
MULTIPLE-INSTANCE LEARNING FROM

DISTRIBUTIONS

by

GARY DORAN

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

Department of Electrical Engineering and Computer Science

CASE WESTERN RESERVE UNIVERSITY

January, 2015

CASE WESTERN RESERVE UNIVERSITY

SCHOOL OF GRADUATE STUDIES

We hereby approve the dissertation of

Gary Doran

candidate for the degree of Doctor of Philosophy*.

Committee Chair

Dr. Soumya Ray

Committee Member

Dr. Harold Connamacher

Committee Member

Dr. Michael Lewicki

Committee Member

Dr. Stanislaw Szarek

Committee Member

Dr. Kiri Wagstaff

Date of Defense

November 24, 2014

*We also certify that written approval has been obtained

for any proprietary material contained therein.

Contents

List of Tables vi

List of Figures viii

Acknowledgments xi

List of Acronyms xiii

Glossary xvi

Abstract xviii

1 Introduction 1

2 Background and Related Work 6

2.1 Learning Frameworks . 6

2.1.1 Supervised Learning . 7

2.1.2 Multiple-Instance Learning . 8

2.1.3 Generalizations of Multiple-Instance Classification 13

2.2 Kernel Methods . 14

2.2.1 Support Vector Machines . 15

2.2.2 Kernels and Nonlinear Classifiers 16

2.2.3 Multiple-Instance SVMs . 19

i

CONTENTS

2.3 Kernel Embeddings of Sets and Distributions 22

2.3.1 Set Kernels . 22

2.3.2 Kernel Mean Embeddings . 25

2.3.3 Related Kernels . 27

2.4 Learning Theory . 28

2.4.1 Probably Approximately Correct 28

2.4.2 Capacity Measures . 30

2.4.3 Probabilistic Concepts . 32

2.4.4 Area Under the Receiver Operating Characteristic Curve . . . 33

2.4.5 Multiple-Instance Learnability and Hardness Results 35

3 Bags as Distributions 37

3.1 The Generative Model . 38

3.2 The Empirical Bag-Labeling Function 46

3.3 Relationship to Prior Models . 47

3.4 Applicability to Problem Domains . 51

3.5 Multiple-Instance Learning with Noisy Bags 54

3.6 Summary . 56

4 Learning Accurate Concepts from MI Data 57

4.1 Learning Accurate Instance Concepts 59

4.2 Learning Accurate Bag Concepts . 61

4.3 Discussion . 70

4.4 Relation to Prior Learnability Results 71

4.5 Relation to Prior Hardness Results 73

4.6 Must Instances be Dependent Samples? 75

4.7 Summary . 76

ii

CONTENTS

5 Learning to Rank from MI Data 77

5.1 Learning High-AUC Instance Concepts 78

5.2 Learning High-AUC Bag Concepts 83

5.3 Learning High-AUC MI Concepts with Noise 93

5.4 Discussion . 96

5.5 Empirical Evaluation . 97

5.5.1 Single Instance Learning . 97

5.5.2 Risk Minimization Approaches 98

5.5.3 Methodology . 99

5.5.4 Results and Discussion . 100

5.6 Summary . 103

6 Learning Bag Hyperplanes from MI Data 104

6.1 Learning Hyperplanes from Distributions 105

6.2 Learning Bag Hyperplanes from Distributions 107

6.3 Bag Kernels as Distribution Kernels 110

6.4 Empirical Evaluation . 115

6.4.1 Methodology . 116

6.4.2 Results and Discussion . 117

6.4.3 Practical Considerations . 118

6.5 Summary . 123

7 On the Difficulty of Learning Instance Hyperplanes from MI Data 124

7.1 Learning Instance Hyperplanes . 125

7.1.1 Consistency, Soundness, and Completeness 127

7.1.2 Properties of Instance Hyperplane Classifiers 129

7.1.3 Fundamental Trade-Offs in Learning Instance Hyperplanes . . 134

7.1.4 Consequences for Learnability 136

iii

CONTENTS

7.2 Using Bag Kernels to Learn Instance Hyperplanes 138

7.2.1 Bag-Level Soundness and Completeness 139

7.2.2 Properties of Bag Hyperplane Classifiers 140

7.3 Empirical Evaluation . 146

7.3.1 Methodology . 146

7.3.2 Results and Discussion . 148

7.4 Summary . 151

8 Shuffled Multiple-Instance Learning 152

8.1 Ensemble and Resampling Methods 152

8.2 The SMILe Approach . 154

8.3 Basic Properties of SMILe . 159

8.4 Related Approaches . 164

8.5 Instance-Level Classification with SMILe 166

8.5.1 Effect on the Instance-Level Distribution 166

8.5.2 SMILe and MI-SVMI . 167

8.5.3 SMILeSVM . 176

8.6 Bag-Level Classification with SMILe 180

8.6.1 Effect on Bag-Level Distribution 181

8.6.2 SMILe and the NSK . 182

8.6.3 CC-NSK . 184

8.7 Empirical Evaluation . 185

8.7.1 Instance-Labeling Task . 186

8.7.2 Bag-Labeling Task . 192

8.7.3 Active Learning Task . 198

8.8 Summary . 203

iv

CONTENTS

9 Conclusions 205

9.1 Summary . 206

9.2 Future Work . 210

9.3 Conclusion . 214

Appendices 215

A Experiments and Results 215

A.1 Datasets . 215

A.1.1 3D-QSAR Datasets . 217

A.1.2 CBIR Datasets . 218

A.1.3 Text Datasets . 219

A.1.4 Audio Datasets . 220

A.1.5 Protein Dataset . 220

A.2 Results . 221

A.2.1 Chapter 5 (Single-Instance Learning) 221

A.2.2 Chapter 6 (Bag-Level Hyperplane Classifiers) 227

A.2.3 Chapter 7 (Instance-Level Hyperplane Classifiers) 230

A.2.4 Chapter 8 (SMILe) . 234

Bibliography 237

v

List of Tables

2.1 The application of MIL to various problem domains 12

2.2 The extension of some supervised algorithms to the MI setting 12

2.3 Some extensions of SVM-based approaches to the MI setting 21

4.1 A summary of the learnability results in Chapter 4 and Chapter 5 . . 58

4.2 A summary of results addressing different learning tasks and strategies 58

4.3 Legend of the basic notation used in Chapter 4 59

5.1 Legend of the basic notation used in Chapter 5 78

6.1 Complexity of computing bag-level kernel entries 122

8.1 Legend of the basic notation used in Chapter 8 156

8.2 Comparison of SMILe to other approaches that recombine instances

from different bags . 165

8.3 Properties of the datasets used for the SMILe experiments 188

9.1 A summary of the assumptions required for various results 207

A.1 Dataset Groups . 216

A.2 Dataset groups used in various experiments 216

A.3 3D-QSAR Datasets . 216

A.4 CBIR Datasets . 217

vi

LIST OF TABLES

A.5 Text Datasets . 219

A.6 Audio Datasets . 220

A.7 Protein Datasets . 221

A.8 Instance-level accuracy results for Section 5.5.4 221

A.9 Instance-level AUC results for Section 5.5.4 223

A.10 Bag-level accuracy results for Section 5.5.4 224

A.11 Bag-level AUC results for Section 5.5.4 225

A.12 Bag-level accuracy results for Section 6.4 227

A.13 Bag-level AUC results for Section 6.4 228

A.14 Instance-level accuracy for Section 7.3 230

A.15 Continuation of Table A.14 . 231

A.16 Bag-level accuracy for Section 7.3 . 232

A.17 Continuation of Table A.16 . 233

A.18 Instance-level balanced accuracy results for Section 8.7.1 234

A.19 Bag-level accuracy results for Section 8.7.2 235

vii

List of Figures

1.1 A cartoon example from the drug activity prediction domain 3

1.2 A summary of the contributions of this work 5

2.1 An example showing a supervised learning task 8

2.2 An example of positive and negative bags in the MI setting 9

2.3 An SVM classifier that separates examples in a two-dimensional feature

space . 14

2.4 Using a kernel to make data separable 16

2.5 Example classifiers found by MI-SVM and mi-SVM 20

2.6 An example showing set kernel feature representations 23

2.7 Embedding of bags under the averaging-normalized set kernel 24

2.8 Embedding instances, samples, and distributions into a feature space 26

2.9 An example showing the shattering of points with two-dimensional

hyperplanes . 31

2.10 An example ROC curve . 34

2.11 Prior learnability and hardness results in the MI setting 35

3.1 A comparison of the generative processes for bags, bag samples, and

individual bag-labeled instances . 39

3.2 An example generative process for MI data 40

viii

LIST OF FIGURES

3.3 An illustration of the instance-, bag-, and empirical bag-labeling func-

tions in MI-GEN . 46

3.4 Previous generative models for MI data 51

3.5 An example from the CBIR domain when a positive image does not

contain a positive instance after segmentation 53

4.1 Relation to prior learnability results 71

5.1 The intuition behind Theorem 5.1 . 80

5.2 The intuition behind Theorem 5.4 . 94

5.3 Empirical comparison of supervised and MI-specific approaches 100

5.4 Comparison of training time for supervised and MI-specific approaches 102

6.1 Empirical results comparing bag-level kernel classifiers 117

6.2 Comparison of training time for bag-level kernel classifiers 119

7.1 Soundness, completeness, and convexity of various algorithms 130

7.2 Synthetic datasets illustrating when soundness and/or completeness

fail for sMIL and stMIL . 133

7.3 The intuition behind Theorem 7.1 . 135

7.4 Counterexample to soundness of the NSK 144

7.5 Other forms of unsoundness for the NSK 145

7.6 Empirical results comparing MI classifiers with different combinations

of soundness, completeness, and convexity properties 148

7.7 Comparison of training time for MI SVM kernel classifiers 150

8.1 Example shuffled bags in the CBIR domain 157

8.2 An illustration of the quality of the beta distribution approximation . 173

8.3 A KPCA plot of the NSK feature space embeddings of original and

shuffled bags . 183

ix

LIST OF FIGURES

8.4 Empirical results comparing SMILe and to the baseline 190

8.5 Empirical evaluation of with bag-level bagging 190

8.6 Training times of SMILe versus baselines 191

8.7 Empirical results comparing SMILe and the CC-NSK to the baseline

NSK . 194

8.8 Empirical evaluation of the NSK with bag-level bagging 194

8.9 The effect of distribution shift on the performance of bag-level SMILe 196

8.10 Instance-Level MI Active Learning Results 201

8.11 Bag-Level MI Active Learning Results 201

8.12 A flowchart summarizing recommendations for applying SMILe in prac-

tice . 203

9.1 A summary of the recommended approaches for various MI learning

scenarios . 209

9.2 A summary of the relative representational power of the supervised,

multiple-instance, and relational learning frameworks 214

x

Acknowledgments

First, I would like to acknowledge my advisor, Soumya Ray. Over the past five years,

I have learned how important a role an advisor plays in a graduate student’s life, and

how fortunate I am to have an advisor like Professor Ray who pushes me to apply for

internships and scholarships, to revise and resubmit rejected papers, and to continue

investigating research questions when obstacles arise. Professor Ray’s wide knowledge

of machine learning and artificial intelligence and his excitement about the field have

inspired me to continue learning about new research topics. Likewise, Professor Ray

has been a source of wisdom on practical matters such as writing applications and

paper reviews.

I was also fortunate to have had two great internship experiences during my grad-

uate career. First, I spent the Summer of 2012 with the Machine Learning and In-

strument Autonomy group at the Jet Propulsion Laboratory in Pasadena, California.

