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Abstract
We study the problem of generating an En-
glish sentence given an underlying prob-
abilistic grammar, a world and a com-
municative goal. We model the genera-
tion problem as a Markov decision process
with a suitably defined reward function
that reflects the communicative goal. We
then use probabilistic planning to solve the
MDP and generate a sentence that, with
high probability, accomplishes the com-
municative goal. We show empirically that
our approach can generate complex sen-
tences with a speed that generally matches
or surpasses the state of the art. Further,
we show that our approach is anytime and
can handle complex communicative goals,
including negated goals.

1 Introduction

Suppose someone wants to tell their friend that
they saw a dog chasing a cat. Given such a com-
municative goal, most people can formulate a sen-
tence that satisfies the goal very quickly. Fur-
ther, they can easily provide multiple similar sen-
tences, differing in details but all satisfying the
general communicative goal, with no or very lit-
tle error. Natural language generation (NLG) de-
velops techniques to extend similar capabilities to
automated systems. In this paper, we study the re-
stricted NLG problem: given a grammar, lexicon,
world and a communicative goal, output a valid
English sentence that satisfies this goal. The prob-
lem is restricted because in our work, we do not
consider the issue of how to fragment a complex
goal into multiple sentences (discourse planning).

Though restricted, this NLG problem is still dif-
ficult. A key source of difficulty is the nature of

the grammar, which is generally large, probabilis-
tic and ambiguous. Some NLG techniques use
sampling strategies (Knight and Hatzivassiloglou,
1995) where a set of sentences is sampled from
a data structure created from an underlying gram-
mar and ranked according to how well they meet
the communicative goal. Such approaches natu-
rally handle statistical grammars, but do not solve
the generation problem in a goal-directed manner.
Other approaches view NLG as a planning prob-
lem (Koller and Stone, 2007). Here, the commu-
nicative goal is treated as a predicate to be sat-
isfied, and the grammar and vocabulary are suit-
ably encoded as logical operators. Then auto-
mated classical planning techniques are used to
derive a plan which is converted into a sentence.
This is an elegant formalization of NLG, however,
restrictions on what current planning techniques
can do limit its applicability. A key limitation is
the logical nature of automated planning systems,
which do not handle probabilistic grammars, or
force ad-hoc approaches for doing so (Bauer and
Koller, 2010). A second limitation comes from re-
strictions on the goal: it may be difficult to en-
sure that some specific piece of information should
not be communicated, or to specify preferences
over communicative goals, or specify general con-
ditions, like that the sentence should be readable
by a sixth grader. A third limitation comes from
the search process: without strong heuristics, most
planners get bogged down when given commu-
nicative goals that require chaining together long
sequences of operators (Koller and Petrick, 2011).

In our work, we also view NLG as a plan-
ning problem. However, we differ in that our
underlying formalism for NLG is a suitably de-
fined Markov decision process (MDP). This set-
ting allows us to address the limitations outlined



above: it is naturally probabilistic, and handles
probabilistic grammars; we are able to specify
complex communicative goals and general criteria
through a suitably-defined reward function; and,
as we show in our experiments, recent develop-
ments in fast planning in large MDPs result in a
generation system that can rapidly deal with very
specific communicative goals. Further, our sys-
tem has several other desirable properties: it is an
anytime approach; with a probabilistic grammar, it
can naturally be used to sample and generate mul-
tiple sentences satisfying the communicative goal;
and it is robust to large grammar sizes. Finally,
the decision-theoretic setting allows for a precise
tradeoff between exploration of the grammar and
vocabulary to find a better solution and exploita-
tion of the current most promising (partial) solu-
tion, instead of a heuristic search through the solu-
tion space as performed by standard planning ap-
proaches.

Below, we first describe related work, followed
by a detailed description of our approach. We then
empirically evaluate our approach and a state-of-
the-art baseline in several different experimental
settings and demonstrate its effectiveness at solv-
ing a variety of NLG tasks. Finally, we discuss
future extensions and conclude.

