Representing Sentence Structure in Hidden Markov M odels
for Information Extraction

Soumya Ray**
Sray@cs.wisc.edu

* Department of Computer Sciences
University of Wisconsin
Madison, Wisconsin 53706

Abstract

We study the application of Hidden Markov Mod-
els (HMMs) to learning information extractors for
n-ary relations from free text. We propose an ap-
proach to representing the grammatical structure of
sentences in the states of the model. We also in-
vestigate using an objective function during HMM
training which maximizes the ability of the learned
models to identify the phrases of interest. We eval-
uate our methods by deriving extractors for two bi-
nary relations in biomedical domains. Our experi-
ments indicate that our approach learns more accu-
rate models than several baseline approaches.

1 Introduction

Information extraction (IE) may be defined as the task of au-
tomatically extracting instances of specified classes or rela-
tions from text. In our research, we are interested in using
machine learning approaches, including hidden Markov mod-
els (HMMs), to extract certain relationships among objects
from biomedical text sources. We present and evaluate two
contributions to the state of the art in learning information
extractors with HMMs. First, we investigate an approach to
incorporating information about the grammatical structure of
sentences into HMM architectures. Second, we investigate an
objective function for HMM training whose emphasis is on
maximizing the ability of the learned models to identify the
phrases of interest rather than simply maximizing the likeli-
hood of the training data. Our experiments in two challeng-
ing real world domains indicate that both contributions lead
to more accurate learned models.

Automated methods for information extraction have sev-
eral valuable applications including populating knowledge
bases and databases, summarizing collections of documents,
and identifying significant but unknown relationships among
objects. Since constructing information extraction systems
manually has proven to be expensive[Riloff, 1996], there
has been much recent interest in using machine learning
methods to learn information extraction models from la-
beled training data. Hidden Markov models are among the
more successful approaches considered for learning informa-
tion extractors [Leek, 1997; Freitag and McCallum, 1999;

Mark Craven'*
craven@biostat.wisc.edu

TDepartment of Biostatistics & Medical Informatics
University of Wisconsin
Madison, Wisconsin 53706

Seymore et al., 1999; Freitag and McCallum, 2000; McCal-
lum et al., 2000].

Previous HMM approaches to information extraction do
not adequately address several key aspects of the problem do-
mains on which we are focused. First, the data we are pro-
cessing is complex natural language text. Whereas previous
approaches have represented their data as sequences of to-
kens, we present an approach in which sentences are first pro-
cessed by a shallow parser and then represented as sequences
of typed phrases. Second, the data we are processing include
many sentences that are not relevant to the relations of inter-
est. Even in relevant sentences, only certain phrases contain
information to be extracted. Whereas previous approaches to
applying HMM s for IE have focused the training process on
maximizing the likelihood of the training sentences, we adopt
a training method that is designed to maximize the probabil-
ity of assigning the correct labels to various parts of the sen-
tences being processed [Krogh, 1994]. Our approach involves
coupling the algorithm devised by Krogh with the use of null
models which are intended to represent data not directly rele-
vant to the task at hand.

2 Problem Domain

Our work is focused on extracting instances of specific re-
lations of interest from abstracts in the MEDLINE database
[National Library of Medicine, 2001]. MEDLINE contains
bibliographic information and abstracts from more than 4,000
biomedical journals.

An example of a binary relation that we consider in our
experiments is the subcellular-localization relation, which
represents the location of a particular protein within a cell.
We refer to the domains of this relation as PROTEI N and
LOCATI ON. We refer to an instance of a relation as a tuple.
Figure 1 provides an illustration of our extraction task. The
top of the figure shows two sentences in a MEDLINE ab-
stract. The bottom of the figure shows the instance of the
target relation subcellular-localization that we would like to
extract from the second sentence. This tuple asserts that the
protein UBCS is found in the subcellular compartment called
the endoplasmic reticulum.