There, I worked with Kiri Wagstaff, who serves on my dissertation committee and

whose paper “Machine Learning that Matters” significantly influenced my thinking

about the role of machine learning in its relation to practical applications (Wagstaff,

2012). I spent the Summer of 2013 with Bernhard Schölkopf’s research group at

the Max Planck Institute in Tübingen, Germany. There, I worked with Krikamol

Muandet, Kun Zhang, and others who influenced my thinking on machine learning in

general, but more specifically on how kernel methods might be applied to the problem

of learning from distributions.

xi

ACKNOWLEDGMENTS

At Case Western Reserve University, my committee is comprised of Harold Con-

namacher, Mike Lewicki, and Stanislaw Szarek, each of whom gave me valuable feed-

back on my dissertation. I was lucky enough to have taken classes with Professor

Lewicki, who taught me the importance of Bayesian reasoning in artificial intelli-

gence, and Professor Szarek, whose course in real analysis provided me with many of

the mathematical tools required for reasoning about the subjects I investigate in this

dissertation. I would also like to thank other students at Case Western Reserve with

whom I worked, particularly Andrew Latham, who contributed to the experimental

code for the results in Chapter 6.

Finally, I would like to thank my parents, sister, grandparents, extended family,

and friends for supporting me during my graduate school and long before then.

xii

List of Acronyms

MI-SVMI modified MI SVM algorithm.

p-concept probabilistic concept.

3D-QSAR 3-dimensional Quantitative Structure–Activity Relationship.

APR axis-parallel rectangle.

AUC area under the ROC curve.

CBIR content-based image retrieval.

CC-NSK class-conditional NSK.

DNF disjunctive normal form.

EMD Earth-Mover’s Distance.

ERM empirical risk minimization.

GMIL Generalized MIL.

IID independent and identically distributed.

KI-SVM key instance SVM.

KPCA kernel principal component analysis.

xiii

List of Acronyms

LDA latent Dirichlet allocation.

LP linear program.

MI multiple-instance.

MI-SVM MI SVM algorithm.

mi-SVM mixed-integer MI SVM algorithm.

MICA MI classification algorithm.

MIGraph MI Graph Algorithm.

miGraph MI Graph Algorithm, Version 2.

MIL multiple-instance learning.

MILES Multiple-Instance Learning via Embedded Instance Selection.

MMD Maximum Mean Discrepancy.

NMI noisy MI.

NSK normalized set kernel.

PAC probably approximately correct.

PDF probability density function.

QP quadratic program.

RBF radial basis function.

RKHS reproducing kernel Hilbert space.

ROC receiver operating characteristic.

xiv

List of Acronyms

sbMIL sparse balanced MIL.

SIL single-instance learning.

SIVAL spatially independent, variable area, and lighting.

sMIL sparse MIL.

SMILe Shuffled Multiple-Instance Learning.

SMILeSVM SMILe SVM algorithm.

SMM support measure machine.

SRM structural risk minimization.

stMIL sparse transductive MIL.

SVM support vector machine.

VC Vapnik–Chervonenkis.

YARDS Yet Another Radial Distance-based Similarity measure.

xv

Glossary

bag a set of instances in the multiple-instance learning framework.

concept a function that maps examples to labels.

example an object, typically a feature vector, provided to a learning algorithm for

training or classification.

feature a property of an example, usually encoded as one component of a real-valued

vector corresponding to the example.

feature map a function mapping data from one “input” feature space to another

feature space.

generative model a set of assumptions about the process by which examples are

sampled from a distribution and how labels are applied to examples.

instance a single example; in the multiple-instance setting, an element contained

within a bag.

kernel a real-valued function of two arguments from the input feature space repre-

senting the inner product of the images of the arguments under some feature

map.

xvi

Glossary

loss a measure of misclassification or error with respect to a dataset (cf. empirical

risk).

margin the distance between the positive and negative classification boundaries of

a support vector machine classifier.

pseudo-dimension the size of the largest set that some real-valued hypothesis class

shatters.

risk a measure of expected misclassification or error of a function with respect to a

distribution over instances (cf. expected loss).

testing the stage of learning in which the quality of a learned concept is evaluated

using previously-unobserved labeled examples.

training the stage of learning in which labeled examples are provided to an algorithm

to learn a concept.

xvii

Multiple-Instance Learning from Distributions

Abstract

by

GARY DORAN

I propose a new theoretical framework for analyzing the multiple-instance learning

(MIL) setting. In MIL, training examples are provided to a learning algorithm in the

form of labeled sets, or “bags,” of instances. Applications of MIL include 3-D quanti-

tative structure–activity relationship prediction for drug discovery and content-based

image retrieval for web search. The goal of an algorithm is to learn a function that

correctly labels new bags or a function that correctly labels new instances. I propose

that bags should be treated as latent distributions from which samples are observed.

I show that it is possible to learn accurate instance- and bag-labeling functions in

this setting as well as functions that correctly rank bags or instances under weak

assumptions. Additionally, my theoretical results suggest that it is possible to learn

to rank efficiently using traditional, well-studied “supervised” learning approaches.

These results also indicate that supervised approaches for learning from distributions

can be used to directly learn bag-labeling functions efficiently. I perform an extensive

empirical evaluation that supports the theoretical predictions entailed by the new

framework. In addition to showing how supervised approaches can be applied to

MIL, I prove new hardness results on using MI-specific algorithms to learn hyper-

plane labeling functions for instances. Finally, I propose a new resampling approach

for MIL, analyze it under the new theoretical framework, and show that it can im-

prove the performance of MI classifiers when training set sizes are small. In summary,

the proposed theoretical framework leads to a better understanding of the relation-

ship between the MI and standard supervised learning settings, and it provides new

methods for learning from MI data that are more accurate, more efficient, and have

better understood theoretical properties than existing MI-specific algorithms.

xviii

Chapter 1

Introduction

The field of machine learning has grown in the past several decades from a need to au-

tomatically extract useful information from ever-increasing quantities of data. What

qualifies as “useful” information varies across domains in which machine learning is

applied. As an example, one might be interested in automatically recognizing several

distinct classes of objects within a set of objects, or being able to automatically de-

termine the class of a new object given a previously-labeled set of objects. We can

generate many concrete examples of such classification problems by appropriately

defining which we mean by “object” and “class.” To name just a few examples, we

might be interested in determining what foods are “poisonous” or “not poisonous,”

which politicians are “conservative” or “liberal,” or which tumors are “malignant” or

“benign.”

In its most general form, the classification problem above can be expressed simply

mathematically: given a set of objects X, a set of classes Y , and some function

f : X → Y that assigns a class label to each object, learn a good approximation for

f . Ignoring for the moment interesting questions such as “What constitutes a good

approximation for f?” or “Under what conditions can we expect to be capable of

learning such a function?” we see that there is an even more fundamental question:

1

CHAPTER 1. INTRODUCTION

how can we represent objects in the real world such as foods, politicians, or tumors

as a set X of mathematical objects?

In most of the work on classification, it is assumed that objects are represented

mathematically as a set of vectors over Rk, where each of the k components of the

vector represents some feature of the object. In the examples above, a food might be

represented as the quantities of a fixed set of k chemical compounds comprising it,

a politician might be represented using their views on a particular set of k political

issues, and a tumor might be represented using the outcomes of a fixed set of k

diagnostic tests.

Although the “standard supervised” formalism described above is well under-

stood, in practice, data does not always have such a straightforward representation

as a single feature vector. In machine learning, there is a need to learn from struc-

tured objects that are more naturally represented using sets, tree, graphs, or even

statements in first-order logic. As a simple example, consider the problem of drug

activity prediction, which attempts to predict whether a molecule is “active” or “inac-

tive,” that is, whether it will bind to a target receptor protein or not. An illustration

is provided in Figure 1.1, showing a molecule that binds to the receptor (Molecule

A), and a molecule that does not bind to the receptor (Molecule B). The potential

to bind to a protein largely depends on a molecule’s structure, which can be repre-

sented as a feature vector (Cramer et al., 1988). On the other hand, flexible bonds in

molecules mean that each molecule can exist in multiple shapes, called conformations,

when dissolved in solution. Two conformations are shown for each of the molecules

in Figure 1.1. If a molecule is observed to be active, that implies that at least one

low-energy conformation will bind to the target. On the other hand, inactivity of a

molecule means that no conformation binds. The binding conformation of Molecule

A is indicated in the figure.

The multiple-instance learning (MIL) framework was motivated by the above

2

CHAPTER 1. INTRODUCTION

Receptor

Molecule A Molecule B Figure 1.1: A cartoon exam-
ple from the drug activity pre-
diction domain. Molecule A
binds to the receptor since at
least one of its conformations
has the appropriate structure,
while Molecule B does not.

problem (Dietterich et al., 1997), and encodes this relationship between an observed

label and a set of instances responsible for that label. In particular, a dataset is

treated as a set of labeled bags, each of which contains one or more instances, which

are feature vectors. If a bag is labeled positive, then at least one instance in the bag is

positive. However, if a bag is negative, then every instance in the bag is negative. The

learner for a multiple-instance (MI) classification problem must produce a classifier

that can accurately label either new bags or instances.

MIL is a framework for learning from a very simple form of structured data. In

MIL, bags are hierarchically structured objects containing subobjects (instances).

Both types of objects have class labels, which are related to each other in such a way

that it is possible to infer something about the labels at one level in the hierarchy

given the labels at the other level. Therefore, MIL is applicable to many problems

with data of this form, such as molecules containing conformations, images containing

objects, or documents containing passages/words. From a theoretical perspective, the

study of MIL provides a starting point for approaching the problem of learning from

more complex structured data represented using trees or graphs, for example.

In addition to learning from structured data, there is also recent interest within

machine learning in learning from distributions. In this line of research, the objects

to be classified are not vectors, trees, or graphs, but distributions over a space of

instances X. In our work, we combine these research directions and explore a formu-

lation of MIL as a problem of learning from distributions. In particular, although bags

are traditionally represented as sets or multisets of instances in the MIL framework,

3

CHAPTER 1. INTRODUCTION

treating bags as distributions is more natural for many problem domains and provides

new insights into the behavior of existing approaches for MI classification, the appli-

cability of new state-of-the-art approaches to MI classification, and the relationship

between MI and traditional supervised learning.

First, we introduce a new generative model for MIL that makes weaker assump-

tions and is more widely applicable to real-world MI problems than existing models.

Second, we show that this generative model explains several surprising empirical

observation made in prior work. In particular, some prior work shows that the classi-

fication performance of individual algorithms on the instance- and bag-labeling tasks

is often uncorrelated (Tragante do Ó et al., 2011). We provide positive learnability

results for instance and bag labeling, and our results suggest that these two labeling

tasks should be addressed separately in practice. For learning bag labels, we show

that the generative model can be used to justify the application of recent kernel-based

approaches to learning from distributions and to analyzing existing bag-labeling al-

gorithms under the bags-as-distributions model. Furthermore, we develop a new set

of theoretical results showing that it is possible to learn to rank instances and bags

using standard supervised approaches. Our work is consistent with previous empiri-

cal observations that supervised approaches can learn to rank in the MI setting (Ray

and Craven, 2005), which were surprising given early work showing that supervised

approaches are ineffective at learning from MI data (Dietterich et al., 1997). We

perform our own extensive empirical evaluation to support the theoretical claims en-

tailed by our model and to demonstrate the applicability of our results to practical

scenarios.

Along with these positive results, we show new hardness results under the standard

model in which bags are sets. In particular, we prove that it is generally not possi-

ble in the standard model for MI-specific approaches to have desirable “soundness,”

“completeness,” and “convexity” properties that are present in standard supervised

4

CHAPTER 1. INTRODUCTION

Chapter 4
Describe
positive

learnability
results for bag
and instance

concepts.

Chapter 5
Describe the

ability to rank
bags and

instances using
supervised
methods.

Chapter 6
Describe the

learnability of
bag concepts

using
distribution-
based kernels

and supervised
methods.

Chapter 8
Propose and

analyze a new
resampling

approach under
the generative

model.

Chapter 3
Introduce a new generative model in which

bags are distributions over instances.

Chapter 7
Contrast positive learnability results with new hardness

results under standard model in which bags are sets.

