean-valued examples are labeled according to
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Algorithm 4 Generalized Skewing Algorithm

Input: A matrix D of m instances over n Boolean variables, gain threshold f , Beta
distribution parameters a and b (a 6= b), number of skewing trials k for nominal variables

Output: A variable B to split on (or −1 if no variable with sufficient gain could be found)
along with splitpoint if B is continuous, or subset of values if B is nominal

1: N ⇐ Entropy of class variable in D
2: (v, s) ⇐ Variable with min entropy split in D, and its splitpoint or value subset
3: e ⇐ Entropy of (v, s) in D
4: if e < f × N then [Variable has enough gain under original distribution, no need to

skew]
5: return (v, s)
6: if e = N then
7: (v, s) ⇐ (−1, φ)
8: maxgain ⇐ 0

[begin skewing loop]
9: for t = 1 to n do

10: if xt is continuous then [set number of skews]
11: L ⇐ 2
12: else
13: L ⇐ k
14: for j = 1 to L do
15: if xt is continuous then
16: SD ⇐ sort(D(1 : m, t)) [Sort values of this variable]
17: for e = 1 to m do
18: r ⇐(rank of D(e, t) in SD)
19: if j = 1 then
20: W (e) ⇐ βa,b(

r
m

) [Translate rank into (0, 1), then reweight with β distribution]
21: else
22: W (e) ⇐ βb,a(

r
m

)
23: else [xt is nominal]
24: R ⇐ random permutation of values of xt

25: for e = 1 to m do
26: r ⇐(rank of D(e, t) in R)
27: W (e) ⇐ 1

r
[Reweight inversely proportional to rank]

28: N ⇐ entropy of class variable in D under W
29: for i = 1 to n do
30: (E, S) ⇐ gain of xi under distribution W , and best splitpoint or value subset
31: if E

N
> maxgain then [Check for enough gain]

32: maxgain ⇐ E
N

33: (maxgainvar, bestsplit) ⇐ (xi, S)
[end skewing loop]

34: if maxgain = 0 then [Check for variable with sufficient gain under any skewed
distribution]

35: return (v, s)
36: return (maxgainvar, bestsplit)



47

color shape f

blue circle 0
blue ellipse 0
blue square 1
blue rectangle 1
green circle 0
green ellipse 0
green square 1
green rectangle 1
red circle 1
red ellipse 1
red square 0
red rectangle 0

magenta circle 1
magenta ellipse 1
magenta square 0
magenta rectangle 0

Figure 15: A hard function over two nominal variables, color and shape. The function is
defined by f = color ∈ {blue, green} ⊕ shape ∈ {circle, ellipse}. For every subset of values
for color or shape, half the examples are positive and half are negative, as is the case for f ,
so that neither attribute has gain.

a hard Boolean function, then the corresponding labels over the nominal examples creates
a hard function as well. Note that this procedure implies that each Boolean hard function
can be used to generate many hard functions over nominal variables.

When given a function over nominal variables, we can employ the sequential skewing
approach as follows. As in the Boolean case, we would like to calculate gain under a data
distribution that is significantly different from the input. One way to obtain (i.e., simulate)
such a distribution is by altering the input distribution Pr(x = v) for each variable x and
value v. We first choose a random ordering over the values of the variable, x, we are using to
skew. Each value is then mapped to a “weight factor” inversely proportional to the rank of
that value in the random ordering chosen. Weight factors are normalized so that they sum to
1. An example is then reweighted with the weight of the value taken by x in that example. If
x has only two values, this procedure is identical to the sequential skewing algorithm (Ray &
Page, 2004) with the parameter s = 2

3
. In this special case, one re-ordering is sufficient (the

other order would produce the same results). However, when x has more than two values,
and the distribution of values for x is not uniform in our data, the ordering of values chosen
the first time may not produce a significantly different distribution. Therefore, the ordering
and weighting procedure is repeated a small constant number of times, with a different
ordering of values chosen each time. To further ensure a difference, one of the orderings
we use is antagonistic to the input, i.e., the values are ordered so that the least prevalent
gets the most weight. This procedure is outlined in lines 23 to 27 in Algorithm 4. After
reweighting, we follow the sequential skewing algorithm described in the previous chapter to
combine the results over different distributions and pick a split variable.

To apply this algorithm in practice, we may need to deal with missing values. When
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calculating gain, we follow the approach of C4.5: we estimate a distribution over the values
of the variable from the instances where the values are observed, and use this to weight
the gain. We may also need to reweight instances for which the variable we are skewing
has its value missing. In our approach, we assign these instances the “expected skew”. For
nominal variables, this is the distribution over the variable’s values multiplied by the weight
associated with each value. For continuous variables, this is the value of the β density at its
mean.

The computational complexity of standard TDIDT algorithms when applied to functions
described by continuous and nominal variables grows as O(mnv), where m is the number of
instances, n is the number of variables and v is the largest number of values any variable
takes in the data. The generalized skewing algorithm constructs c · n distributions at each
choice point (c = 2 for continuous variables, and a small constant for nominal variables). It
then computes the gain of all variables under these distributions. Thus, the computational
complexity of this algorithm is O(mn2v). Observe that the complexity is not quadratic in v,
which is likely to be large, especially if we have continuous variables. Thus, it is much more
efficient than depth-2 lookahead, which has a complexity of O(mn3v3) in this general case.
Further, note that even depth-2 “leveled” lookahead has a complexity of O(mn2v2), and so
is much more expensive than our approach.

5.4 Empirical Evaluation

In this section, we present experiments comparing the performance of a tree learner using the
Information Gain criterion and the generalized skewing criterion for selecting split variables.
We first compare the accuracy of these methods on synthetic data, followed by results on
various real-world datasets from the UCI repository. For all experiments, the base tree
learner is comparable to C4.5 with the “subset-splitting” option (this option lets C4.5 split on
subsets of values for nominal variables, as CART does). For the synthetic data experiments,
no pruning is needed since there is no variable or label noise. For the real-world data, we
greedily post-prune the trees based on their accuracy on a held-aside validation set. The β
distribution parameters input to the generalized skewing algorithm were a = 8 and b = 16.
For nominal variables, values were reordered 5 times. These parameters were chosen before
the experiments were performed and were held constant across all experiments. An important
direction for future work is to measure the algorithm’s sensitivity to these choices.

5.4.1 Experiments with Synthetic Data

In experiments with synthetic data, we test the continuous and nominal variable compo-
nents of the generalized skewing algorithm separately. To test our approach for continuous
variables, we generate examples described by 30 and 100 continuous variables. Each vari-
able takes on values uniformly in (−1, 1). We randomly select six of these variables, and
set the “true splitpoint” for these variables to 0. Each example is translated to a Boolean
assignment by identifying xi < 0 with 0 and xi ≥ 0 with 1 for the 6 relevant variables,
and labeled according to a Boolean function over six variables. If the labeling function is
hard, the corresponding function over continuous variables will also be hard. We generate
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Figure 16: Learning curves with and without generalized skewing for examples described
by 30 continuous variables (top) and 100 continuous variables (bottom). The targets are
functions of six of these variables. The left column shows accuracy when the targets are
random functions. The right column shows accuracy when the targets are hard functions.

independent train and test sets using this procedure for each target function we test. Each
test set has 10,000 examples, and we vary the size of the train set to generate a learning
curve.

Figure 16 shows the result of this experiment. The left column of the figure shows learning
curves measuring accuracy using the two split criteria as the size of the training sample is
varied, when the examples are labeled according to Boolean functions drawn uniformly at
random from the set of all Boolean functions. The right column shows the results when the
labeling functions are drawn uniformly at random from the set of Boolean functions over
six variables that are hard for greedy tree learners. For each sample size, we average over
100 runs, each with a different target and with a different sample of the specified sample
size. From the figures, we observe a consistent modest improvement in accuracy over using
information gain when the target is drawn uniformly at random, while there is a large
improvement when the target is hard.

Next, we test our algorithm for nominal variables. Examples are generated according
to a uniform distribution over 30 and 100 nominal variables. Each nominal variable can
take on 2r values, where r is randomly chosen from 1 to 5. We partition the values of six
randomly chosen variables into two equal sized disjoint sets, S0 and S1. Each example is
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Figure 17: Learning curves with and without generalized skewing for examples described by
30 nominal variables (top) and 100 nominal variables (bottom). The targets are functions
of six of these variables. The left column shows accuracy when the targets are random
functions. The right column shows accuracy when the targets are hard functions.

translated to a Boolean assignment by identifying values in S0 with 0 and values in S1 with
1. Each example is then labeled according to a Boolean function over six variables, where
each Boolean variable corresponds to a chosen nominal variable. If the Boolean function
labeling the examples is hard to learn from examples described by Boolean variables, the
corresponding function described by nominal variables will also be hard to learn for a greedy
tree learner. As before, we generate independent train and test sets using this procedure for
each target function.

Figure 17 shows the result of this experiment. The left column shows learning curves for
the accuracy of the tree learner using the two different split criteria as the size of the training
sample is varied, when the labeling functions are drawn uniformly at random from the set of
all Boolean functions. The right column shows the corresponding results when the labeling
functions are drawn uniformly at random from the set of Boolean functions over six variables
that are hard for greedy tree learners. In addition to the two methods being tested, we also
report the accuracy of ID3 using the sequential skewing algorithm (Ray & Page, 2004), when
examples are described by 30 nominal variables. Since this algorithm is only applicable to
Boolean variables, we first transform each training sample so that each nominal variable
with N values is represented by N Boolean variables (the 1-of-N transformation).
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From the figures, we observe that the skewing approach with nominal variables is able to
outperform the standard Gain-based approach both when the targets are randomly drawn
and when they are hard. The improvement in accuracy is large when the target is hard, and
is smaller, though consistent, for a randomly drawn target function. We also observe that the
sequential skewing algorithm, while outperforming Information Gain on hard targets, does
not do well on random targets. Further, the accuracy improvement for this algorithm on hard
targets is lower than that of the proposed algorithm. This behavior is likely caused by the fact
that the sequential skewing algorithm is working on higher dimensional data sets as compared
to the generalized skewing algorithm or the standard Gain criterion (∼180 variables on
average, compared to 30 for the others). When the target is hard, we observe that there
is some variability in the accuracy of generalized skewing algorithm. This variability seems
mainly to be a consequence of sample size. With a training sample size of 5000 examples,
we observed that the generalized skewing algorithm obtained an accuracy of 96± 4% in the
30-variable case, and 90 ± 10% in the 100-variable case.

We have also run the generalized skewing algorithm successfully on small “Chessboard”
functions with multiple splits per axis. This result has limited practical significance, but
it indicates that the proposed algorithm can successfully handle functions that would be
very hard to learn with standard tree learners. Thus, we conclude that, in the ideal (no
noise) case, given modest amounts of data drawn according to a uniform distribution, our
approach is almost always able to recover the target function, even when the target is hard
for a standard decision tree learner. Further, it scales well to high dimensional problems –
there is only a small drop in observed accuracy as the example sizes are increased from 30
to 100 dimensions.

5.4.2 Experiments with Real-World Data

In this section, we present the results of experiments on the UCI datasets presented in Chap-
ter 3. We compare standard information gain with generalized skewing. Our experimental
methodology is the same as before. As before, we report the average accuracy of each al-
gorithm and the size of the tree constructed by each, and the ratio of the time taken by
generalized skewing to the time taken by information gain to induce a tree on each data
set. To investigate whether there is any benefit in applying the skewing approach directly
to functions over continuous and nominal variables, we also report the accuracy obtained by
information gain and sequential skewing, each working on a binarized version of each data
set. This version was obtained by first binning each continuous variable into 16 bins, and
then representing each nominal variable with v values using dlog2 ve binary variables. These
results are shown in Table 9.

From Table 9, we observe that Gain with generalized skewing outperforms standard
Information Gain in all but 3 cases. Further, in all but 4 cases, the generalized skewing
algorithm constructed a tree that was smaller than the standard algorithm (sometimes much
smaller). In one case (Promoters), both methods constructed identical trees in all iterations.
While the individual accuracy differences are not significant, using a sign test across datasets,
we find that the generalized skewing algorithm is significantly different from Gain at the 95%
confidence level. Further, generalized skewing always induces a tree within a factor of 5n of
the time taken by standard Gain, as predicted, where n is the number of attributes (the factor
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Table 9: Accuracies and tree sizes for trees constructed using gain (G) versus generalized
skewing (GS) on real-world data sets. Also shown are accuracies of sequential skewing (SS)
and Gain (BG) on the binarized versions of each data set, and the time taken by generalized
skewing to induce a tree for each data set, relative to the same time for Gain. Bold values
indicate best accuracy results for each dataset.

Data Set Accuracy (%) Tree size (Nodes) Time
Ratio

GS G SS BG GS G GS/G
Glass 82.28 81.64 78.04 74.77 6.4 6.6 2.4
BCW 94.83 94.80 93.57 92.42 14.5 14.3 1.1
Promoters 78.30 78.30 74.70 74.70 15.0 15.0 1.0
Credit 84.93 84.78 84.64 84.64 11.8 22.5 11.8
RBS 83.48 81.73 82.31 81.30 20.6 23.6 25.6
Heart 75.25 74.92 74.59 72.94 23.8 23.8 3.7
Voting 96.09 95.40 96.32 95.63 20.0 24.0 9.6
Diabetes 72.08 72.00 72.01 72.14 31.5 35.2 12.3
German 74.20 72.50 72.50 71.10 57.1 72.7 63.0
Spam 92.39 92.13 85.35 85.35 96.6 96.9 25.6
Abalone 77.28 76.00 75.46 75.10 92.1 120.2 10.1
Yeast 69.95 69.41 68.40 66.71 167.6 177.6 10.5
Int. Priv. 63.87 64.42 63.33 63.32 207.0 179.8 40.0
CMC 69.79 67.35 64.71 63.54 147.6 217.1 14.1
Int. Shop. 66.33 66.68 65.04 64.74 384.6 410.4 27.2

5 arises from the number of times each nominal variable is skewed). Comparing generalized
skewing to sequential skewing, we observe that generalized skewing has improved accuracy in
all cases but one. Though sequential skewing is able to outperform Gain on binarized data in
most cases, it often does not do even as well as standard Gain. Thus, we conclude that if the
data contains continuous or nominal attributes, it is preferable to handle them directly, using
generalized skewing, rather than first binarizing and then employing sequential skewing.

5.5 Chapter Summary

In this chapter, we characterized functions described by continuous and nominal variables
that would be hard to learn for greedy learning strategies. We then presented an algorithm
that extends the skewing approach to these functions. When functions are described by
continuous variables, the approach uses beta distributions defined on the values of these
variables to reweight instances. When functions are described by nominal variables, the
approach uses a multinomial distribution defined on the values of these variables to reweight
these instances. We showed empirically using synthetic data that this approach is able to
efficiently learn complex functions which are hard for standard greedy learning algorithms.
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We also evaluated our approach with real-world datasets. In this case, while we observed
consistent differences between our approach and the standard TDIDT algorithms, there were
no statistically significant differences on specific datasets. This could happen if the target
functions were not hard (in which case only small increases in accuracy are expected) or
because of noise in the data. Though the increases in accuracy are small, we observed that
our approach tends to build smaller trees in general (which may be more comprehensible
and generalize better) than the standard method.

This chapter concludes our discussion on the skewing approach. While we believe that our
results are promising, and skewing can provide an effective approach to solving myopia, much
work remains to be done. Some outstanding issues are: (i) a better theoretical understanding
of skewing, (ii) methods that are more robust to noise in the data, and (iii) application to
biomedical problems such as gene-regulatory network construction (this is our current focus).
A summary of our contributions and a more detailed description of these future directions
can be found in Chapter 9.