2 Related Work

Two broad lines of approaches have been used to
attack the general NLG problem. One direction
can be thought of as “overgeneration and rank-
ing.” Here some (possibly probabilistic) struc-
ture is used to generate multiple candidate sen-
tences, which are then ranked according to how
well they satisfy the generation criteria. This in-
cludes work based on chart generation and pars-
ing (Shieber, 1988; Kay, 1996). These generators
assign semantic meaning to each individual token,
then use a set of rules to decide if two words can
be combined. Any combination which contains
a semantic representation equivalent to the input
at the conclusion of the algorithm is a valid out-
put from a chart generation system. Other exam-
ples of this idea are the HALogen/Nitrogen sys-
tems (Langkilde-Geary, 2002). HALogen uses a
two-phase architecture where first, a “forest” data
structure that compactly summarizes possible ex-
pressions is constructed. The structure allows for
a more efficient and compact representation com-
pared to lattice structures that were previously

used in statistical sentence generation approaches.
Using dynamic programming, the highest ranked
sentence from this structure is then output. Many
other systems using similar ideas exist, e.g. (White
and Baldridge, 2003; Lu et al., 2009).

A second line of attack formalizes NLG as an
AI planning problem. SPUD (Stone et al., 2003),
a system for NLG through microplanning, con-
siders NLG as a problem which requires realiz-
ing a deliberative process of goal-directed activ-
ity. Many such NLG-as-planning systems use
a pipeline architecture, working from their com-
municative goal through discourse planning and
sentence generation. In discourse planning, in-
formation to be conveyed is selected and split
into sentence-sized chunks. These sentence-sized
chunks are then sent to a sentence generator,
which itself is usually split into two tasks, sen-
tence planning and surface realization (Koller and
Petrick, 2011). The sentence planner takes in a
sentence-sized chunk of information to be con-
veyed and enriches it in some way. This is then
used by a surface realization module which en-
codes the enriched semantic representation into
natural language. This chain is sometimes referred
to as the “NLG Pipeline” (Reiter and Dale, 2000).

Another approach, called integrated generation,
considers both sentence generation portions of the
pipeline together (Koller and Stone, 2007). This
is the approach taken in some modern generators
like CRISP (Koller and Stone, 2007) and PCRISP
(Bauer and Koller, 2010). In these generators, the
input semantic requirements and grammar are en-
coded in PDDL (Fox and Long, 2003), which an
off-the-shelf planner such as Graphplan (Blum and
Furst, 1997) uses to produce a list of applications
of rules in the grammar. These generators generate
parses for the sentence at the same time as the sen-
tence, which keeps them from generating realiza-
tions that are grammatically incorrect, and keeps
them from generating grammatical structures that
cannot be realized properly.

In the NLG-as-planning framework, the choice
of grammar representation is crucial in treating
NLG as a planning problem; the grammar pro-
vides the actions that the planner will use to gener-
ate a sentence. Tree Adjoining Grammars (TAGs)
are a common choice (Koller and Stone, 2007;
Bauer and Koller, 2010). TAGs are tree-based
grammars consisting of two sets of trees, called
initial trees and auxiliary or adjoining trees. An



entire initial tree can replace a leaf node in the sen-
tence tree whose label matches the label of the root
of the initial tree in a process called “substitution.”
Auxiliary trees, on the other hand, encode recur-
sive structures of language. Auxiliary trees have,
at a minimum, a root node and a foot node whose
labels match. The foot node must be a leaf of the
auxiliary tree. These trees are used in a three-step
process called “adjoining”. The first step finds an
adjoining location by searching through our sen-
tence to find any subtree with a root whose label
matches the root node of the auxiliary tree. In the
second step, the target subtree is removed from the
sentence tree, and placed in the auxiliary tree as a
direct replacement for the foot node. Finally, the
modified auxiliary tree is placed back in the sen-
tence tree in the original target location. We use a
variation of TAGs in our work, called a lexicalized
TAG (LTAG), where each tree is associated with a
lexical item called an anchor.