Figure 1.2: A summary of the contributions of this work.

methods. These results offer a contrast to the positive learnability results, which

suggest that supervised approaches that possess these properties can learn from MI

data under certain assumptions. Finally, we propose a new resampling approach for

MIL, and the generative model is used to analyze this approach and describe how it

can improve MI classification performance when training samples are small. The set

of contributions is summarized in Figure 1.2.

5

Chapter 2

Background and Related Work

This chapter provides a brief overview of relevant concepts for the work in subsequent

chapters. First, we formally describe supervised learning and multiple-instance learn-

ing, and the relationships between these learning frameworks. Then, we describe the

support vector machine (SVM), a popular approach to classification in the supervised

setting. Next, we describe approaches for representing distributions in a vector space

such that supervised approaches such as SVMs can be applied to learning bag labels

in the MI framework. Finally, we describe some concepts from learning theory that

formalize what it means to “learn” concepts from data.

2.1 Learning Frameworks

As motivated in Chapter 1, many machine learning tasks can be framed as the problem

of learning to predict labels from examples. However, this broad definition leaves

unspecified details such as the structure of examples or how labels are applied to

examples. Accordingly, there exist many possible learning frameworks that specify the

nature of examples, labels, and the relationships between the two. These details are

described by a generative model. Below, we describe two common learning frameworks

and the relative granularity of representations they allow for labeled examples.

6

CHAPTER 2. BACKGROUND AND RELATED WORK

2.1.1 Supervised Learning

Suppose you are a newborn trying to learn to recognize various objects in the world.

You observe the objects in Figure 2.1 and are told that some of these objects are

spoons. Your goal is to learn the concept of a “spoon;” that is, learn to predict

whether other objects you observe are spoons or non-spoons. Such a problem can

be formalized in the framework of what is called supervised learning. The learning

process is “supervised” by some oracle (perhaps a parent, in the example above) that

provides labels for a set of examples that are used to train an algorithm.

More formally, in the supervised setting, there exists a given set of objects X

and labels Y . In classification, C is a finite set of class labels, often binary (either

{0, 1}, {−1, 1}, or {“negative”, “positive”}, respectively). For regression problems,

C is the set R of real numbers. The set of objects is X is typically a real vector

space Rk, where each object (called an instance or an example) is represented as a

k-dimensional vector. Each dimension of the example corresponds to a feature of the

object. When instances are single feature vectors, we refer to this as the “standard

supervised” learning setting.

In supervised learning, one assumes that there exists a function f : X → Y , called

a target concept, which assigns a label to each object. Here, we assume that a concept

is a deterministic function, but in Section 2.4.3, we will discuss generalizations of this

model in which concepts can be probabilistic. The concept f provides ground truth

labels for each object. During training, a learning algorithm is provided with a set of

labeled examples {(xi, f(xi)}ni=1. Since f is unknown to the algorithm, the goal of the

learning process is to find some function g that approximates f as closely as possible.

In Section 2.4, we discuss more precisely what it means to find a good approximation

for a concept.

In the example of Figure 2.1, we assume that the various objects in the world

can be represented with a vector of features. In general, determining an appropriate

7

CHAPTER 2. BACKGROUND AND RELATED WORK

−1.0 −0.5 0.0 0.5 1.0

log(Red/Green)

−1.0

−0.5

0.0

0.5

lo
g(

B
lu

e/
G

re
en

)

Positive Examples

Figure 2.1: An example showing a supervised learning task. Here, the task is binary
classification of objects from images as spoons and non-spoons. The positive exam-
ples are highlighted and the other objects are negative examples. Each objected is
embedded in a two-dimensional feature space of color-based features.

set of features to describe objects is nontrivial but will not be discussed here. In

Figure 2.1, each object is represented as a two-dimensional feature vector. The first

feature represents the logarithm of the ratio between the average red pixel intensity

and the average green pixel intensity. The second feature is the logarithm of the

average blue and green pixel intensities. As shown, even these two simple features

provides a nice separation between spoons (the positive examples) and other objects

(the negative examples). Of course, if objects like forks were also included in the

classification task, other shape-based features would be necessary to separate positive

and negative examples.

2.1.2 Multiple-Instance Learning

For many applications, the most natural representation of an object is not an individ-

ual feature vector. The MIL framework was created as a generalization of supervised

learning in which labeled objects have internal structure (Dietterich et al., 1997).

For example, in the 3-dimensional Quantitative Structure–Activity Relationship (3D-

QSAR) domain, molecules can be described as a set of conformations, each of which

represented with its own feature vector and associated but unobserved “active” or

“inactive” label. In the MIL setting, labeled objects are multisets, called bags, of

8

CHAPTER 2. BACKGROUND AND RELATED WORK

−0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2

log(Red/Green)
−1.5

−1.0

−0.5

0.0

lo
g(

B
lu

e/
G

re
en

)
Figure 2.2: An example of positive and negative bags in the MI setting embedded in
a feature space. The positive bag (top left) contains a positive example (the spoon),
and the negative bag (bottom left) contains only negative examples.

individual feature vectors, called instances.

Expanding upon the example object classification task described in Section 2.1.1,

suppose that we now have not individual labeled objects, but labeled images that

contain sets of image patches roughly corresponding to objects or parts of objects.1

Figure 2.2 shows a positive image (bag) at the top left containing a positive instance

(the spoon) and a negative bag at the bottom left containing no spoon. In the MI

setting, these bags are treated as sets of segments, which are embedded in a feature

space as shown to the right of Figure 2.2. An MI learning algorithm knows that at

least one of the segments in the positive image is a spoon, but it does not know which

one. Thus, to learn instance-level labels, such an algorithm must not only learn to

distinguish spoons from non-spoons, but also to determine which segments in the

positive images correspond to spoons.

As in the object classification task, the standard MIL assumption for binary classi-

fication is that a bag is positive if and only if it contains at least one positive instance.

Generalizations of the standard MI assumption are discussed in Section 2.1.3, but we

use the standard assumption unless otherwise stated. More formally, let X be a set

of instances and X∗ =
⋃∞
n=1Xn denote the set of all possible bags (all finite subsets

1See Appendix A.1.2 for a more detailed description of how bags are generated from images in
the content-based image retrieval (CBIR) domain.

9

CHAPTER 2. BACKGROUND AND RELATED WORK

of the instance space). Again, Y is a set of labels, which we assume to be {0, 1} for

binary classification. There exists a bag concept F : X∗ → Y and an instance concept

f : X → Y such that for any bag Bi ∈ X∗, F (Bi) = maxxij∈Bi f(xij). During training,

an algorithm is provided with a set of labeled bags {Bi, F (Bi)}ni=1, where each bag

is a set of instances Bi = {xij}mij=1. If mi = 1 for every bag, then this special case is

a standard supervised learning task as described in Section 2.1.1. The two possible

learning tasks are to learn a function F ′ to approximate the bag concept F and to

learn a function g to approximate the instance concept f . A key contribution of this

work is describing when learning such concepts from MI data is possible.

So far, the only representational advantage presented for MIL has been treating

objects as sets rather than as individual feature vectors. An alternative strategy

such as concatenating the feature vectors in each bag to produce a single feature

vector fails for a couple of reasons. First, since there is no fixed bag size, the feature

vectors resulting from such an approach would not exist in the same vector space.

Additionally, concatenation imposes an arbitrary order on instances, but there is

no reason why the features of the ith instance in one bag should be commensurate

with only the features of the ith instance in another bag. Other straightforward

approaches such as averaging instances together provide only summary-level statistics

about a bag. For example, two distinct bags with different labels could have the same

average, so there would no longer be a deterministic function mapping bags to labels.

Therefore, there are clear representational advantages in some scenarios when objects

in the supervised setting are treated as sets rather than individual vectors.

There is another aspect of MIL that distinguishes it further from supervised learn-

ing. In particular, a key assumption in the MI setting is that instances, in addition

to bags, have labels that are unobserved. In the object classification example in Fig-

ure 2.2, both entire images and individual segments can be labeled as containing the

spoon. Accordingly, there are two labeling tasks in MIL: the bag-labeling task and

10

CHAPTER 2. BACKGROUND AND RELATED WORK

the instance-labeling task. The bag-labeling task can be viewed as a form of super-

vised learning, as discussed in Chapter 6. On the other hand, the instance-labeling

task requires additional assumptions about the relationship between bag and instance

labels. Of course, when bags all have size one, the instance- and bag-labeling tasks

are identical and the learning task is equivalent to supervised learning. However,

when bags contain more than one instance, the instance-labeling task is strictly more

general than standard supervised learning, which does not permit ambiguous instance

labels.

As discussed in Chapter 1, the MI setting was originally motivated by the drug

activity prediction or 3D-QSAR problem (Dietterich et al., 1997). However, MIL

has since been applied to many other problem domains. The example in Figure 2.2

is taken from the CBIR domain (Maron and Ratan, 1998). For text categorization,

individual passages (e.g., sentences, paragraphs, message board posts) are represented

using feature vectors of word frequencies, and the passages comprising a document

correspond to a bag (Andrews et al., 2003; Settles et al., 2008). The MI setting has

also been used for protein sequence classification (Wang et al., 2004; Tao et al., 2004),

in which subsequences of amino acids are used to determine whether proteins belong

to a particular “superfamily.” As a final example, MIL has also been applied in the

audio domain to recognize bird songs (Briggs et al., 2012). An audio recording is

made using microphones placed in an experimental forest containing birds of several

species. The spectrogram of the recording is then segmented to isolate individual bird

songs. As in the CBIR domain, a recording contains the bird song of a particular if

at least one segment in the recording corresponds to the species, so this becomes an

MIL problem as well. Table 2.1 summarizes these problem domains, which are only

a subset of those explored in prior work.

The seminal work on MIL describes an algorithm to learn axis-parallel rectangles

(APRs) for the drug activity problem described in the introduction (Dietterich et al.,

11

CHAPTER 2. BACKGROUND AND RELATED WORK

Table 2.1: The application of MIL to various problem domains.

Domain Bags Instances
3D-QSAR Molecules Conformations
CBIR Images Segments
Text Categorization Documents Passages
Protein Sequence Classification Proteins Amino Acid Sequences
Birdsong Classification Audio Recordings Spectrogram Segments

Table 2.2: The extension of some supervised algorithms to the MI setting.

Algorithm MI Extension(s) Description
APRs Dietterich et al. (1997) Finds the smallest APR that covers

some instance in each positive bag
Gaussian Models Maron (1998) Models the positive instances as a Gaus-

sian distribution; finds a Gaussian that
assigns high likelihood to one instance
in each positive bag with low likelihood
to instances in negative bags

Zhang and Goldman (2001)

Decision Trees Blockeel et al. (2005) Modifies splitting of decision tree nodes
to incorporate several MI-specific
heuristics

Neural Networks Ramon and De Raedt (2000) Neural outputs for each instance are
combined with a “softmax” layer to
produce a bag-level output

Zhou and Zhang (2002)

Logistic Regression Xu and Frank (2004) Bag-level likelihood maximized using a
combining function (e.g., softmax) over
instance likelihoods

Ray and Craven (2005)

SVMs Andrews et al. (2003) Encodes the MI assumption in SVM
constraints(see Section 2.2.3)

1997). The concept class of APRs is chosen specifically for the drug activity problem,

but the paper suggested that other supervised learning algorithms might be extended

to MI setting for solving problems from other domains. In fact, there is a large body of

subsequent work on extending popular supervised algorithms to the MI setting. Most

MI-specific algorithms are created by modifying supervised formulations to account

for the relationship between bag and instance labels in the MI setting. Some example

algorithms are listed in Table 2.2, and prior work has compared these approaches

across a variety of datasets (Amores, 2013).

12

CHAPTER 2. BACKGROUND AND RELATED WORK

2.1.3 Generalizations of Multiple-Instance Classification

There have been several generalizations of the standard MI classification framework in

prior work. One straightforward extension is MI regression, which generalizes the set

of bag and instance labels Y to be R, the set of real numbers (Amar et al., 2001; Ray

and Page, 2001). As with MI classification, MI regression must specify how a bag label

is derived from instance labels through what is called a combining function. Again

motivated by the 3D-QSAR problem, the max combining function is often used so

that F (Bi) = maxxij∈Bi f(xij) as for classification. The intuition is that the observed

activity of a molecule is the maximum activity over all of its likely conformations.

