
Appears in Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI-2003).

Skewing: An Efficient Alternative to Lookahead for Decision Tree Induction

David Page
���

page@biostat.wisc.edu
Soumya Ray

���
sray@cs.wisc.edu

�
Department of Biostatistics & Medical Informatics

University of Wisconsin

Madison, Wisconsin 53706

�
Department of Computer Sciences

University of Wisconsin

Madison, Wisconsin 53706

Abstract

This paper presents a novel, promising approach
that allows greedy decision tree induction algo-
rithms to handle problematic functions such as par-
ity functions. Lookahead is the standard approach
to addressing difficult functions for greedy decision
tree learners. Nevertheless, this approach is lim-
ited to very small problematic functions or subfunc-
tions (2 or 3 variables), because the time complex-
ity grows more than exponentially with the depth of
lookahead. In contrast, the approach presented in
this paper carries only a constant run-time penalty.
Experiments indicate that the approach is effective
with only modest amounts of data for problematic
functions or subfunctions of up to six or seven vari-
ables, where the examples themselves may contain
numerous other (irrelevant) variables as well.

1 Introduction
Algorithms for the top-down induction of decision trees
(TDIDT) are among the most widely used algorithms for
machine learning, data mining and statistical classifica-
tion. TDIDT implementations such as ID3 [Quinlan, 1983],
C4.5 [Quinlan, 1997], C5.0 (www.rulequest.com) and CART
[Breiman et al., 1984] are easy to use and (often) produce
human-comprehensible models. Nevertheless, TDIDT algo-
rithms are well-known to be myopic because of their greedy
strategy for choosing split variables, or internal node labels.
This myopia is at its worst when the data are labeled accord-
ing to parity functions such as exclusive-or (2-bit odd parity,
denoted by �). These and related other problematic functions
naturally arise in real-world data. For example, in fruitfly ex-
periments, flies that are either male and have an active Sxl
gene or that are female and have an inactive Sxl gene survive,
while other flies die; hence survival is an exclusive-or func-
tion of gender and Sxl activity (Table 1).

Of course, parity and parity-like functions are also prob-
lematic for other machine learning or statistical algorithms
that employ (explicitly or implicitly) a linear assumption in
order to gain efficiency. Such models include perceptrons,
logistic regression, linear support vector machines, Fischer’s
linear discriminant and naive Bayes. They also include any of

Gender Female Sxl active Survival
0 0 0
0 1 1
1 0 1
1 1 0

Table 1: Truth table for Drosophila (fruitfly) survival based
on gender and Sxl gene activity.

a variety of data analysis approaches that employ an informa-
tion gain or Kullback-Leibler divergence filter to do variable
selection or to control computation time, for example as in the
sparse candidate algorithm for learning Bayesian networks
[Friedman et al., 1999]. The inability of such approaches to
learn functions like � is frequently noted, for example, in the
context of analyzing gene expression microarray data [Fried-
man et al., 1999; Szallasi, 2001].

In TDIDT algorithms, the myopia of the search can be re-
duced at the cost of increased computation time. The stan-
dard approach is through depth- � lookahead [Norton, 1989],
where the default for TDIDT algorithms is depth-1 looka-
head. However, the time to perform a split grows exponen-
tially with � , and problematic functions remain no matter how
large a � is chosen.

The purpose of this paper is to introduce an alternative ap-
proach to problematic functions such as parity, which does
not incur the high computational cost of lookahead. The ap-
proach relies on the observation that these functions are not
actually problematic if the distribution over the data is signif-
icantly different from uniform. In such cases other functions
may become problematic for TDIDT algorithms, but func-
tions such as exclusive-or become relatively easy. Hence we
first observe that TDIDT algorithm performance on a data set
can be improved if the algorithm has access to a second, sig-
nificantly different distribution over the data. Of course such
a second distribution often is unavailable. Therefore, we next
show how the second distribution often can be simulated by
skewing the data from the first distribution. We note that the
present paper focuses entirely on classification, ignoring re-
gression trees, or trees that predict continuous outputs at their
leaves. Furthermore, we limit our entire discussion to TDIDT
algorithms that perform only binary splits, although the data
may use variables that can take more than two values.