Though the NLG-as-planning approaches are
elegant and appealing, a key drawback is the diffi-
culty of handling probabilistic grammars, which
are readily handled by the overgeneration and
ranking strategies. Recent approaches such as
PCRISP (Bauer and Koller, 2010) attempt to rem-
edy this, but do so in a somewhat ad-hoc way, by
transforming the probabilities into costs, because
they rely on deterministic planning to actually re-
alize the output. In this work, we directly address
this by using a more expressive underlying formal-
ism, a Markov decision process (MDP). We show
empirically that this modification has other bene-
fits as well, such as being anytime and an ability
to handle complex communicative goals beyond
those that deterministic planners can handle.

We note that prior work exists that uses MDPs
for NLG (Lemon, 2011). That work differs from
ours in several key respects: (i) it considers NLG
at a coarse level, for example choosing the type of
utterance (in a dialog context) and how to fill in
specific slots in a template, (ii) the source of un-
certainty is not language-related but comes from
things like uncertainty in speech recognition, and
(iii) the MDPs are solved using reinforcement
learning and not planning, which is impractical
in our setting. However, that work does consider
NLG in the context of the broader task of dialog
management, which we leave for future work.

3 Sentence Tree Realization with UCT

In this section, we describe our approach, called
Sentence Tree Realization with UCT (STRUCT).
We describe the inputs to STRUCT, followed by
the underlying MDP formalism and the probabilis-
tic planning algorithm we use to generate sen-
tences in this MDP.

3.1 Inputs to STRUCT

STRUCT takes three inputs in order to generate a
single sentence. These inputs are a grammar (in-
cluding a lexicon), a communicative goal, and a
world specification.

STRUCT uses a first-order logic-based seman-
tic model in its communicative goal and world
specification. This model describes named “en-
tities,” representing general things in the world.
Entities with the same name are considered to be
the same entity. These entities are described us-
ing first-order logic predicates, where the name of
the predicate represents a statement of truth about
the given entities. In this semantic model, the
communicative goal is a list of these predicates
with variables used for the entity names. For in-
stance, a communicative goal of ‘red(d), dog(d)’
(in English, “say anything about a dog which is
red.”) would match a sentence with the seman-
tic representation ‘red(subj), dog(subj), cat(obj),
chased(subj, obj)’, like “The red dog chased the
cat”, for instance.

A grammar contains a set of PTAG trees, di-
vided into two sets (initial and adjoining). These
trees are annotated with the entities in them. En-
tities are defined as any element anchored by pre-
cisely one node in the tree which can appear in a
statement representing the semantic content of the
tree. In addition to this set of trees, the grammar
contains a list of words which can be inserted into
those trees, turning the PTAG into an PLTAG. We
refer to this list as a lexicon. Each word in the
lexicon is annotated with its first-order logic se-
mantics with any number of entities present in its
subtree as the arguments.

A world specification is simply a list of all state-
ments which are true in the world surrounding our
generation. Matching entity names refer to the
same entity. We use the closed world assumption,
that is, any statement not present in our world is
false. Before execution begins, our grammar is
pruned to remove entries which cannot possibly be
used in generation for the given problem, by tran-
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Figure 1: An example tree substitution operation
in STRUCT.

sitively discovering all predicates that hold about
the entities mentioned in the goal in the world,
and eliminating all trees not about any of these.
This often allows STRUCT to be resilient to large
grammar sizes, as our experiments will show.

3.2 Specification of the MDP

We formulate NLG as a planning problem on
a Markov decision process (MDP) (Puterman,
1994). An MDP is a tuple (S,A, T,R, γ) where
S is a set of states, A is a set of actions avail-
able to an agent, T : S × A × S → [0, 1] is a
possibly stochastic function defining the probabil-
ity T (s, a, s′) with which the environment tran-
sitions to s′ when the agent does a in state s.
R : S × A × S → R is a real-valued reward
function that specifies the utility of performing ac-
tion a in state s to reach another state. Finally, γ
is a discount factor that allows planning over in-
finite horizons to converge. In such an MDP, the
agent selects actions at each state to optimize the
expected infinite-horizon discounted reward.