However, in the MI regression setting, a richer class of combining functions can be

used. For example, some prior work simply assumes that some relevant subset of

instances in each bag are responsible for a bag’s label (Wagstaff et al., 2008).

Another generalization of MI classification changes the combining function used

to assign binary labels to bags. As described by Foulds and Frank (2010), consider

a CBIR problem in which the task is to distinguish pictures of deserts, oceans, and

beaches. Segments in these images are primarily either sand or water. In the standard

MI setting, it is assumed that the presence of a single type of instance was sufficient

to identify an image category. However, in this case, the presence of both sand and

water is required to distinguish beaches from deserts (only sand) or oceans (only

water). The existence of such concepts is permitted under the Generalized MIL

(GMIL) framework (Scott et al., 2005). In GMIL, it is assumed that some types of

instances are “attractive” and that others are “repulsive.” For a bag to be positive, it

must contain a certain number of attractive instance types and exclude some number

of the repulsive instance types. The generalization allows for richer relationships

between bag and instance labels.

13

CHAPTER 2. BACKGROUND AND RELATED WORK

−4 −2 0 2 4

Feature 1

−4

−2

0

2

4

Fe
at

ur
e

2
Figure 2.3: An SVM classifier that sep-
arates positive (blue) and negative (red)
examples in a two-dimensional feature
space. The classifying hyperplane is the
solid line, and the boundary of the mar-
gin is indicated with dashed lines. The
support vectors are circled.

2.2 Kernel Methods

So far, labeling functions in the standard supervised and MI learning settings have

been discussed abstractly. For theoretical results discussed in Chapter 4 and Chap-

ter 5, we continue to analyze these learning problems in an abstract setting. However,

more detailed results can often be obtained by focusing on a particular class of label-

ing functions, or “hypotheses.” For example, hyperplanes in the feature space (when

X is an inner product space) is a popular class of hypotheses we discuss further in

Chapter 6 and Chapter 7.

Kernel methods are a powerful and well-studied family of approaches that use

“kernel functions” to learn nonlinear concepts for classification and regression tasks.

Kernels are often used with some underlying classification technique, such as an SVM,

and they provide a way to learn classifying hyperplanes on nonlinear features derived

from an original training set. Below, we first describe the linear SVM. Then we de-

scribe how to introduce kernels to the SVM formulation to produce nonlinear concepts

over data.

14

CHAPTER 2. BACKGROUND AND RELATED WORK

2.2.1 Support Vector Machines

The SVM (Vapnik and Kotz, 2006) is an approach to binary classification that at-

tempts to “separate” data from the two classes. Figure 2.3 shows a dataset with two

features, with the positive examples indicated with blue squares, and the negative

examples with red circles. For this dataset, there are many lines that separate the

data. The intuition behind the SVM is to choose the hyperplane that is as far away as

possible from examples in each class. Equivalently, the SVM maximizes the margin,

or the region between the positive and negative examples measured perpendicular to

the hyperplane. The margin-maximization approach makes the SVM robust to error

or noise in the data, and has been shown more formally to produce a classifier that

generalizes well to new examples (Bartlett and Shawe-Taylor, 1999). The SVM gets

its name from the examples, called “support vectors,” that lie on the boundary of

the margin. In Figure 2.3 the solid line is the classifying hyperplane, the boundary

of the margin is indicated with dashed lines, and the support vectors are circled.

Formally, given a dataset of k-dimensional examples X =
{
xi ∈ Rk

}n
i=1

with cor-

responding binary labels Y = {yi ∈ {−1,+1}}mi=1, a classifying hyperplane (w, b)

assigns a label f(xi) = sign (〈w, xi〉+ b) to examples. For training, the classifier must

satisfy the constraints f(xi) ≥ 1 for positive examples and f(xi) ≤ −1 for negative

examples so that examples are outside the margin. Equivalently, we can use the

single constraint yif(xi) ≥ 1 for all examples. The size of the margin is inversely

proportional to 1
2
‖w‖2. Therefore, finding a hyperplane such as that in Figure 2.3 is

equivalent to minimizing the following quadratic program (QP):

min
w,b

1
2
‖w‖2 ,

s.t. yi (〈w, xi〉+ b) ≥ 1.

(2.1)

A more modern SVM formulation (Cortes and Vapnik, 1995) addresses two issues

15

CHAPTER 2. BACKGROUND AND RELATED WORK

−2 −1 0 1 2

Feature 1 (x1)

−2

−1

0

1

2

Fe
at

ur
e

2
(x

2
)

x2
1x2

2

x
1 ×

x
2

Figure 2.4: A linearly inseparable dataset (left) becomes linearly separable under the
quadratic feature map (right).

with the “hard-margin” approach in Equation 2.1. First, not all datasets are as

nicely separable with a hyperplane as the one shown in Figure 2.3. Additionally, we

might be interested in misclassifying a few examples if it leads to a larger margin

and hence provides better generalization to new examples. Therefore, the “soft-

margin” approach introduces nonnegative slack variables ξi ≥ 0 in the constraints:

yif(xi) ≥ 1 − ξi. These slack variables allow misclassification of xi by a magnitude

of ξi to satisfy the constraints. Therefore,
∑n

i ξi can be interpreted as a measure of

loss, or the cost of classification error of a particular classifier (w, b). The soft-margin

formulation aims to minimize loss while maximizing the margin, using a constant

parameter C to adjust the trade-off between these two goals:

min
w,b,ξ

1
2
‖w‖2 + C

∑

i

ξi,

s.t. yi (〈w, xi〉+ b) ≥ 1− ξi, ξi ≥ 0.

(2.2)

2.2.2 Kernels and Nonlinear Classifiers

As formulated in Equation 2.2, the SVM can only classify data using linear functions

(hyperplanes) in the original feature space of the data. However, the concepts we

would like to learn are generally nonlinear functions of the input data features. For

16

CHAPTER 2. BACKGROUND AND RELATED WORK

example, the left-hand side of Figure 2.4 shows a dataset that is not linearly separable.

One solution to this problem is to use a feature map, which is a function mapping data

from one “input” feature space to another feature space. From this point forward,

we refer to the original space as the input space and reserve the term feature space

for the resulting feature space in which classification is performed.

As in Figure 2.4, suppose X = R2. Consider the feature map φ : X → H defined

by φ
(
(x1, x2)

)
= (x2

1, x
2
2, x1 × x2); that is, φ maps a vector (x1, x2) ∈ X to a vector

in H = R3 consisting of all pairwise products of original features. The result of the

mapping is shown on the right-hand side of Figure 2.4. In the new feature space H,

the data is now clearly linearly separable. By training an SVM classifier in the feature

space H rather than the input space X, we can avoid the problem of inseparability

with respect to the original features.

However, there is an issue with this approach. In particular, suppose the input

space dimensionality is k, then the dimensionality of H under the quadratic feature

map is O(k2), which makes training an SVM classifier much less efficient. Further-

more, if a more complex feature map is needed to induce separability (for example,

products of all triples of the original features), then the dimensionality of the feature

space grows larger, making the feature mapping and SVM training computationally

infeasible.

An elegant approach to incorporating the notion of a feature map while avoiding

computational issues is to use a kernel (Schölkopf and Smola, 2002). Formally, a

kernel k corresponding to a feature map φ is a function k : X × X → R defined by

k(xi, xj) = 〈φ(xi), φ(xj)〉. Since the kernel is the inner product between two examples

under a feature map, we require that the feature space H be an inner product space,

or technically, a Hilbert space. We can define k with a particular feature map φ

in mind. For example, the kernel k(xi, xj) = 〈xi, xj〉2 corresponds to the quadratic

17

CHAPTER 2. BACKGROUND AND RELATED WORK

feature map in Figure 2.4.2 However, as long as k is a symmetric function satisfying

Mercer’s condition (
∫∫

k(x, y)f(x)f(y) dx dy ≥ 0 for all square-integrable functions

f), then k is a valid kernel corresponding to some implicit feature map φ (Schölkopf

and Smola, 2002). Furthermore, assuming a constant time requirement to compute

the kernel function, computation the kernel requires fixed O(n2) time regardless of

the dimensionality of the feature space H, which could be infinite.

The use of a kernel with the SVM or other technique is often called the kernel

trick, and is justified by two observations. First, rewriting the soft-margin SVM

formulation in Equation 2.2 in terms of the feature map, we get:

min
w,b,ξ

1
2
‖w‖2 + C

∑

i

ξi,

s.t. yi (〈w, φ(xi)〉+ b) ≥ 1− ξi, ξi ≥ 0.

We see that the feature-mapped data φ(xi) only ever appears in an inner product.

Secondly, the representer theorem (Kimeldorf and Wahba, 1971; Yu et al., 2013) states

that the hyperplane w that minimizes the objective function can be expressed as:

w =
n∑

i=1

αiφ(xi),

a linear combination of the dataset under the feature map (Schölkopf et al., 2001).

Therefore, an equivalent optimization program is:

min
w,b,ξ

1
2

∑

i,j

αiαj 〈φ(xi), φ(xj)〉+ C
∑

i

ξi,

s.t. yi

(∑

j

αj 〈φ(xj), φ(xi)〉+ b

)
≥ 1− ξi, ξi ≥ 0.

By replacing the inner products with kernel functions, a kernelized version of the

2Strictly speaking, this k corresponds to the map (x1, x2) 7→ (x21, x
2
2,
√

2x1 × x2).

18

CHAPTER 2. BACKGROUND AND RELATED WORK

soft-margin SVM is obtained:

min
w,b,ξ

1
2

∑

i,j

αiαjk(xi, xj) + C
∑

i

ξi,

s.t. yi

(∑

j

αjk(xj, xi) + b

)
≥ 1− ξi, ξi ≥ 0.

(2.3)

In practice, the Lagrangian dual of the SVM QP is optimized, which naturally results

in a form that can be kernelized. Though a kernel function might seem to be little

more than a convenient notation, the kernel trick that follows from the combination

of observations above allows us to train classifiers in high-dimensional features spaces

efficiently without explicitly performing feature maps of the original data.

2.2.3 Multiple-Instance SVMs

As with other supervised classifiers, SVMs have also been applied to the MI setting.

First, as described in this section, one can modify the SVM optimization program

(Equation 2.2) to accommodate data in the form of labeled bags. On the other hand,

in addition to providing a means of learning nonlinear concepts over an input space,

kernels also allow SVMs to be applied to input data that is not in a traditional vector

representation. As long as a symmetric kernel function satisfies Mercer’s condition,

it can be defined with respect to any input space X. Accordingly, kernels have been

defined on sets, strings, tree, graphs, and other objects (Gärtner, 2008). Thus, as

described in Section 2.3.1, one can define kernels on bags and use the standard SVM

formulation.

As described in Section 2.1.2, there are two labeling functions of interest in the MI

classification setting. The first is f , the instance-labeling function, and the other is F ,

the bag-labeling function. “Instance-based” approaches search over instance-labeling

functions and modify the SVM formulation to minimize loss with respect to either the

instance-labeling function itself, or the corresponding bag-labeling function. One of

19

CHAPTER 2. BACKGROUND AND RELATED WORK

−4 −2 0 2 4

Feature 1

−4

−2

0

2

4

Fe
at

ur
e

2

−4 −2 0 2 4

Feature 1

−4

−2

0

2

4

Fe
at

ur
e

2

Figure 2.5: Example classifiers found by MI-SVM (left) and mi-SVM (right). Posi-
tive bag instances are represented with blue squares and negative bag instances with
red circles. Each bag is indicated with dotted lines. The figure indicates the instance
labels inferred during classification.

the first and most straightforward examples is the MI-SVM of Andrews et al. (2003):

min
w,b,ξ

1
2
‖w‖2 + C

∑

i

ξi,

s.t. Yi

[
max
xij∈Bi

(〈w, φ(xij)〉+ b)

]
≥ 1− ξi, ξi ≥ 0.