Chapter 6

Multiple-Instance Learning:
Background and Empirical Analysis

In this part of the thesis, we describe our contributions to multiple-instance (MI) classifica-
tion and regression. In this chapter, we review the multiple-instance classification problem.
We describe several different tasks that have been formulated as MI problems, and sum-
marize prior work on algorithms for the MI representation. Next, we present an empirical
comparison between state-of-the-art MI algorithms and supervised learning algorithms that
explore similar concept classes on several MI datasets, and discuss the results.

The empirical analysis and the multiple-instance logistic regression algorithm reported
here appears in Ray & Craven (2005b).

6.1 Multiple-Instance Classification

The multiple-instance setting was introduced by Dietterich et al. (1997) in the context of
drug activity prediction. Drugs are typically molecules that fulfill some desired function by
binding to a target. Computational methods in drug discovery involve designing algorithms
that can automatically predict whether a given molecule will bind to a target. However,
each molecule is a three-dimensional entity and takes on multiple shapes or conformations
in solution. Not every conformation possesses the shape necessary for binding to a target.
However, if a molecule shows drug-like activity, it can be inferred that at least one of its
low energy conformations possesses the right shape for interacting with the target. On the
other hand, if the molecule does not show drug-like activity, we may infer that none of
its conformations possesses the right shape for interaction. Thus, if we wish to learn the
characteristics responsible for activity, a possible representation of the problem is to represent
each molecule as a set of low energy conformations, and describe each conformation using a
feature vector. Each such bag of conformations is given a label corresponding to whether the
molecule is active or inactive. To learn a model, an algorithm assumes that every instance
in a bag labeled negative is actually negative, whereas at least one instance in a bag labeled
positive is actually positive with respect to the underlying concept. The general task in
shown in Figure 18. Notice the following problem characteristics:

• The number of instances in each bag can vary independently of other bags. This implies

54
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Given: A set of bags {B1, ...Bn} each with label li ∈ {0, 1}. Each Bi is a multiset of ni

instances, Bi = {Bi1, . . . , Bini
}.

Assume: There exists a target concept c such that:

• For every Bi with li = 1, c(Bij) = 1 for at least one j, and

• For every Bi with li = 0, c(Bij) = 0 for all j.

Do: Learn a concept that maps a bag Bi to its label li.

Figure 18: Statement of the general multiple-instance problem.

in particular that an MI algorithm must be able to handle bags with as few as one
instance (this is a supervised learning setting) to bags with large numbers of instances.

• The number of instances in each any positive bag that are “truly positive” could be
many more than one – in fact, the definition does not rule out the case where all
instances in a positive bag are “truly positive.”

Notice further that while we assume the existence of a target concept that can classify
individual instances in the MI setting, the learning algorithm does not need to explicitly
represent this concept – the algorithm can learn a “bag-level” concept that classifies bags as
a whole, with no specific bias towards “instance-level” concepts.

6.2 Problem Domains

Since its introduction, a wide variety of tasks have been formulated as multiple-instance
learning problems. Among these tasks are content-based image retrieval (Maron & Ratan,
1998; Andrews et al., 2003), stock prediction (Maron, 1998), text classification (Andrews
et al., 2003), and protein family modeling (Tao et al., 2004). In this section, we give brief
overviews of some of these domains, and describe how the multiple-instance representation
has been used in each case. Table 10 summarizes the multiple-instance characteristics of
each domain we consider.

Drug activity was the motivating application for the multiple-instance representation
(Dietterich et al., 1997). In this domain, we wish to predict how strongly a given molecule
will bind to a target. Each molecule is a three-dimensional entity and takes on multiple
shapes or conformations in solution. We know that for every molecule showing activity, at
least one its low energy conformations possesses the right shape for interacting with the
target. Similarly, if the molecule does not show drug-like activity, none of its conformations
possesses the right shape for interaction. Thus, each molecule is represented as a bag, where
each instance is a low energy conformation of the molecule. A well-known example from this
domain that we use in our experiments is the Musk dataset. The positive class in this data
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Table 10: Summary of multiple-instance domains.
Task Bag Instance Positive Example
Drug activity molecule 3-D conformation molecule binding to

target

Content-based
image retrieval

image segment of image image of pre-specified
object

Protein family mod-
eling

protein se-
quence

amino acid at each
position

protein belonging to
pre-specified family

Text categorization document passage document belonging to
pre-specified category

consists of molecules that smell “musky”. This dataset has two variants, Musk1 and Musk2,
both with similar numbers of bags, but with Musk2 having many more instances per bag.

Content Based Image Retrieval (CBIR) is another domain where the MI represen-
tation has been used (Maron & Lozano-Pérez, 1998; Zhang et al., 2002). In this domain,
the task is to find images that contain objects of interest, such as tigers, in a database of
images. An image is represented by a bag. An instance in a bag corresponds to a segment in
the image. The underlying assumption is that the object of interest is contained in (at least)
one segment of the image. In our experiments, we use two sets of CBIR data. The first task
is to separate three categories of animals, Tiger, Elephant, and Fox, from background images
(Andrews et al., 2003). The second task is to separate natural scenes with specific features
from others (Zhang et al., 2002). We use the categories of Flower, Sunset and Waterfall from
this set. Negative examples for each category consist of images from the other categories as
negative examples, along with images from the categories Mountain and Field.

The identification of TrX proteins has recently been framed as a multiple-instance
problem (Tao et al., 2004). The objective is to classify given protein sequences according to
whether they belong to the family of TrX proteins. The given proteins are first aligned with
respect to a motif that is known to be conserved in members of the family. Each aligned
protein is represented by a bag. A bag is labeled positive if the protein belongs to the family,
and negative otherwise. An instance in a bag corresponds to a position in a fixed length
sequence around the conserved motif. Each position is described by properties of the amino
acid at that position, and smoothed using the same properties from its 16 neighbors.

Text Categorization is the final domain that we consider that has used the MI repre-
sentation. Previous work (Andrews et al., 2003) has constructed data sets from the TREC9
(OHSUMED) corpus, where the task is to classify whether a MEDLINE document should be
annotated with a specific MeSH term (Nelson et al., 2005). In this case, a document corre-
sponds to a bag. An instance corresponds to a passage in the document and is described by
word presence-or-absence features. In our experiments, we use a novel data set for this task
that we constructed (Ray & Craven, 2005a) as part of Task 2 of the BioCreative Text Mining
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Protein: Mitochondrial 28S ribosomal protein S14
Article: PUBMED ID 10938081
...Three of the four currently identified mammalian mitochondrial small subunit ribosomal
proteins that have prokaryotic homologs (S7, S10, and S14) are located in the head of the
small subunit...

⇓
Gene Ontology Code: GO:0003735
(structural constituent of ribosome)

Figure 19: An example of the BioCreative task. Given a protein name and the text of an
article, annotate the protein with Gene Ontology codes for which the article has evidence.

Challenge (Valencia et al., 2003). In this task, we are given full-text articles from biomedical
journals and the names of human proteins. The objective is to label each article and protein
with codes from the Gene Ontology (GO) (The Gene Ontology Consortium, 2000). The GO
consists of three hierarchical domains of standardized biological terms referring to cellular
components, biological processes and molecular functions. Each such term is mapped to a
unique “GO code”. A 〈protein, article〉 pair is labeled with a GO code if the article contains
text that links the protein to the component, process or function described by the GO code.
An example of the task is shown in Figure 19. We develop a two-stage system to solve this
task. The first stage identifies all passages in the text that contain the protein of interest
and some weak evidence about an arbitrary GO code. In the second stage, we learn a model
to predict how likely it is that a document actually relates the protein to the GO code, given
the output of the first part. To learn such a model, we could assume that every passage in
a training document that mentions the protein and some text supporting the GO code also
relates the protein to the GO code. However, this is not a realistic assumption. Usually, in
a training document annotated with a GO code C for a protein P , there exist some pas-
sages that link C to P , but not every passage that mentions P and C does so. This can be
formulated as a multiple-instance problem as follows. Positive bags for our model consist of
documents that are labeled with GO codes. Each instance in a bag is a paragraph in the
document, output by the first stage of our system. Each paragraph is described by a set of
word-count features, along with a set of numerical features that capture some aspects of the
protein-GO code interaction, such as the average distance between mentions of the protein
and the evidence text for the GO code. Using this representation, we build three data sets
for our experiments: one each for the Component, Function and Process domains in GO.

6.3 Algorithms for the MI Problem

Various algorithms have been developed for the MI setting. In their original work, Diet-
terich et al. (1997) described an algorithm to learn axis-parallel rectangles (APRs) from
MI data. This approach was further investigated by others (Auer, 1997; Auer et al.,
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1997), who improved the efficiency of the original methods and provided theoretical re-
sults on the learnability of such concepts from MI data. A framework called Diverse
Density (Maron, 1998) has been proposed and used to learn Gaussian concepts. Others
have proposed algorithms adapting Support Vector Machines (SVMs)(Andrews et al., 2003;
Gartner et al., 2002) to this problem, by changing either the objective function or the kernel
used. Approaches using lazy learning (Wang & Zucker, 2000), decision trees (Ruffo, 2000;
Blockeel et al., 2005), artificial neural networks (Ramon & Raedt, 2000) and rule learning
systems (Zucker & Chevaleyre, 2000; Chevaleyre, 2000; Zucker & Ganascia, 1998) have been
investigated in this context as well. Recently, work has been done investigating the use of
ensembles (Auer & Ortner, 2004) to learn multiple-instance concepts. In this section, we
summarize some of the algorithms proposed to date. These algorithms illustrate several
distinct approaches to learning concepts from MI data – we consider generative and dis-
criminative approaches, as well as logical and probabilistic methods. Furthermore, these
algorithms learn a variety of concepts. In this section, we also introduce a variant of the
logistic regression algorithm adapted to the MI setting.

Diverse Density is perhaps the best known framework for MI learning (Maron, 1998).
The idea behind this approach is that, given a set of positive and negative bags, we wish to
learn a concept that is “close” to at least one instance from each positive bag, while remaining
“far” from every instance in every negative bag. Thus, the concept must describe a region of
instance space that is “dense” in instances from positive bags, and is also “diverse” in that
it describes every positive bag. More formally, let

DD(t) =
1

Z

(∏

i

Pr(t|B+
i )
∏

i

Pr(t|B−i )

)
, (6.1)

where t is a candidate concept, B+
i represents the ith positive bag, and B−i represents the

ith negative bag. We seek a concept that maximizes DD(t). The concept generates the
instances of a bag, rather than the bag itself. To score a concept with respect to a bag, we
combine t’s probabilities for instances using a function based on noisy-or (Pearl, 1988):

Pr(t|B+
i ) ∝ (1 −

∏

j

(1 − Pr(B+
ij ∈ t))), (6.2)

Pr(t|B−i ) ∝
∏

j

(1 − Pr(B−ij ∈ t)). (6.3)

Here the instances B+
ij and B−ij belonging to t are the “causes” of the “event” that “t is the

target.” The concept class investigated by Maron (1998) is the class of generative Gaussian
models, which are parameterized by the mean µ and a “scale” s = 1

2σ2 :

Pr(Bij ∈ t) ∝ e−
P

l(sl(Bijl−µl)
2), (6.4)

where l ranges over features.
Diverse Density with k disjuncts is a variant of Diverse Density also investigated

by Maron in his work (1998). This is a class of disjunctive Gaussian concepts, where the
probability of an instance belonging to a concept is given by the maximum probability of it
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belonging to any of the disjuncts:

Pr(Bij ∈ {t1, . . . tk})) ∝

softmaxα(Pr(Bij ∈ t1), . . . , Pr(Bij ∈ tk)), (6.5)

where

softmaxα(x1, . . . , xn) =

∑
1≤i≤n xie

αxi

∑
1≤i≤n eαxi

(6.6)

is a smooth approximation to the “max” function (the approximation improves as α is
increased).

A Statistic Kernel has been proposed (Gartner et al., 2002) to adapt Support Vector
Machines to the MI framework. This kernel is a function over bags rather than instances. It
is defined by transforming a bag into a single feature vector and then applying a polynomial
kernel to this representation. The specific transformation applied is as follows. Let Bi =
{Bi1, Bi2 . . . Bin} be a bag of instances, and let each instance be described by a feature vector
of length m. Then we define a feature vector of length 2m for the bag, where the j th new
feature is the minimum of the jth feature across every instance of the bag, and the 2jth

new feature is the maximum of the jth feature across every instance of the bag. Thus, this
transform assumes that the discriminant will be a function of the extreme values of each
feature in a bag, and not of the intermediate values. Note that this is not a “true” multiple-
instance kernel, since the transformed feature vector is not a function of any single instance –
in fact, each min/max feature value could be from a different instance in the bag. A standard
SVM kernel is then applied to this feature vector representation to learn a classifier.

A Normalized Set Kernel (NSK) has also been proposed (Gartner et al., 2002) for SVM
classifiers applied to MI problems. This is defined as follows. Let κ be a kernel defined on the
space of instances, and let X and Y be sets of instances. Then kset(X,Y ) =

∑
x∈X,y∈Y κ(x, y)

is a kernel on the sets X and Y . The normalized set kernel is defined as:

n(X,Y ) =
kset(X,Y )√

kset(X,X) ·
√

kset(Y, Y )
. (6.7)

In the MI representation, we can apply this kernel to bags of instances. The normalization
factor is necessary to correct for varying bag sizes. Notice that this kernel does not have the
multiple-instance bias “built-in” – it is generally applicable to the task of classifying sets,
whether they are generated in an MI setting or not. However, if κ is capable of separating
instances in an MI setting, it can be shown that kset will be able to separate bags (Gartner
et al., 2002). To ensure a high probability of being able to separate instances, one can set
κ to be the Gaussian kernel. However, this can lead to overfitting in practical situations, as
we describe later.

Relational learners like FOIL (Quinlan, 1990) can naturally handle the multiple-instance
representation. In this case, FOIL is applied to instances described in a single table of
attribute-value pairs. We construct an MI representation for a task by defining a target
relation over bags (for example, pos-bag(B)). Each positive bag is specified to satisfy the
target, while no negative bag does so. An instance relation, instance(B,N), is then defined
that describes each instance N in each bag B. This representation biases FOIL to learn rules
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of the form pos-bag(B) :- instance(B,N), properties-of-N. These rules represent an MI concept,
where a bag is positive if any instance in it satisfies the learned properties. In MI domains,
FOIL learns clauses similar to axis-parallel rectangles, where each literal defines an upper
or lower bound on the value of some variable in the head of the clause (or in the instance
literal). While the same algorithm is used whether the target is a multiple-instance concept
or not, to distinguish the MI representation from others we call the former MI/FOIL.

6.3.1 Multiple-Instance Logistic Regression

We have designed a novel algorithm, Multiple-Instance Logistic Regression, to learn lin-
ear discriminants in an MI setting. This algorithm is derived by generalizing the Diverse Den-
sity framework. In multiple-instance classification, we seek Pr(yi = 1|Bi = {Bi1, Bi2 . . . Bin}),
the conditional probability of the label of the ith bag being positive given the instances in
the bag. If we are given a model that can estimate the equivalent probability for an instance,
Pr(yij = 1|Bij), we can use a combining function, such as softmax, to combine the posterior
probabilities over the instances of a bag and obtain an estimate for the posterior probability
Pr(yi = 1|Bi). Observe that, in this case, it is the combining function that encodes the
multiple-instance assumption. Thus, if one of the instances is very likely to be positive, as
determined by the instance model, the combining function must be such that its estimate
of the bag’s positive-ness will be high. Further, observe that this general setting allows
any model that can learn class conditional probabilities in a supervised setting to be used
in a multiple-instance setting as well. In our work, we use the logistic regression (LR)
algorithm with parameters (w, b) to estimate conditional probabilities for each instance:

Sij = Pr(yij = 1|Bij) =
1

1 + e−(w·.Bij+b)
. (6.8)

Then, we use softmax (Equation 6.6) to combine these to obtain the conditional proba-
bilities for each bag:

Pr(yi = 1|Bi) = softmaxα(Si1, . . . , Sin). (6.9)

We call this algorithm Multiple-Instance Logistic Regression, abbreviated MI/LR. Since
Equation 6.9 is a smooth function of the model parameters (w, b), we can use gradient based
methods to optimize an appropriate error function, such as conditional log likelihood or a
least-squares measure.