In the MDP we use for NLG, we must define
each element of the tuple in such a way that a plan
in the MDP becomes a sentence in a natural lan-
guage. Our set of states, therefore, will be par-
tial sentences which are in the language defined
by our PLTAG input. There are an infinite number
of these states, since TAG adjoins can be repeated
indefinitely. Nonetheless, given a specific world
and communicative goal, only a fraction of this
MDP needs to be explored, and, as we show be-
low, a good solution can often be found quickly us-
ing a variation of the UCT algorithm (Kocsis and
Szepesvari, 2006).

Our set of actions consist of all single substitu-
tions or adjoins at a particular valid location in the
tree (example shown in Figure 1). Since we are us-
ing PLTAGs in this work, this means every action
adds a word to the partial sentence. In situations
where the sentence is complete (no nonterminals

without children exist), we add a dummy action
that the algorithm may choose to stop generation
and emit the sentence. Based on these state and
action definitions, the transition function takes a
mapping between a partial sentence / action pair
and the partial sentences which can result from
one particular PLTAG adjoin / substitution, and re-
turns the probability of that rule in the grammar.

In order to control the search space, we restrict
the structure of the MDP so that while substitu-
tions are available, only those operations are con-
sidered when determining the distribution over the
next state, without any adjoins. We do this is in
order to generate a complete and valid sentence
quickly. This allows STRUCT to operate as an
anytime algorithm, described further below.

The immediate value of a state, intuitively, de-
scribes closeness of an arbitrary partial sentence to
our communicative goal. Each partial sentence is
annotated with its semantic information, built up
using the semantic annotations associated with the
PLTAG trees. Thus we use as a reward a measure
of the match between the semantic annotation of
the partial tree and the communicative goal. That
is, the larger the overlap between the predicates,
the higher the reward. For an exact reward signal,
when checking this overlap, we need to substitute
each combination of entities in the goal into predi-
cates in the sentence so we can return a high value
if there are any mappings which are both possible
(contain no statements which are not present in the
grounded world) and mostly fulfill the goal (con-
tain most of the goal predicates). However, this
is combinatorial; also, most entities within sen-
tences do not interact (e.g. if we say “the white
rabbit jumped on the orange carrot,” the whiteness
of the rabbit has nothing to do with the carrot),
and finally, an approximate reward signal gener-
ally works well enough unless we need to emit
nested subclauses. Thus as an approximation, we
use a reward signal where we simply count how
many individual predicates overlap with the goal
with some entity substitution. In the experiments,
we illustrate the difference between the exact and
approximate reward signals.

The final component of the MDP is the discount
factor. We generally use a discount factor of 1;
this is because we are willing to generate lengthy
sentences in order to ensure we match our goal.
A discount factor of 1 can be problematic in gen-
eral since it can cause rewards to diverge, but since



there are a finite number of terms in our reward
function (determined by the communicative goal
and the fact that because of lexicalization we do
not loop), this is not a problem for us.

3.3 The Probabilistic Planner
We now describe our approach to solving the MDP
above to generate a sentence. Determining the op-
timal policy at every state in an MDP is polyno-
mial in the size of the state-action space (Brafman
and Tennenholtz, 2003), which is intractable in our
case. But for our application, we do not need to
find the optimal policy. Rather we just need to
plan in an MDP to achieve a given communica-
tive goal. Is it possible to do this without explor-
ing the entire state-action space? Recent work an-
swers this question affirmatively. New techniques
such as sparse sampling (Kearns et al., 1999) and
UCT (Kocsis and Szepesvari, 2006) show how to
generate near-optimal plans in large MDPs with
a time complexity that is independent of the state
space size. Using the UCT approach with a suit-
ably defined MDP (explained above) allows us to
naturally handle probabilistic grammars as well
as formulate NLG as a planning problem, unify-
ing the distinct lines of attack described in Sec-
tion 2. Further, the theoretical guarantees of UCT
translate into fast generation in many cases, as we
demonstrate in our experiments.