(2.4)

In the MI-SVM formulation, the maximum in the constraint encodes the relationship

F (Bi) = maxxij∈Bi f(xij) between the bag- and instance-labeling functions, and loss

is measured with respect to F given the bag labels Yi.

Figure 2.5 (left) shows an example MI-SVM classifier on a small MI dataset.

Bags are indicated with dotted lines enclosing a set of instances, with positive bag

instances represented as blue squares and negative bag instances as red circles. As

in the standard SVM formulation, MI-SVM attempts to maximize the hyperplane

margin while classifying at least one instance in each positive bag positive, and every

instance in each negative bag negative.

An alternative approach is to directly record the loss of f while allowing all possible

instance labelings consistent with the given bag labeling. The mi-SVM formulation

(Andrews et al., 2003) accomplishes this using a mixed-integer optimization program

20

CHAPTER 2. BACKGROUND AND RELATED WORK

Table 2.3: Some extensions of SVM-based approaches to the MI setting.

Algorithm Reference Description
Andrews et al. (2003) Modify SVM constraints or introduce addi-

tional variables to encode the MI assumption
MICA Mangasarian and Wild (2008) A convex combination of instances from

each positive bag is used to represent the
true positive instance

KI-SVM Li et al. (2009) Uses multiple kernel learning, in which a
convex combination of various kernel
functions is also learned during the
optimization of the SVM

sMIL Bunescu and Mooney (2007) Enforces a constraint on the average label
assigned to an instance in each positive bag,
with two versions of the algorithm enforcing
additional constraints

stMIL
sbMIL

that searches over instance labels:

min
w,b,ξ,y

1
2
‖w‖2 + C

∑

i,j

ξij,

s.t. yij (〈w, φ(xij)〉+ b) ≥ 1− ξij, ξij ≥ 0,

yij ∈ {−1, 1},





∑
j
yij+1

2
≥ 1 if Yi = 1

yij = −1 if Yi = −1

.

(2.5)

The second set of constraints enforce the consistency between Yi and yij.

Figure 2.5 (right) shows an example classifier found by mi-SVM. The resulting

hyperplane differs from that found with MI-SVM, since mi-SVM enforces that each

instance has a label. The resulting instance labels inferred by mi-SVM are indicated

in the figure.

In addition to MI-SVM and mi-SVM, numerous other extensions of the SVM

to the MI setting have been proposed, as described in Table 2.3. Although such

approaches attempt to learn bag-level labels using instance-level classifiers, better

performance can often be achieved by directly learning bag-level classifiers. We make

the case for this claim in Chapter 6. One reason why this is true is because even

negative instances in positive bags can provide useful discriminative information to a

21

CHAPTER 2. BACKGROUND AND RELATED WORK

bag-level MI classifier. As an example, consider an image classification task in which

instances are objects within an image, and bags are entire images containing sets of

objects. The instance-labeling task might be to classify whether objects are cats,

and the corresponding bag-labeling task is to classify whether an image contains a

cat. Since images of cats might be more likely to contain objects such as toy mice

or balls of yarn, having access to the entire set of objects in the image might afford

an advantage to a classifier over one that looks only at each individual object to

make a decision about the image. The intuition described above is formalized by the

generative model described in Chapter 3. The set kernel approaches, described in

Section 2.3.1, can be used to capture aggregate information about bags.

2.3 Kernel Embeddings of Sets and Distributions

When kernels are used with structured objects such as sets, the corresponding feature

map is often described as embedding structured examples into a feature space in

which a hyperplane-based model can be trained. Such embeddings provide an elegant

means of representing structured data as feature vectors without requiring explicit

enumeration of the features. The following sections describe two relevant embeddings

of sets and distributions into feature spaces.

2.3.1 Set Kernels

The set kernel is a straightforward way of embedding an entire set into a kernel

feature space by simply summing feature representations for each element of the set.

Figure 2.6 shows an example of the set kernel feature map Φ applied to three sets. If

a linear instance kernel kI with feature map φ(x) = x is used as in the example to

represent each element of a set X1 = {xi}mi=1, the set kernel feature map is defined

22

CHAPTER 2. BACKGROUND AND RELATED WORK

0 2 4 6 8 10

Feature 1

0

2

4

6

8

10

Fe
at

ur
e

2

Φ

Figure 2.6: An example showing the set
kernel feature representations (under the
set kernel feature map Φ) for three bags
with a linear instance kernel.

formally as:

Φ(X1) =
m∑

i=1

φ(xi).

Then, given another set, X2 = {xj}nj=1, the set kernel kSet is defined in terms of the

feature map as:

kSet(X1, X2) = 〈Φ(X1),Φ(X2)〉

=

〈
m∑

i=1

φ(xi),
n∑

j=1

φ(xj)

〉

=
m∑

i=1

n∑

j=1

〈φ(xi), φ(xj)〉

=
m∑

i=1

n∑

j=1

kI(xi, xj).

(2.6)

Thus, the set kernel is simply the sum of pairwise instance kernel values between

elements in the two sets (Gärtner et al., 2002).

Observe that for the set kernel in Equation 2.6, bags with different sizes will

have different feature space representations. For example, the bag of blue squares in

Figure 2.6 only contains two examples, and its representation is closer to the origin

than the other bags, which contain three examples. However, for MIL, the bag size

is not a relevant feature for learning to classify bags. In this case, we might wish to

normalize the set kernel feature representation.

23

CHAPTER 2. BACKGROUND AND RELATED WORK

0 1 2 3 4

Feature 1

0

1

2

3

4

Fe
at

ur
e

2

0 1 2 3 4

Feature 1

0

1

2

3

4

Fe
at

ur
e

2

Figure 2.7: (Left) Three bags represented using an averaging-normalized set kernel
with a linear instance kernel. The large points illustrate the feature space represen-
tations for each bag. (Right) The same three bags represented using the averaging-
normalized set kernel with an RBF instance kernel. The feature space representations
of the bags are functions, which are represented with contours.

One possible normalization is to average rather than sum examples within each set.

Figure 2.7 (left) shows the same sets from Figure 2.6 under the averaging-normalized

set kernel map:

Φ(X1) =
1

|X1|
m∑

i=1

φ(xi). (2.7)

In general, the set kernel can also be normalized with a positive-valued normalization

function fnorm applied to each bag. Using a derivation similar to that in Equation 2.6,

the normalized set kernel (NSK) derived from the feature map is:

kNSK(X1, X2) =

∑m
i=1

∑n
j=1 kI(xi, xj)

fnorm(X1)fnorm(X2)
. (2.8)

The averaging-normalized set kernel is a special case of the kernel in Equation 2.8 with

fnorm(X) = |X|. As described below, using averaging normalization produces a kernel

with some interesting properties. Furthermore, empirical results show that the NSK

with averaging normalization led to improve performance on the MI classification task

compared with the unnormalized set kernel in Equation 2.6 (Gärtner et al., 2002).

In the examples of Figure 2.6 and Figure 2.7 (left), a simple linear instance kernel

24

CHAPTER 2. BACKGROUND AND RELATED WORK

is used to construct a kernel on sets. As a result, the feature space representations

of these sets (either a sum or average of the instances) appear to “ignore” much of

the structure of the sets. However, using a more powerful instance kernel, this need

not be the case. For example, the radial basis function (RBF) kernel is defined as

follows:

k(xi, xj) = e−γ‖xi−xj‖
2
2 , (2.9)

where γ is a bandwidth parameter. The feature map of the RBF kernel maps an

example to an unnormalized Gaussian function centered over the example with width

controlled by γ. The NSK with an RBF instance kernel thus represents a set with

an average of these Gaussian functions. The result is shown Figure 2.7 (right), where

contours are used to show the functions corresponding to the feature space represen-

tations of the set. Section 7.2.2 describes the properties of the NSK in more detail.

Section 2.3.2 describes the relationship between the NSK and a recent approach for

defining kernels distributions.

2.3.2 Kernel Mean Embeddings

The averaging normalization applied to the set kernel as shown in Figure 2.6 was

motivated by a desire to prevent bag size from contributing significantly to the feature

space representation of a bag. However, the NSK can also be viewed as a way to embed

distributions into a kernel feature space.

The example in Figure 2.8 gives the intuition for how the NSK embeds a distribu-

tion into a feature space. With an RBF instance kernel (Equation 2.9), the feature

space representation of a single point can be viewed as an unnormalized Gaussian

function centered over the point. This is represented as the point xi being mapped

from the one-dimensional instance space on the left-hand side of Figure 2.8 to φ(xi)

on the right-hand side.

25

CHAPTER 2. BACKGROUND AND RELATED WORK

x

{X
xi

P

x

µ(P)
µ̂(X)
φ(xi)

Figure 2.8: An example illustrating the embedding of a single example, a sample, and
a distribution using the RBF base kernel. On the left is the actual PDF of a one-
dimensional instance distribution with a sample plotted as a histogram. The right
shows how the kernel embeds a single example xi, the sample X, and the underlying
distribution P into a space of functions.

Now, suppose we draw a sample X of size 1000 with each element independent and

identically distributed (IID) according to the distribution P over the instance space.

To visualize the sample in Figure 2.8, the elements are plotted in bins as a histogram.

The NSK with averaging normalization (Equation 2.7) embeds this sample as the

average of the individual feature space representations of each point. In the case of

the RBF kernel, this is an average of Gaussian functions of the form shown as φ(xi) in

Figure 2.8. The resulting averaged function is the dashed blue line on the right-hand

side of Figure 2.8. In this context, the feature space map of the NSK is called the

empirical kernel mean embedding of the sample X, denoted µ̂(X) (Smola et al., 2007).

Now, suppose we draw ever-larger samples from P and compute their empirical

kernel mean embeddings. We would expect that as sample size n→∞, the distance
∥∥µ̂(X(n))− µ(P)

∥∥
H → 0, where µ(P) is the kernel mean embedding computed with

respect to the underlying distribution, P :

µ(P) = Ex∼P [φ(x)] .

Under some mild assumptions, the embedding of samples do converge in the feature

space norm to the embedding of the underlying distribution Sriperumbudur et al.

26

CHAPTER 2. BACKGROUND AND RELATED WORK

(2010). Figure 2.8 shows that µ(P) and µ̂(X) are in fact close to each other after

1000 samples.

Thus, the averaging-normalized set kernel can be viewed as a way of embedding

distributions into a feature space. When bags in the MI setting are viewed as samples

from distributions, as in the generative model described in Chapter 3, the NSK is a

natural way of representing bags in a feature space.

The kernel mean embedding has several advantages over other approaches for rep-

resenting distributions; see Song et al. (2013) for a more detailed discussion. First, the

mean embedding is nonparametric and does not require strong assumptions about the

structure of the distribution being represented. As opposed to other finite or non-

parametric mixture models that have been used to model distributions, the mean

embedding does not require a computationally intensive optimization process. The

mean embedding has some similarities to density estimation techniques. However,

the mean embedding is much more effective at overcoming the “curse of dimension-

ality” encountered by density estimation approaches as the dimensionality of the

input space increases (Gretton et al., 2006). In fact, the appropriate choice of kernel

can achieve fast convergence of the empirical mean embedding µ̂ to the underlying

mean embedding µ with a rate that is independent of the input data dimensionality

(Sriperumbudur et al., 2010, 2012). Finally, embedding distributions into a Hilbert

space allows a variety of existing tools from linear algebra to be applied to perform

operations on distributions. In particular, as described in Section 6.1, classification

algorithms such as SVMs can be applied to learn from distributions.