A similar approach extending logistic regression to the MI setting has been investigated
previously (Xu & Frank, 2004). This approach averages the instance class probabilities to
obtain bag’s class probabilities, using arithmetic and gemetric averages. While good results
were shown on the Musk datasets, it is unknown how well this approach will generalize to
other MI problems, since the combining function does not accurately encode the MI bias.

6.4 Empirical Analysis of Algorithms in MI Domains

Although MI learning has been investigated in a wide range of problem domains with a wide
range of approaches, most studies have empirically compared only a few approaches using
only a few (often one) data sets. Because of the limited scope of these studies, there is not
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a clear sense of which multiple-instance algorithms might be best suited to which domains.
Does there exist a single MI algorithm well suited to every MI domain, or, even if not always
the best, is consistently among the best algorithms for these tasks? We attempt to answer
this question in the following sections.

Another interesting question concerns the relationship between ordinary supervised and
MI learning. As we have noted before, the MI setting reduces to the supervised learning
setting when each bag has exactly one instance. Thus, the MI setting is more general than
standard supervised learning. However, in their work on the theory of learning from MI
examples, Blum and Kalai (1998) show that a concept that is PAC-learnable with one-sided
classification noise is PAC-learnable from MI examples. In their proof, they translate MI
examples (bags) into individual instances by assigning the label of the bag to an arbitrary
instance within it. This transformation produces a standard attribute-value data set that can
be used by an algorithm that works with a standard supervised learning representation. Put
in an empirical context, this result can imply that, given enough examples, transforming
an MI dataset into a standard supervised representation can allow a supervised learning
algorithm to successfully learn the underlying instance concept. While the result is only
applicable to PAC-learnable concepts, one may hypothesize that it holds for other concepts
in practice. Thus, a relevant question is, how well do supervised algorithms learn from MI
data in general? This question has not been addressed in previous research on MI learning.

Here, we address these questions by conducting an empirical evaluation in which we ap-
ply the multiple-instance learning methods described above to a wide range of tasks that
have been previously considered in the MI literature. Moreover, to address the question of
how well supervised learning methods learn in MI domains, our experiments also evaluate a
supervised-learning counterpart for every MI algorithm we consider. Each of these counter-
parts is able to represent and search exactly the same concept class as its MI partner. To
apply a standard supervised learning algorithm to MI data, we could pick a point from a
positive bag at random and call it positive, as suggested previously (Blum & Kalai, 1998).
In practice, positive bags may have multiple positive instances. Thus, we convert MI data to
a supervised sample by assuming that the label of a bag applies to each instance it contains.

The supervised counterparts to the MI methods described above are as follows.

1. A simple Gaussian model is the supervised learning counterpart of Diverse Density.
This model maximizes DD(t) with the noisy-or replaced by simple product. In this

case, Equation 6.2 is replaced by Pr(t|B+
i ) ∝

(∏
j Pr(B+

ij ∈ t)
)
, everything else re-

maining the same. Thus, this algorithm assumes that every instance in a positive bag
is labeled positive. Observe that, since every instance in a negative bag is considered to
be truly negative in the MI setting, we do not need to change the part of the objective
function dealing with negative bags when translating the data to a supervised learning
setting.

2. In both multiple-instance kernels for SVMs described above, we use a quadratic kernel
internally. Thus, we use a quadratic kernel along with the feature vector created by
the Statistic kernel, and set κ to be a quadratic kernel for the Normalized Set kernel.
The supervised counterpart to both is the standard quadratic kernel (Cristianini
& Shawe-Taylor, 2000).



62

3. The relational learning algorithm FOIL needs no change to handle the supervised
setting. We simply define the target relation to range over instances. In particular, we
define a target relation, pos-instance(N), and specify that every instance from a positive
bag in our training set satisfies this relation, while no instance from a negative bag
does.

4. The supervised counterpart to our multiple-instance logistic regression algorithm is the
standard logistic regression algorithm.

We note that in previous work, a Gaussian kernel has been used instead (Gartner et al.,
2002) for κ in the Normalized Set kernel. We use the quadratic kernel for consistency with
the other SVM approaches. Further we have found in our experiments that the quadratic
kernel produced more accurate classifiers than the Gaussian kernel. A possible reason is that
since the Gaussian kernel can produce a more complex decision surface than the quadratic
kernel, it may overfit the training sample.

6.4.1 Experimental Methodology

To optimize the objective functions for the Diverse Density and logistic regression models,
we use the BFGS method (Fletcher, 1980). Since the solutions to these objectives are usually
only locally optimal, we restart each algorithm 10 times for each run. The initial parameter
settings for the Diverse Density algorithm are chosen to model instances in positive bags
(Maron, 1998). For the logistic regression algorithms, the initial parameter settings are
chosen uniformly at random in (0, 1). When the softmax function is used, the parameter α
is set to 3.

The MI SVM kernels are implemented in the framework of Smooth Support Vector
Machines (Lee & Mangasarian, 2001). For the supervised SVM, we used SVMlight (Joachims,
1999). SVMlight is run with the quadratic kernel, and default parameters otherwise.

FOIL is modified to use more than 52 variables (the default maximum limit), and is
allowed to use up to 255 variables (this is much larger than the dimension of any of our
data sets). On the TrX data set, FOIL is called with the “accuracy” parameter (“–a”, which
actually measures precision) set to 50. Since this data set has very few positive examples,
FOIL frequently returns the empty clause without this modification.

We test these algorithms using 10-fold stratified cross validation on all data sets except
the three BioCreative data sets. Every algorithm is given the same set of folds for each data
set. Folds are constructed on bags, so that every instance in a given bag appears in the
same fold. For the BioCreative data sets, the data is naturally partitioned into two sets,
corresponding to articles published in the Journal of Biomedical Chemistry (JBC) and those
published in Nature. In our experiments, we use the JBC articles to learn our models and
the Nature articles to test them.

To evaluate the behavior of the algorithms, we construct Receiver Operating Charac-
teristic (ROC) curves. These curves measure the true-positive rate of a classifier versus its
false-positive rate as a threshold is varied across a measure of confidence in its predictions.
To construct ROC graphs from our experiments, we pool the predictions of the algorithms
across all folds. The supervised learning algorithms in our experiments generate independent
predictions for each instance in a bag. To generate bag-level predictions from the output of
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Figure 20: ROC graphs for the Musk1 data set. Each graph shows the ROC curve for a set of
related models. Top left: Diverse Density with 1, 3 and 5 disjuncts and the Gaussian model;
top right: logistic regression and Multiple-Instance Logistic Regression; bottom left: SVMs
with the Normalized Set kernel, Statistic kernel, and quadratic kernel; bottom right: FOIL
and MI/FOIL. The Gaussian model, logistic regression, SVMs with the quadratic kernel and
FOIL are standard supervised methods.

these algorithms, we take the instance prediction made at the highest confidence to be the
prediction for the bag. For confidence measures, we use conditional probability estimates of
Pr(yi = 1|Bi) for Diverse Density and logistic regression. For the SVM classifiers, we use
the (signed) margin as a measure of confidence in the model’s predictions. For the FOIL
algorithm, we modify it to associate a confidence with each learned clause. This confidence
is an m-estimate of the precision of the learned clause (Lavrac & Dzeroski, 1994). A test
instance or bag is associated with the confidence of the first rule that covers it, or 0 if no
rule covers it and it is predicted to be negative.

In Figures 20 and 21 we show representative ROC graphs obtained for two datasets:
Musk1 and Tiger. In Table 11 we report a summary statistic, the area under the ROC graph
(AROC) for every data set and algorithm (Bradley, 1997).

6.4.2 Discussion

From the results in Table 11, we can draw several interesting conclusions.
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Figure 21: ROC graphs for the Tiger data set. Top left: Diverse Density with 1, 3 and
5 disjuncts and the Gaussian model; top right: logistic regression and Multiple-Instance
Logistic Regression; bottom left: SVMs with the Normalized Set kernel, Statistic kernel,
and quadratic kernel and bottom right: FOIL and MI/FOIL. The Gaussian model, logistic
regression, SVMs with the quadratic kernel and FOIL are standard supervised methods.

Different inductive biases are appropriate for different MI problems. No single MI al-
gorithm dominates over the others across all data sets. Not surprisingly, algorithms with
different hypothesis-space biases are suitable for different domains. Thus, Gaussian concepts
perform the best in two domains, linear concepts in four, quadratic concepts in five and
rule-based concepts in one domain. This result suggests that when addressing an apparent
MI problem, one should investigate a variety of learning approaches.

Some MI algorithms learn consistently “good” models. While we do not expect any
approach to always produce the best classifier, it is interesting to ask which, if any, approaches
construct classifiers that are consistently “good”. We define a “good” classifier for a given
dataset to be one that achieves at least 95% of the best AROC achieved by the tested
methods on that data set. Using this definition, we observe that the algorithm we have
introduced in this work, MI Logistic Regression, and SVMs with Normalized Set kernels
both produce consistently good classifiers – MI/LR produced good classifiers in 8 data sets,
while the Normalized Set kernel produced good classifiers in 6 data sets. These methods
therefore seem generally good across MI domains.
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Table 11: Area under ROC curves for MI and supervised methods on MI data sets. Super-
vised methods are in italics. Bold values indicate the best AROC for each data set.

Data DD(1) DD(3) DD(5) Gauss MI/LR LR SVM
(Stat)

SVM
(NSK)

SVM
(Quad)

MI/
FOIL

FOIL

Musk1 0.895 0.883 0.861 0.795 0.867 0.847 0.937 0.924 0.903 0.621 0.719
Musk2 0.903 0.850 0.838 0.850 0.870 0.837 0.892 0.866 0.847 0.725 0.765

Tiger 0.841 0.814 0.828 0.525 0.890 0.849 0.705 0.848 0.827 0.737 0.806
Elephant 0.907 0.892 0.902 0.734 0.933 0.931 0.856 0.915 0.944 0.821 0.859
Fox 0.631 0.639 0.656 0.554 0.633 0.593 0.618 0.525 0.579 0.655 0.696

Flower 0.878 0.879 0.876 0.603 0.919 0.899 0.874 0.901 0.953 0.831 0.933
Sunset 0.878 0.878 0.878 0.645 0.909 0.899 0.979 0.970 0.969 0.841 0.946
Waterfall 0.857 0.875 0.866 0.581 0.926 0.928 0.950 0.944 0.950 0.776 0.915

TrX 0.805 0.797 0.828 0.340 0.752 0.720 0.550 0.716 0.584 0.543 0.721

Component 0.724 0.720 0.703 0.683 0.867 0.849 0.745 0.724 0.752 0.686 0.744
Function 0.743 0.749 0.748 0.694 0.837 0.863 0.631 0.738 0.800 0.736 0.766
Process 0.820 0.809 0.816 0.792 0.847 0.823 0.742 0.787 0.807 0.766 0.792

Some MI algorithms learn consistently more accurate models than their supervised-learning
counterparts. For example, Diverse Density is always superior to the supervised Gaussian
model. Similarly, the MI/LR algorithm is often superior to the LR algorithm (9 out of 12
data sets). Therefore, for these algorithms, taking the MI setting into account when learning
from MI data is usually useful. In the case of SVMs, on the other hand, there is not a clear
winner between the supervised and the MI methods. With FOIL, the MI representation
is always worse than its supervised learning counterpart. The MI representation for FOIL
suffers from low recall (recall is identical to the true positive rate). This can be seen in the
graphs in Figure 20 and 21. Since FOIL’s “combining function” is an absolute disjunction,
there is no gain in modeling more than one instance from any bag. This bias prevents it from
trying to cover as many instances in a positive bag while still not covering any negatives,
and leads to lower recall on the test set. This also indicates that there may often be more
than one positive instance in any positive bag.

Ordinary supervised learning algorithms learn accurate models in many MI settings.
While no single algorithm dominates overall, we observe that in general, supervised learning
algorithms do well on many MI data sets. In fact, for several of the MI data sets we consider,
a supervised learning algorithm is the best overall. For example, the quadratic kernel SVM
has the best AROC on three data sets, FOIL working with a supervised representation on one
data set, and logistic regression on one data set. Further, the SVM with the Statistic kernel
is the best on three data sets. As we noted earlier, this is not a “true MI kernel” in some
sense. Because it allows every instance in a bag to contribute equally to the transformed
feature vector, it implicitly assumes that the bag’s label applies to every instance within it.
Thus, we consider this kernel to be a variant of a supervised kernel. Further, observe that on
every data set where the Statistic kernel does well, the quadratic kernel (ordinary supervised
learner) also tends to do well, though the reverse is not true. Finally, we observe that, on
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Figure 22: Effect of increasing the cost of false positives for the logistic regression algorithm.
On the x-axis is the multiplier for the false positive cost (1 represents equal FP and FN
costs). The y-axis shows the fraction of AROC difference between MI/LR and LR at FP
cost=1 that is recovered as the cost changes. Thus, a value of 1 means that LR and MI/LR
have the same AROC.

the data sets where MI algorithms are the best, a supervised learning algorithm is often very
close. This is the case for MI/LR and LR, for example, on the BioCreative data. Similarly,
while Diverse Density has the best AROC on Musk2, the Statistic Kernel does almost as
well.

What could explain the relative success of ordinary supervised learning methods in these
domains? While this question needs to be explored further, we can offer some intuitive
ideas. First, it may be the case that positive bags frequently have multiple “true-positive”
instances (i.e., instances that truly are positive). Recall, the MI assumption is that each
positive bag contains at least one instance in each positive bag. Many MI algorithms are
biased to model positive bags as containing nearly one positive instance each. For example,
with the noisy-or and softmax combining functions, the incremental benefit of “covering”
additional instances in a positive bag decreases exponentially with number covered. Thus, a
supervised learner may have a more appropriate bias than an MI learner in domains in which
positive bags contain a relatively high density of positive instances because the supervised
learner’s objective function changes uniformly as more instances are classified according to
the labels of their bags.

A second possibility is that the nature of the “negative” instances in the positive bags
(i.e., false-positives) may be different from the nature of the negative instances in negative
bags. For example, in the drug activity domain, false-positives are inactive conformations
of active molecules. Instances in negative bags are conformations of inactive molecules. It
is possible that, even though the false-positive conformations are inactive, they are more
similar to the active conformations than the conformations of inactive molecules. Now if
conformations like these are produced only by active molecules, then misclassifying them
carries no penalty as long as no similar instances are produced by inactive molecules.

