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Abstract

This paper introduces multiple instance re-
gression, a variant of multiple regression in
which each data point may be described by
more than one vector of values for the inde-
pendent variables. The goals of this work are
to (1) understand the computational com-
plexity of the multiple instance regression
task and (2) develop an efficient algorithm
that is superior to ordinary multiple regres-
sion when applied to multiple instance data
sets.

1. Introduction

The multiple instance problem (Dietterich et al., 1997)
arises when the classification of every data point is not
known uniquely. For instance, we might know that one
of attribute vectors X1 or X2, or both, are responsi-
ble for a data point being classified as belonging to a
certain class, but we may be unable to pinpoint which
vector. This is frequently the case. For example, in
drug design, we wish to distinguish molecules effective
as drugs from ineffective ones. Here, training examples
are in the form of conformations (3D structures) of a
molecule, along with its class (active/inactive). How-
ever, a molecule may exist in a dynamic equilibrium
of several conformations. While the observed activ-
ity will be a function of one or more of these confor-
mations, it is typically impossible to determine which
one(s). On the other hand, it is almost never the case
that all conformations contribute to the observed ac-
tivity. Hence it is desirable to learn a classifier which
can take the multiple instance nature of these exam-
ples into account. Multiple instance problems arise in
a variety of other domains as well, ranging from in-
vitro fertilization (Saith et al., 1997) to image analysis
(Maron & Lozano-Pérez, 1998).

It is worthwhile to note that in several applications of
the multiple instance problem, the actual predictions
desired are real valued. The drug design example is
a case in point. While it is beneficial to be able to
predict the active or inactive classification, our expe-
rience is that drug developers often prefer to see pre-
dicted activity levels of these molecules, expressed as
real numbers. Most past research on the multiple in-
stance problem has focused on the design of discrete
classifiers. We investigate instead the task of learning
to predict the value of a real valued dependent vari-
able, under the assumptions of multiple regression, for
data where the multiple instance problem is present.
We call this task multiple instance multiple regression,
or for brevity multiple instance regression.

Our investigation of multiple instance regression has
two goals. The first is to understand the computa-
tional complexity inherent in the task of multiple in-
stance regression—for example, we would like to know
if a linear time algorithm exists as for ordinary regres-
sion. The second goal is to determine whether multiple
instance regression has any advantage over ordinary
regression when building classifiers for data sets where
the multiple instance problem is present. In such cases,
we could simply ignore the multiple instance problem,
treat each instance as a distinct data point having the
classification of the bag, and use ordinary regression.
This is effectively the approach taken by Srinivasan
and Camacho(1999) to incorporate linear regression
literals into inductive logic programming (see Section
6). We wish to understand if multiple instance regres-
sion confers any benefit over this baseline method.

2. Task Definition

We define the task under consideration as follows. We
are given a set of n bags. The ith bag consists of mi

instances and a real valued class label yi. Instance j
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Figure 1. An example of a synthetic multiple instance re-
gression problem in two dimensions. Each bag is under-
lined, and consists of at most three instances with different
values for the real-valued attribute and sharing common
real-valued class labels. The primary instances of each bag
are shown as “+” symbols. The line that we would like to
extract as the model for this data is also shown.

of bag i is described by a real valued attribute vector
~Xij of dimension d. An example of a synthetic mul-
tiple regression problem is shown in figure 1. In the
drug design example, each bag would be a molecule,
and each instance a conformation of the molecule rep-
resented by an attribute vector.

We assume that the hypothesis underlying the data is
a linear model with Gaussian noise on the value of the
dependent variable (which is also the real valued la-
bel). Further, we assume that it is sufficient to model
one instance from each bag, i.e. that there is some pri-
mary instance which is responsible for the real valued
label. We limit the present paper to linear hypothe-
ses for two reasons. First, multiple linear regression is
probably the single most well-known and widely-used
method of real-valued prediction. Second, multiple re-
gression appears well-suited for the particular task of
drug activity prediction(Hansch et al., 1962; Debnath
et al., 1991) that was the original motivation for mul-
tiple instance learning. A linear hypothesis is intu-
itively plausible as a predictor for activity levels. It is
natural to expect that activity levels will decrease ex-
ponentially as 3-dimensional distances between atoms
in a molecule vary from the ideal distances. However,
activity levels are typically recorded on a logarithmic
scale, so the dependence between these and distances
may be linear.