2.3.3 Related Kernels

Although we are primarily interested in kernels that map distributions into a fea-

ture space, other kernels have been defined to act on entire bags. In particular, the

“marginalized” set kernel (Kwok and Cheung, 2007) is a modification of the set kernel

27

CHAPTER 2. BACKGROUND AND RELATED WORK

designed to take instance labels into account. The box-counting kernel (Tao et al.,

2008) counts the number of APRs (here, treated as boxes in some discretized version of

the input space) that contain some instance from each bag. Because enumerating all

boxes is computationally intractable, the authors present an approximation scheme.

The mi-Graph and MI-Graph kernels construct a nearest-neighbor graph between

instances in each bag, then define a kernel between these graphs (Zhou et al., 2009).

However, no theoretical results about the representational power of these kernels are

provided in prior work. In Section 6.3, we analyze these approaches in comparison to

kernels that explicitly treat bags as distributions.

2.4 Learning Theory

As discussed in Section 2.1, the goal of supervised and other learning frameworks is

to find a “good” function to approximate some target concept. Although there are

many conceivable ways to address this question, Section 2.4.1 contains a discussion of

the probably approximately correct (PAC) learning framework of Valiant (1984) and

related concepts. PAC learning is a popular and well-studied formalization of what

it means to “learn” from data and provides a theoretical framework for rigorously

describing the ability of specific algorithms to learn concepts efficiently. Chapter 4

describes new learnability results for the MI setting using the PAC framework.

2.4.1 Probably Approximately Correct

To formalize what it means to learn from data, we must make further assumptions

than were discussed in Section 2.1. In this section, we focus on the binary classification

problem (Y = {−1, 1}), but the ideas presented below can be stated in more general

terms. First, we assume that the concept f : X → Y is an element of some fixed,

known concept class F . For example, F might be the set of all thresholded real-

28

CHAPTER 2. BACKGROUND AND RELATED WORK

valued (to produce a binary label) linear, quadratic, or bounded continuous functions

on X. Furthermore, we assume that there exists some distribution DX over examples

X. When we observe a sample X(n) = {(xi, f(xi)}ni=1, we assume that each xi is

drawn IID according to DX . When we observe new examples to label, these examples

must also be drawn from DX ; otherwise, our training examples might be completely

unrelated to those we observe during the “testing” of the learned classifier.

Given these assumptions, we can describe the quality of a selected concept g

with respect to the target concept f ∈ F . Quality is measured using risk R, which

measures the expected 0–1 loss, or discrepancy between f and g, with respect to the

DX :

Rf (g) = Ex∼DX
[
1[f(x) 6= g(x)]

]
. (2.10)

Here, 1[·] denotes the indicator function, which is equal to 1 when the condition inside

the brackets is satisfied and 0 otherwise. As described in Chapter 5, it is possible

to substitute other measures such as area under the ROC curve (AUC) for 0–1 loss

in the PAC framework. A concept g is approximately correct when Rf (g) < ε for

some small ε > 0. While we hope to learn from a finite sample X(n) of data, we are

at the mercy of chance to provide a sample that is representative of the underlying

distribution DX . Therefore, as the name suggests, the PAC framework requires that

learning algorithms produce concepts that are only probably approximately correct.

That is, given a concept g produced by training on input data X(n):

PX(n)∼DnX [Rf (g) < ε] > 1− δ,

for some small δ > 0. Finally, PAC learning requires that the sample size n need not

be “too large” to produce a good classifier. With the basic requirements for PAC

learnability described above, the formal definition is as follows:

Definition 2.1 (PAC Learning). An algorithm A PAC-learns a concept class F over

29

CHAPTER 2. BACKGROUND AND RELATED WORK

instances X if for any f ∈ F , DX over X, and ε, δ > 0, given a sample X(n) drawn

from Dn
X of size n = O(poly(1

ε
, 1
δ
)), A produces a concept g such that P [Rf (g) < ε] >

1− δ.

Above, poly(·) represents a polynomial in terms of its arguments. The notion of

computational complexity can also be incorporated into PAC learnability:

Definition 2.2 (Efficiently PAC Learning). An algorithm A efficently PAC-learns a

concept class F if it PAC learns F with a runtime that is O(poly(1
ε
, 1
δ
)).

Interestingly, algorithm-independent statements can be made about the PAC

learnability of various concept classes using only properties of the concept class it-

self. Such results employ general approaches like empirical risk minimization (ERM),

which entails selecting a function g ∈ F that minimizes the empirical risk, or loss, of

g on the observed dataset. The next section describes properties of a concept class

that make learning with approaches like ERM possible.

2.4.2 Capacity Measures

One useful property for characterizing the learnability of a concept class is a general

measure of the size, or capacity of the class. As a simple example, consider the class

of boolean functions of two variables. Since there are only 222 = 16 such functions,

with high probability, a small training sample will be able to rule out irrelevant

functions that lead to errors on the sample. More general and precise statements

about learnability in the case of a finite concept class have been derived (Blumer

et al., 1987). However, we are often interested in infinite concept classes such as

hyperplanes. In this case, a more general notion of capacity is required.

One useful notion of capacity is the Vapnik–Chervonenkis (VC) dimension (Vapnik

and Chervonenkis, 1971). The intuition behind the VC dimension is that even for

infinite concept classes, there are only at most 2n equivalence classes of functions for

30

CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.9: An example showing the shattering of points with two-dimensional hyper-
planes. Any set of three points (left) can be shattered, but no hyperplane can assign
the shown labeling of the given set of four points (right), or the appropriately-chosen
labeling of any other set of four points.

any set of n examples. That is, each binary function in a concept class assigns one

of 2n possible labelings to the examples. A concept class F shatters a sets of size n

there exist functions in F corresponding to each of the 2n equivalence classes. That

is, any of the 2n labelings can be realized with some function in F , for the set of n

examples. The VC dimension of F , denoted VC(F), is the size of the largest set that

F can shatter some set of that size. If F shatters sets of any size, then VC(F) =∞.

As an example, consider the concept class of two-dimensional hyperplanes. As

illustrated in Figure 2.9, any set of three points can be shattered. The figure shows

four hyperplanes, which with their “flipped” counterparts assign the eight possible

labelings to the set of three points. However, the right-hand side of Figure 2.9 shows

a labeling of a set of four points that cannot be assigned by a linear concept. In fact,

for all sets of four points, there exists a labeling that cannot be assigned by a two-

dimensional hyperplane. Therefore, the size of the largest set that can be shattered

by two-dimensional hyperplanes (and hence the VC dimension of the concept class)

is three. More generally, the VC dimension of k-dimensional hyperplanes is k + 1

(Vapnik and Chervonenkis, 1971).

The importance of VC dimension for learning theory is described in a result by

31

CHAPTER 2. BACKGROUND AND RELATED WORK

Blumer et al. (1989). In particular, a concept class is PAC learnable if and only if it

has finite VC dimension. In particular, it is PAC learnable using:

n = O

(
1

ε

(
VC(F) log

1

ε
+ log

1

δ

))

examples (Blumer et al., 1989).

As a final note, in the SVM formulation of Equation 2.3, the concept class used

for learning is potentially an infinite-dimensional Hilbert space with infinite VC di-

mension. However, by maximizing the margin of the selected hyperplane in addition

to minimizing empirical risk, the SVM effectively restricts the capacity of the concept

class it uses to learn a target concept. Simultaneously controlling the capacity of the

hypothesis class while minimizing risk is called structural risk minimization (SRM).

Similar learnability results can be shown for SRM approaches as well.

2.4.3 Probabilistic Concepts

As discussed in Section 2.1, there exist alternative formalizations of supervised learn-

ing in which a labeling concept f : X → Y need not be deterministic. In particular,

the probabilistic concept (p-concept) model is a model for binary classification in

which a p-concept c : X → [0, 1] represents the probability that an instance X is

observed with a positive label (Kearns and Schapire, 1994). In this setting, each

example x is sampled according to DX , and the label of x is positive with probability

c(x) and negative with probability 1− c(x).

In the case of p-concepts, risk of a hypothesis h is more naturally measured with

respect to a quadratic loss function: (h(x)− c(x))2. Risk is the expected loss, defined

by:

Rc(h) = Ex∼DX
[
(h(x)− c(x))2

]
.

Using this measure of risk, PAC learnability of a p-concept class C can be defined for

32

CHAPTER 2. BACKGROUND AND RELATED WORK

the p-concept model analogously to the definition for a deterministic concept class F

(Kearns and Schapire, 1994).

Just as VC dimension can be used to characterize the capacity of a deterministic

concept class, pseudo-dimension is used to quantify the capacity of a p-concept class.

The pseudo-dimension is similar to the VC dimension, but uses a different notion of

“shattering.” In particular, for a set of points with real-valued labels, {(xi, yi)}ni=1, a

p-concept class C shatters the points if for any binary labeling of the points {bi}, there

exists some c ∈ C such that c(xi) ≥ yi if bi = 1 and c(xi) < yi if bi = 0 (Haussler,

1992). The pseudo-dimension of C, denoted PD(C), is the size of the largest set such

that C shatters some set of that size.

As in the relationship between PAC learnability and VC dimension described in

Section 2.4.2, it is possible to PAC-learn a p-concept class C when PD(C) is finite

using:

n = O

(
1

ε2

(
PD(C) log

1

ε
+ log

1

δ

))
(2.11)

examples with binary labels assigned according to the p-concept (Kearns and Schapire,

1994). Chapter 5 describes how the PAC learnability of p-concepts can be used to

show the ability of supervised classifier to correctly rank positive and negative in-

stances in the MIL setting.

2.4.4 Area Under the Receiver Operating Characteristic Curve

For classifiers that output a confidence value yi ∈ [0, 1] that an example xi is positive,

0.5 is typically used as the threshold for assigning a binary label to the example. That

is, the maximum likelihood label given the classifier’s confidence is 1 if the confidence

is above 0.5 and 0 if the confidence is below 0.5. However, in practice, there might be

a high cost associated with a false positive, so that the threshold should be set higher

than 0.5. In other cases, there might be a high cost associated with a false negative, so

33

CHAPTER 2. BACKGROUND AND RELATED WORK

A
B
C

D

E
F
G

0.10+
0.25- 0.35-
0.60+
0.70-
0.90+

0

1

h(x)f (x)

0.0 0.2 0.4 0.6 0.8 1.0

False-Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

-P
os

iti
ve

R
at

e

A

BCD

E
F

G

AUC

Figure 2.10: An example ROC curve. The left-hand side of the figure shows a set
of examples with true confidence labels assigned by f and confidence values assigned
by h. Equivalent sets of thresholds are indicated with letters, and the corresponding
false-positive rates and true-positive rates are shown as the ROC curve on the right.
The AUC is indicated by the shaded region.

that the threshold should be set lower than 0.5. The receiver operating characteristic

(ROC) curve plots this trade-off between the false-positive and true-positive rates as

the classifier threshold is varied.

An example ROC curve is shown in Figure 2.10. On the left-hand side of the

figure are the class labels f(x) and confidence values h(x) assigned to a set of exam-

ples by the underlying labeling function f and classifier h. The threshold for binary

classification can be set within the regions labeled “A” through “G.” The resulting

ROC curve is obtained by plotting the false-positive rate and true-positive rate cor-

responding to setting a threshold within each of these regions, as illustrated on the

right-hand side of the figure.

For a perfect classifier, there is some threshold that correctly labels all examples,

which achieves a 100% true-positive rate with a 0% false-positive rate. Accordingly,

the ROC curve jumps immediately to 1 at a false-positive rate of 0. In general, the

better a classifier, the more quickly the corresponding ROC curve increases to 1.

Hence, the AUC is used to summarize the performance of a classifier. The AUC of

34

CHAPTER 2. BACKGROUND AND RELATED WORK

More General
Assumptions

Instance
Concepts

Bag
Concepts

(Long and
Tan, 1998)

APRs with
Product

Distributions

(Auer et al.,
1998)

APRs with
IID r-tuples

(Blum and
Kalai, 1998)

IID r-tuples

(Sabato and
Tishby, 2012)

Arbitrary
r-tuples

?
Hardness Results

(Auer et al., 1998; Sabato
and Tishby, 2012)

Figure 2.11: Prior learnability and hardness results in the MI setting.

the curve in Figure 2.10 is shown as a shaded region.