Online planning in MDPs as done by UCT fol-
lows two steps. From each state encountered, we
construct a lookahead tree and use it to estimate
the utility of each action in this state. Then, we
take the best action, the system transitions to the
next state and the procedure is repeated. In order
to build a lookahead tree, we use a “rollout policy.”
This policy has two components: if it encounters
a state already in the tree, it follows a “tree pol-
icy,” discussed further below. If it encounters a
new state, the policy reverts to a “default” pol-
icy that randomly samples an action. In all cases,
any rewards received during the rollout search are
backed up. Because this is a Monte Carlo esti-
mate, typically, we run several simultaneous trials,
and we keep track of the rewards received by each
choice and use this to select the best action at the
root.

The tree policy needed by UCT for a state s is
the action a in that state which maximizes:

P (s, a) = Q(s, a) + c

√
lnN(s)

N(s, a)
(1)

Algorithm 1 STRUCT algorithm.

Require: Number of simulations numTrials,
Depth of lookahead maxDepth, time limit T

Ensure: Generated sentence tree
1: bestSentence← nil
2: while time limit not reached do
3: state← empty sentence tree
4: while state not terminal do
5: for numTrials do
6: testState← state
7: currentDepth← 0
8: if testState has unexplored actions

then
9: Apply one unexplored PLTAG pro-

duction sampled from the PLTAG
distribution to testState

10: currentDepth++
11: end if
12: while currentDepth < maxDepth

do
13: Apply PLTAG production selected

by tree policy (Equation 1) or de-
fault policy as required

14: currentDepth++
15: end while
16: calculate reward for testState
17: associate reward with first action taken
18: end for
19: state← maximum reward testState
20: if state score > bestSentence score

and state has no nonterminal leaf nodes
then

21: bestSentence← state
22: end if
23: end while
24: end while
25: return bestSentence

Here Q(s, a) is the estimated value of a as ob-
served in the tree search, computed as a sum over
future rewards observed after (s, a). N(s) and
N(s, a) are visit counts for the state and state-
action pair. Thus the second term is an exploration
term that biases the algorithm towards visiting ac-
tions that have not been explored enough. c is a
constant that trades off exploration and exploita-
tion. This essentially treats each action decision
as a bandit problem; previous work shows that
this approach can efficiently select near-optimal
actions at each state.

We use a modified version of UCT in order to



increase its usability in the MDP we have defined.
First, because we receive frequent, reasonably ac-
curate feedback, we favor breadth over depth in
the tree search. That is, it is more important in our
case to try a variety of actions than to pursue a sin-
gle action very deep. Second, UCT was originally
used in an adversarial environment, and so is bi-
ased to select actions leading to the best average
reward rather than the action leading to the best
overall reward. This is not true for us, however, so
we choose the latter action instead.

With the MDP definition above, we use our
modified UCT to find a solution sentence (Algo-
rithm 1). After every action is selected and ap-
plied, we check to see if we are in a state in which
the algorithm could terminate (i.e. the sentence
has no nonterminals yet to be expanded). If so,
we determine if this is the best possibly-terminal
state we have seen so far. If so, we store it,
and continue the generation process. Whenever
we reach a terminal state, we begin again from
the start state of the MDP. Because of the struc-
ture restriction above (substitution before adjoin),
STRUCT generates a valid sentence quickly. This
enables STRUCT to perform as an anytime algo-
rithm, which if interrupted will return the highest-
value complete and valid sentence it has found.
This also allows partial completion of communica-
tive goals if not all goals can be achieved simulta-
neously in the time given.

4 Empirical Evaluation

In this section, we compare STRUCT to a state-
of-the-art NLG system, CRISP, 1 and evaluate
three hypotheses: (i) STRUCT is comparable in
speed and generation quality to CRISP as it gen-
erates increasingly large referring expressions, (ii)
STRUCT is comparable in speed and generation
quality to CRISP as the size of the grammar which
they use increases, and (iii) STRUCT is capable
of communicating complex propositions, includ-
ing multiple concurrent goals, negated goals, and
nested subclauses.