��� �
	 �
� �
0 0 0 1
1 0 1 0
0 1 0 0
0 1 1 1

Table 2: For subfunctions at each of ��	�
�� , ��	�
�� , �
��
��
and ����
�� , the fraction of assignments that are positive is

�	 ,
as for � itself. Hence � 	 and � � have zero gain, while � � has
nonzero gain according to both entropy and Gini.

2 Review of Lookahead for Hard Functions
We assume the reader is familiar with the approach of TDIDT
algorithms. The assumed familiarity includes a knowledge of
the commonly-used functions to measure node purity, such as
entropy [Quinlan, 1997] or Gini index [Breiman et al., 1984].
It also includes familiarity with the greedy heuristic of choos-
ing to split on the variable that maximizes the improvement,
or gain, in the node purity score. We now review the notions
of problematic functions and lookahead. For ease of discus-
sion, this section limits itself to two-class problems, where
the classes are positive and negative.

For the various node purity functions employed by differ-
ent TDIDT algorithms, splitting on a variable ��� can yield
a non-zero gain only if the class distribution changes for at
least one of the values (or ranges) that � � can take. If the
distribution of classes is the same for every value of ��� (or
range) then �
� will have zero gain according to any node pu-
rity measure in common usage. As an example, in Table 2
the variable ��� has non-zero gain according to either Gini or
entropy, whereas the variables � 	 and � � have zero gain.

Consider a data set drawn from a uniform distribution over
binary-valued variables �������
	����������! " , labeled according to
the target function �
#"# � � �! " . Even if we are fortunate
enough to have a complete data set—one occurrence of each
truth assignment over � � ������� �� " —it is clear that for every
variable � � , the class distribution is exactly the same whether��� is � or � . So, regardless of how large a uniform sample
we choose to draw, a variable will have non-zero gain only
because of chance. Thus, the probability that one of the cor-
rect variables (� #"# or ���� $) will have a higher gain than every
one of the incorrect variables is extremely low. Hence the
learning task is virtually impossible for a TDIDT algorithm.

With depth-2 lookahead the preceding task becomes triv-
ial. A depth-2 lookahead from a given node chooses not only
the next split variable, but also the split variables at the next
level. A TDIDT algorithm augmented in this way will con-
sider among the possible depth-2 trees the two shown in Fig-
ure 1, each of which will have the maximum possible gain.
For any reasonably large data set, with high probability all
other depth-2 trees will have gain only marginally different
from zero. Hence we see that with depth-2 lookahead, � be-
comes easy. Because depth-2 lookahead is repeated at every
step in tree construction, many other functions that have 2-
variable � as a subfunction become easy.

Of course, depth-2 lookahead comes with a price. Where %
is the number of variables and & is the number of examples,
the time to choose the split goes from ')(*&+%-, to ')(*&+% � , , be-

1 010

0

0 0 11

1

1 010

0

0 0 11

1

x99x100

x99

x100

x100

x99

Figure 1: Two trees representing ��#"# � � �� $
��� ��	 ��� �.� �/	 ��� ��0 ��1 �/2
0 0 0 0 0 0 0 1 0
0 0 1 1 1 1 0 0 0
0 1 0 1 0 1 1 0 0
0 1 1 0 0 0 0 0 1
1 0 0 0 0 1 0 0 1
1 0 1 1 0 0 1 0 0
1 1 0 1 1 0 0 0 0
1 1 1 0 0 1 0 1 0

Table 3: Six of the 12 functions over three variables that
are problematic even using depth-2 lookahead. The other six
problematic functions are the inverses of these.

cause labels have to be selected for three nodes from among %
variables. Furthermore, there are many functions that require
a higher lookahead. For example, suppose we have examples
constructed from variables �3�4�����$���� $ and the target is one of
the functions in Table 3 involving � � , � 	 , and � � . Even with
depth-2 lookahead, TDIDT is highly likely to choose incor-
rect variables. These problems can be solved with depth-3
lookahead, but the time to choose a split becomes ')(*&+%657, ,
and other problematic targets remain even then.1

