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Scaling up reinforcement learning to large domains requires leveraging the structure
in the domain. Hierarchical reinforcement learning has been one of the ways in which the
domain structure is exploited to constrain the value function space of the learner, and speed
up learning[10, 3, 1]. In the MAXQ framework, for example, a task hierarchy is defined,
and a set of relevant features to represent the completion function for each task-subtask
pair are given [3], resulting in decomposed subtask-specific value functions that are easier
to learn than the global value function.

The MAXQ decomposition facilitates learning separate value functions for subtasks. The
task hierarchy is represented as a directed acyclic graph. The leaf nodes are the primitive
subtasks. Each composite subtask defines a semi-Markov Decision Process (SMDP) with
a set of actions (which may include primitive actions or other subtasks), a set of state
variables, a termination predicate which defines a set of exit states for the subtask, and a
pseudo-reward function defined over the exits.

Several researchers have focused on the problem of automatically inducing temporally
extended actions and task-subtask hierarchies [4, 7, 8, 9, 2, 11, 6, 5]. Discovering task-
subtask hierarchies automatically is attractive for at least two reasons. First, it avoids the
significant human effort in engineering the task-subtask decomposition, state abstractions,
and task-specific rewards. Second, if the same hierarchy is useful in multiple domains, it
leads to significant transfer of learned structural knowledge from one domain to the other.
The cost of learning the hierarchies itself can be amortized over several domains. There
have been some successful approaches to learning task hierarchies automatically, for ex-
ample, VISA[6] and HEXQ [5]. These approaches define tasks around changing the values of
state variables. HEXQ uses a heuristic that relies on the differences in the frequencies of value
changes in state variables to determine the task-subtask relationships. The most frequently
changing variable is attached to the lowest-level subtask and is consequently learned first,
followed by less frequently changing variables. The VISA algorithm uses dynamic Bayesian
network (DBN) action models to analyze the effects of actions on state variables. The vari-
ables are grouped into clusters such that there is an acyclic influence relationship between
the values of variables in different clusters (strongly connected components). This naturally
defines a task-subtask hierarchy, where the state variables whose values influence the values
of other state variables are assigned to lower-level subtasks. The VISA algorithm provides
a more principled rationale for HEXQ’s heuristic.

In this paper, we describe a hierarchy learning algorithm that uses given DBN action
and reward models as well as a single successful solution of a problem. Such a solution might
be obtained from a demonstration by a teacher, or from having previously solved similar
tasks. Our approach resembles the VISA algorithm in that we rely on the DBNs to extract
the task-subtask relationships and the appropriate abstraction for each subtask. However,
unlike VISA, our analysis of the causal relationships between variables uses the observed
solution trajectory. This could allow us to learn more refined hierarchies in two possible
ways. First, the hierarchies we learn decompose the global problem only into subproblems
that were observed in the solution trajectory, rather than all possible subproblems. This
leads to more compact subtask hierarchies. Second, by using the solution trajectory, we are
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able to perform a more refined analysis of the causal relationships between state variables
than just using the action DBNs. For example, while analyzing the action DBNs might lead
us to conclude that one variable possibly influences another, the corresponding action(s)
may never be part of the observed solution trajectory. In this case, the influence can be
ignored, leading to stronger abstraction. Moreover, VISA induces exit-option hierarchies for
which value-function decomposition is not applicable.

Our application domain is the real-time strategy game Wargus. We describe it here to
help explicate our algorithm. The core theme of Wargus is multiple teams/tribes competing
for dominion over a geographical area (map). Each team is controlled by a player, and
the goal is to obliterate every other player’s team from the map. In order to satisfy this
objective, the players must build strong economies that can, in turn, support a powerful
military capable of vanquishing their opponents.

(a) Wargus resource-collection map.

State variables

Peasant location: a.l

Peasant resource: a.r

Gold mine within sight radius: reg.gold

Trees within sight radius: reg.wood

Town hall within sight radius: reg.townhall

Required gold quota: req.gold

Required wood quota: req.wood

Primitive actions

Mine gold: MG

Chop wood: CW

Deposit: Dep

Navigate: Goto(loc)

(b) State and action spaces.

Figure 1: Wargus resource-gathering domain.

Maps have natural resources such as goldmines and forests from which usable resources
such as gold and wood can be harvested by the peasant units. Building a unit such as a new
peasant or footman, or even a structure such as a town hall requires a certain amount of the
collected gold, wood, and supply (food provided by the farms). In our experiments, we focus
on the resource-gathering aspect of the game. Figure 1 shows a typical resource-gathering
Wargus map with a single peasant, and the corresponding state and action spaces. We
circumvent the issue of dealing with numeric goals (e.g., the actual quotas of gold or wood
required) by using binary variables instead (signifying the fulfillment of the quotas). The
provided map has forests, goldmines, and a town hall (collection point). The structure of
the task hierarchy learned in one such map could be transferred over to another in which
the locations of the entities within the map are all shuffled around. Note that the value
function itself does not transfer to a different map.

Our approach to learning MAXQ hierarchies focuses on MDPs where the agent is solving
a known conjunctive goal. This is a subset of the class of stochastic shortest path MDPs. In
such MDPs, there is a goal state (or a set of goal states), and the optimal policy for the agent
is to reach such a state as quickly as possible. Our algorithm has three components. We
first annotate the given trajectory using causal links between the actions corresponding to
the setting and checking of variables. Second, we use these causal annotations to segment
the trajectory into subtasks and associate them with appropriate terminate conditions.
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Finally, we use the DBN models, reward definitions, and termination conditions to define
the appropriate relevant variables for each subtask. We recursively process each segment
until a termination condition based on state abstraction is met. We provide some details
on each step below.