Ideally, we would like to find a hyperplane Y = Xb

such that

b = arg min
b

n∑

i=1

L(yi, ~Xip,b) (1)

where ~Xip describes the primary instance of bag i, and
L is some error function measuring the goodness of
the hyperplane with respect to each instance. Intu-
itively, this describes the model as the best hyperplane
in

�
d+1 with respect to the “correct” (primary) in-

stances. However, the primary instances are unknown
at training time, so this is impossible in practice. Nev-
ertheless, we make the following informal conjecture.

Conjecture 1 In most situations, a good approxima-
tion to the ideal can be obtained from the “best fit”
hyperplane defined by

b = arg min
b

n∑

i=1

min
j

L(yi, ~Xij ,b), 1 ≤ j ≤ mi

for large enough n.

For Conjecture 1 to be true, it is necessary that the
non-primary instances in each bag are not a better fit
to a hyperplane than the primary instances. A future
direction of this work is to ascertain the conditions
under which this conjecture is valid. Note that it is
possible that the provided values may be noisy, so that
the minimum L-error in conjecture 1 is not necessarily
zero.For our algorithm, we use

L(yi, ~Xij ,b) = (yi − ~Xijb)2

as is used for multiple regression.

It is clear that if n < d + 1 (the dimension of the
space) there are infinitely many hyperplanes with zero
L-error with respect to a set of instances containing
one instance from each bag, and the problem is trivial
since any of these planes solves the constraint in con-
jecture 1. On the other hand, if n ≥ d+1 a brute force
approach trying all possible hyperplanes is exponential
in mi and n. In fact, the problem of minimizing the
L-error for n ≥ d + 1 is intractable unless P = NP .
We state this result in the following theorem.

Theorem 2 The decision problem: Is there a hyper-
plane which perfectly fits one instance from each bag?
is NP -complete for arbitrary n, d (n ≥ d+1 ) and mi

at most 3.

The proof proceeds by a reduction from 3SAT, and
has been omitted for brevity. It is clear that the NP -
completeness of the above decision problem implies the
NP -hardness of the related decision problem: Is there



Multiple Instance Regression algorithm

Input: An integer R and n bags,where bag i is ~Xi1, ~Xi2, . . . , ~Xi,mi
; ~Xij an attribute vector of dimension d.

Output: A hyperplane Y = Xb.

1. Let GlobalErr = MAXDOUBLE (the maximum representable double precision value)
2. For r = 1 . . . R

3. Choose a random initial hyperplane b in � d+1 .
4. Let BestErr = MAXDOUBLE

5. Let ErrThisIter = 0
6. Let Done = false

7. Repeat

8. Let I = φ

9. For every bag i = 1 . . . n /* find new instances */
10. For every instance j = 1 . . . mi

11. Calculate the error of the instance with respect to the hyperplane: L(yi, ~Xij ,b) = (yi − ~Xijb)2

12. end For /* instances */
13. Let I = I ∪ {the instance with the lowest error}. Let this error be Lmin.
14. Let ErrThisIter = ErrThisIter + Lmin

15. end For /* bags */
16. if ErrThisIter ≥ BestErr /* check convergence */
17. then Done = true

18. else

19. Let BestErr = ErrThisIter

20. Let b′ = b

21. Perform multiple regression over I to obtain a new hyperplane b.
22. endif

23. Until Done

24. Let the error of b′ be Emin.
25. if Emin < GlobalErr

26. GlobalErr = Emin

27. b′′ = b

28. endif

29. end For /* random restarts */
30. Return the plane b′′.