3 Motivation for Skewing
Consider the first target function discussed in the previous
section, � #$# � ���! " , but now suppose the data are distributed
differently from uniform. For example, we might introduce
dependencies not present in the uniform distribution: for ev-
ery odd number 8 , ��9 8 9;:<: , if � � is � then � �>= � has proba-
bility �@? :<: of being � . Or we might suppose all variables are
independent as in the uniform distribution, but every variable
has probability only

�0 of taking the value � . In either case,
with a large enough sample we expect that the class distribu-
tion among examples with �
#"#A
B� will differ significantly
from the class distribution among examples with ��#$#�
C� .

To examine the preceding claim more closely, consider the
second distribution, where each variable has probability

�0 of
being � . If we draw a sample of D �.� examples, we expect
roughly �7�.� of these to have ��#$#E
F� and roughly G �.� to

1We can reduce this super-exponential growth of lookahead to
“mere” exponential growth and still address parity-like functions if
we require the tree to be ”leveled”—all nodes at a level are labeled
by the same variable. But even this non-standard lookahead proce-
dure imposes a high computational burden.

have �
#"#)
H� . Of the ���<� with �
#$#)
I� , we expect roughly�0 of these, or J/K , to have � �! "
L� and hence to belong to
the positive class. Of the G �.� with � #"#
�� , we expect only

�0
of these, or J/K again, to belong to the positive class (to have� �� "
M�). Hence the fraction of positive examples is quite
different for the two values of ��#$# : �0 of the examples with� #"#
N� are positive, while

�0 of the examples with � #"#
O�
are positive. As a result �
#"# (and � �! ") will have non-zero
gain; for instance, information gain is roughly �P?>��: (out of
maximum �.? � possible) and Gini gain is roughly �@? �<Q (out
of maximum �@? R K possible). On the other hand, every vari-
able other than �
#$# or � �! " is likely to have nearly zero gain.
Hence unless a highly unlikely sample is drawn, a TDIDT al-
gorithm will choose to split on either � #"# or ���� $, at which
point the remainder of the learning task is trivial.

Notice that in the preceding discussion, moving to our sec-
ond distribution changed the marginal distribution for every
variable, not just for those in the target. It would have re-
vealed the correct variables if the target function had been� 	 � � 2 # or even one of the problematic functions of three
variables in Table 3. Notice also that the important aspect
of the second distribution was that it changed the frequency
distributions for the variables; the specific change for any
variable could have gone the other way—to probability

�0 of
taking value � —and the second distribution still would have
given non-zero gain to exactly the variables in the target.

From the preceding discussion we conclude that if we have
access to two distributions that are “different enough,” then
choosing good variables to split on becomes relatively easy.
However, in real-world problems we rarely have access to two
different distributions over the data, or the ability to request
data according to a second distribution that we choose. In-
stead, the next section discusses how in practice we can simu-
late a second distribution different from the first. We call this
procedure skewing. The simulation approach tends to mag-
nify idiosyncrasies in the data set, for example, introducing
some dependencies that were not present in the original dis-
tribution. Nevertheless, our experiments indicate that, if the
data set is large enough, the magnification of idiosyncrasies
is not a major problem.

4 Skewing Algorithm
The desired effect of the skewing procedure is that the skewed
data set should exhibit significantly different frequencies
from the original data set. Because we cannot draw new ex-
amples, we change the frequency distributions for variables
by attaching various weights to the existing examples. The
procedure initializes the weight of every example to � . We
next present the details of the re-weighting procedure for
binary-valued variables only. Nominal variables can be con-
verted to binary variables. We discuss extensions to continu-
ous variables in Section 7.