For these experiments, STRUCT was imple-
mented in Python 2.7. We used a 2010 version of
CRISP which uses a Java-based GraphPlan imple-
mentation. All of our experiments were run on a
4-core AMD Phenom II X4 995 processor clocked
at 3.2 GHz. Both systems were given access to 8

1We were unfortunately unable to get the PCRISP system
to compile, and so we could not evaluate it.
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Figure 2: Experimental comparison between
STRUCT and CRISP: Generation time vs. length
of referring expression

GB of RAM. The times reported are from the start
of the generation process, eliminating variations
due to interpreter startup, input parsing, etc.

4.1 Comparison to CRISP
We begin by describing experiments comparing
STRUCT to CRISP. For these experiments, we use
the approximate reward function for STRUCT.

Referring Expressions We first evaluate
CRISP and STRUCT on their ability to gen-
erate referring expressions. Following prior
work (Koller and Petrick, 2011), we consider a
series of sentence generation problems which re-
quire the planner to generate a sentence like “The
Adj1 Adj2 ... Adjk dog chased the cat.”, where
the string of adjectives is a string that distin-
guishes one dog (whose identity is specified in the
problem description) from all other entities in the
world. In this experiment, maxDepth was set
equal to 1, since each action taken improved the
sentence in a way measurable by our reward func-
tion. numTrials was set equal to k(k + 1), since
this is the number of adjoining sites available in
the final step of generation, times the number of
potential words to adjoin. This allows us to en-
sure successful generation in a single loop of the
STRUCT algorithm.

The experiment has two parameters: j, the
number of adjectives in the grammar, and k, the
number of adjectives necessary to distinguish the
entity in question from all other entities. We set
j = k and show the results in Figure 2. We ob-
serve that CRISP was able to achieve sub-second
or similar times for all expressions of less than
length 5, but its generation times increase ex-
ponentially past that point, exceeding 100 sec-
onds for some plans at length 10. At length 15,
CRISP failed to generate a referring expression;



after 90 minutes the Java garbage collector termi-
nated the process. STRUCT (the “STRUCT final”
line) performs much better and is able to generate
much longer referring expressions without failing.
Later experiments had successful referring expres-
sion generation of lengths as high as 25. The
“STRUCT initial” curve shows the time taken by
STRUCT to come up with the first complete sen-
tence, which partially solves the goal and which
(at least) could be output if generation was inter-
rupted and no better alternative was found. As can
be seen, this always happens very quickly.

Grammar Size. We next evaluate STRUCT
and CRISP’s ability to handle larger grammars.
This experiment is set up in the same way as the
one above, with the exception of l “distracting”
words, words which are not useful in the sentence
to be generated. l is defined as j − k. In these ex-
periments, we vary l between 0 and 50. Figure 3a
shows the results of these experiments. We ob-
serve that CRISP using GraphPlan, as previously
reported in (Koller and Petrick, 2011), handles an
increase in number of unused actions very well.
Prior work reported a difference on the order of
single milliseconds moving from j = 1 to j = 10.
We report similar variations in CRISP runtime as
j increases from 10 to 60: runtime increases by
approximately 10% over that range.

No Pruning. If we do not prune the gram-
mar (as described in Section 3.1), STRUCT’s per-
formance is similar to CRISP using the FF plan-
ner (Hoffmann and Nebel, 2001), also profiled in
(Koller and Petrick, 2011), which increased from
27 ms to 4.4 seconds over the interval from j = 1
to j = 10. STRUCT’s performance is less sensi-
tive to larger grammars than this, but over the same
interval where CRISP increases from 22 seconds
of runtime to 27 seconds of runtime, STRUCT in-
creases from 4 seconds to 32 seconds. This is due
almost entirely to the required increase in the value
of numTrials as the grammar size increases. At
the low end, we can use numTrials = 20, but at
l = 50, we must use numTrials = 160 in order
to ensure perfect generation as soon as possible.
Note that, as STRUCT is an anytime algorithm,
valid sentences are available very early in the gen-
eration process, despite the size of the set of ad-
joining trees. This time does not change substan-
tially with increases in grammar size. However,
the time to perfect this solution does.