Figure 2. Multiple Instance Regression algorithm

a hyperplane which fits one instance from each bag such
that the total L-error is ≤ e? for some given positive
constant e. This in turn shows that the general for-
mulation of the multiple instance regression problem
is NP -hard. Hence, we devise an approximation algo-
rithm to solve our problem.

3. Algorithm

Analogous to approaches to other multiple instance
learning tasks (Dietterich et al., 1997; Jain et al.,
1994), we employ an Expectation Maximization (EM)
algorithm, shown in figure 2. We start with an initial
random guess at the hypothesis which is iteratively re-
fined. Each iteration consists of two main steps. In the
E step, we select an instance from each bag which has
least L-error with respect to our current best guess at
the correct hypothesis (hyperplane). In the M step,
we refine our current guess of the hypothesis by us-
ing multiple regression to construct a new hyperplane

from the set of instances selected in the previous step.
These steps are repeated until the algorithm converges.

We provide an intuitive sketch of the proof of conver-
gence. Note that a set of instances selected in the E
step uniquely defines a hyperplane (step 21). Suppose
at a certain step we have a set of instances Ik which
has an L-error ek with respect to our current guess
at the hypothesis. In the next iteration, Ik+1 6= Ik

and ek+1 < ek (step 16). Since the error decreases
monotonically, the set of instances can never repeat.
However, there are only finitely many sets of instances
that the algorithm can explore. Hence it must termi-
nate in a finite number of steps.

EM algorithms are not deterministic, because the re-
sult of any run is influenced by the initial random
starting point—in our algorithm, the starting hyper-
plane. Hence it is common to run an EM algorithm
several times on any given data set, using “random
restarts.” The quantity R in the algorithm is the num-



ber of random restarts to be used. We have used an
R of 10 in our experiments.

The algorithm is modular. We could choose any L-
measure we wish (subject to convergence requirements
as discussed above), and also any class of (possibly
nonlinear) hypotheses to explore in step 21. We might,
for instance, use an artificial neural network, as in a
related approach taken by Jain et al. (1994), discussed
in section 5.

4. Experiments

We have tested the algorithm thoroughly using syn-
thetic data sets, comparing it with ordinary multiple
regression and generating learning curves. This sec-
tion describes the experimental setup and synthetic
data experiments.

4.1 Experimental Setup

We generated synthetic data sets by choosing random
hyperplanes. The generating program took as input an
interval {xmin, xmax}, the dimension of an attribute
vector d, the number of bags n and the maximum num-
ber of instances per bag m. For each bag, a random
number of instances between m

2
and m were gener-

ated. For the first instance of a bag, independent co-
ordinates were generated by moving in increments of
xmax−xmin

n
from xmin to xmax along all dimensions.

The y co-ordinate (the real-valued class label) was
computed from the known hyperplane and Gaussian
noise was added to it. The independent X co-ordinates
of the remaining (non-primary) instances of each bag
were drawn randomly according to two different dis-
tributions. In our first experiments, these were drawn
according to a uniform distribution over {xmin, xmax}.
To simulate cases where the X co-ordinates of differ-
ent instances of the same bag are correlated, as might
occur in the case of drug activity prediction, we also
performed experiments using a Gaussian distribution
in place of the uniform distribution. Here, each X

co-ordinate of a non-primary point was drawn from
a Gaussian whose mean was the value of that X co-
ordinate from the primary instance and whose stan-
dard deviation was 10.0. Note that the non-primary
instances share the y co-ordinate (class label) of the
first instance.

In the learning curve experiments described below, we
used a maximum of 10 instances per bag. The at-
tribute vector describing each instance was a 20 di-
mensional real valued vector. xmin was set to 0 and
xmax was set to 100. The distribution governing the
Gaussian noise added to y was N(0, 5). We generated

the data using ten random hyperplanes in
�

21 . We
constructed six data sets using each hyperplane, con-
taining 100 to 2500 bags. For each hyperplane, we
generated test sets containing 1000 bags. Due to the
paucity of time, we were unable to complete experi-
ments with 2500 bags for the Gaussian distribution.