We may assume that every variable takes the value � in
at least one example and takes the value � in at least one
example—otherwise, the variable carries no information and
can be removed. For each variable � � , �A9 8 9 % , we ran-
domly, uniformly (independently for each variable) select a
“favored setting” S � of either � or � . We then increase the

weight of each example in which ��� takes the value S � , by
multiplying the weight by a constant; for the sake of illustra-
tion, suppose we double the weight.

At the end of this process, each example has a weight be-
tween � and R.T . It is likely that each variable has a signif-
icantly different weighted frequency distribution than previ-
ously, as desired. But this is not guaranteed. For example,
suppose the original data set consists of �7�.� truth assignments
over variables � � and � 	 . Suppose further that in half of these
examples � �
U� and � 	
B� , and in the other half � �
V�
and �
	W
�� . If the favored setting for each variable happens
to be � , then all examples get assigned weight 2, so the new
frequency distribution for each variable is the same as the
original frequency distribution. In addition to this potential
difficulty, a second difficulty is that this process can magnify
idiosyncrasies in the original data. For instance, suppose we
have a data set over � � ��?X?>?>��� T , and (for simplicity) the favored
setting for each variable is � . If we happen to have one ex-
ample with many variables set to � , it will get an inordinately
high weight compared with other examples, potentially giv-
ing some insignificant variable a high gain. Can we mitigate
these potential problems with the skewing procedure?

The difficulties in the preceding paragraph occur with some
data sets combined with some choices of favored settings.
Other selections of favored settings for the same data set may
leave other variables’ frequencies unchanged, but it is rela-
tively unlikely they will leave the same variables’ frequencies
unchanged. Furthermore, while other selections of favored
settings may magnify other idiosyncrasies in the data, it is un-
likely they will magnify the same idiosyncrasies. Therefore,
instead of using skewing to create only a second distribution,
we use it to create � additional distributions, for small � such
as : to give a total of �7� distributions. The � different dis-
tributions come about from randomly (without replacement)
selecting � different combinations of favored settings for the
% variables according to a uniform distribution. To ensure that
tree construction is not thrown off course by any single bad
distribution (either original or skewed), the tree construction
process is modified as described in the following paragraph.

Suppose we have �)Y � weightings of the data (the origi-
nal data set plus � reweighted versions of this data set), and
we are considering a split. We score each of the % variables
against each of the �ZY � weightings of the data. A variable
that is not part of the target function should have nearly zero
gain on every weighting, although as already noted, it may
occur that on some weightings some of these variables can
achieve high gain. But only variables that appear in the tar-
get should have significantly non-zero gain on most of the
weightings (though not necessarily on all). Therefore, we
set a gain threshold, and the variable that exceeds the gain
threshold for the greatest number of weightings is selected as
the split variable. Our expectation is that the selected variable
is highly likely to be correct in the sense that it actually is a
part of the target function. Yet the time for choosing the split
remains ')([&\%-, , in contrast to lookahead. We have increased
the run-time only by a small constant.

Pseudocode for the algorithm is shown in Algorithm 1.
Rather than actually doubling or tripling weights, the algo-
rithm takes a parameter

�	^]V_`] � . The weight of an ex-

Algorithm 1 Skewing Algorithm
Input: A matrix a of & data points over % boolean

variables, gain fraction b , number of trials c ,
skew

�	d]e_f] �
Output: A variable � � to split on, or g � if no variable with

sufficient gain could be found
1: hji Entropy of class variable in a
2: SWi Variable with max gain in a
3: k)i Gain of S in a
4: if k] bmlnh then
5: SWiog �
6: for 8
�� to % do
7: pd([8�,�i �q

begin skewing loop r
8: for s
t� to c do
9: for 8
C� to % do

10: uv([8�,�i Randomly chosen favored value for � �
11: for w
C� to & do
12: xU(yw�,
t�
13: for 8
C� to % do
14: if s{z � then
15: if aA(yw � 8�,
 u|(*8�, then
16: xU(yw},�i~xU(*w�,{l _
17: else
18: xU(yw},�i~xU(*w�,{l`(� g _ ,
19: hji Entropy of class variable in a under x
20: for 8
C� to % do
21: ��i Gain of � � under distribution x
22: if �m�;bml\h then
23: pd([8�,�i�pd(*8�,-Y �q

end skewing loop r
24: �Wi��/�"���d����pd([8�,
25: if pd(X��,{z � then
26: return �P�
27: else
28: return S

ample is multiplied by _ if � � takes preferred value S � in the
example, and is multiplied by � g _ otherwise. Hence for il-
lustration, if _ is

	� , the weight of every example in which ���
takes value S � is effectively doubled relative to examples in
which � � does not take value S � .