We hypothesize that it may be possible to use differential misclassification costs to improve
the accuracy of supervised learners in MI domains. Since we expect to encounter a large
number of false positives (i.e., negative instances from positive bags) in MI domains, we can
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modify the objective function of a supervised learning algorithm to introduce a higher cost
for false positives (FPs) than for false negatives. A “false negative” in this context refers to
an instance from a positive bag that is classified as negative; such an instance could well be
a true negative with respect to the underlying target concept. We conduct an experiment in
which we use six data sets where the MI version of logistic regression has accuracy superior
to the supervised version when the misclassification costs are uniform (see Table 11). For
each data set, we run standard LR with FP cost multipliers ranging from 1 to 10. Let L(x)
denote the area under ROC for LR when the cost multiplier is x. L(1) is therefore the same
as standard LR. Let M denote the AROC for MI/LR. Then for each dataset and multiplier

x, we plot the quantity
(

L(x)−L(1)
M−L(1)

)
. This quantity measures the fraction of the difference

in area between MI/LR and LR that is “recovered” by varying the cost multiplier. If this
quantity is positive for some multiplier x, then LR with that multiplier does better than
standard LR. If the quantity reaches 1 for some x, then LR with cost multiplier x achieves
the same AROC as MI/LR. Figure 22 shows the results of this experiment. From this figure,
we observe that for two data sets, Musk1 and TrX, increasing the cost multiplier results in
models that equal the predictive accuracy of MI/LR. For Musk1, the final AROC for LR
with a cost multiplier of 10 exceeds the AROC of MI/LR. For three other data sets, Musk2,
Tiger and Fox, the area also improves as the false positive cost is increased (about 25% of
the initial difference is recovered); however, the models constructed by MI/LR remain more
accurate for all cost multipliers. Finally, we observe that on the Flower data set, using any
cost multiplier greater than 1 results in a decrease in accuracy. Thus, in five out of six cases,
we can improve the accuracy of the supervised models by tuning false positive costs, and
in two cases we are able to equal or exceed the accuracy of the MI models by using this
technique.

6.5 Chapter Summary

In this chapter, we have reviewed the multiple-instance problem. We have presented a selec-
tion of prior work on MI algorithms and discussed various tasks that have been formulated as
MI problems. Then, we have empirically evaluated the applicability of ordinary supervised
learning algorithms to MI problems. We observe that different MI approaches are suited to
different domains and some MI algorithms are always superior to their supervised counter-
parts. However, ordinary supervised learning algorithms also do well on many MI domains,
and sometimes are the best algorithms for a task. Further, using higher false positive costs
with supervised algorithms can improve their performance in MI domains. We have also
introduced a novel MI algorithm that adapts logistic regression to MI data, and shown that
it is competitive with other MI algorithms on our tasks.

An interesting question to consider is whether there are problem domains where algo-
rithms with explicitly encoded MI biases are very likely to be significantly superior to their
supervised counterparts. We hypothesize that such algorithms may be useful in at least two
situations which we have not investigated. First, it may be necessary not merely to be able
to classify a bag correctly, but to return a positive instance from a positive bag. For exam-
ple, in the drug activity domain, the algorithm may need to provide insight to the chemist
about the structure of active conformations. This may be difficult to solve with a supervised



68

learner, which considers every instance in a positive bag to be equally likely to be positive
when learning. Unfortunately, to test the applicability of an MI learner to such a task, we
need data where the instances (as well as the bags) have been labeled. There are no testbeds
available currently where this is the case. We are currently attempting to construct data sets
in the text categorization domain where instances are also labeled. Second, such algorithms
may also be useful in domains with very sparse data. For example, Zhang et al. (2002) have
investigated the task of retrieving images from a database assuming the target represents
images a user has labeled as “interesting” or not. In this case, the algorithm may have to
deal with a training set of only a few bags. If the bags contain many false positives, it is
likely that an explicit MI bias will help the learning algorithm. These directions may prove
fruitful in future work.



Chapter 7

Adaptive Combining Functions for
Multiple-Instance Learning

Many algorithms devised for the multiple-instance problem can be described using the follow-
ing simple framework. Start with an instance classifier, that takes as input the representation
of each instance and outputs a label (or more commonly, the conditional probability of the
label given the instance). For example, this classifier could be a Gaussian model or a logistic
regression classifier. For each bag, collect the instance probabilities for all the instances it
contains. Then, use a combining function to combine these probabilities to estimate the con-
ditional probability of a bag’s label given its instances. In previous work, functions such as
softmax, noisy-or (Maron, 1998) and arithmetic and geometric averages (Xu & Frank, 2004)
have been used as combining functions. Observe that, in these cases, it is the combining
function that encodes the MI assumption. In other words, the combining function must be
such that, if our estimate of any instance’s “positive-ness” is high, then the model’s estimate
of the corresponding bag’s positive-ness must be high as well. Functions such as noisy-or
and softmax fulfill this requirement. In this chapter, we investigate learning such a function
from data. In the next section, we review the use of combining functions in MI learning.
Next, we describe our approach to learning these functions, and evaluate this approach with
both synthetic and real-world data.

7.1 Combining Functions in MI Learning

In this section, we review the use of combining functions in MI learning. We consider
these functions in the context of two previous approaches to solve the MI problem: Diverse
Density (Maron, 1998) and our MI extension to the Logistic Regression model described in
the previous chapter (Ray & Craven, 2005b).

We briefly review Diverse Density. The idea behind this approach is that, given a set of
positive and negative bags, we wish to learn a concept that is “close” to at least one instance
from each positive bag, while remaining “far” from every instance in every negative bag.
Thus, the concept must describe a region of instance space that is “dense” in instances from
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positive bags, and is also “diverse” in that it describes every positive bag. Let

DD(t) =
1

Z

(∏

i

Pr(t|B+
i )
∏

i

Pr(t|B−i )

)

, where t is a candidate concept, B+
i represents the ith positive bag, and B−i represents the

ith negative bag. The desired concept is one that maximizes DD(t). The concept models
the instances of a bag, rather than the bag itself. To score a concept with respect to a bag,
t’s probabilities for instances are combined using a function based on noisy-or (Pearl, 1988):

Pr(t|B+
i ) ∝ (1 −

∏

j

(1 − Pr(B+
ij ∈ t))) (7.1)

Pr(t|B−i ) ∝
∏

j

(1 − Pr(B−ij ∈ t)) (7.2)

Here the instances B+
ij and B−ij belonging to t are the “causes” of the “event” that “t is the

target”. The concept class investigated by Maron (1998) is the class of generative Gaussian
models, which are parameterized by the mean µ and a “scale” s = 1

2σ2 :

Pr(Bij ∈ t) ∝ e−
P

l(sl(Bijl−µl)
2),

where l ranges over features.
The Logistic Regression classifier has also been adapted to MI learning in two ways. In

both approaches, the conditional probability of an instance Bij in bag Bi being positive is
modeled with an LR model with parameters w, b:

pij = Pr(yij = 1|Bij,w, b) =
1

1 + e−(w·Bij+b)
. (7.3)

Then, if Bi has ni instances, the probability that Bi is positive is given by:

Pr(yi = 1|Bi) = C(pi1, . . . , pini
),

where C is a combining function. Xu and Frank (2004) have investigated using arithmetic
and geometric averages for C. In our work (Ray & Craven, 2005b), we have used softmax
(Equation 6.6) as the combining function C:

Pr(yi = 1|Bi) = softmaxα(pi1, . . . , pini
). (7.4)

We call this approach Multiple-Instance Logistic Regression. We note that Maron also
proposed the use of softmax (Maron, 1998) (called the “most-likely-cause” estimator) in
conjunction with Diverse Density; however, we are not aware of any other experimental
results using this approach.

In this work, we use noisy-or and softmax as baselines. While using arithmetic or geo-
metric averages may be appropriate for some domains, it seems unlikely that they will work
well in general MI scenarios, since they do not encode the MI bias accurately.



71

7.2 Motivation

In this section, we discuss why learning combining functions as well as instance models
from data may result in more accurate models, as opposed to using predefined combining
functions.

Combining functions like noisy-or and softmax make certain assumptions about the com-
position of a bag. The principal assumption made in both cases is that there is nearly one
positive instance in a positive bag. Thus, for these functions, as the number of instances in
a positive bag that are classified as positive increases, the incremental change in the objec-
tive being optimized decreases exponentially. Suppose that the combining function is the
noisy-or function:

f(pi1, . . . , pin) = (1 −
∏

j

(1 − pij)).

Consider a situation in which a positive bag has Bi has nine instances Bi1 through Bi9, all
of which are positive. While learning the instance model, suppose we obtain a model that
assigns pi1 = Pr(yi1 = 1|Bi1) = 0.9. Since

∂f

∂pij

=

(∏

k 6=j

(1 − pik)

)
pij,

the change in the objective due to a change in, say, pi9, will be proportional to 0.1 × pi9.
If the instance model is then modified so that pi2 = Pr(yi2 = 1|Bi2) = 0.9, the change in
the objective due to changing pi9 becomes proportional to 0.01 × pi9. Thus, there is not
much emphasis on classifying multiple instances of a positive bag as positive. A similar
situation occurs for softmax. This can hurt generalization behavior in domains where there
are multiple positive instances in each bag (recall that the MI assumption specifies at least
one positive instance in a positive bag; there is no upper bound). This is because there
is little to be gained in modeling as many instances in a positive bag as possible; thus the
learned model will only capture the characteristics of a few of those instances, in particular
those which were the “easiest” to fit.

Another problem arises when bags have many instances. Consider a bag Bi that has 10
instances, each of which has class probability Pr(yij = 1|Bij) = 0.2 according to the instance
model (i.e., they are likely negative). The noisy-or estimate for the bag’s class probability is

Pr(yi = 1|Bi) =
(
1 − (1 − 0.2)10) = 0.89.

Thus, this bag may be misclassified.
Finally, the MI problem admits other cases which cannot be accurately modeled using

either noisy-or or softmax. For example, consider a situation where a bag is labeled positive
if and only if a certain fraction of its instances are positive. Both noisy-or and softmax are
unlikely to provide accurate estimates of a bag’s class probability in such a case.

In order to solve such problems, we propose to learn combining functions from data
simulataneously with the instance model parameters.
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7.3 Learning Combining Functions from Data

In this section, we describe our approach for learning combining functions from data. We
assume that we have an instance model N(~w) with parameters ~w. This model takes as input
the features of the jth instance, Bij, of the ith bag Bi, and produces as output an estimate
of the conditional probability Nij(~w) = Pr(yij = 1|Bij, ~w). For example, this model could
be a Gaussian model with parameters µ and Σ, or logistic regression with its associated
parameters. Given these instance probabilities, we wish to combine them to produce an
estimate of the equivalent conditional probability for the bag Bi, Pr(yi = 1|Bi). We would
like to choose the form of the combining function to satisfy certain conditions. First, we would
like it to be smooth with respect to parameters ~w. This lets us use a gradient-based learner to
simultaneously obtain good instance models as well as learn the combining function. Second,
the function has to accept a variable number of arguments. This is because a bag can have
an arbitrary number of instances, each of which is an argument to the combining function.
Third, the function has to be symmetric with respect to its arguments; thus, the output
must not depend on the order of the arguments.

In our approach, we solve these requirements by designing an intermediate layer of trans-
fer functions. We use a fixed number of such functions. Each transfer function is sym-
metric with respect to its arguments, can accept a variable number of arguments, and
is smooth with respect to the instance model parameters ~w. The kth transfer function
Tk(Ni1(~w), . . . , Nini

(~w)) takes as input all the instance probabilities Nij(~w) from bag Bi,
which has ni instances. Each Tk outputs some aggregate statistic of the set of instance
probabilities for a bag that we expect to be useful in estimating the class probability for
the bag as a whole. Let Ni(~w) denote the set of instance probabilities for the ith bag:
Ni(~w) = {Ni1(~w), . . . , Nini

(~w)}. We use four transfer functions, T1 through T4, as follows.

1. T1 is the probability of the most positive instance: T1(Ni(~w)) = maxj(Nij(~w)). Since the
max function is not differentiable, we use the softmax function defined in Equation 6.6,
which is a smooth approximation to the max function.

2. T2 is the probability of the least positive instance: T2(Ni(~w)) = minj(Nij(~w)). We
define this function again using Equation 6.6, but with α < 0. In this case, as α is
decreased, the approximation to the min function improves.

3. T3 is the average probability over all instances in the bag: T3(Ni(~w)) =
P

j Nij(~w)

ni
.

4. T4 is the total probability over all instances in the bag that would be predicted to be
positive with a threshold of 0.5, normalized by the number of instances in the bag:

T4(Ni(~w)) = 1
ni

(∑
j Nij(~w) · S(Nij(~w) − 0.5)

)
, where S represents the step function:

S(t) = 1 if t > 0, and zero otherwise. Since the step function is not differentiable, we
approximate it with a sigmoid function with parameter β: gβ(x) = 1

1+e−βx . As β is
increased, the approximation improves.

The functions T1, . . . , T4 are smooth functions of the parameters of the instance model, ~w.
The outputs of the four transfer functions are then input to a logistic function to obtain our
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Figure 23: A block diagram view of Diverse Density: (a) without adaptive combining
functions and (b) with adaptive combining functions. Bi is the ith bag with instances
Bi1, . . . , Bini

. T1, . . . , Tm are the transfer functions defined in Section 7.3. The parameters
µ, Σ and u are learned from data.

final class probability estimates for the bag Bi:

P̂r(yi = 1|Bi) = C(~u, T1(Ni(~w)), . . . , T4(Ni(~w))) =
1

1 + e
P

k ukTk−u0

, (7.5)

where each uk is a parameter associated with a transfer function Tk, and u0 is a bias term.
These parameters are learned from data. The key assumption that we make here is that we
can discriminate between positive and negative bags based on a linear combination of the
four statistics defined by the functions Tk. While this assumption may be overly simplistic
in some cases, our experiments indicate that it is valid in many domains. In Figure 23, we
show block diagram representations of Diverse Density with and without adaptive combining
functions.

Since C is a smooth function of both the combining function parameters ~u and the
instance model parameters ~w, we can write down an objective function over ~u and ~w that
minimizes some measure of loss between bag labels and our estimates of the class probabilites
of each bag. For example, using squared loss, our objective function becomes:

min
(~u,~w)

∑

i

[yi − C(~u, T1(Ni(~w)), . . . , T4(Ni(~w)))]2 . (7.6)

Here yi = 1 for a positive bag, and 0 for a negative bag. By optimizing this objective, we
simultaneously learn the instance model N(~w) and the combining function C.
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In practice, the method as described above can easily overfit the training data when the
parameters ~u are left unrestricted. This is because it may be possible for the optimization
process to set ~u to convert poor instance probability estimates into good bag probability
estimates – for example, ~u could be set so that even though Nij(~w) ≈ 0 for all instances Bij in
a positive bag Bi, Ci ≈ 1. While this will fit the training data, the resulting instance models
will be quite poor at generalizing to unseen cases. To remedy this, we add a regularization
term to our objective function that is proportional to ‖~u‖2. Thus, the objective function we
use in practice is given by:

min
(~u,~w)

∑

i

[yi − C(~u, T1(Ni(~w)), . . . , T4(Ni(~w)))]2 + λ‖~u‖2, (7.7)

where λ is a parameter that trades off training set error and generalization ability. In our
experiments, we typically use λ = 1. This is similar to the weight-decay (Rumelhart et al.,
1995) technique used in learning neural networks.

Note that while it may be difficult, using our formulation, to exactly recover a standard
function such as softmax, it is quite simple to recover a function that produces the same
ordering of predictions. This can be achieved, for example, by setting u1, the coefficient
of T1, to −1, and the remaining parameters u2, . . . , u5 and u0 to zero. With this setting
of parameters, C will produce the same order of predictions as softmax. This is generally
sufficient for classification purposes.