To evaluate our algorithm in these experiments, we
generated test sets according to the same models as
the training sets. We tested the algorithm using two
measures of goodness. The first, which we shall call the
accuracy measure, computes the fraction of primary
instances that are among the set of instances closest
to a given hyperplane. The higher this measure is,
the better is our approximation to the ideal (1). The
second measure is a test set r-square measure defined
as follows:

R2 = 1 −

∑
i(yi − y

p
i )2∑

i(yi − ȳ)2
(2)

where yi is the actual y value for the ith bag, y
p
i is

the predicted y-value for the (primary instance of the)
ith bag, and ȳ is the mean y value over the training
and test set. This measure therefore computes the im-
provement in fit of our plane over the simple plane
y = ȳ. If measured on the training set with respect to
the set of points closest to the hyperplane, this mea-
sure is the usual R2 measure and is positively corre-
lated with our approximation to the “best fit” hyper-
plane (conjecture 1). We note that in our algorithm,
we try to explicitly optimize the training set R2 mea-
sure in this way(step 21). The accuracy measure is
optimized contingent on the truth of our assumption
that the best fit line is a good approximation to the
ideal.

Since we tested on synthetic data, it was quite simple
to compute these measures for any hyperplane. We
generate data so that the first instances of any bag are
the primary instances. After a hyperplane is generated
by our algorithm, we can compute its accuracy over a
data set by computing the fraction of points closest
to it that were also the first instances in each bag.
We can also directly compute the value of R2 for our
approximation to the ideal by choosing the yi in (2)
from the primary instances of each bag.

In all figures that follow, “MIP” represents our al-
gorithm, “Base” represents ordinary regression and
“Best” represents regression over the primary points.

4.2 Learning Curves

We constructed the learning curves in Figures 3 and 4
to test our primary hypothesis: as we get more data
points (bags), with all other variables held constant,
the hyperplanes produced by the algorithm should
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Figure 3. Accuracy Learning Curves with Uniform Distri-
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Figure 4. R2 Learning Curves with Uniform Distribution

converge towards the ideal, as measured by the ac-
curacy and R2 measures. We compare a baseline al-
gorithm with our algorithm. The baseline algorithm
performs simple multiple regression over the entire set
of data points ignoring the multiple instance aspect of
the problem.

The results in Figures 3 and 4 clearly indicate that
multiple instance regression confers benefit over ordi-
nary regression. For some indication of significance,
the difference in test accuracies at 1000 bags is sig-
nificant to a level of 10−15 according to the standard
sign test. Nevertheless, these results raise a number of
questions which we next seek to answer.

First, it seems likely that the significant benefit of mul-
tiple instance regression over ordinary regression arises
in part because the values of the independent variables
of the non-primary instances in a bag are completely
uncorrelated with the values of those variables in the
primary instance of the bag. This independence may
not always be the case in practice. To test the con-
tribution of this independence, we choose a way of in-
troducing a high degree of correlation into our syn-
thetic data. We repeat the same experimental setting
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Figure 5. Accuracy Learning Curves with Gaussian Distri-
bution
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Figure 6. R2 Learning Curves with Gaussian Distribution

but with the value of an independent variable in a
non-primary instance chosen according to a Gaussian
whose mean is the value of that variable in the pri-
mary instance. This perhaps induces a more extreme
correlation than would be expected in practice. Fig-
ures 5 and 6 show that in this case ordinary regression
performs nearly as well as multiple instance regression.
Another observation is that it seems easier to obtain
higher R2 values for this setup. A possible reason for
these observations is suggested by figure 7. Here, we
compute an R2 measure that estimates the amount of
linearity in the non-primary points alone1, when the
Gaussian distribution is used to generate them. In this
measure we let y

p
i in equation (2) be the prediction of

our algorithm, while ȳ is replaced by the prediction of
a plane obtained by regression over the non-primary
points alone. In figure 7, we plot this modified mea-
sure against the number of dimensions and the num-
ber of instances. We note that, by modifying the dis-
tribution, we have introduced a significant amount of
“random linearity”. This contributes to the poor per-
formance of the algorithm, since it is much more likely

1We thank the anonymous referees for this suggestion.