2.4.5 Multiple-Instance Learnability and Hardness Results

Figure 2.11 provides an overview of the prior learnability and hardness results in the

MI setting. Recent results, described in more detail in Section 4.4, show that it is

possible to learn bag concepts using ERM under relatively weak assumptions (Sabato

and Tishby, 2012). However, the results do not provide any theoretical guarantees

about learning instance concepts. The most recent learnability results for instance

concepts, over a decade old, rely on the restrictive assumption that all instances

across all bags are drawn IID from the same distribution over instances (Blum and

Kalai, 1998). As discussed in prior work (Zhou et al., 2009), and in Section 3.3, this

assumption is unrealistic for many practical MI problems. On the other hand, allow-

ing for arbitrary distributions over tuples of instances leads to hardness results for

instance concept learnability (Auer et al., 1998; Sabato and Tishby, 2012). However,

these prior results leave open the question of whether instance concept learnability is

possible for models that are less restrictive than the IID r-tuple model, but provide

other weaker restrictions on the distribution over tuples. In Chapter 4, we answer this

question in the affirmative. In particular, we show that under a generative model in

which bags are viewed as distributions (Chapter 3), it is possible to generalize prior

results on instance concept learnability (Blum and Kalai, 1998) while precluding hard

35

CHAPTER 2. BACKGROUND AND RELATED WORK

scenarios described in prior work (Auer et al., 1998; Sabato and Tishby, 2012). A

detailed comparison with prior work is given in Section 4.4.

36

Chapter 3

Bags as Distributions

In this chapter, we describe a generative model for MI data in which bags are viewed

as distributions over instances rather than as sets of instances.1 We show that the

proposed generative model actually encompasses previous, standard models of MI

learning in which bags are sets or tuples. The choice of framing a problem within

a particular theoretical model has significant practical consequences for designing or

selecting an algorithm to solve the problem. This chapter provides a novel theoretical

framework in which the MI classification problem can be analyzed. The model allows

us to derive positive instance- and bag-concept learnability results for the MI setting

as described in Chapter 4. Furthermore, as Chapter 5 shows, the generative model

leads to a surprising yet testable hypothesis that standard supervised algorithms

can learn from MI data. This hypothesis is evaluated experimentally, supporting

the assumptions made by the model. In Chapter 6, existing bag-level hyperplane

classifiers are analyzed under the generative model, and in Chapter 8, the model is

used to analyze a new resampling method for MIL.

1A description of this new generative model also appears in Doran and Ray (2014).

37

CHAPTER 3. BAGS AS DISTRIBUTIONS

3.1 The Generative Model

At the heart of this work is the claim that bags are best viewed as distributions

rather than as finite sets of instances. Below, we formally define what we mean by

this statement. But first, the example domain of drug activity prediction provides an

intuitive justification for this claim.

As described in Chapter 1, in the drug activity prediction domain, the goal is to

predict the ability of molecules to activate, or bind to, a receptor. To cast the prob-

lem as binary classification, we select some threshold so that each molecule’s activity

level either corresponds to an “active” or “inactive” label. In this case, we can think

of each molecule (bag) as being drawn from a distribution DB over molecules. Ignor-

ing for the moment that each molecule has numerous conformations, this molecule

either activates the receptor or not, so in nature the labeling function is defined at

the level of bags. Prior models represent each molecule as a set or multiset of confor-

mations, so they implicitly assume that each molecule exists in only a finite number

of conformations. In reality, a molecule can transform continuously from conforma-

tion to conformation, producing an infinite set of conformations. In particular, each

molecule exists in a state of dynamic equilibrium in which the amount of time it

spends in each conformation is distributed according to Gibbs free energy such that

low-energy conformations are preferred. Hence, the molecule (bag) corresponds to a

distribution over instances. Constructing a bag from low-energy conformations, the

common procedure for constructing bags in the drug activity domain, can be thought

of as sampling instances from this distribution.

To formalize the intuition above, suppose we have an instance space X. Typically,

the space of bags is some subset of X∗, the set of all finite subsets of X. However,

here, we let the space of bags be B = P(X), the set of probability distributions on

the input space. Hence, each bag B ∈ B is a probability distribution over instances,

denoted P(x | B).

38

CHAPTER 3. BAGS AS DISTRIBUTIONS

Bi

F (Bi)

DB

F

1 ≤ i ≤ n

(a) Generative Process
for Bags

xijBi

F (Bi)

DB

F

1 ≤ j ≤ mi

1 ≤ i ≤ n

(b) Generative Process for Bag
Samples

xiBi

F (Bi)

DB

F

1 ≤ i ≤ n

(c) Generative Process for
Bag-labeled Instances

Figure 3.1: A comparison of the generative processes for bags, bag samples, and
individual bag-labeled instances.

As a concrete example, suppose the instance space is the closed real-valued interval

X = [−1, 1] and each bag Bθ is a distribution parametrized by a single real-valued

parameter θ ∈ [0, 1]. As illustrated in Figure 3.2(a), the bag distribution P(x | Bθ)

assigns (1− θ) of the probability mass uniformly to the interval [−1, 0), and θ of the

mass uniformly to the interval [0, 1]. Each value of θ corresponds to a different bag,

which is a different distribution over instances.

We propose that, at the level of bags, the MI generative process is similar to that

for supervised learning. In particular, bags are sampled from some fixed distribution

DB , which is a distribution over instance distributions (DB ∈ P(P(X))). From

this distribution DB , we sample some set of bags {Bi}ni=1, as illustrated by the plate

model in Figure 3.1(a). Also, as in supervised learning, we assume that there exists

some labeling function F : B → {0, 1} that labels bags. Thus, a supervised dataset

{(Bi, F (Bi))}ni=1 could be produced by sampling bags IID from DB and applying the

labeling function F .

Returning to the example of Figure 3.2, a distribution over bags is essentially

a distribution over the bag parameter θ. Such a distribution is illustrated in Fig-

ure 3.2(b), and assigns Pneg of the mass to the set {0} and the remaining 1 − Pneg

portion of the mass uniformly to the interval [π, 1]. The probability of sampling a

bag, P(Bθ), corresponds to the probability of sampling the corresponding value of θ.

39

CHAPTER 3. BAGS AS DISTRIBUTIONS

−1 0 1
X

1− θ

θ

(a) P(x | Bθ)

0 π 1
θ

Pneg

1−Pneg

1−π

(b) DB , P(Bθ)

−1 0 1
X

1− pneg

pneg

(c) DX , P(x)

−1 0 1
X

1

1− γ

(d) c(x)

Figure 3.2: An example generative process for MI data. Each bag distribution (a) is
parametrized by θ, and the distribution over bags (b) corresponds to a distribution
over values of θ. The resulting distribution over instance (c) is derived in Equation 3.3
and Equation 3.4. The probability of instances appearing in positive bags (d) is
derived in Equation 3.6 and Equation 3.7.

Similarly, a bag-labeling function F can be defined in terms of θ as follows:

F (Bθ) =





0 if θ = 0

1 if θ > 0.

(3.1)

Thus, for this example, Pneg = P [F (Bθ) = 0].

However, unlike the example in Figure 3.2 or the plate model in Figure 3.1(a),

we do not typically observe bags directly in the MI setting. In the typical case, we

only have access to samples Xi = {xij}mij=1, each drawn independently according to

the distribution corresponding to each bag Bi so that
{(
{xij}mij=1 , F (Bi)

)}n
i=1

is the

observed MI dataset, as shown in Figure 3.1(b). Each bag can be a different size,

but we will use ml ≤ mi ≤ mu to denote the lower and upper bounds on bag sizes,

respectively.

Furthermore, in the MI setting, we assume that in addition to the bag-labeling

function F , there also exists an instance-labeling function f : X → {0, 1}. A key

component of the MI setting is not only the existence of both bag and instance

labeling functions, but the relationship between the two as well. Traditionally, the

MI assumption is stated with respect to particular sets of instances so that a bag

label F (Bi) is the logical OR (for boolean labels), or maximum (for numerical labels),

40

CHAPTER 3. BAGS AS DISTRIBUTIONS

of its instances’ labels: F (Bi) = maxj f(xij). However, in the proposed generative

model, bags are distributions with a priori labels regardless of the instances sampled

from them. Therefore, our generative model requires a more nuanced description of

the relationship between bag and instance labels.

In particular, we state the relationship between F and f at the level of the gener-

ative model. Accordingly, a bag is negative (F (B) = 0) if and only if probability of

sampling a positive instance within the bag is zero: Px∼B [f(x) = 1] = 0. In measure-

theoretic terms, instances sampled within negative bags are almost surely negative,

which implies that positive instances are almost surely sampled within positive bags.

This condition corresponds to the standard MI assumption that negative bags contain

only negative instances.

For the example in Figure 3.2, we define the instance-labeling function to be:

f(x) =





0 if x < 0

1 if x ≥ 0.

This definition is consistent with the bag-labeling function defined in Equation 3.1,

since F (Bθ) = 0 implies θ = 0, which implies that the probability of sampling a

positively labeled x ∈ [0, 1] is zero as required.

In order to talk about the learnability of f , we must define some instance distri-

bution with respect to which we will measure risk. An instance distribution naturally

arises from our generative model if we first sample a bag B randomly from DB , then

sample an instance x randomly from the distribution corresponding to B. The in-

stance distribution DX resulting from this two-level sampling procedure is effectively

the distribution that marginalizes out the individual bag distributions. That is, given

a probability distribution PB over bags corresponding to DB , we can define a distri-

41

CHAPTER 3. BAGS AS DISTRIBUTIONS

bution PX corresponding to DX as:

PX(x) =

∫

B
P(x | B) dPB(B). (3.2)

Given that “x” is used to denote instances and “B” is used to denote bags, we

subsequently drop subscripts from P when the sample space can be inferred from

context. As we discuss in Section 4.4, the ability to marginalize out bag-specific

distributions in our model plays a vital role in proving the learnability of instance-

and bag-labeling functions. Given a bag distribution, the existence of such an instance

distribution is guaranteed under relatively weak assumptions on the instance space

X (Diestel and Uhl, 1977).

Returning to the example of Figure 3.2, if we marginalize out the bag distribution,

we obtain the single instance distribution in Figure 3.2(c). Analytically, for any

x− ∈ [−1, 0), we have:

P(x−) =

∫ 1

0

P(x− | Bθ) P(Bθ) dθ

= 1 · Pneg +

∫ 1

π

(1− θ)1− Pneg

1− π dθ

= Pneg + 1
2
(1− Pneg)(1− π) , pneg.

(3.3)

Similarly, for x+ ∈ [0, 1]:

P(x+) =

∫ 1

0

P(x+ | Bθ) P(Bθ) dθ

= 0 · Pneg +

∫ 1

π

θ
1− Pneg

1− π dθ

= 1
2
(1− Pneg)(1 + π) = 1− pneg.

(3.4)

As is the case in the standard MI framework, in our generative model, only bag

labels are observed. Suppose we sample individual instances as illustrated in Fig-

42

CHAPTER 3. BAGS AS DISTRIBUTIONS

ure 3.1(c) where we first sample a bag, record its label, and then sample an instance

from the bag-specific distribution P(x | B) and assign the bag label to the instance.

Then the resulting bag-labeled instances {(xi1, F (Bi))}ni=1 are distributed according

to DX , and will appear in positive bags some of the time and negative bags the re-

maining fraction of the time. Therefore, each instance will have some probability

c(x) ∈ [0, 1] of appearing with a positive label, which can be formally expressed as a

probabilistic concept (p-concept):

c(x) , P [F (B) = 1 | x] . (3.5)

That is, the probability of observing a positive label for instance x is the conditional

probability that the bag B in the two-level sampling procedure was positive, given

that x was observed within B. This conditional probability can be derived from

the joint distribution over instances and bag labels corresponding to the generative

process in Figure 3.1(c).