We note that it may be possible to employ our approach, using a relevant quantity similar
to class probability estimates, for learning algorithms that do not yield class probability
estimates at the instance level, such as the signed margin for SVMs. In fact, some of these
methods already implicitly use combining functions – for example, the MI-SVM approach
(Andrews et al., 2003) uses the max combining function over the signed margin of the
instances in a bag. Yet other methods exist which do not use combining functions, such as
SVMs using normalized set kernels (Gartner et al., 2002), which do not output any class
labels for instances. Our technique does not apply to these learners.

7.4 Experiments with Real-World Data

We hypothesize that learning combining functions from data will make the learned models
more accurate than using standard combining functions. To evaluate our hypothesis, we
choose two learning algorithms: Diverse Density and Multiple-Instance Logistic Regression
(MI/LR). We also consider Diverse Density with k disjuncts (Maron, 1998), an extension of
Diverse Density. Here, the probability of an instance belonging to a concept is given by the
maximum probability of belonging to any of the disjuncts:

Pr(Bij ∈ {t1, . . . tk})) ∝ softmaxα(Pr(Bij ∈ t1), . . . , Pr(Bij ∈ tk)).

In our experiments, we use Diverse Density with three disjuncts, abbreviated as DD(3). For
consistency, we abbreviate the standard version of Diverse Density as DD(1).

To test our approach to learning combining functions, we run each of these approaches
– DD(1), DD(k) and MI/LR – with the “standard” combining function replaced by our
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Table 12: Area under ROC for methods with and without adaptive combining functions on
MI datasets. The version of each method that uses learned combining functions is suffixed
with “.ACF”. For each pair of methods, bold values indicate the best area under ROC for
each data set.

Data DD(1) DD(1).ACF DD(3) DD(3).ACF MI/LR MI/LR.ACF

Musk1 0.895 0.935 0.883 0.962 0.867 0.934

Musk2 0.903 0.946 0.850 0.950 0.870 0.902

Tiger 0.841 0.811 0.814 0.786 0.890 0.873
Elephant 0.907 0.909 0.892 0.900 0.933 0.925
Fox 0.631 0.671 0.639 0.676 0.633 0.630
Flower 0.878 0.865 0.879 0.864 0.919 0.907
Sunset 0.878 0.926 0.878 0.932 0.909 0.953

Waterfall 0.857 0.916 0.875 0.917 0.926 0.929

TrX 0.805 0.797 0.769 0.762 0.752 0.680

Component 0.724 0.773 0.720 0.841 0.867 0.868

Function 0.743 0.827 0.749 0.838 0.837 0.852

Process 0.820 0.833 0.809 0.840 0.847 0.828

adaptive approach. Thus, for example, we replace the softmax in MI/LR (Equation 7.4)
with C as in Equation 7.5. As baselines, we run each approach unmodified. When learning
the combining function, we set λ = 1 in Equation 7.7. The parameter α for the softmax
function is set to 20 for T1 and −20 for T2. The parameter β for the sigmoid function for
T4 is set to 50. The objectives for all algorithms were optimized using the BFGS algorithm
(Fletcher, 1980).

We test these methods on the data sets described in the previous chapter. From the drug
activity domain, we use the Musk1 and Musk2 datasets (Dietterich et al., 1997). From the
domain of Content-based Image Retrieval (CBIR), we use six data sets: three corresponding
to tasks of distinguishing images of animals from others (Tiger, Elephant and Fox) (Andrews
et al., 2003), and three corresponding to tasks of distinguishing images containing natural
scenes from others (Flower, Sunset and Waterfall) (Zhang et al., 2002). The TrX data set
represents the task of classifying proteins as belonging to the TrX family or not (Tao et al.,
2004). Finally, we use three data sets from the domain of text categorization, obtained as
part of the BioCreative text mining evaluation (Ray & Craven, 2005a).

For all except the three text data sets, we use 10-fold cross validation to learn models
for each method. For the latter three, the documents supplied for the task are naturally
separated into two groups according to their journal of publication. We generate an ROC
graph by pooling the predictions across folds and varying a threshold across the confidence
associated with each prediction. In Table 12, we report a summary statistic, the area under
ROC (Bradley, 1997), for each method on each data set.

From Table 12, we observe that, with the DD(1) algorithm, the area under ROC increases
in nine out of 12 cases when the combining function is learned from data. Some of the
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Figure 24: Variation of area under ROC with : (a) size of bags, (b) multiple positive instances
per bag, and (c) sample size, with noisy samples, for DD(3) with Noisy-Or and adaptive
combining functions. Note that for (c) we report the difference in ROC for the two methods
under noise and no-noise conditions.

increases are large, for example as they are on the Musk datasets. Similarly, the accuracy of
the models constructed by the DD(3) algorithm also improves when the combining function
is learned from data in nine out of 12 cases. In fact, in many cases, the improvement
is even larger than for DD(1). Observe that this class of concepts contains the Gaussian
concepts searched by DD(1) as a subclass. This indicates that increasing the complexity of
the concept class does not diminish the gains obtained from learning a combining function.
For the MI/LR algorithm, the results are more mixed – the area increases in six cases, but
decreases somewhat in 6 other cases. We have observed that in some of the cases in which the
learned combining function has a lower AROC, its performance can be improved by tuning
the parameter λ in Equation 7.7 using a validation set. Since this procedure requires a large
amount of data, it is not always successful. Since the tuned value is usually less than 1, it
is likely that in some cases, using λ = 1 may over-constrain the parameters of the learned
combining function.

7.5 Experiments with Synthetic Data

Our experiments with real-world data indicate that learning a combining function can be
beneficial in many cases. However, they do not indicate exactly the conditions when we
can expect the learned functions to outperform the standard ones, such as noisy-or. To
investigate this, we design experiments with synthetic data. We argued in Section 7.2 that
functions like noisy-or may not be adequate when bag sizes are large and when there are
many positive instances per bag. We may also expect that the ability to learn combining
functions may give us some additional tolerance to noise in the data. In this section, we
investigate these claims. We hypothesize that our approach will be more accurate than
noisy-or (i) as the bag size increases, (ii) as the number of positive instances in a positive
bag increases, and (iii) when the data is noisy.

For these experiments, we choose the target concept class to be a disjunction of three
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Gaussian concepts. In our experiments, we use DD(3) and DD(3).ACF as our learning
algorithms. These algorithms use the same representation as the target class, therefore,
accuracy differences between these algorithms can be attributed to the different combining
functions they use. Each Gaussian concept is defined by 30 variables, and each variable can
take on values in (−10, 10). For each set of tested parameters, we randomly draw 30 targets
from this class and construct independent train and test sets. We draw positive instances
by sampling from the disjunctive Gaussian concepts, and negative examples by sampling
uniformly at random from the hypercube (−10, 10)30.

We first evaluate how the accuracy of the learned combining function varies as the number
of instances in each bag changes. To do this, we fix our training sample size at 100 bags,
and let the average number of instances per bag vary from n = 10 to 50 instances. For each
bag, the actual number of instances for each bag is generated uniformly at random from n

2
to

3n
2

. Each positive bag contains exactly one positive instance. The results of this experiment
are shown in Figure 24(a). We observe that as the bag size increases, the difference between
the two curves increases as well (however, the difference is the same for the two largest bag
sizes). In fact, at every measured bag size, the differences between the curves are statistically
significant according to a two-tailed, paired t-test at the 98% level. Thus, we conclude, that
our approach is better able to adapt to bags with many instances than noisy-or.

Next, we evaluate our method as the number of positive instances in a positive bag is
varied. In the previous experiment, we fixed the number of positive instances in each positive
bag to one. While varying the number of positive examples per bag in this experiment,
however, we keep the total number of positive instances in the data set fixed. Further, as we
vary the number of positive instances per bag, we also change the total number of instances
in the bag, so that the chance of an instance picked uniformly at random from a positive
bag being truly a positive remains the same. The results of this experiment are shown in
Figure 24(b). We observe that, somewhat surprisingly, the average area under ROC increases
equally for both approaches as the number of positive instances in a bag increases. Though
there is a statistically significant difference between the two curves, this difference does not
increase as expected as the number of positive instances per bag increases. It is possible
that the difference will be larger for more complex target concepts and for more positive
instances in a positive bag.

Finally, we evaluate the learned combining function in the presence of noise in our
samples. We let the size of the training sample vary from 25 to 100 bags, with an av-
erage of 30 instances each. Each positive bag has exactly one positive instance. After
generating each positive or negative instance, we add Gaussian noise to it. The added
noise has mean 0 and σ = 0.5 for the negative examples. For the positive examples, σ is
set to half the generating Gaussian model’s standard deviation. We report the difference
(AROCadaptive −AROCnoisy−or) as the size of the training sample varies. The results of this
experiment is shown in Figure 24(c). We observe that, when there is no noise, our approach
is more accurate than noisy-or for small samples. As the sample size grows, the difference
in accuracy decreases, as may be expected. When noise is added to the samples, for very
small sample sizes, there is little signal in the data; thus, there is little difference in the
two approaches (though our approach is still somewhat superior). As the sample size grows,
the accuracy of our approach improves significantly faster than that of noisy-or. For large
enough sample sizes, the accuracy of noisy-or improves as well, and the difference between
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the two approaches decreases. From these results, we conclude that our method is more
robust to noise in the sample than noisy-or.

7.6 Chapter Summary

In this chapter, we have introduced an approach to learn combining functions from data
in the multiple-instance setting. Our approach uses a set of intermediate functions that
collect statistics about the distribution of class probabilities over the instances in a bag.
These statistics are expected to be useful in predicting the bag’s class. The functions we use
are designed to be symmetric and accept variable numbers of inputs, and are smooth with
respect to the parameters of the instance model. The output of these functions is then used
as features for a logistic function to produce class probabilities for each bag. When learning
a model, this approach results in a single smooth objective function that we can optimize
using standard methods. The output of this process is simultaneously a combining function
and an instance model. We evaluate our approach with both real-world and synthetic data.
Our experiments with several real-world datasets indicate that our approach learns more
accurate models in most cases. We have also used synthetic data to investigate under what
circumstances our approach results in improved accuracy over a standard combining function,
noisy-or. Our experiments with synthetic data show that our approach is more accurate
than noisy-or as the bag size increases, as well as with noisy instances and multiple positive
instances per bag.

In the next chapter, we will use the techniques we have described to learn models in a
regression setting.



Chapter 8

Multiple-Instance Regression

In the previous chapters, we considered classification tasks in a multiple-instance setting.
In this chapter, we look at regression tasks in this setting. In several applications of the
multiple instance problem, the actual predictions desired are real-valued. The drug design
example is a case in point. While it is beneficial to be able to predict the active or inactive
classification, our experience is that drug developers often prefer to see predicted activity
levels of these molecules, expressed as real numbers. Most past research on the multiple-
instance problem has focused on the design of discrete classifiers. We investigate instead
the task of learning to predict the value of a real-valued dependent variable, under the
assumptions of multiple regression, for data where the multiple instance problem is present.
We call this task multiple-instance regression.

We investigate three questions in this work. First, we investigate the computational
complexity inherent in the task of multiple-instance regression — for example, we would like
to know if a linear time algorithm exists as for ordinary regression. Next, we describe an
algorithm for regression in an MI setting. Finally, we empirically determine whether multiple-
instance regression has any advantage over ordinary regression when building classifiers for
data sets where the multiple-instance problem is present. In such cases, we could simply
ignore the multiple-instance problem, treat each instance as a distinct data point having the
classification of the bag, and use ordinary regression. This is effectively the approach taken by
Srinivasan and Camacho (1999) to incorporate linear regression literals into inductive logic
programming. We wish to understand if multiple-instance regression confers any benefit
over this baseline method. To do this, we develop regression approaches that apply to the
MI representation, and evaluate these and standard linear regression on synthetic data, and
real-world drug activity prediction problems.

The work described in Sections 8.1 and 8.2 appears in Ray & Page (2001).

8.1 Task Definition and Approach

We define the task under consideration as follows. We are given a set of n bags. The ith

bag consists of mi instances and a real-valued response yi. Instance j of bag i is described
by a real-valued attribute vector ~Xij of dimension d. An example of a synthetic multiple
regression problem is shown in Figure 25. In the drug design example, each bag is a molecule,
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Figure 25: An example of a synthetic multiple-instance regression problem in two dimensions.
Each bag is underlined. A bag consists of at most three instances with different values for
the real-valued attribute. These instances share common real-valued responses. The primary
instances of each bag are shown as “+” symbols. The line that we would like to extract as
the model for this data is also shown.

and each instance a conformation of the molecule represented by an attribute vector.
We assume that the hypothesis underlying the data is a linear model with Gaussian

noise on the value of the dependent variable (which is the response). Further, we initially
assume that it is sufficient to model one instance from each bag, i.e. that there is some
primary instance which is responsible for the real-valued label. In later sections, we will
consider an approach that relaxes this assumption. We limit the present work to linear
hypotheses for two reasons. First, multiple linear regression is probably the single most
well-known and widely-used method of real-valued prediction. Second, multiple regression
appears well-suited for the particular task of drug activity prediction (Hansch et al., 1962;
Debnath et al., 1991) that was the original motivation for multiple-instance learning. A linear
hypothesis is intuitively plausible as a predictor for activity levels. It is natural to expect
that activity levels will decrease exponentially as three-dimensional distances between atoms
in a molecule vary from the ideal distances. However, activity levels are typically recorded
on a logarithmic scale, so the dependence between these and distances may be linear.

Ideally, we would like to find a hyperplane Y = Xb such that

b = arg min
b

n∑

i=1

L(yi, ~Xip,b) (8.1)

where ~Xip describes the primary instance of bag i, and L is some loss function measuring the
goodness of the hyperplane with respect to each instance. Intuitively, this describes the model
as the best hyperplane in R

d+1 with respect to the “correct” (primary) instances. However,
the primary instances are unknown at training time, so directly finding such a hyperplane is
impossible in practice. Nevertheless, we make the following informal conjecture.
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Conjecture 8.1 In most situations, a good approximation to the ideal can be obtained from
the “best fit” hyperplane defined by

b̂ = arg min
b

n∑

i=1

min
j

L(yi, ~Xij,b), 1 ≤ j ≤ mi (8.2)

for large enough n.

For Conjecture 8.1 to be true, it is necessary that the non-primary instances in each bag are
not a better fit to a hyperplane than the primary instances. A future direction of this work
is to ascertain the conditions under which this conjecture is valid. Note that it is possible
that the provided values may be noisy, so that the minimum L-error in Conjecture 8.1 is not
necessarily zero.For our algorithm, we use

L(yi, ~Xij,b) = (yi − ~Xijb)2 (8.3)

as is used for multiple regression.
It is clear that if n < d + 1 (the dimension of the space) there are infinitely many

hyperplanes with zero L-error with respect to a set of instances containing one instance
from each bag, and the problem is trivial since any of these planes solves the constraint in
conjecture 8.1. On the other hand, if n ≥ d + 1 a brute force approach trying all possible
hyperplanes is exponential in mi and n. In fact, the problem of minimizing the L-error for
n ≥ d + 1 is intractable unless P = NP . We state this result in the following theorem.

Theorem 8.2 The decision problem: Is there a hyperplane which perfectly fits one instance
from each bag? is NP -complete for arbitrary n, d (n ≥ d+1 ) and mi at most 3.

Proof: Suppose there are n bags and mi instances per bag. Given a hyperplane Y = Xb,
we can clearly check if it fits one instance from each bag in O(n×max(mi)), so the problem
is in NP .