In order to learn models to perform this task, training ex-
amples consisting of passages of text, annotated with the tu-
ples that should be extracted from them, are needed. In our

Here we report the identification of an integral membrane
ubiquitin-conjugating enzyme. This enzyme, UBCS, local-
izes to the endoplasmic reticulum, with the catalytic domain
facing the cytosol.

subcellular-localization(UBC6,endoplasmic
reticulum)

Figure 1: An example of the information extraction task. The
top shows part of a document from which we wish to extract
instances of the subcellular-localization relation. The bot-
tom shows the extracted tuple.

approach, each training and test instance is an individual sen-
tence. There are several aspects of the data that make this a
difficult information extraction task: (i) it involves free text,
(ii) the genre of text is, in general, not grammatically simple,
(iii) the text includes a lot of technical terminology, (iv) there
are many sentences from which nothing should be extracted.

In the terminology that has been used in the information
extraction literature, our task is inherently a multiple slot
extraction task. Since we are interested in extracting in-
stances of n-ary relations, we cannot treat each domain of
such a relation as a separate unary component to be extracted
(also called single slot extraction). Consider the subcellular-
localization relation discussed above. A document may men-
tion many proteins and many locations but this relation holds
only among certain pairs of these proteins and locations.

In the experiments reported here, we use two data sets rep-
resenting two different binary relations. The subcellular-
localization data set includes 545 sentences that represent
positive instances (labeled with tuples that should be ex-
tracted from them) and 6,700 sentences that represent neg-
ative instances (not labeled with any tuples). The 545 posi-
tive instances are labeled with 645 tuples in all; there are 335
unique tuples. The second data set is for a binary relation that
characterizes associations between genes and genetic disor-
ders. We refer to this relation as disorder-association, and
the domains of this relation as GENE and DI SORDER. This
data set contains 892 positive instances and 11,487 negative
instances. The positive instances are labeled with 899 tuples
in all (126 unique). For both data sets, the negative instances
are “near misses” in that they come from the same population
of abstracts as the positive instances, and in many cases they
discuss concepts that are associated with the target relation.

The target tuples for the subcellular-localization re-
lation were collected from the Yeast Protein Database
(YPD) [Hodges et al., 1998], and the target tuples for the
disorder-association relation were collected from the On-
line Mendelian Inheritance in Man (OMIM) database [Center
for Medical Genetics , 2001]. Relevant MEDLINE abstracts
were also gathered from entries in these databases. To label
the sentences in these abstracts, we matched the target tuples
to the words in the sentence. A sentence which contained
words that matched a tuple was taken to be a positive in-

stance. Every other sentence was considered to be a negative
instance. It is clear that while this process is automatic, it will
result in a noisy labeling. A sentence may have the words in a
target tuple of the relation while the semantics may not refer
to the relation. On the other hand, a tuple in a relation may be
described by synonymous words which were not in any target
tuple; therefore, sentences where tuples exist as synonyms are
labeled incorrectly. We used a random sample of 200 positive
and 200 negative sentences to estimate the amount of noise
introduced by the labeling process. We estimate with 95%
confidence that approximately 10% to 15% of the sentences
are labeled incorrectly (either falsely labeled or unlabeled
when they should have been) in the subcellular-localization
data set. We believe that the disorder-association data set is
not as noisy as the subcellular-localization data set.

3 Representing Phrase Structure

Hidden Markov Models (HMMs) are the stochastic analogs
of finite state automata. An HMM is defined by a set of states
and a set of transitions between them. Each state has an as-
sociated emission distribution which defines the likelihood of
a state to emit various tokens. The transitions from a given
state have an associated transition distribution which defines
the likelihood of the next state given the current state.

In previous HMM approaches to information extraction,
sentences have been represented as sequences of tokens. We
hypothesize that incorporating sentence structure into the
models we build results in better extraction accuracy.

Our approach is based on using syntactic parses of all sen-
tences we process. In particular, we use the Sundance sys-
tem [Riloff, 1998] to obtain a shallow parse of each given
sentence. Our representation does not incorporate all of the
information provided by a Sundance parse, but instead “flat-
tens” it into a sequence of phrase segments. Each phrase seg-
ment consists of a type describing the grammatical nature of
the phrase, and the words that are part of the phrase.