With Pruning. STRUCT’s performance im-

proves significantly if we allow for pruning. This
experiment involving distracting words is an ex-
ample of a case where pruning will perform well.
When we apply pruning, we find that STRUCT
is able to ignore the effect of additional distract-
ing words. Experiments showed roughly constant
times for generation for j = 1 through j = 5000.
Our experiments do not show any significant im-
pact on runtime due to the pruning procedure it-
self, even on large grammars.

4.2 Complex Communicative Goals

In the next set of experiments, we illustrate that
STRUCT can solve a variety of complex commu-
nicative goals such as negated goals, conjuctions
and goals requiring nested subclauses to be out-
put.

Multiple Goals. We first evaluate STRUCT’s
ability to accomplish multiple communicative
goals when generating a single sentence. In this
experiment, we modify the problem from the pre-
vious section. In that section, the referred-to dog
was unique, and it was therefore possible to pro-
duce a referring expression which identified it un-
ambiguously. In this experiment, we remove this
condition by creating a situation in which the gen-
erator will be forced to ambiguously refer to sev-
eral dogs. We then add to the world a number
of adjectives which are common to each of these
possible referents. Since these adjectives do not
further disambiguate their subject, our generator
should not use them in its output. We then encode
these adjectives into communicative goals, so that
they will be included in the output of the genera-
tor despite not assisting in the accomplishment of
disambiguation. For example, assume we had two
black cats, and we wanted to say that one of them
was sleeping, but we wanted to emphasize that it
was a black cat. We would have as our goal both
“sleeps(c)” and “black(c)”. We want the genera-
tor to say “the black cat sleeps”, instead of simply
“the cat sleeps.”

We find that, in all cases, these otherwise use-
less adjectives are included in the output of our
generator, indicating that STRUCT is successfully
balancing multiple communicative goals. As we
show in figure 3b (the “Positive Goals” curve) , the
presence of additional satisfiable semantic goals
does not substantially affect the time required for
generation. We are able to accomplish this task
with the same very high frequency as the CRISP
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Figure 3: STRUCT experiments (see text for details).
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Figure 4: Time taken by STRUCT to generate sentences with conjunctions with varying numbers of
entities.

comparisons, as we use the same parameters.
Negated Goals. We now evaluate STRUCT’s

ability to generate sentences given negated com-
municative goals. We again modify the prob-
lem used earlier by adding to our lexicon several
new adjectives, each applicable only to the tar-
get of our referring expression. Since our target
can now be referred to unambiguously using only
one adjective, our generator should just select one
of these new adjectives (we experimentally con-
firmed this). We then encode these adjectives into
negated communicative goals, so that they will not
be included in the output of the generator, despite
allowing a much shorter referring expression. For
example, assume we have a tall spotted black cat,
a tall solid-colored white cat, and a short spotted
brown cat, but we wanted to refer to the first one
without using the word “black”.

We find that these adjectives which should have
been selected immediately are omitted from the
output, and that the sentence generated is the best
possible under the constraints. This demonstrates
that STRUCT is balancing these negated commu-
nicative goals with its positive goals. Figure 3b
(the “Negative Goals” curve) shows the impact of
negated goals on the time to generation. Since
this experiment alters the grammar size, we see
the time to final generation growing linearly with
grammar size. The increased time to generate can

be traced directly to this increase in grammar size.
This is a case where pruning does not help us in re-
ducing the grammar size; we cannot optimistically
prune out words that we do not plan to use. Doing
so might reduce the ability of STRUCT to produce
a sentence which partially fulfills its goals.