To annotate the trajectory with causal information, we determine the set of relevant
and irrelevant variables for each action. We say that a variable v is relevant to an action
A if the reward and transition dynamics for A either check or change v, and it is irrelevant
otherwise. Given a trajectory, the set of trajectory-relevant (t-relevant) variables to an
action A is the subset of the relevant variables that were actually checked or changed when
A was executed in the trajectory. A causal edge labeled with a variable v connects two
actions A and B (B later in the sequence than A) iff v is t-relevant to both A and B and
irrelevant to all actions in between A and B. A causally annotated trajectory (CAT) is a pair
(T,C) where T is a trajectory and C is the set of all causal edges in T . While performing
this annotation, we ignore variables that cannot affect the goal conjunction (such variables
can be found using a static analysis of the action DBNs). A sample CAT for the Wargus
domain is shown in figure 2.

Figure 2: Causally annotated trajectory (CAT) for the Wargus resource-gathering domain.

After the CAT is constructed, we recursively decompose it into subtasks as follows.
We maintain an unsolved goal list which is initially populated with the literals in the goal
conjunction. At each step, we remove an arbitrary literal from this list and find the last
action that satisfies the goal literal under consideration. We then find the longest sequence
of actions immediately prior to and including the last action such that no causal edge
leaves the sequence. The idea is to find all actions that are “responsible” for the specific
literal being considered. The partition of the trajectory thus found is our initial subtask
definition. Once the current trajectory has been partitioned into subtasks, we recursively
call the procedure on each of the found subtasks at this level. A subtask is not partitioned
further if the abstraction does not increase, i.e., if the child task does not have fewer relevant
variables than the parent.

After finding the partition that constitutes a subtask, we assign this subtask a set of
actions and a termination predicate. In both cases, we use the DBNs to generalize from
the observed trajectory, since we want the subtask to be applicable to state-action pairs
not in the observed trajectory. To assign the termination condition for this subtask, we
use the relational test(s) in the action and reward DBNs satisfied by the variables on the
causal edges leaving the subtask. To determine if the set of primitive actions available to
the subtask should be expanded, we create a merged DBN structure using the observed
primitive actions. The merged DBN represents possible variable effects after any sequence
of the observed primitive actions. Next, for each primitive action DBN that we did not see
in this trajectory, we create a merged DBN that represents a sequence of such actions. If
this is a subgraph of the subtask DBN, we add this action to the set of actions available
to this subtask. The rationale here is that the added action does not increase the set of
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relevant variables. Finally, the set of nonterminal states for this subtask is the set of states
from which the termination states are reachable using the generalized set of actions.

We can show that our induction procedure parses the entire input trajectory, and gener-
ates a unique decomposition at each (recursive) level. We can further establish some simple
properties of the induced hierarchies. We can show that there exists some hierarchical pol-
icy which, when executed on the induced hierarchy, can (with nonzero probability) generate
the trajectory that was used to induce the hierarchy. Next, we can show that our procedure
only makes safe state abstractions. Finally, we can show that, if we count the total number
of variables that are relevant to representing the value functions across all subtasks, this
count does not decrease with any local change to our solution (a local change adjusts the
boundaries between the subtask partitions found by our algorithm). In this sense, since no
local change improves the state abstraction, the induced hierarchies are locally optimal.

For the experimental setup, we are interested in empirically verifying if the transfer of
structural knowledge from one map to another helps speed up learning in the latter. To
this end, we randomly generate multiple pairs of maps. We use a simple metric to assess
the learning ability of the agent in any map, namely, the negative duration (in simulation
time) of accumulating the requisite amounts of gold and wood 1. Given a pair of maps,
source and target, the transfer procedure is as follows:

1. The optimal policy for source is learned using Q-learning.

2. An optimal trajectory is generated for source from which a task hierarchy is induced
(with the help of the DBN action models).

3. The induced task hierarchy is plugged into the MAXQ value-function learning algo-
rithm for target.

(a) Manually engineered hierarchy. (b) Induced hierarchy.

Figure 3: Wargus resource-gathering task hierarchies.

Comparing the manually engineered task hierarchy for this domain in figure 3(a) to
the induced task hierarchy in figure 3(b), we observe that the induced hierarchy is a lot
more detailed. The plot in figure 4 shows three learning curves for target: standard Q-
learning (without transfer), MAXQ-learning given the manually engineered hierarchy, and
MAXQ-learning given the induced hierarchy. Although there is less subtask sharing, the
induced hierarchy allows the agent to learn much quicker (almost instantaneously!) because
the induced hierarchy enforces much stricter policy constraints than does the manually

1A successful run in a map is defined as an episode, and learning the optimal policy normally takes several
episodes.
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engineered hierarchy. Nevertheless, these strict policy constraints are generic enough to be
applicable across any such randomly generated resource-gathering map.

Figure 4: Empirical results in the Wargus resource-gathering domain.

In conclusion, this abstract presents an approach to automatically inducing MAXQ
hierarchies from models and demonstrations. Transferring only structural knowledge across
MDPs is shown to be a viable alternative to transferring the entire value function or learned
policy itself. While we believe that this algorithm is promising, it has several limitations. In
current work, we are extending it to handle disjunctive goals. Further, our current approach
only handles goals of achievement. In future work, we plan to extend our approach to
handling goals of maintenance as well.
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