In positive training examples, if a segment contains a word
or words that belong to a domain in a target tuple, it is anno-
tated with the corresponding domain. We refer to these an-
notations as labels. Labels are absent in the test instances.
Figure 2a shows a sentence containing an instance of the
subcellular-localization relation and its annotated segments
(we shall discuss the other panels of this figure later). The
second phrase segment in this example is a noun phrase seg-
ment (NP_SEGVENT) that contains the protein name UBC6
(hence the PROTEI Nlabel). Note that the types are constants
that are pre-defined by our representation of Sundance parses,
while the labels are defined with respect to the domains of re-
lation we are trying to extract. Also note that the parsing is
not always accurate, for instance, the third segment in fig-
ure 2a should really be a VP_SEGVENT, but has been typed
as an NP_SEGVENT by Sundance.

The states in our HMMs represent the annotated segments
of a sentence. Like a segment, each state in the model is
annotated with a (type,label) pairl. A given state can emit
only segments whose type is identical to the state’s type; for

1We can think of segments that do not have a label corresponding
a domain of the relation as having an implicit empty label.

“This enzyme, UBCS, localizes to the endoplasmic reticulum, with the catalytic domain facing the cytosol.”

NP_SEGMENT this enzyme DET this this
NP_SEGMENT:PROTEIN ubc6 UNK enzyme enzyme
NP_SEGMENT localizes UNK:PROTEIN ubc6 PROTEIN ubc6
PP_SEGMENT to UNK localizes localizes
NP_SEGMENT:LOCATION the endoplasmic reticulum | PREP to to
PP_SEGMENT with ART the the
NP_SEGMENT the catalytic domain N:LOCATION endoplasmic | LOCATION endoplasmic
VP_SEGMENT facing UNK:LOCATION reticulum LOCATION reticulum
NP_SEGMENT the cytosol PREP with with

ART the the

N catalytic catalytic

UNK domain domain

\Y facing facing

ART the the

N cytosol cytosol

(€Y (b) (©

Figure 2: HMM input representations. (a) The Phrase representation: the sentence is segmented into typed phrases. (b) The
POS representation: the sentence is segmented into words typed with part-of-speech tags. (c) The Token representation: the
sentence is segmented into untyped words. For each representation, the labels (PROTEI N, LOCATI ON) are only present in the

training sentences.

example, the segment “t hi s enzyne” in figure 2a could
be emitted by any state with type NP_SEGQVENT, regardless
of its label. Each state that has a label corresponding to a
domain of the relation plays a direct role in extracting tuples.

Figure 3 is a schematic of the architecture of our phrase-
based hidden Markov models. The top of the figure shows
the positive model, which is trained to represent positive in-
stances in the training set. The bottom of the figure shows the
null model, which is trained to represent negative instances
in the training set. Since our Phrase representation includes
14 phrase types, both models have 14 states without labels,
and the positive model also has five to six additional labeled
states (one for each (type,label) combination that occurs in
the training set). We assume a fully connected model, that
is, the model may emit a segment of any type at any position
within a sentence.

To train and test our Phrase models, we have to modify
the standard Forward, Backward and Viterbi algorithms [Ra-
biner, 1989]. The Forward algorithm calculates the proba-
bility a4 () of a sentence being in state g of the model after
having emitted ¢ elements of an instance. When a sentence
is represented as a sequence of tokens, the algorithm is based
on the following recurrence:

agrarT(0) = 1
ag(0) = 0,q#START
ag(i) =

M(wilg) Y T(glr)er(i—1) (1)

where M and T represent the emission and transition distri-
butions respectively, w; is the i** element in the instance, and
r ranges over the states that transition to g.

Our madification involves changing the last part of this re-

currence as follows:

|pi

|

M(wj|q) Z T(er)ar (Z - 1)7

. _ Jj=1 T

(i) = if type(q) = type(pi); @)

0, otherwise.

Here w; is the j** word in the i*" phrase segment p;, and
t ype is a function that returns the type of a segment or state
as described above. The two key aspects of this modification
are that (i) the type of a segment has to agree with the type
of state in order for the state to emit it, and (ii) the emission
probability of the words in the segment is computed as the
product of the emission probabilities of the individual words.
This latter aspect is analogous to having states use a Naive
Bayes model for the words in a phrase. Note that this equation
requires a normalization factor to define a proper distribution
over sentences. However, since we use these equations to
make relative comparisons only, we leave this factor implicit.
The modifications to the Viterbi and Backward algorithms are
similar to this modification of the Forward algorithm.