Our conjecture is that in practical experiments the new al-
gorithm will run somewhat slower than an ordinary TDIDT
algorithm, only by a constant factor. It will rarely produce
trees with lower accuracy than those of an ordinary TDIDT
algorithm. It will often produce trees with slightly to moder-
ately higher accuracy—when the target contains one or more
problematic subfunctions. And it will sometimes produce
trees with much higher accuracy—when the target is itself a
problematic function. When the target is a problematic func-
tion over many variables, even after skewing the gain of any
individual variable in the target is likely to be small. There-
fore, we also conjecture that unless the data set is large, the
benefits of the skewing approach will not apply to problem-
atic target functions of five or more variables. Note that while
a large number of variables in the target reduces the potential
gain, the number of variables in the examples does not. The

following section describes the experiments designed to test
the preceding conjectures.

5 Experiments
In this section, we discuss experiments with synthetic and real
data, designed to test the conjectures in the preceding para-
graph. In addition, the question arises of whether problematic
functions or subfunctions occur with high enough frequency
to justify the additional work of skewing. The experiments
in this section also address that question. We begin with a
discussion of experiments using synthetic data, where target
functions as well as examples are drawn randomly and uni-
formly, with replacement. In these experiments we compare
simple ID3 against ID3 with skewing. We selected ID3 to
eliminate issues to do with more sophisticated pruning. The
parameters input to the skewing algorithm (algorithm 1) were
c
 G � , _
 �0 and b
N�P? � K . These parameters were cho-
sen before the experiments and were held constant across all
experiments. Improved results could perhaps be obtained by
tuning _ and b .

In the first set of experiments with synthetic data, exam-
ples are generated according to a uniform distribution over
30 binary variables. Target functions are drawn by randomly
generating DNF formulae over subsets of 3 to 6 of the 30
variables. The number of terms in each target is drawn ran-
domly, uniformly from between 1 and 25, and each term is
drawn by choosing for each variable whether it will appear
negated, unnegated, or not at all (all with equal probabilities).
All targets are ensured to be satisfiable. Examples over the
30 variables that satisfy the target are labeled positive, and all
other examples are labeled negative. Figures 2-5 show learn-
ing curves for different target sizes. Each point on each curve
is the average over several runs, each with a different target
and with a different sample of the specified sample size.

In general, these figures fit our expectations. Both algo-
rithms perform well but skewing provides slightly yet consis-
tently better results (we note that the differences are not sta-
tistically significant). Probably the difference is skewed ID3
is less likely than ordinary ID3 to include irrelevant variables,
particularly when faced with problematic functions. One sur-
prise is that the figures indicate that an ordinary TDIDT al-
gorithm outperforms skewing on average when the sample
size is small relative to target size. As sample size grows, a
crossover point is reached after which skewing consistently
outperforms the ordinary TDIDT algorithm. Furthermore,
the sample size required for effective skewing grows with the
number of variables in the target, although these results alone
do not make clear the order of this growth. It may well be ex-
ponential, because target complexity can grow exponentially
with the number of variables in the target. Further experi-
ments explore the order of this growth. This observation im-
plies a limitation of skewing—that skewing may be undesir-
able for learning tasks with small samples or target concepts
that potentially employ many variables.