Nested subclauses. Next, we evaluate
STRUCT’s ability to generate sentences with
nested subclauses. An example of such a sentence
is “The dog which ate the treat chased the cat.”
This is a difficult sentence to generate for several
reasons. The first, and clearest, is that there are
words in the sentence which do not help to in-
crease the score assigned to the partial sentence.
Notably, we must adjoin the word “which” to “the
dog” during the portion of generation where the
sentence reads “the dog chased the cat”. This de-
cision requires us to do planning deeper than one
level in the MDP, which increases the number of
simulations STRUCT requires in order to get the
correct result. In this case, we require lookahead
further into the tree than depth 1. We need to
know that using “which” will allow us to further
specify which dog is chasing the cat; in order to
do this we must use at least d = 3. Our reward
function must determine this with, at a minimum,
the actions corresponding to “which”, “ate”, and
“treat”. For these experiments, we use the exact
reward function for STRUCT.



Despite this issue, STRUCT is capable of gen-
erating these sentences. Figure 3c shows the score
of STRUCT’s generated output over time for two
nested clauses. Notice that, because the exact re-
ward function is being used, the time to generate
is longer in this experiment. To the best of our
knowledge, CRISP is not able to generate sen-
tences of this form due to an insufficiency in the
way it handles TAGs, and consequently we present
our results without this baseline.

Conjunctions. Finally, we evaluate STRUCT’s
ability to generate sentences including conjunc-
tions. We introduce the conjunction “and”, which
allows for the root nonterminal of a new sentence
(‘S’) to be adjoined to any other sentence. We
then provide STRUCT with multiple goals. Given
sufficient depth for the search (d = 3 was suf-
ficient for our experiments, as our reward signal
is fine-grained), STRUCT will produce two sen-
tences joined by the conjunction “and”. Again, we
follow prior work in our experiment design (Koller
and Petrick, 2011).

As we can see in Figures 4a, 4b, and 4c,
STRUCT successfully generates results for con-
junctions of up to five sentences. This is not a hard
upper bound, but generation times begin to be im-
practically large at that point. Fortunately, human
language tends toward shorter sentences than these
unwieldy (but technically grammatical) sentences.

STRUCT increases in generation time both as
the number of sentences increases and as the num-
ber of objects per sentences increases. We com-
pare our results to those presented in (Koller and
Petrick, 2011) for CRISP with the FF Planner.
They attempted to generate sentences with three
entities and failed to find a result within their 4
GB memory limit. As we can see, CRISP gener-
ates a result slightly faster than STRUCT when we
are working with a single entity, but works much
much slower for two entities and cannot generate
results for a third entity. According to Koller’s
findings, this is because the search space grows by
a factor of the universe size with the addition of
another entity (Koller and Petrick, 2011).

5 Conclusion

We have proposed STRUCT, a general-purpose
natural language generation system which is
comparable to current state-of-the-art generators.
STRUCT formalizes the generation problem as an
MDP and applies a version of the UCT algorithm,

a fast online MDP planner, to solve it. Thus,
STRUCT naturally handles probabilistic gram-
mars. We demonstrate empirically that STRUCT
is anytime, comparable to existing generation-as-
planning systems in certain NLG tasks, and is also
capable of handling other, more complex tasks
such as negated communicative goals.

Though STRUCT has many interesting prop-
erties, many directions for exploration remain.
Among other things, it would be desirable to in-
tegrate STRUCT with discourse planning and di-
alog systems. Fortunately, reinforcement learn-
ing has already been investigated in such con-
texts (Lemon, 2011), indicating that an MDP-
based generation procedure could be a natural fit
in more complex generation systems. This is a pri-
mary direction for future work. A second direction
is that, due to the nature of the approach, STRUCT
is highly amenable to parallelization. None of
the experiments reported here use parallelization,
however, to be fair to CRISP. We plan to paral-
lelize STRUCT in future work, to take advantage
of current multicore architectures. This should ob-
viously further reduce generation time.

STRUCT is open source and available from
github.com upon request.
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