Given these modifications to the Forward and Backward al-
gorithm, we could train phrase-based models using the Baum-
Welch algorithm [Baum, 1972]. However, for the models we
consider here, there is no hidden state for training examples
(i.e., there is an unambiguous path through the model for each
example), and thus there is no need to use Baum-Welch. In-
stead, we assume a fully connected model and obtain tran-
sition frequencies by considering how often segments with
various (type, label) annotations are adjacent to each other.
We smooth these frequencies over the set of possible transi-
tions for every state using m-estimates [Cestnik, 1990]. In
a similar manner, we obtain the emission frequencies of the
words in each state by summing over all segments with the

positive ™ ™

NP_SEGMENT NP_SEGMENT

PROTEIN
¢ / \ t' mEr END
NP_SEGMENT PP_SEGMENT

LOCATION

null

NP_SEGMENT

PP_SEGMENT

Figure 3: The general architecture of our phrase-based
HMMs. The top part of the figure shows the positive model
and the bottom part of the figure shows the null model.

[B] END

same (type, label) annotations in our training set. We smooth
these frequency counts using m-estimates over the entire vo-
cabulary of words.

Once the model has been constructed, we use it to predict
tuples in test sentences. We use the Viterbi algorithm, modi-
fied as described above, to determine the most likely path of a
sentence through the positive model. We consider a sentence
to represent a tuple of the target relation if and only if two
conditions hold:

1. The likelihood of emission of the sentence by the posi-
tive model is greater than the likelihood of emission by
the null model: ap,,, (1) > angy,(n), where P and N
refer to the positive and null models respectively and the
sentence has n segments.

2. In the Viterbi path for the positive model, there are seg-
ments aligned with states corresponding to all the do-
mains of the relation. For example, for the subcellular-
localization relation, the Viterbi path for a sentence
must pass through a state with the PROTEI Nlabel and a
state with the LOCATI ON label.

Note that even after phrases have been identified in this
way, the extraction task is not quite complete, since some of
the phrases might contain words other than those that belong
in an extracted tuple. Consider the example in Figure 2a.
The LOCATI ON phrase contains the word “the” in addition
to the location. Therefore, tuple extraction with these models
must include a post-processing phase in which such extrane-
ous words are stripped away before tuples are returned. We
do not address this issue here. Instead, we consider a predic-
tion to be correct if the model correctly identifies the phrases
containing the target tuple as a subphrase.

It is possible to have multiple predicted segments for each
domain of the relation. In this case, we must decide which
combinations of segments constitute tuples. We do this using
two simple rules:

1. Associate segments in the order in which they occur.
Thus for subcellular-localization, the first segment
matching a PROTEI N state is associated with the first
segment matching a LOCATI ONstate, and so on.

2. If there are fewer segments containing an element of
some domain, use the last match of this domain to con-
struct the remaining tuples. For instance, if we pre-
dicted one PROTEI N phrase P; and two LOCATI ON
phrases L; and Lo, we would create two tuples based
on <P1,L1> and <P1,L2).

3.1 Experiments

In the experiments presented in this section, we test our
hypothesis that incorporating phrase-level sentence structure
into our model provides improved extraction performance in
terms of precision and recall. We test this hypothesis by
comparing against several hidden Markov models that repre-
sent less information about the grammatical structure of sen-
tences. Henceforth, we refer to the model described above as
the Phrase Model.

The first model we compare against, which we call the POS
Model, is based on the representation shown in Figure 2b.
This model represents some grammatical information, in that
it associates a type with each token indicating the part-of-
speech(POS) tag for the word (as determined by Sundance).
However, unlike the Phrase Model, the POS model represents
sentences as sequences of tokens, not phrases. This model is
comparable in size to the Phrase Model. The positive com-
ponent of this model has 17 states without labels and six to
ten states with labels (depending on the training set). The null
component of the model has 17 states without labels.