The next set of experiments focuses on the problematic
functions alone. The methodology is the same as before,
with the following exception. Targets are drawn randomly
from functions that can be described entirely by variable co-

75

80

85

90

95

100

200 400 600 800 1000

A
cc

ur
ac

y
(%

)

Sample Size

ID3 with Skewing
ID3, No Skewing

Figure 2: Three-Variable Targets

75

80

85

90

95

100

200 400 600 800 1000

A
cc

ur
ac

y
(%

)

Sample Size

ID3 with Skewing
ID3, No Skewing

Figure 3: Four-Variable Targets

75

80

85

90

95

100

200 400 600 800 1000

A
cc

ur
ac

y
(%

)

Sample Size

ID3 with Skewing
ID3, No Skewing

Figure 4: Five-Variable Targets

75

80

85

90

95

100

200 400 600 800 1000

A
cc

ur
ac

y
(%

)

Sample Size

ID3 with Skewing
ID3, No Skewing

Figure 5: Six-Variable Targets

50

60

70

80

90

100

200 400 600 800 1000

A
cc

ur
ac

y
(%

)

Sample Size

ID3 with Skewing
ID3, No Skewing

Figure 6: Three-Variable Hard Targets

50

60

70

80

90

100

200 400 600 800 1000
A

cc
ur

ac
y

(%
)

Sample Size

ID3 with Skewing
ID3, No Skewing

Figure 7: Four-Variable Hard Targets

50

60

70

80

90

100

200 400 600 800 1000

A
cc

ur
ac

y
(%

)

Sample Size

ID3 with Skewing
ID3, No Skewing

Figure 8: Five-Variable Hard Targets

50

60

70

80

90

100

200 400 600 800 1000

A
cc

ur
ac

y
(%

)

Sample Size

ID3 with Skewing
ID3, No Skewing

Figure 9: Six-Variable Hard Targets

Data Set Standard ID3 ID3 with Skewing
Heart 71.9 74.5
Voting 94.0 94.2

Voting-2 87.4 88.6
Contra 60.4 61.5

Monks-1 92.6 100.0
Monks-2 86.5 89.3
Monks-3 89.8 91.7

Table 4: Accuracies of ID3 and ID3 with skewing on 4 UCI data
sets. Heart is Cleveland Heart Disease, Voting is Congressional
Voting, Contra is Contraceptive Method Choice, and Monks-x are
the Monk’s problems. Voting-2 is the same as Voting, with one fea-
ture (physician-fee-freeze) removed to make the problem
more difficult.

references together with the standard logical connectives and,
or, and not. Many such functions exist, and for all such func-
tions, even given a complete data set, no variable has gain.
Examples of such functions are exclusive-or and exclusive-
nor, and all those in Table 3. Figures 6-9 show the results for
these experiments.

We observe that if the target is a problematic function,
skewing outperforms standard ID3 by a wide margin. The
difference in accuracy was statistically significant — the 95%
confidence intervals around each sample point in these graphs
do not overlap once the sample sizes become moderately
large. We repeated the experiment with 6-variable hard tar-
gets with K �.�.� examples to verify that skewing did indeed
achieve ���<��� accuracy (in our noise-free setting) in this case.
We also verified this behavior for 7 and 8 variable targets.

In addition to the preceding experiments, we also com-
pared ID3 against ID3 with skewing on several data sets in the
UCI machine learning repository [Blake and Merz, 1998] us-
ing 5-fold cross validation. For these data sets, we discretized
continuous variables by binning. Further, nominal variables
were binarized using the standard 1-of- h representation. The
results of these experiments appear in Table 5. In this case,
we do not know whether the target concepts involve problem-
atic subfunctions except for the concepts in the Monk’s prob-
lems, where the first two involve problematic subfunctions.
The only task for which there is a significant difference in ac-
curacy is the first Monk’s problem, which has an exclusive-or
subfunction. We believe the reason ID3 with skewing does
not dramatically outperform ID3 on the second Monk’s prob-
lem is that the number of training instances is small (169) rel-
ative to the target function. We verified this by constructing a
larger data set of 2000 examples using the concept that gen-
erated this data. In this case, skewing achieves an accuracy of: K � , while standard ID3 achieves � ��� .