0

0.2

0.4

0.6

0.8

1

10 15 20 25 30 35 40 45 50

M
od

ifi
ed

 R
2

Dimensions/Instances

Dimensions
Instances

Figure 7. Modified R2 vs. Dimensions and Instances

to be trapped in a local minimum of the error measure.

4.3 Variation in Dimensions and Instances

We next study the variation in the performance of mul-
tiple instance regression with the number of dimen-
sions (independent variables) and number of instances
per bag. Figures 8 and 9 plot accuracy and R2, respec-
tively, against number of dimensions, while Figures 10
and 11 plot accuracy and R2 against number of in-
stances per bag. We use the Gaussian distribution in
generating the synthetic data for these experiments.
The number of bags is held constant at 1000. As ex-
pected, the accuracy decreases with both increasing
dimensions and instances. However, the decrease is
much more rapid with increasing number of instances.
This is also expected, since the combinatorial factor in
the algorithm’s search arises primarily from the num-
ber of instances in a group. Hence, as the number of in-
stances increases, we should use more random restarts
to enable the algorithm to find a good solution.

In all of the experiments with the Gaussian distribu-
tion, we note that training set R2 (the measure which
we actually optimize) is very close to 1.0. However,
this does not necessarily result in good test set ac-
curacy. A further verification is provided by figure 7,
which indicates increasing linearity in the non-primary
points with increasing dimensions and instances. We
have plotted the accuracy and R2 measures for the
ideal plane in figures 8 to 11 as “Best”. From these
results, we see that it is possible to achieve high ac-
curacy and R2 simultaneously. We may reasonably
conclude that, when non-primary instances are gener-
ated according to a distribution more complex than
the uniform, merely optimizing the R2 measure will
not be enough. Therefore, there is much room for im-
provement in the algorithm.
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Figure 8. Accuracy vs. Dimensions Curves
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Figure 9. R2 vs. Dimensions Curves

4.4 Runtime Complexity

The multiple instance algorithm (figure 2) has two
main loops. The outer loop (step 2 to step 29) runs R

times, which is a constant. The inner loop (step 7 to
step 23) runs an undetermined, finite number of times.
In each inner cycle, we compute the error for every
instance and do multiple regression over the best set
found. This takes Θ(d · m · n), where m = maxi(mi),
and is independent of the specific hyperplane being
looked at. If the parameters d and m are held constant,
the inner loop is Θ(n). Hence, the quantity of interest
is the average number of cycles taken by the algorithm
to converge, because this determines the runtime com-
plexity as the parameters n, m and d change. We plot
this quantity against the parameters in figures 12 and
13. It is interesting to note that the number of cycles
appears to increase linearly or sub-linearly with the
number of bags (with the increase being nearly linear
for Gaussian), but number of cycles relative to dimen-
sion or instances appears bounded by a constant. We
note that the algorithm’s search is carried out over the
space of combinations of instances, so that increasing
the number of instances impacts runtime more than
increasing dimensions. On the other hand, appeal-



0

20

40

60

80

100

10 15 20 25 30 35 40 45 50

A
cc

ur
ac

y(
%

)

Instances

MIP Train
MIP Test

Base Train
Base Test
Best Train
Best Test

Figure 10. Accuracy vs. Instances Curves

0

0.2

0.4

0.6

0.8

1

1.2

10 15 20 25 30 35 40 45 50

R
2

Instances

MIP Train
MIP Test

Base Train
Base Test
Best Train
Best Test
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ing to figure 10, it is more likely that as instances in-
crease, the algorithm is finding spurious planes. This
is possibly why the average number of cycles to con-
vergence does not show much increase as the number
of instances increases.