The other models we consider, which we call the Token
Models, are based on the representation shown in Figure 2c.
This representation treats a sentence simply as a sequence of
words. We investigate two variants that employ this represen-
tation. The simpler of the two hidden Markov models based
on this representation, which we refer to as Token Model 1,
has three states in its positive model and one state in its null
model (not counting the START and END states). None of the
states in this model have types. Two of the states in the posi-
tive model represent the domains of the binary target relation,
while the remaining states have no labels. The role of the lat-
ter set of states is to model all tokens that do not correspond
to the domains of the target relation. A more complex version
of this model, which is illustrated in Figure 4, has three un-
labeled states in its positive model. We define the transitions
and train these models in such a way that these three states
can specialize to (i) tokens that come before any relation in-
stances, (ii) tokens that are interspersed between the domains
of relation instances, and (iii) tokens that come after relation
instances.

The training algorithm used for the POS Model is identical
to that used for the Phrase Model. The training algorithm for
the Token Models is essentially the same, except that there are
no type constraints on either the tokens or states.

Since we consider a prediction made by the Phrase Model
to be correct if it simply identifies the phrases containing the
words of the tuple, we use a similar criterion to decide if the
predictions made by the POS Model and Token Models are

positive

(untyped)
PROTEIN

PN
(untyped)

PN
(untyped) }

[(untyped)

(untyped)
LOCATION

null

START (untyped) END

Figure 4: The architecture of Token Model 2.

correct. We consider POS Model and Token Model predic-
tions to be correct if the labeled states of these models iden-
tify sequences of tokens that contain the words of the tuple.
These models are not penalized for extracting extra adjacent
words along with the actual words of a target tuple.

We process the HMM input data (after parsing in cases
where Sundance is used) by stemming words with the Porter
algorithm [Porter, 1980], and replacing words that occur only
once in a training set with a generic UNKNOWN token. The
statistics for this token are then used by the model while emit-
ting out-of-vocabulary words encountered during prediction.
Similarly, numbers are mapped to a generic NUVBER token.

Positive predictions are ranked by a confidence measure
which is computed as the ratio of the likelihood of the
Viterbi path of a sentence through a model to the likelihood
of the model to emit that sentence, i.e. confidence(s) =
dgnp(n)/agnp(n). Here s is a sentence of n segments,
dmnp(n) is the likelihood of the most probable path of all
n segments threaded through to the END state, and o gvp (n)
is the comparable value calculated by the Forward algorithm.
We construct precision-recall graphs for our models by vary-
ing a threshold on the confidence measures.

For both data sets we measure precision and recall using
5-fold cross validation. The data is partitioned such that
all of the sentences from a given MEDLINE abstract are in
the same fold. This procedure ensures that our experiments
model the nature of the real application setting. For training,
we sample the negative instances so that there are an equal
number of positive and negative instances per fold. We have
observed that we get better recall consistently by doing this.

Figure 5 shows the precision-recall curves for the
subcellular-localization data set. The curve for the Phrase
Model is superior to the curves for both Token Models. At
low levels of recall, the POS Model exhibits slightly higher
precision than the Phrase Model, but the latter is superior
at higher recall levels, and the Phrase Model has a signifi-
cantly higher recall endpoint. These results suggest that there
is value in representing grammatical structure in the HMM
architectures, but the Phrase Model is not definitively more
accurate.

Figure 6 shows the precision-recall curves for the

Plhrase Modél
POS Model
0.8 Token Model 1 N
' Token Model 2
§ 08
ka2l
(8]
<
o 04
0.2 P
0
0 0.2 0.4 0.6 0.8 1
Recall

Figure 5: Precision vs. recall for the four models on the
subcellular-localization data set.

T T
Phrase Model
POS Model --
Token Model 1 -+
Token Model 2

Precision

0 0.2 0.4 0.6 0.8 1
Recall

Figure 6: Precision vs. recall for the four models on the
disorder-association data set.

disorder-association data set. Here, the differences are
much more pronounced. The Phrase Model achieves signifi-
cantly higher levels of precision than any of the other models,
including the POS Model. The recall endpoint for the Phrase
Model is also superior to those of the other models. We con-
clude that the experiments presented here support our hypoth-
esis that incorporating sentence structure into the models we
build results in better extraction accuracy.

4 Improving Parameter Estimates

Standard HMM training algorithms, like Baum-Welch, are
designed to maximize the likelihood of the data given the
model. Specifically, if s; is a sentence in the training set,
Baum-Welch (and the method we used earlier) tries to find
parameters 6 such that

0 = arg max 1:[Pr(s;]0).