In the experiments reported in Figures 2-5, the run-time
for ID3 with skewing was on average a constant times the
run-time for ordinary ID3, regardless of sample size or target
size. This constant was (roughly) equal to our value for c in
Algorithm 1, G � . In the experiments involving hard targets,
we observed that as sample size increased, ID3 with skewing
became more efficient relative to ID3. This can be explained
by the fact that though it takes more time to choose a split,
ID3 with skewing chooses many fewer splits when the target

0

5

10

15

20

25

30

35

100 200 300 400 500 600 700 800 900 1000

Ti
m

e
ra

tio

Sample Size

3 variable hard targets
4 variable hard targets

Figure 10: Time complexity of ID3 with skewing relative to stan-
dard ID3 for hard targets. The � axis represents the ratio of the aver-
age time taken by ID3 with skewing to induce a tree against the same
quantity for standard ID3 for hard targets. Observe that, though the
ratio is close to our value for � for small samples, it drops rapidly
as the sample size increases, and the final value is much smaller.

is a hard function. In this case, the constant-factor overhead
for skewing is significantly smaller than c . This behavior is
shown in Figure 10. Thus in all cases, provided the sample is
sufficiently large, skewing provides benefits similar to looka-
head, but with only a constant increase in run-time. This is
the primary result of the paper.

6 Related Work
A natural question to ask of the preceding results is whether
they could as easily be obtained by other techniques that ef-
fectively re-weight the data. We know of two such related
techniques: boosting [Freund and Schapire, 1997] and bag-
ging [Breiman, 1996] (sampling with replacement may be
thought of as providing a re-weighting of the data).While
these techniques were not developed to enable tree induc-
tion algorithms to address problematic functions, it is pos-
sible that their re-weighting schemes might nevertheless be
successful in this task. Therefore, we ran ID3 with each of
these re-weighting techniques on hard targets, using the same
methodology as in the preceding section. We also ran ID3
with a procedure that randomly reweighted the data as in the
data perturbation approaches of Elidan et al[2002]. We ob-
served that ID3 with each of the three re-weighting schemes
performed on average no better than ordinary ID3. Hence we
conclude that the benefit of skewing comes from the type of
re-weighting being performed, not merely from the general
notion of re-weighting.

7 Conclusions and Future Work
We have shown that the advantages of lookahead for decision
trees can be obtained with only a constant increase in run-
time, rather than a super-exponential increase, by the process
of skewing. Nevertheless, the approach has limitations that
need to be addressed in future work. It also has potential ap-
plications beyond decision trees, to be investigated in future
work. The remainder of this section briefly outlines these di-
rections.

Decision tree induction algorithms often are applied to data
sets that involve some continuous variables in addition to
nominal variables only. Therefore, one direction for further
work is to extend the skewing algorithm to handle continuous
variables. Here we briefly outline a natural such extension
that we plan to test in future work. For continuous variables,
the favored value is either less or greater than the split point,
rather than � or � . This makes skewing trickier because we
do not know ahead of time what split point will be chosen.
Hence for each continuous value S that a variable � takes in
the data set, we compute the probability that S will be less
than or greater than the split point. To do this computation,
we might assume the split point is drawn from a uniform dis-
tribution over the values that � takes in the data set. We can
then reweight an example with the expected weight over all
possible split points. For example, suppose we have 100 ex-
amples, and the favored value for a variable � is less. An ex-
ample that takes the tenth lowest value for � has probability�P? : of being lower than the split point. Hence the weight of
this example will get multiplied by (�P? : ,�(R ,7Y\(�@?X� ,�(� ,
C�<? : .

Second, while we have demonstrated that skewing works
for parity and other problematic functions of up to seven vari-
ables, for more variables it appears that large numbers of ex-
amples (at least several thousand) will be required. If the
number of examples is too small relative to the size of the
problematic portion of the target, then skewing can cause pre-
dictive accuracy to degrade somewhat, though the reason for
this is unclear. Hence if a data set is small it may be desirable
to try both skewed and normal versions of the tree learner. In
spite of this limitation, skewing makes it possible to gain the
effect of five- or six- step lookahead where only 2- or perhaps
3-step lookahead was computationally feasible previously.