5. Related Work

There are several existing approaches to handling the
multiple instance problem for discrete classification.
Dietterich et al. (1997) describe algorithms which are
applicable when the classifiers are axis-parallel rectan-
gles. Here, the axes are features. Each example (bag)
can be described by a range of values on each axis
corresponding to the minimum and maximum values
for that feature among the instances constituting the
bag. For example, in the drug activity prediction task,
these features might be distances to the molecule sur-
face from some chosen origin. These algorithms learn
a rectangle in this feature space that covers the most
positive examples (at least one instance from each)
while not covering negative examples. Maron et al.
(1998) describe a general approach called Diverse Den-
sity for multiple classification. Diverse Density uses a
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Figure 13. Average number of cycles with increasing di-
mension and instances (Gaussian distribution only)

probabilistic approach to maximize a measure of the
intersection of the positive bags minus the union of
the negative bags in feature space. The algorithms of
both Dietterich et al. and Maron et al. were tested
on a problem similar to drug activity prediction, that
of classifying musk and non-musk molecules. Unfor-
tunately, while there are degrees of musk odor, there
is no data set available with real-valued measurements
of musk odor for use with multiple instance regression.

Predicting continuous quantities in the presence of
the multiple instance problem has received less atten-
tion. The most closely related work to ours is by Jain
and colleagues (1994). They designed a system called
compass for drug activity prediction, which uses an
EM approach combined with a neural network. This
system returns real valued estimates of the activity
of a candidate molecule. compass is specific to the
domain of drug activity prediction, and its expecta-
tion step involves computing alternative low-energy
conformers for the molecules (in selected iterations)
and re-aligning the chosen conformers of the molecules
with one another. Nevertheless, it should be possible
to substitute a more general purpose E step to change



compass into a general-purpose algorithm for multiple
instance prediction.

6. Conclusion and Future Work

In this work, we have introduced the task of multiple
instance regression and noted that, whereas ordinary
regression admits a linear-time algorithm, multiple in-
stance regression is NP-hard. We have therefore pre-
sented an EM algorithm for multiple instance regres-
sion that is not specific to any domain, and because of
its modularity may be extended to more complex mod-
els. We have shown using synthetic data that, when
the non-primary instances are not correlated with the
primary instances, it significantly outperforms ordi-
nary regression. Furthermore, the number of cycles
required appears to grow at most linearly with the
number of bags, and does not appear to grow beyond
a constant bound with the number of dimensions and
number of instances per bag.

Nevertheless, when non-primary instances are highly
correlated with primary instances the algorithm does
not significantly outperform ordinary regression. Fur-
thermore, the algorithm still falls short of the results
of regression given the primary instances only (the
ideal). These observations suggest there is room for
much further research into multiple instance regres-
sion. One immediate direction is to try alternative EM
algorithms that do not select a single instance of each
bag, but instead weight each instance by likelihood.
An important theoretical direction for this work is to
determine when Conjecture 1 is applicable.

Perhaps the most important area for immediate fur-
ther work is in the application to real-world data sets.
This would provide insight, for example, into the de-
gree of correlation one can expect between primary and
non-primary instances. We currently are construct-
ing such sets within the context of combining multiple
instance regression with inductive logic programming
(ILP). We close with a description of this work.

In drug design and several other domains, the value of
one of the variables in a clause (e.g., Activity) might be
assumed to be a linear function, with Gaussian noise,
of other variables in the clause. Let us call the first
variable the “dependent variable” and the others the
“independent variables.” In such cases, it is natural
to combine ILP with linear regression. Indeed, Srini-
vasan and Camacho (1999) first made this assumption
and applied their approach to physical modeling (pole-
and-cart problem) and prediction of mutagenicity. A
difficulty in this approach is that the variables in a
clause may take multiple bindings, and one does not

know which bindings are responsible for the value of
the independent variable. In the work of Srinivasan
and Camacho, each different vector of bindings for the
independent variables gave rise to a distinct data point
for regression. This is analogous to using the “Base”
algorithm of our paper. But for many applications, all
we know is that at least one of the vectors of bindings
is responsible for the value of the dependent variable,
rather than all. Hence it is natural to model the re-
gression task as a multiple instance problem. We are
currently developing and obtaining public data sets
of compounds with continuous activity levels for ex-
periments with the combination of ILP and multiple
instance regression.
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