We hypothesize that more accurate models can be learned by
training with an objective function that aims to maximize the
likelihood of predicting the correct sequence of labels for a
given sentence (as before, we assume that states and phrases

Figure 7: Combined model architecture. The positive and
null models refer to the corresponding models in Figure 3.

without labels have an implicit empty label). Let ¢; be the
known sequence of labels for a sentence s; in our training set.

We would like to estimate parameters 8 such that

0 = arg mgmxl?[Pr(c;|s:,0) 3)
. Pr(c;, 5:|0)
= argmax 1:[Pr(sif) 4)

This is similar to the task of optimizing parameters to recover
the sequence of states given a set of observations[McCallum
et al., 2000]. Krogh[1994] has devised an HMM training al-
gorithm that tries to optimize this criterion. After transform-
ing this objective function into one which aims to minimize
the negative log likelihood of the above equation, the follow-
ing incremental update rule is obtained:

oy = N85 +n(m} — ni)))

where 6; is the j*" parameter, m} is the expected number of

times 6; is used by the i** sentence on correct paths through
the model, n; is the expected number of times 6, is used by

the 4*" sentence on all paths through the model, IV is a nor-
malizing constant, and 7 is the learning rate. The n and m
terms can be calculated using the Forward-Backward proce-
dure. Note that the update rule represents an online training
procedure.

In our previous experiments, we used a separate null model
to represent negative instances. We would like to use Krogh’s
algorithm with this configuration to observe if it results in
more accurate models. However, the null model as we have
described it is a separate entity which is trained separately.
With this architecture, Krogh’s algorithm would be unable
to correct false positives in the training set since doing so
might require adjusting the parameters of the positive model
in response to a negative instance. To remedy this problem,
we propose an alternative to having a separate null model,
which we refer to as a Combined Model. A Combined Model
consists of two submodels sharing common START and END
states. A schematic is shown in figure 7. The shared START
and END states allow the training algorithm to update param-
eters in both parts of the model in response to a given training
sentence.

4.1 Experiments

To evaluate this algorithm, we train the Combined Model con-
figuration on the subcellular-localization and the disorder-
association data sets. We compare these models against the

Phrase Model trained on the corresponding data sets in our
previous experiments.

The methodology for this experiment is the same as before.
Note that for the Combined Model, prediction is simpler than
with a separate null model, since it suffices to consider the
Viterbi path of a sentence through the model to extract tuples,
if any. We do not train the Combined Model to convergence
to avoid overfitting. Instead, we set the number of iterations
for which to do gradient descent to a fixed constant value of
100.

1
I Kroglh’s Algorithrln
Initial Parameter Estimates =-===--
0.8
j’ﬂ
S 0.6 :Tg
(7] [\
(5]
&) 0.4 7\:(&_: T.7tT
TPEg
0.2 ——
0
0 0.2 0.4 0.6 0.8 1

Recall

Figure 8: Effect of Krogh’s Algorithm on the combined
model for the subcellular-localization data set.

Figure 8 shows the precision-recall curves for this exper-
iment for the subcellular-localization data set. For each
precision-recall curve, we also show 95% confidence inter-
vals. From the figure, we observe that there is some improve-
ment in the precision of the model on this data set, while re-
call is held nearly constant. While the improvement is small,
we have observed it consistently across the various model
architectures we have explored. Figure 9 shows the corre-
sponding precision-recall curves and confidence intervals for
the experiment on the disorder-association data set. Here,
the difference between the initial model and the trained model
is more pronounced. The model trained with Krogh’s algo-

1 pey T T T
“ Krogh’s Algorithm
' Initial Parameter Estimates =======
X
EREEE % -
c Jﬁf*l ; ;\H‘F
§ 06 T7%9
@ g "x%
o 04 a X.E(?
0.2
0
0 0.2 0.4 0.6 0.8 1
Recall

Figure 9: Effect of Krogh’s Algorithm on the combined
model for the disorder-association data set.

rithm has significantly better precision than the initial model,
while maintaining a similar level of recall. We conclude that
this training algorithm is appropriate for our task, and can
improve accuracy, sometimes significantly.