To show the problem is NP -complete, we provide a reduction from 3SAT. Consider some
arbitrary 3-CNF formula consisting of C clauses S1, . . . , SC over N variables X1, . . . , XN . We
generate a multiple-instance regression problem in R

N+1, consisting of N + C bags with at
most 3 instances per bag as follows. For every variable Xi, add a bag consisting of the
instances 〈x1 = 0, . . . , xi−1 = 0, xi = i, xi+1 = 0, . . . , xN = 0, y = i〉 and 〈x1 = 0, . . . , xi−1 =
0, xi = −i, xi+1 = 0, . . . , xN = 0, y = i〉. For every clause Sk over literals {Xi1 , Xi2 , Xi3} add
a bag consisting of the instances 〈x1 = 0, . . . , xij−1 = 0, xij = N + k, xij+1 = 0, . . . , xN =
0, y = N + k〉 (j = 1 . . . 3) if literal Xij is non-negated, or 〈x1 = 0, . . . , xij−1 = 0, xij =
−(N + k), xij+1 = 0, . . . , xN = 0, y = N + k〉 if the literal is negated. Thus each bag
added consists of at most 3 instances; therefore, the time to perform entire transformation
is O(N 2 + NC) and so polynomial in the input size.

Under this transformation, we define the mapping M from fitting hyperplanes to satis-
fying assignments as follows: for a plane y =

∑
i bixi, define Xi true iff the coefficient of xi

is 1, Xi false iff the coefficient of xi is −1. Note that by construction, a fitting hyperplane
must pass through either 〈x1 = 0, . . . , xi−1 = 0, xi = i, xi+1 = 0, . . . , xN = 0, y = i〉 or
〈x1 = 0, . . . , xi−1 = 0, xi = −i, xi+1 = 0, . . . , xN = 0, y = i〉 for all Xi; hence the coefficient
of xi in the equation for such a plane can only be 1 or −1.
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Assume that there exists some algorithm A that can solve the given decision prob-
lem in time polynomial in the input. We show that it outputs a yes to the constructed
multiple-instance regression problem iff there exists a satisfying assignment to the given
3-CNF formula.

Suppose A outputs yes to the constructed problem, and yet the given 3-CNF formula
had no satisfying assignment. Then there is at least one clause in the formula that was
false. Consider such a clause S over the literals {Xi1, Xi2, Xi3}. Let the corresponding bag
have the y co-ordinate ỹ. Since there was a fitting hyperplane, it passed through one of the
three instances in this bag. Without loss of generality, assume that it passed through the
instance where Xi2 was nonzero and all other X-values were zero. Hence the plane satisfies
the equation b0 · 0 + . . . + bi2 · xi2 + . . . + bN · 0 = ỹ. Now according to our transformation,
for this instance, xi2 is either ỹ or −ỹ. If xi2 = ỹ, then it must have been non-negated in
the clause S. But note that then bi2 = 1 and M therefore maps Xi2 to true. Hence a fitting
hyperplane causes S to be satisfied, contrary to our hypothesis. The case for xi2 = −ỹ is
similar.

Now suppose that the given 3-CNF formula is satisfiable. We shall show that A out-
puts yes by providing a fitting hyperplane. Let a satisfying assignment be given by {X1 :
e1, . . . , XN : eN}, where ei may be true or false. Define b1, . . . , bN as follows: bi = 1
if ei = true, else bi = −1. We claim that the hyperplane

∑
i bixi fits the multiple-

instance problem constructed from the formula. Consider any clause S. This clause is
satisfied by some literal within it; let this literal be Xk. If ek = true in the assignment,
then bk = 1. Now since ek = true satisfies S, one instance in the bag for S must be
〈0, . . . , 0, xk = ỹ, 0, . . . , 0, y = ỹ〉. Now we check that the given plane indeed passes through
this point: LHS = b0 ·0+ . . .+bk(= 1) ·xk + . . .+bN ·0 = ỹ = RHS. The case for ek = false
is similar. Since this is an arbitrary clause, the given hyperplane fits all clauses (bags).�

It is clear that the NP -completeness of the above decision problem implies the NP -
hardness of the related decision problem: Is there a hyperplane which fits one instance from
each bag such that the total L-error is ≤ e? for some given positive constant e. This in turn
shows that the general formulation of the multiple instance regression problem is NP -hard.
Hence, we devise an approximation algorithm to solve our problem. Analogous to approaches
to other multiple-instance learning tasks (Dietterich et al., 1997; Jain et al., 1994), we employ
an Expectation Maximization-like algorithm, shown in Algorithm 5. We start with an initial
random guess at the hypothesis which is iteratively refined. Each iteration consists of two
main steps. In the “E” step, we select an instance from each bag which has least L-error
with respect to our current best guess at the correct hypothesis (hyperplane). In the “M”
step, we refine our current guess of the hypothesis by using multiple regression to construct
a new hyperplane from the set of instances selected in the previous step. These steps are
repeated until the algorithm converges.

We provide an intuitive sketch of the proof of convergence. Note that a set of instances
selected in the E step uniquely defines a hyperplane (step 19). Suppose at a certain step we
have a set of instances Ik which has an L-error ek with respect to our current guess at the
hypothesis. In the next iteration, Ik+1 6= Ik and ek+1 < ek (step 14). Since the error decreases
monotonically, the set of instances can never repeat. However, there are only finitely many
sets of instances that the algorithm can explore. Hence it must terminate in a finite number
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Algorithm 5 Multiple-Instance Regression Algorithm

Input: An integer R and n bags,where bag i is ~Xi1, ~Xi2, . . . , ~Xi,mi
; ~Xij an attribute vector

of dimension d.
Output: A hyperplane Y = Xb.
1: G ⇐ ∞
2: for r = 1 to R do
3: Choose a random initial hyperplane b in R

d+1.
4: B ⇐ ∞
5: Done ⇐ false
6: repeat
7: Error ⇐ 0
8: I ⇐ φ
9: for every bag i = 1 . . . n do

10: for every instance j = 1 . . . mi do
11: L(yi, ~Xij ,b) = (yi − ~Xijb)2 [Calculate the error of the instance with respect to

the hyperplane]
12: I = I ∪ {the instance with the lowest error}. Let this error be Lmin.
13: Error ⇐ Error + Lmin

14: if Error ≥ B then
15: Done ⇐ true [procedure has converged]
16: else
17: B ⇐ Error
18: b′ ⇐ b
19: b ⇐ multiple regression(I)
20: until Done
21: Let the error of b′ be Emin.
22: if Emin < G then
23: G ⇐ Emin

24: b′′ = b′

[ end random restarts]
25: return b′′

of steps.
EM algorithms are not deterministic, because the result of any run is influenced by the

initial random starting point. Similarly, in our algorithm, the answer depends on the starting
hyperplane. To remedy this, we run the algorithm several times on any given data set, using
“random restarts.” The quantity R in the algorithm is the number of random restarts to be
used. We have used an R of 10 in our experiments.

Note that we could choose any L-measure we wish (subject to convergence requirements
as discussed above), and also any class of (possibly nonlinear) hypotheses to explore in
step 19. We might, for instance, use an artificial neural network, as in a related approach
taken by Jain et al (1994).
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8.2 Experiments with Synthetic Data

In this section, we test our approach on synthetic data sets, comparing it with ordinary
multiple regression and generating learning curves. In the following sections, we describe
two challenging real-world drug activity prediction tasks - predicting activity levels for ther-
molysin inhibitors and dopamine agonists - and our results on these tasks.

8.2.1 Experimental Setup

We generate synthetic data sets by choosing random hyperplanes. The generating program
takes as input an interval {xmin, xmax}, the dimension of an attribute vector d, the number
of bags n and the maximum number of instances per bag m. For each bag, a random number
of instances between m

2
and m are generated. For the first instance of a bag, independent

co-ordinates are generated by moving in increments of xmax−xmin

n
from xmin to xmax along

all dimensions. The y co-ordinate (the real-valued response) is computed from the known
hyperplane and Gaussian noise is added to it. The independent X co-ordinates of the
remaining (non-primary) instances of each bag are drawn randomly according to two different
distributions. In our first experiments, these are drawn according to a uniform distribution
over {xmin, xmax}. To simulate cases where the X co-ordinates of different instances of the
same bag are correlated, as might occur in the case of drug activity prediction, we also
perform experiments using a Gaussian distribution in place of the uniform distribution.
Here, each X co-ordinate of a non-primary point is drawn from a Gaussian whose mean is
the value of that X coordinate from the primary instance and whose standard deviation is
10.0. Note that the non-primary instances share the y co-ordinate (response) of the first
instance.

In the learning curve experiments described below, we use a maximum of 10 instances per
bag. The attribute vector describing each instance is a 20-dimensional real-valued vector.
xmin is set to 0 and xmax is set to 100. The distribution governing the Gaussian noise added
to y is N(0, 5). We generate the data using ten random hyperplanes in R

21. We constructe
six data sets using each hyperplane, containing 100 to 2500 bags. For each hyperplane, we
generate test sets containing 1000 bags. These test sets are generated from an {xmin, xmax}
region disjoint from the training sets. However, the magnitude of the interval is kept constant
so that the uniform distribution generating the non-primary instances does not change.

To evaluate our algorithm in these experiments, we generate test sets according to the
same models as the training sets. We test the algorithm using two measures of goodness.
The first, which we call the accuracy measure, computes the fraction of primary instances
that are among the set of instances closest to a given hyperplane. The higher this measure
is, the better is our approximation to the ideal (Equation 8.1). The second measure is a test
set r-square measure defined as follows:

R2 = 1 −

∑
i(yi − yp

i )
2

∑
i(yi − ȳ)2

(8.4)

where yi is the actual y value for the ith bag, yp
i is the predicted y-value for the (primary

instance of the) ith bag, and ȳ is the mean y value over the training and test set. This
measure therefore computes the improvement in fit of our plane over the simple plane y = ȳ.
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If measured on the training set with respect to the set of points closest to the hyperplane,
this measure is the usual R2 measure and is positively correlated with our approximation
to the “best fit” hyperplane (Conjecture 8.1). We note that in our algorithm, we try to
explicitly optimize the training set R2 measure in this way (step 19). The accuracy measure
is optimized contingent on the truth of our assumption that the best fit line is a good
approximation to the ideal.

Since we tested on synthetic data, it was quite simple to compute these measures for
any hyperplane. We generate data so that the first instances of any bag are the primary
instances. After a hyperplane is generated by our algorithm, we can compute its accuracy
over a data set by computing the fraction of points closest to it that were also the first
instances in each bag. We can also directly compute the value of R2 for our approximation
to the ideal by choosing the yi in Equation 8.4 from the primary instances of each bag.

In all figures that follow, “MIP” represents our algorithm, “Base” represents ordinary
regression and “Best” represents regression over the primary points.

8.2.2 Learning Curves
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Figure 26: Accuracy and R2 learning curves for MI regression with Uniform distribution.
The left graph shows accuracy results, while the right graph shows R2.

We construct the learning curves in Figure 26 to test our primary hypothesis: as we get
more data points (bags), with all other variables held constant, the hyperplanes produced
by the algorithm should converge towards the ideal, as measured by the accuracy and R2

measures. We compare a baseline algorithm with our algorithm. The baseline algorithm
performs simple multiple regression over the entire set of data points ignoring the multiple-
instance aspect of the problem.

The results in Figure 26 clearly indicate that multiple-instance regression confers benefit
over ordinary regression. For some indication of significance, the difference in test accuracies
at 1000 bags is significant to a level of 10−15 according to the standard sign test. Nevertheless,
these results raise a number of questions which we next seek to answer.

First, it seems likely that the significant benefit of multiple instance regression over
ordinary regression arises in part because the values of the independent variables of the non-
primary instances in a bag are completely uncorrelated with the values of those variables in
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Figure 27: Accuracy and R2 learning curves for MI regression with Gaussian distributions.
The left graph shows accuracy results, while the right graph shows R2.
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Figure 28: Modified R2 vs. dimensions and instances per bag. The y-axis is an R2 measure
that compares multiple-instance regression to linear regression on the non-primary points in
the data. Instances are generated from a Gaussian distribution.

the primary instance of the bag. This independence may not always be the case in practice.
To test the contribution of this independence, we choose a way of introducing a high degree
of correlation into our synthetic data. We repeat the same experimental setting but with the
value of an independent variable in a non-primary instance chosen according to a Gaussian
whose mean is the value of that variable in the primary instance. This perhaps induces a
more extreme correlation than would be expected in practice. Figure 27 show that in this
case ordinary regression performs nearly as well as multiple-instance regression. Another
observation is that it seems easier to obtain higher R2 values for this setup. A possible rea-
son for these observations is suggested by Figure 28. Here, we compute an R2 measure that
estimates the amount of linearity in the non-primary points alone, when the Gaussian distri-
bution is used to generate them. In this measure we let yp

i in Equation 8.4 be the prediction
of our algorithm, while ȳ is replaced by the prediction of a plane obtained by regression
over the non-primary points alone. In Figure 28, we plot this modified measure against the
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number of dimensions and the number of instances. We note that, by modifying the distri-
bution, we have introduced a significant amount of “random linearity.” This contributes to
the poor performance of the algorithm, since it is much more likely to be trapped in a local
minimum of the error measure. An interesting future direction would be to experiment with
a “soft-EM-like” algorithm that does not choose a single instance from each bag but weights
the instances by their errors. Such an algorithm would be a compromise between ordinary
regression and our multiple-instance regression algorithm.

8.2.3 Variation in Dimensions and Instances
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Figure 29: Accuracy and R2 learning curves varying with dimensionality of the data. The
left graph shows accuracy results, while the right graph shows R2. Instances are generated
from a Gaussian distribution.

We next study the variation in the performance of multiple-instance regression with the
number of dimensions (independent variables) and number of instances per bag. Figure 29
plots accuracy and R2 against number of dimensions, while Figure 30 plots accuracy and
R2 against number of instances per bag. We use the Gaussian distribution in generating
the synthetic data for these experiments. The number of bags is held constant at 1000. As
expected, the accuracy decreases with both increasing dimensions and instances. However,
the decrease is much more rapid with increasing number of instances. This is also expected,
since the combinatorial factor in the algorithm’s search arises primarily from the number
of instances in a group. Hence, as the number of instances increases, we should use more
random restarts to enable the algorithm to find a good solution.

In all of the experiments with the Gaussian distribution, we note that training set R2

(the measure which we actually optimize) is very close to 1.0. However, this does not nec-
essarily result in good test set accuracy. A further verification is provided by Figure 28,
which indicates increasing linearity in the non-primary points with increasing dimensions
and instances. We have plotted the accuracy and R2 measures for the ideal plane in Fig-
ures 29 and 30 as “Best.” From these results, we see that it is possible to achieve high
accuracy and R2 simultaneously. We may reasonably conclude that, when non-primary in-
stances are generated according to a distribution more complex than the uniform, merely
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optimizing the R2 measure will not be enough. Therefore, there is room for improvement in
the algorithm.
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Figure 30: Accuracy and R2 learning curves varying with number of instances in each bag.
The left graph shows accuracy results, while the right graph shows R2. Instances are gener-
ated from a Gaussian distribution.

8.2.4 Runtime Complexity

The multiple-instance algorithm (Algorithm 5) has two main loops. The outer loop (step
2 to step 24) runs R times, which is a constant. The inner loop (step 6 to step 20) runs
an undetermined, finite number of times. In each inner cycle, we compute the error for
every instance and invoke multiple regression over the best set found. This takes Θ(dmn),
where m = maxi(mi), and is independent of the specific hyperplane being looked at. If
the parameters d and m are held constant, the inner loop is Θ(n). Hence, the quantity of
interest is the average number of cycles taken by the algorithm to converge, because this
determines the runtime complexity as the parameters n, m and d change. We plot this
quantity against the parameters in Figure 31. It is interesting to note that the number of
cycles appears to increase linearly or sub-linearly with the number of bags (with the increase
being nearly linear for Gaussian), but number of cycles relative to dimension or instances
appears bounded by a constant. We note that the algorithm’s search is carried out over
the space of combinations of instances, so that increasing the number of instances impacts
runtime more than increasing dimensions. On the other hand, appealing to Figure 30, it
is more likely that as instances increase, the algorithm is finding spurious planes. This is
possibly why the average number of cycles to convergence does not show much increase as
the number of instances increases.