The third direction for future work is to address high-
dimensional data sets. The skewing approach may have trou-
ble with such data sets for the following reason. If each data
point has thousands of features, then one data point is likely to
get a much higher weight than all others (to have many more
variables with the preferred values), merely by chance, lead-
ing to a model that overfits this data point. One solution may
be to lessen the degree of skewing. This and other approaches
should be tested on high-dimensional data sets.

We would also like to apply the skewing approach to other
types of learning algorithms that have trouble with similar
hard functions. To focus on a specific algorithm for illus-
tration, the introduction noted that the sparse candidate algo-
rithm for learning Bayesian networks [Friedman et al., 1999]
was susceptible to functions like exclusive-or. This suscepti-
bility is because of its use of information gain or more gen-
erally Kullback-Leibler divergence to narrow the candidate
parents for any given node. For example, suppose the vari-
ables � � and � 	 together are highly predictive of the value of��� and hence would be excellent parents of ��� , as shown in
the Bayesian network fragment in Figure 11. If �-� and ��	
are independent of one another and take the value � roughly
half of the time, then among tens or hundreds of other vari-
ables neither ��� nor �
	 is likely to be considered as a candi-
date parent for ��� . Nevertheless, if several skewed versions
of the data are used to select candidate parents (a variable is
a potential parent if it scores well according to most of the

x1 2xx1 2x

x3

3x

 1 0 0.01 0.99
 0 1 0.02 0.98
 0 0 0.99 0.01

 1 1 0.97 0.03

 0 1
Pr()

Figure 11: Variable �P� is an approximation of �
�
�A���
skews), then ��� and �
	 are likely to be selected. Modifying
the sparse candidate algorithm is a direction for further work.
More generally, we believe the skewing approach presented
in this paper may be applicable to a variety of learning algo-
rithms besides decision trees.

Acknowledgements
The first author was supported in part by NSF grant 9987841 and
by grants from the University of Wisconsin Graduate School and
Medical School. The second author was supported by NIH Grant
1R01 LM07050-01.

References
[Blake and Merz, 1998] C.L. Blake and C.J. Merz. UCI repository

of machine learning databases, 1998.
[Breiman et al., 1984] L. Breiman, J.H. Friedman, R.A. Olshen,

and C.J. Stone. Classification and Regression Trees. Wadsworth
and Brooks/Cole, Monterey, 1984.

[Breiman, 1996] L. Breiman. Bagging predictors. Machine Learn-
ing, 24(2):123–140, 1996.

[Elidan et al., 2002] G. Elidan, M. Ninio, N. Friedman, and
D. Schuurmans. Data perturbation for escaping local maxima
in learning. In AAAI-02/IAAI-02, pages 132–139, 2002.

[Freund and Schapire, 1997] Y. Freund and R. Schapire. A
decision-theoretic generalization of on-line learning and an ap-
plication to boosting. Journal of Computer and System Sciences,
55:119–139, 1997.

[Friedman et al., 1999] Nir Friedman, Iftach Nachman, and Dana
Peér. Learning bayesian network structure from massive datasets:
The ”sparse candidate” algorithm. In UAI-99, pages 206–215,
1999.

[Norton, 1989] S. Norton. Generating better decision trees. In
IJCAI-89, pages 800–805, 1989.

[Quinlan, 1983] J.R. Quinlan. Learning efficient classification pro-
cedures and their application to chess end games. In R.S. Michal-
ski, J.G. Carbonell, and T.M. Mitchell, editors, Machine Learn-
ing I, chapter 15, pages 463–482. Morgan Kaufmann Publishers,
1983.

[Quinlan, 1997] J.R. Quinlan. C4.5: Programs for Machine Learn-
ing. Kaufmann, 1997.

[Szallasi, 2001] Z. Szallasi. Genetic network analysis: From
the bench to computers and back. In Tutorial Notes,
Second International Conference on Systems Biology, 2001.
www.icsb2001.org/SzallasiTutorial.pdf.