5 Conclusion

We have presented two contributions to learning Hidden
Markov Models for information extraction, and evaluated
these contributions on two challenging biomedical domains.
We have presented an approach to representing the grammat-
ical structure of sentences in an HMM. Comparative exper-
iments with other models lacking such information shows
that this approach learns extractors that have increased pre-
cision and recall performance. We have also investigated the
application of a training algorithm developed by Krogh to
our models. This algorithm consistently provides an accu-
racy gain over our original models. We believe that these are
promising approaches to the task of deriving information ex-
tractors for free text domains.

Acknowledgments

This research was supported in part by NIH Grant 1R01
LMO07050-01, and NSF CAREER award 11S-0093016. The
authors would like to thank Michael Waddell for his work
on building the disorder-association data set, and Peter An-
dreae, Joseph Bockhorst, Tina Eliassi-Rad, and Jude Shavlik
for critiquing the initial draft.

References

[Baum, 1972] L. E. Baum. An equality and associated maxi-
mization technique in statistical estimation for probabilis-
tic functions of Markov processes. Inequalities, 3:1-8,
1972.

[Center for Medical Genetics , 2001] Center for Med-
ical Genetics, Johns Hopkins University and Na-
tional Center for Biotechnology Information. Online
Mendelian inheritance in man, OMIM (TM), 2001.
http://www.ncbi.nlm.nih.gov/omim/.

[Cestnik, 1990] B. Cestnik. Estimating probabilities: A
crucial task in machine learning. In Proceedings of
the Ninth European Conference on Atrtificial Intelligence,
pages 147-150, Stockholm, Sweden, 1990. Pitman.

[Freitag and McCallum, 1999] D. Freitag and A. McCallum.
Information extraction with HMMs and shrinkage. In
Working Notes of the AAAI-99 Workshop on Machine
Learning for Information Extraction, Orlando, FL, 1999.
AAAI Press.

[Freitag and McCallum, 2000] D. Freitag and A. McCallum.
Information extraction with HMM structures learned by
stochastic optimization. In Proceedings of the Seventeenth
National Conference on Artificial Intelligence, Austin,
TX, 2000. AAAI Press.

[Hodges et al., 1998] P. E. Hodges, W. E. Payne, and J. I.
Garrels. Yeast protein database (YPD): A database for the
complete proteome of saccharomyces cerevisiae. Nucleic
Acids Research, 26:68-72, 1998.

[Krogh, 1994] A. Krogh. Hidden Markov models for la-
beled sequences. In Proceedings of the Twelfth Interna-
tional Conference on Pattern Recognition, pages 140-144,
Jerusalem, Israel, 1994. IEEE Computer Society Press.

[Leek, 1997] T. Leek. Information extraction using hidden
Markov models. Master’s thesis, Department of Com-
puter Science and Engineering, University of California,
San Diego, CA, 1997.

[McCallum et al., 2000] A. McCallum, D. Freitag, and
F. Pereira. Maximum entropy Markov models for infor-
mation extraction and segmentation. In Proceedings of the
Seventeenth International Conference on Machine Learn-
ing, pages 591-598, Stanford, CA, 2000. Morgan Kauf-
mann.

[National Library of Medicine, 2001] National
of Medicine. The MEDLINE database,
http://www.ncbi.nlm.nih.gov/PubMed/.

[Porter, 1980] M. F. Porter. An algorithm for suffix stripping.
Program, 14(3):127-130, 1980.

[Rabiner, 1989] L. R. Rabiner. A tutorial on hidden Markov
models and selected applications in speech recognition.
Proceedings of the IEEE, 77(2):257-286, 1989.

[Riloff, 1996] E. Riloff. An empirical study of automated
dictionary construction for information extraction in three
domains. Artificial Intelligence, 85:101-134, 1996.

[Riloff, 1998] E. Riloff. The Sundance sentence analyzer,
1998. http://www.cs.utah.edu/projects/nlp/.

[Seymoreet al., 1999] K. Seymore, A. McCallum, and
R. Rosenfeld. Learning hidden Markov model structure
for information extraction. In Working Notes of the AAAI
Workshop on Machine Learning for Information Extrac-
tion, pages 37-42. AAAI Press, 1999.

Library
2001.