8.3 Application to Drug Activity Prediction

In this section, we describe an application of our multiple-instance regression approach to two
real-world drug activity prediction tasks: thermolysin inhibitors and dopamine agonists. In
the following sections, we briefly describe the general framework of drug activity prediction.
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Figure 31: Average number of cycles with increasing n (left), and increasing dimension
and instances (right). For the graph on the right, instances are generated from a Gaussian
distribution.

Then, we describe a modification we need to make to our algorithm above to apply it to this
task. Next, we summarize the domains and characteristics of each of the three datasets we
use. Finally, we present experimental results.

8.3.1 Solution Framework

The general framework we use for drug activity prediction has been described in previous
work (King et al., 1996; Finn et al., 1998). This framework originally addressed the classi-
fication problem, but has since been extended to the regression setting (Marchand-Geneste
et al., 2002) (this extension does not consider the multiple-instance problem). In this frame-
work, we start with a relational description of each molecule. This descriptions details the
locations of each atom and bond in the molecule, from some chosen origin. We are also given,
as part of our background knowledge, relational descriptions of common groups of atoms.
For example, our background knowledge can specify that a methyl group consists of a carbon
atom bound to three hydrogen atoms with single bonds. Recall that a pharmacophore is a
possible interaction-causing group of atoms. A k-point pharmacophore in this representation
is a clause that has k literals, each describing a distinct chemical group (such as methyl),
and

(
k

2

)
“distance” literals. Each distance literal stores the Euclidean distance between two

chemical groups. Since the distances in any two given molecules are unlikely to be identically
the same, and we wish to have pharmacophores that generalize over molecules, we also in-
clude an error tolerance, that specifies how much each distance is allowed to vary. Given this
representation, we use an inductive logic programming (ILP) system to hypothesize pharma-
cophores that cause the desired interaction between active molecules in the training set and
the target. The objective function optimized by the ILP system is a simple one: any k-point
pharmacophore that appears significantly more often in active molecules than in inactive
ones is hypothesized to be an interaction-causing pharmacophore. In Table 13, we show an
example pharmacophore learned by an ILP system, aleph1, for the domain of thermolysin

1aleph is an inductive logic programming system written by Ashwin Srinivasan. It is available from
http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/.
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Table 13: An example of a 4-point pharmacophore learned by aleph for the domain of
thermolysin inhibitors. The left column shows the Prolog clause, while the right column
shows the semantics of each literal.

active(M):- Molecule M is active if
conf(M, C), M has a conformation C
hacc(M, C, P1), C has a hydrogen acceptor at location P1
methyl(M, C, P2), C has a methyl group at location P2
phosphorus po2(M, C, P3), C has a PO2 group at location P3
pos charge(M, C, P4), C has a positively charged group at location P4
dist(M, C, P1, P2, 4.44, 1.0), the distance between P1 and P2 is 4.44 ± 1.0Å
dist(M, C, P1, P3, 1.47, 1.0), the distance between P1 and P3 is 1.47 ± 1.0Å
dist(M, C, P2, P3, 4.29, 1.0), the distance between P2 and P3 is 4.29 ± 1.0Å
dist(M, C, P1, P4, 4.46, 1.0), the distance between P1 and P4 is 4.46 ± 1.0Å
dist(M, C, P2, P4, 7.58, 1.0), the distance between P2 and P4 is 7.58 ± 1.0Å
dist(M, C, P3, P4, 3.63, 1.0). the distance between P3 and P4 is 3.63 ± 1.0Å

inhibitors.
Notice that the relational representation of pharmacophores is invariant to the origin

with respect to which the positions of the chemical groups are determined. This is a virtue,
because this origin is usually not biologically meaningful, i.e. the interacting regions of
these molecules may not overlap in this frame of reference. In fact, learning to choose a
biologically meaningful origin is one way of solving the drug activity prediction problem.
This is especially important if the molecule is represented as a feature vector with each
feature being “distance from the origin” or some similar measure, as in the Musk datasets2.
An example of this approach is the compass system (Jain et al., 1994) that tries to iteratively
orient and predict activity of molecules.

How should we choose the value of k in the k-point pharmacophore? Unfortunately, there
is no good automatic procedure that answers this question, and domain knowledge is usually
used to set the value. In practice, values of k between 3 to 5 seem to be commonly used. In
our work, we use k = 4, which appears to be a reasonable tradeoff between accuracy of the
clauses (pharmacophores) found and the efficiency of the search procedure. This value has
also been used in previous work (Marchand-Geneste et al., 2002) for the thermolysin dataset
we consider.

Given relational representations of conformations of molecules, an ILP system such as
aleph returns a set of clauses. Each clause describes a pharmacophore that appears fre-
quently in the active molecules in training set, and rarely in the inactive molecules. In
order to predict real-valued activity levels, we treat these clauses as features. Thus, for
each molecule and each learned clause, we generate a 0/1 value depending on whether that
molecule satisfies the given clause (i.e., has the specified pharmacophore in some conforma-
tion). Of course, using this representation, the inactive (or “less active”) molecules will have
features that are mostly 0, which will likely lead to poor activity estimates. Thus, we also

2We note that this “orientation problem” has been solved for the Musk datasets, and the data reflects
this. For this reason, Musk is not a good example of a real-world drug activity prediction problem.
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learn a set of features that are more frequent in these molecules than in the active molecules,
and generate values corresponding to these.

Observe that the above procedure results in a single feature vector describing each
molecule. Linear regression on these features will be effective in predicting activity if the
following assumption holds: the activity of any molecule is a linear sum of the activities
of the pharmacophores it has in any conformation. This assumption is somewhat unsat-
isfactory. Chemically, activity is likely to be a function of some specific conformation(s)
of the molecule, and this information has been lost. However, just as the learned phar-
macophores can be applied to the molecule as a whole, they can also be applied to each
conformation, separately. In this case, a 0/1 value represents whether a specific conforma-
tion has the given pharmacophore. This creates a multiple-instance representation, where
each molecule is represented by a bag of vectors, and the bag is labeled with the activity of
the molecule. There are two underlying assumptions in this representation: (i) the activity
of any conformation is a linear sum of the activities of the pharmacophores it has, and (ii)
the activity of any molecule is some function of the activities of its individual conformations.
The function that combines the activities of individual conformations can be pre-defined and
domain-dependent (for example, in the drug activity domain, max is a reasonable function),
or it could be learned from the data, as described in the previous chapter. In our work, we
investigate both approaches.

8.3.2 Multiple-Instance Regression Algorithm

As described in the previous sections, we use linear regression extended to the MI setting
as our learning algorithm. The method described in Algorithm 5, however, runs into one
problem in this situation. When given the bag describing a new molecule, it requires an
external combining function (such as max) to predict the activity of the molecule as a whole.
This happens because during learning, the nature of this combining function was left implicit;
it was taken to be that function which chose the instance that resulted in the least error
with respect to the known response for the bag. For a new case, however, the response is
unknown, and so this approach cannot be used.

While it is reasonable to use a domain-specific combining function such as max to predict
activity after having learned a model, it may be more effective to incorporate this combining
function into the model learning phase as well. We can do this in two ways – we can pre-
define a combining function and add it to the objective function we are optimizing; or we
can choose a form for this function and learn parameters to fit this function to data, as we
did in the previous chapter. We investigate both approaches in our work.

More formally, to incorporate a combining function in the learning phase, we modify
Equation 8.2 as follows. We want the model b̂ such that:

b̂ = arg min
b

n∑

i=1

(yi − C( ~Xi1 · b, . . . , ~Xini
· b))2, (8.5)

where C represents a combining function. Observe that, by using a C that is smooth with
respect to b, we can directly optimize this objective using gradient-based techniques (a
similar technique can be used with Equation 8.2, if we replace the “min” function with a
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smooth variant, following Equation 6.6). Further, observe that, given a novel bag Bi with

instances Xi1, . . . , Xini
, we can use ~Xij · b to predict the activity of the jth instance, and

C( ~Xi1 · b, . . . , ~Xini
· b) to predict the activity of the bag.

How should we determine C? We try two choices of C in our work. First, we set C to be
the softmax function, as in Equation 6.6. This seems to be a reasonable a priori choice in
the domain of drug activity prediction, where one might assume that the activity level for a
molecule is dominated by the activity of its most active conformation. We also try to learn
C from data following the approach outlined in the previous chapter. In this case, we choose
C to be a linear function of four features T1 through T4. We define these as follows. Let
Nij(b) represent the the linear instance model with parameters b applied to the j th instance,
~Xij · b, and Ni(b) = {Ni1(b), . . . , Nini

(b)}. Then:

1. T1 is the activity of the most active instance: T1(Ni(b)) = maxj(Nij(b)). Since the
max function is not differentiable, we use the softmax function defined in Equation 6.6,
which is a smooth approximation to the max function.

2. T2 is the activity of the least active instance: T1(Ni(b)) = minj(Nij(b)). We define
this function again using Equation 6.6, but with α < 0.

3. T3 is the average activity over all instances in the bag: T3(Ni(b)) =
P

j Nij(b)

ni
.

4. T4 is the total activity over all instances in the bag above a certain threshold H, normal-

ized by the number of instances in the bag: T4(Ni(b)) = 1
ni

(∑
j Nij(b) · S(Nij(b) − H)

)
,

where S represents the step function: S(t) = 1 if t > 0, and zero otherwise. Since the
step function is not differentiable, we approximate it with a sigmoid function with
parameter β: gβ(x) = 1

1+e−βx . As β is increased, the approximation improves. In
our work, we set H to 5. This is the activity level above which molecules are said to
be “active” in our data. In practice, this value could likely be supplied by a domain
expert.

The functions T1, . . . , T4 are smooth functions of the parameters of the linear instance
model, b. We then estimate the bag’s response as a linear function of the outputs of these
functions:

ŷi = C(~u, T1(Ni(b)), . . . , T4(Ni(b))) =
∑

k

ukTk + u0, (8.6)

where each uk is a parameter associated with a function Tk, and u0 is a bias term. These
parameters are learned from data. As previously, we add a term to prevent overfitting due
to the uk parameters, resulting in the final objective:

min
(~u,b)

∑

i

[Li − C(~u, T1(Ni(b)), . . . , T4(Ni(b)))]2 + λ‖~u‖2, (8.7)

where Li is the known response for the ith bag.



93

8.3.3 Tasks

In this section, we summarize the domains from which we collect our data. We work with
two activity prediction problems: thermolysin inhibitors and dopamine agonists.

The thermolysin inhibitors dataset we use is described in previous work (Marchand-
Geneste et al., 2002). Thermolysin belongs to the family of metalloproteases and plays roles
in physiological processes such as digestion and blood pressure regulation. The molecules in
our dataset are known inhibitors of thermolysin. Activity for these molecules is measured
in pKi = − log Ki, where Ki is a dissociation constant measuring the ratio of the concentra-
tions of bound product to unbound constituents. A higher value indicates a stronger affinity
for binding. The dataset we use has the 10 lowest energy conformations (as computed by
the sybyl software package (www.tripos.com)) for each of 31 thermolysin inhibitors along
with their activity levels. The relational background knowledge we have for this data was
obtained from David Enot and Ross King and is similar (but not identical) to the back-
ground knowledge used in previous work (Marchand-Geneste et al., 2002). This background
knowledge defines 26 chemical groups that can be used to define a pharmacophore.

The second dataset we use consists of dopamine agonists (Martin et al., 1993). Dopamine
works as a neurotransmitter in the brain, where it plays a major role in movement control.
Shortage of dopamine is one cause of Parkinson’s disease. Dopamine agonists are molecules
that function like dopamine and produce dopamine-like effects and can potentially be used to
treat diseases such as Parkinson’s disease. The dataset we use has 23 dopamine agonists along
with their activity levels. For this dataset, the number of conformations for each molecule
ranges from 5 to 50. The background knowledge we have for this dataset is more limited than
in the previous dataset – we know about four groups: hydrogen donors, hydrogen acceptors,
hydrophobes and basic nitrogen groups.

8.3.4 Experiments

In our experiments with thermolysin and dopamine, we use leave-one-out cross validation.
For each fold, we leave out one molecule as the test molecule. We divide the remaining
molecules into “more active” and “less active” sets, based on a threshold, as done in previous
work (Marchand-Geneste et al., 2002). We use the ILP system aleph to induce rules that are
representative of the “more active” set, followed by a set of rules that are representative of the
“less active” set. We then use these rules to generate features as described in Section 8.3.1,
for both training and test molecules. We generate a dataset which has one feature vector per
molecule and another dataset which has one feature vector per conformation per molecule.
The first dataset is used by linear regression, while the second data set is used by the
multiple-instance learning methods. Notice that the data used by linear regression baseline
has a single feature vector per molecule (bag). Thus, this is not the näıve baseline that
uses the multiple-instance representation but ignores bag structure (such as we used in
Section 8.2).

In Table 14, we report the root mean squared errors (RMSE) for four methods on each
dataset. The first method is a constant model, which simply predicts, for each test molecule,
the average activity of all training molecules in that fold. The second method is linear
regression applied to the single feature vector per molecule data. The third method is



94

Table 14: RMS errors for different methods on drug activity datasets. “ACF” stands for
“adaptive combining function.” Values in bold indicate best results on each dataset.

Dataset Constant
Model

Linear
Regression

MI regression
with softmax

MI regression
with ACF

Thermolysin
(King/Enot)

1.93 1.47 1.31 1.27

Thermolysin
(King/Geneste)

1.93 1.03 1.10 0.92

Dopamine
Agonists

1.38 1.53 1.57 1.34

multiple-instance regression with the softmax combining function, and the fourth method is
multiple-instance regression with an adaptive combining function. For the thermolysin data
set, we report two sets of results. The King/Enot set uses features learned by aleph using
the background knowledge provided to us by David Enot and Ross King. The King/Geneste
set uses features published in previous work (Marchand-Geneste et al., 2002). The procedure
by which these features were generated was different from ours. In particular, they use an
option in the aleph system3 that expands aleph’s search space, however, the resulting
pharmacophores found do not appear in any training example. This means that while they
have predictive value, it is unclear if they are biologically meaningful. Further, it is unclear
if the same features were obtained for all leave-one-out folds, or whether these features were
generated over the whole data set.

From the table, we observe that, for all three cases, the multiple-instance regression
approach with an adaptive combining function has the lowest RMS errors. Comparing the
RMSE of linear regression and MI regression with adaptive combining functions, we conclude
that there is value in considering a multiple-instance representation where each conformation
is represented separately. We further observe that using a predefined combining function like
softmax gives mixed results: in one case it results in an improvement over linear regression;
however, in other cases, it performs slightly worse than standard linear regression. Thus,
there is some evidence that using an adaptive combining function in this regression setting
can result in more accurate models.

Finally, we observe that for the Dopamine dataset, linear regression and MI regression
with softmax have worse RMS errors than the constant model does. Even MI regression with
adaptive combining functions improves only a little on the constant model’s predictions. A
possible reason for this is that the features generated by aleph do not have much predictive
value, since the constant model does not use any of these features while the other approaches
do. We believe that this could happen because of the limited background knowledge we have
for this dataset. It is possible that if we could obtain more knowledge about the relevant
chemical groups in these molecules, we would obtain better activity predictions. Nonetheless,
even in this case, the results indicate that taking the MI setting into account can be valuable,

3The option is set(bottom, reduction).
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since the MI regression approach with an adaptive combining functions has the lowest error
overall.

8.4 Related Work

Predicting continuous quantities in the presence of the multiple instance problem has re-
ceived less attention than multiple-instance classification. There are two approaches that
are related to ours. The first approach is by Jain and colleagues (Jain et al., 1994). They
designed a system called compass for drug activity prediction, which uses an EM approach
combined with a neural network. This system returns real-valued estimates of the activity of
a candidate molecule. compass is specific to the domain of drug activity prediction, and its
expectation step involves computing alternative low-energy conformers for the molecules (in
selected iterations) and re-aligning the chosen conformers of the molecules with one another.
It is possible that, if we were to substitute a more general purpose E step, the compass

system could be used as a general-purpose algorithm for multiple-instance regression.
The other piece of related work is contemporaneous with our own. This approach (Amar

et al., 2001) extends the Diverse Density approach to make real-valued predictions. It
modifies Diverse Density by using a 1-norm of the difference between real and predicted
values as the objective function, instead of the log-likelihood used in the classification setting.
It assumes that predictions are to made in the range [0, 1]. This assumption allows it to
preserve the probabilistic framework of the Diverse Density algorithm. This approach thus
explores a different class of models (Gaussian models) than the linear models we explore in
our work. Results on synthetic drug activity data were reported in this work.

In the specific domain of drug design, a significant body of work is available for real-
valued activity prediction. This literature falls under the broader category of Quantitative
Structure Activity Relationships, or QSARs (for a review of QSAR approaches, see Finn
et al. (1998)). However, most of the work in this area has not so far explicitly modeled
conformations of molecules. There are two main approaches used. We have discussed and
compared against one approach in our work, which uses relational learning methods to
generate single feature vectors for each molecule and then applies regression techniques
to this representation. The second approach relies on careful feature construction based on
structural properties at grid points defined on the molecule’s surface (for example, see Cramer
et al. (1988)). This approach could in fact be combined with the relational approach by
defining literals corresponding to these features in our background knowledge. An interesting
direction for future work is to determine if such a combination leads to improved activity
predictions.

8.5 Chapter Summary

In this chapter, we have introduced the task of multiple-instance regression. We looked
at methods that extend standard multiple linear regression to a multiple-instance setting.
We observed that a simple combinatorial procedure to recover a target model by checking
possible combinations of instances from different bags is computationally intractable, unless
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P = NP . Then we devised an approximation algorithm, that we tested on synthetic data.
Finally, we looked at the problem of drug activity prediction for thermolysin inhibitors and
dopamine agonists. We modified our original MI regression algorithm to incorporate adaptive
combining functions. We then evaluated this algorithm on three datasets from the two
activity prediction problems and observed that using the multiple-instance representation on
resulted in lower mean-squared errors over standard linear regression in all cases. Further,
learning a combining function from data resulted in more accurate models than using a
predefined combining function. We also observed that the error rates when predicting activity
for dopamine agonists did not exhibit much improvement compared to a constant model.
This seems to indicate the need for an improved feature construction procedure, which is an
issue to consider in future work.



Chapter 9

Conclusion

Applying machine learning algorithms to biomedical problems brings to the forefront certain
interesting problem characteristics: these problems tend to be high-dimensional and contain
complex interactions. Further, we often cannot measure the quantity of interest (i.e, we
need to learn from indirect measurements), and what we can measure is noisy. Finally,
the representation of the data may not fit the standard feature vector representation for
which many machine learning algorithms are designed. In this thesis, we have described
approaches for learning from data that exhibit two of the above characteristics. First, we
considered the problem of learning functions with complex variable interactions that cause
the problem of myopia in greedy learning strategies. Such functions arise, for example, in
gene-regulatory networks in biology. We have described a general idea that we call skewing,
that is able to learn such functions efficiently. Second, we studied a problem setting called
the multiple-instance setting, introduced in prior work. In this setting, each instance is not
a single feature vector but a set of feature vectors. This representation was motivated by
the problem of drug activity prediction. We have presented algorithms for classification and
regression under this setting, and tested our methods on real-world drug activity problems
and other problem domains.

While we have used examples from biomedical domains to motivate our problems, we
apply our approaches to appropriate abstractions of the motivating problems. Thus, our
approaches also apply to other tasks that can be abstracted similarly. Our multiple-instance
classification approaches can be used in content-based image retrieval, for example, as well
as drug-activity prediction. Similarly, the skewing approach applies in general to learning
Boolean functions, and can be adapted to structure learning in Bayesian Networks, for
example, as well as learning decision trees. In what follows we summarize our contributions
and outline future directions for each line of work we have explored in this thesis.

9.1 Skewing

The first part of this thesis addresses the problem of myopia in greedy learning algorithms.
Our contributions to this problem are as follows.

1. In this work, we introduced the idea of skewing. The key idea we exploit in skewing
is that a function induces myopia in greedy learning strategies only in conjunction
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with specific data distributions. If we can sample according to a “sufficiently different”
data distribution, we can efficiently learn functions which were hard under the original
distribution. Even when we cannot sample from a different distribution, we can get
some benefit by using the given data to simulate a sample by reweighting it in specific
ways. We summarized results that prove that some such reweighting will always work
in the ideal case when we have access to the full truth table of a function.

2. We evaluated the effect of parameters and noise on the approach and concluded that
the technique is effective (at least in a low-noise scenario) in being able to learn targets
that are hard for greedy learning strategies under the uniform distribution. Further,
our approach requires only modest sample sizes to be effective, and is more efficient
compared to methods like lookahead.

3. We proposed and evaluated a modified algorithm that scales better to high-dimensional
data. However, this algorithm does not work for all hard functions.

4. We extended the skewing approach to apply to functions described by continuous and
nominal variables.

Beyond the investigation in this thesis, much further work remains to be done on the
subject. This includes further investigation into the theory, methods and applications of
skewing. A major open question in computational learning theory is the learnability of
arbitrary Boolean formulae over log n variables (Blum, 1994). In this setting, examples are
described by n variables, but the unknown target is described by only log n of these variables.
Skewing introduces the interesting twist of learning with two (or more) distributions. Thus,
the question of learnability can be broken into two sub-questions: (i) Can we learn such
functions if we could actually draw a polynomial-sized sample from a second distribution of
our choice? and (ii) Can we learn such functions if we simulate such a distribution? We
believe that question (i) can be answered in the affirmative. This may help answer question
(ii), in a “standard” setting where we simulate a second distribution of our choice using a
sample drawn from a different distribution. The answers to these questions are likely to
provide insight into the skewing approach, as well as the learnability of Boolean functions in
general. Related to this topic are the open questions involving the number of hard Boolean
functions on n variables, and a precise constructive characterization of this class of functions.

Much remains to be improved in the methods we use in our skewing work. The methods
we propose only work well in low-noise scenarios. Further, dimensionality remains a problem
– our current techniques scale to hundreds of features with thousands of examples; however,
many biological datasets have thousands of features. We can perhaps get improved accuracy
by combining variance reduction techniques, such as bagging (Breiman, 1996), with our ap-
proach. There also remains the issue of those functions that sequential skewing fails to learn.
We may be able to reduce the number of these functions by combining the original approach
with the sequential approach in the following way. Instead of skewing the distribution of a
single variable, we could skew the distribution of a small random set of variables iteratively.
In this case, it seems intuitively clear that the set of functions for which the method fails will
be governed by the size of the set of variables we skew, so that if we skew all variables (as
we do in our original approach), the method will work for all functions. Thus, by skewing on
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more than one variable, we can reduce the number of functions the approach cannot learn.
A related question is the applicability of the approach when the initial data distribution
is not uniform. It seems intuitive to argue that for each data distribution, a certain class
of functions will be hard to learn using greedy algorithms. This class will not necessarily
coincide with the functions that are hard to learn under the uniform distribution. However,
the size and characteristics of this class for different non-uniform distributions remain to be
explored. Further, for these other initial distributions, it is unclear what alternative skewed
distributions might be the best to use. Finally, while we have considered the problem of
hard functions in propositional data, similar situations can also arise in richer representa-
tions that are sequential or relational in nature. For example, in a relational setting, when
an ILP algorithm such as FOIL learns a clause, each candidate literal is scored according
to a function similar to information gain. It is possible that the skewing approach may be
useful here in discovering literals that may otherwise be not be considered for addition to
the clause.

There is much scope for applying this technique to other problem domains and other
greedy algorithms. An important such algorithm is the Sparse Candidate algorithm (Fried-
man et al., 1999) for learning Bayesian network structure. In current work, we are modifying
this algorithm to use the skewing approach as follows. The Sparse Candidate algorithm is
a greedy algorithm that repeats two steps, called Restrict and Greedy Search, until conver-
gence to a local optimum for the probability of the model given the data. In the Restrict
step, a set of candidate parents is constructed for every node by scoring according to condi-
tional mutual information. This step may fail to discover candidate parents if the conditional
probability table (CPT) at a node is hard (in an approximate sense). We can use skewing
to identify relevant candidates in this case. In the Greedy Search step, the algorithm adds
edges between nodes and their candidate parents (selected in the Restrict step), until a lo-
cally optimal structure is found. As before, we can apply the skewing approach in this step
to add edges that would be missed if the CPT at a node is hard. Another possible applica-
tion of the technique is in feature subset selection. Information gain is sometimes used as a
feature selection procedure in biomedical problems (Xing et al., 2001). In such applications,
we conjecture that it would be better to use skewing instead to discover variables that are
relevant to the target. Further, compared to other dimensionality reduction methods such
as Principal Components Analysis, which potentially tranform the feature set in different
ways, this method has the advantage that the features returned are a subset of original set
of features. This may make for more comprehensible models.

Finally, with regard to problem domains, biomedical problems are likely to provide sce-
narios where the skewing approach will be significantly useful. To this end, we are currently
using our modified Sparse Candidate algorithm to learn the regulatory network structure
governing genes in the circadian rhythm pathway in Arabidopsis. Further, an important
domain where we can get access to a true different distribution occurs when learning com-
prehensible models as done in TREPAN (Craven & Shavlik, 1996). In this algorithm, a
hard-to-understand model such as a trained artificial neural network is used as an oracle by a
decision tree algorithm. The output of the decision tree algorithm is a human-comprehensible
set of rules that describe the decision surface learned by the neural network. Since multi-
layer neural networks are universal function approximators, they can learn decision surfaces
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that separate exclusive-OR like functions. We hypothesize that using skewing in this con-
text will extract a more accurate and faithful representation of the concept learned by the
network than a standard tree algorithm. Further, because the network is used as an oracle,
we can draw a “true sample” for any data distribution we choose, which will likely lead to
significantly improved accuracy.

9.2 Multiple-Instance Learning

In this thesis, we have investigated both multiple-instance classification and regression. Our
contributions to these problems are outlined below.

1. We have presented an approach that extends logistic regression to the MI representa-
tion. Our empirical evaluation indicates that this algorithm is competitive with other
MI approaches across a number of MI datasets.

2. We have presented an empirical comparison of supervised and multiple-instance algo-
rithms in MI domains. This comparison leads to several interesting conclusions: (i) no
MI algorithm is superior across all tested domains, (ii) some MI algorithms are con-
sistently superior to their supervised counterparts, (iii) using high false-positive costs
can improve a supervised learner’s performance in MI domains, and (iv) in several
domains, a supervised algorithm is superior to any MI algorithm we tested.

3. We have presented and evaluated an approach to learning combining functions for MI
algorithms. In this approach, we define transfer functions that capture certain statistics
about the class probabilities of the instances in a bag. We then learn a logistic model
that relates these features to the class probability of the bag. We show empirically
that this approach can result in more accurate models than using a fixed combining
function, and use synthetic data to analyze the situations when this approach can be
expected to help.

4. We have presented and evaluated algorithms that extend linear regression to a multiple-
instance setting. We have applied our approach to real-world drug activity prediction
problems for thermolysin inhibitors and dopamine agonists, and shown that taking the
MI representation into consideration, along with using adaptive combining functions,
results in more accurate regression models than using standard linear regression, which
is the state-of-the-art.

The multiple-instance representation was proposed recently (Dietterich et al., 1997) and
has been the focus of much recent research. Because the area is relatively new, there is scope
for work in both methods and applications. The theory of learnability from MI examples
is fairly well understood, though open questions remain. In particular, it is known that it
is hard to learn from MI examples if no assumptions are made about the dependence of
instances in a bag (Auer et al., 1997). Further, it is known that if instances are assumed
to be independent within a bag, certain concepts, such as axis-parallel rectangles (APRs),
are PAC-learnable from MI data (Long & Tan, 1998). In fact, under the independence
assumption, any concept that can be PAC-learned with one-sided classification noise can be
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learned from MI data (Blum & Kalai, 1998). Thus, we have positive results for independent
instances and negative results for instances with unknown dependence structure. Nothing
is known in between these two extremes. For example, if we assume a specific instance-
dependence model, could we show that certain concepts are PAC-learnable? This remains
an open question in MI learning.

Effective algorithms that incorporate instance dependence in MI classification are also
lacking. Most MI algorithms make the assumption that instances in a bag are independent
of one another. This is not generally true. For example, in drug activity, all instances
in a bag are low energy conformation of the same molecule, and thus are likely to share
structure. Similarly, in the protein-family classification problem, instances are overlapping
windows of amino-acid residues. Thus, it seems plausible that incorporating some knowledge
about instance dependence may result in more accurate models. Further, it is interesting to
ask if learning a combining function from data “compensates” for the instance-independence
assumption. In current work, we are investigating an MI approach that incorporates explicit
instance-dependence assumptions while learning a model.

Further work remains to be done to understand the empirical behavior of MI algorithms
– in particular, how successful are these algorithms compared to an algorithm that knows the
correct label for every instance? Such an algorithm provides a sort of “gold standard”, i.e.
the best possible accuracy for any MI algorithm on the given task. To answer this question,
we need datasets where instances are labeled. Such a dataset might be feasible to construct
in text categorization domains, where documents can be labeled at several granularities –
sentences, paragraphs and documents as a whole, for example – and models learned from MI
representations where the finer label granularities are ignored. This kind of setting will also
help to answer questions about how often the assumptions made by MI algorithms hold in
practice. For example, as we described in our work on learning combining functions, many
MI algorithms implicitly assume that “few” instances in a positive bag are truly positive. It is
unclear how often such assumptions hold in real-world domains. We also hypothesize in our
work that MI algorithms will be most beneficial compared to their supervised counterparts
when learning from sparse data. This remains to be verified in future work.

Along with the standard MI applications, such as drug activity and image retrieval, we
believe that there is scope for developing other problem domains where MI approaches might
prove beneficial. Development of novel application domains can also stimulate research into
algorithms that learn from MI data with rich representations. For example, in learning from
text, models that can represent the sequential structure of text may be more accurate than
models that learn from simple feature-vector representations. Since some text learning tasks
can be represented as MI problems, this brings up the question of whether we can effectively
learn such sequence models in an MI setting. We have done some preliminary work on this
subject, and this remains a promising research area to explore in future.

Compared to multiple-instance classification, the regression problem in an MI setting
has been almost completely ignored. Our work was among the first to identify the problem
setting and propose an algorithm for the task. As we have observed previously, drug activity
prediction continues to be the “killer application” for MI learning, not only because the
representation is a natural fit to the problem, but also because of its potentially high payoff –
a good prediction algorithm can substantially lower the cost of the drug development process.
We hope that our results on the drug activity domains will stimulate further research into
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multiple-instance methods in this area.
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