It follows from the previously-stated relationship between F and f that for any

positive instance x+, c(x+) = 1, since each positive instance is observed almost surely

(with probability 1) within a positive bag. In order to distinguish positive and nega-

tive instances, we make the following weak assumption: there exists some γ > 0 such

that for every negative instance x−, c(x−) ≤ 1−γ. Intuitively, this corresponds to the

assumption that every negative instance is observed with some nonzero probability

in a negative bag.

Since probability density functions exist for the example in Figure 3.2, we can

analytically compute c(x) given the following expression:

c(x) = P [F (B) = 1 | x] =

∫
B+ P(x | B) d P(B)

P(x)
,

where B+ = {B : F (B) = 1}. As described, for positive instances x+ ∈ [0, 1], we

43

CHAPTER 3. BAGS AS DISTRIBUTIONS

have:

c(x+) =

∫ 1

π
P(x+ | Bθ) P(Bθ) dθ
1
2
(1− Pneg)(1 + π)

= 1, (3.6)

since positive instances always appear in positive bags. On the other hand, for nega-

tive instances,

c(x−) =

∫ 1

π
P(x− | Bθ) P(Bθ) dθ

Pneg + 1
2
(1− Pneg)(1− π)

=
1
2
(1− Pneg)(1− π)

Pneg + 1
2
(1− Pneg)(1− π)

, 1− γ.
(3.7)

The resulting values of c(x) are shown in Figure 3.2(d). Note that for this generative

process, except for the trivial case in which Pneg = 0, 1 − γ = c(x−) < 1, so γ > 0.

Thus, the assumption that negative instances appear in negative bags is automatically

satisfied for the example in Figure 3.2.

To see why negative instances must appear in negative bags in order to learn a

concept, consider trying to learn the instance concept “spoon” in the content-based

image retrieval (CBIR) domain, as described in Section 2.1.2. To learn this concept,

you are given a set of images containing spoons, and a set of images not containing

spoons. However, suppose that in every image containing a spoon, there is also a

fork nearby. Furthermore, forks never appear alone in images without spoons. In this

unfortunate scenario, you have no means of determining which of the fork or spoon

is the positive instance given only image-level labels. However, if there is a guarantee

that eventually you will see a negative image containing a fork but not a spoon, you

will be able to learn that the fork is not the positive instance. We discuss learnability

further in Chapter 4 and Chapter 6.

Finally, for learning bag-level concepts, we show in Section 4.2 that we require one

additional assumption that there is some minimum fraction π of positive instances

in each positive bag. That is, for every positive bag B+, P [f(x) = 1 | B+] ≥ π. By

construction, the example in Figure 3.2 satisfies this assumption since there is zero

probability of sampling a bag with θ ∈ (0, π) mass over positive bags.

44

CHAPTER 3. BAGS AS DISTRIBUTIONS

Now, we can formally define MI-GEN, the set of generative processes for MI data

consistent with the assumptions described above:

Definition 3.1 (MI-GEN). Given any γ ∈ (0, 1] and π ∈ [0, 1], MI-GEN(γ, π) is the

set of all tuples (DX , DB , f, F), each consisting of an instance distribution DX (with

corresponding P(x)), bag distribution DB (with corresponding P(B)), instance-labeling

function f , and bag-labeling function F , that satisfy the conditions:

1. P(x) =
∫
B P(x | B) d P(B)

2. ∀x : f(x) = 1 =⇒ P [F (B) = 0 | x] = 0

3. ∀x : f(x) = 0 =⇒ P [F (B) = 0 | x] ≥ γ

4. ∀B : F (B) = 1 =⇒ P [f(x) = 1 | B] ≥ π.

For simplicity, we will write MI-GEN(γ) for the case when π = 0, which cor-

responds to the weakest Condition 4. That is, for any fixed γ, MI-GEN(γ) ⊇

MI-GEN(γ, π) for every π ≥ 0.

Finally, note that for any γ ∈ (0, 1], π ∈ [0, 1], MI-GEN(γ, π) ⊇ MI-GEN(1, 1).

That is, γ = π = 1 corresponds to the strongest constraints on the generative

process. Even in this case, for any DX and f , there exist DB and F such that

(DX , DB , f, F) ∈ MI-GEN(1, 1). In particular, given a point mass δx centered on x,

we can define DB so that PB(δx) = PX(x) and F such that F (δx) = f(x). This choice

of (DB , F) corresponds to supervised learning expressed in our generative model.

That is, sampling from our generative process in that case is indistinguishable from

sampling directly from DX with labels assigned according to f . Below, we discuss

the relationship between our generative model and other proposed models for MI

learning.

45

CHAPTER 3. BAGS AS DISTRIBUTIONS

DB Bi xij

F (Bi)F f(xij) f

1 ≤ j ≤ mi

F̂
(
{xij}

)

1 ≤ i ≤ n

Figure 3.3: An illustration of the instance-, bag-, and empirical bag-labeling functions
in MI-GEN.

3.2 The Empirical Bag-Labeling Function

In MI-GEN, the instance- and bag-labeling functions are defined independently at

the level of the generative model, and must satisfy the relationships indicated in

Definition 3.1. However, in the standard MI setting, bag labels are typically viewed

as being derived from instance labels. That is, if a bag is a set, then it is positive if

it contains at least one positive instance, and negative otherwise.

If we think of “bags” (in the sense of the standard generative model) of instances

{xij}mij=1 as empirical samples drawn from the underlying bag distributions Bi in our

model, as illustrated in Figure 3.1(b), then it is possible that samples from positive

bags do not contain any positive instances. Hence, such “bags” would be negative in

the sense of the standard model. To account for this discrepancy, we introduce the

empirical bag-labeling function, F̂ : X∗ → {0, 1}:

F̂ (Xi) = max
j
f(xij), (3.8)

where Xi = {xij}mij=1 is any finite set of instances.

We can think of F̂ as the bag labels that would be assigned by an oracle that

had perfect information about the instance-labeling function f , but only an empirical

sample from each bag. An illustration of the empirical bag-labeling function is shown

46

CHAPTER 3. BAGS AS DISTRIBUTIONS

in Figure 3.3. The labeling functions F and F̂ will always agree on negative bags,

since only negative instances are observed in negative bags. However, there might be

some discrepancy between F and F̂ on positive bags if only negative instances are

sampled within a positive bag. We return to characterizing the discrepancy between

F and F̂ in Section 4.2.

The discrepancy between F and F̂ is essentially bag-label noise that naturally re-

sults from our generative model. Previous generative models do not account for this

potential source of label noise, despite its presence in some domains. For example, in

the drug activity prediction domain, even if it is known that a molecule activates a

receptor, a sample of conformations from this molecule might not contain the partic-

ular positive conformation that causes activation. Another observation is that some

error naturally results due to the discrepancy between F and F̂ when one attempts

to label bags given an instance-labeling function f . Even when f is known perfectly,

there is still some error when using f to predict bag labels due to the particular sam-

ple of instances observed within each bag. Therefore, if bag-labeling is desired, better

performance might be achieved by directly modeling F . In Section 6.4, we describe

experimental results supporting this observation.

3.3 Relationship to Prior Models

The most general model in which instance learnability results have been previously

shown is the “IID r-tuple” model (Blum and Kalai, 1998). The model, illustrated in

Figure 3.4(a), assumes that each bag is generated by randomly sampling r instances

in every bag from the same underlying instance distribution, DX . However, this is

an unrealistic assumption for many domains. For example, consider the drug activity

prediction setting. In this domain, that would mean that the conformations of every

molecule are sampled independently from the same distribution, which is not true

47

CHAPTER 3. BAGS AS DISTRIBUTIONS

as it requires that different molecules share the same conformations. Likewise, for

CBIR, the IID assumption asserts that all segments in all images are sampled from

the same distribution, when the distributions over objects/segments clearly change

between images.

While our model assumes that each instance is sampled IID within every bag, it

relaxes the standard IID assumption because instances can be drawn from different

distributions within different bags. Our generative model allows for “structure,” in

the form of correlations between instances, to exist independently in each bag, which

has been described as a more realistic assumption (Zhou et al., 2009).

To show that our model is more general than the IID r-tuple model, we now

describe how to simulate this model within our model. First, we define each bag

to be a probability distribution parameterized by an r-tuple of instances B(x1,...,xr).

This distribution will be a weighted sum of point masses over each of the r instances:

P(x | B(x1,...,xr)) = 1
r

∑r
i=1 δxi(x). Then, for any distribution DX over instances

(with P(x)) and instance-labeling function f , we let the distribution over bags DB be

defined as P(B(x1,...,xr)) ,
∏r

i=1 P(xi), which is the probability that the corresponding

r-tuple would have been sampled from Dr
X , and the bag-labeling function F to be

F (B(x1,...,xr)) = max1≤i≤r f(xi). Let pneg = P [f(x) = 0], then we claim that the

(DX , DB , f, F) described above is in MI-GEN
(
pr−1

neg ,
1
r

)
.

First, we need to show that DB as defined satisfies Condition 1 of Definition 3.1:

P(x)
?
=

∫

B
P(x | B) d P(B)

=

∫

B

1

r

r∑

i=1

δxi(x) d P(B(x1,...,xr))

=
1

r

r∑

i=1

∫

X
· · ·
∫

X
δxi(x) d P(xr) · · · d P(x1)

=
1

r

r∑

i=1

(∏

j 6=i

∫

X
d P(xj)

)(∫

X
δxi(x) d P(xi)

)

48

CHAPTER 3. BAGS AS DISTRIBUTIONS

=
1

r

r∑

i=1

(
1r−1

)
P(x) = P(x).

So sampling instances under our two-step generative process is equivalent to sampling

according to the original instance distribution.

Condition 2 of Definition 3.1 is trivially satisfied, since by the definition of F ,

positive instances never appear in negative bags. To show that Condition 3 holds,

we must compute the probability that negative instances appear in a negative bag.

Using the definition of conditional probability, this is:

P [F (B) = 0 | x] =

∫
B− P(x | B) d P(B)

P(x)
.

Using the fact that in a negative bag B(x1,...,xr), all instances must be negative, we

can compute the numerator for a negative instance as:

∫

B−
P(x | B) d P(B) =

∫

B−

1

r

r∑

i=1

δxi(x) d P(B(x1,...,xr))

=
1

r

r∑

i=1

∫

X−
· · ·
∫

X−
δxi(x) d P(xr) · · · d P(x1)

=
1

r

r∑

i=1

(∏

j 6=i

∫

X−
d P(xj)

)(∫

X−
δxi(x) d P(xi)

)

=
1

r

r∑

i=1

(
pr−1

neg

)
P(x) = pr−1

neg P(x).

Thus, P [F (B) = 0 | x] =
pr−1
neg P(x)

P(x)
= pr−1

neg . Since this probability is the same across

all negative instances, this means that γ = pr−1
neg . This quantity is positive as long as

pneg > 0. Otherwise, all instances are positive, so the γ > 0 assumption is vacuously

satisfied.

Finally, to show that Condition 4 of Definition 3.1 is satisfied, we see that for a

49

CHAPTER 3. BAGS AS DISTRIBUTIONS

positive bag, Bi:

P [f(x) = 1 | B] =

∫

X
f(x)

(
1
r

r∑

i=1

δxi(x)

)
dx

=
1

r

r∑

i=1

f(xi) ≥
1

r
= π,

(3.9)

since at least one instance in the bag is such that f(x) = 1. Therefore, the IID r-tuple

model is a special case of our model in which γ and π are positive, and determined

by the fraction of negative instances and bag size r.

Another generative model, used to show the learnability of bag-level concepts

(Sabato and Tishby, 2012), allows arbitrary distributions over r-tuples. The model

further relaxes the r-tuple model by allowing bag sizes to vary from 1 to R, some

maximum bag size. The model is illustrated in Figure 3.4(b), where DX ∗ denotes the

distribution over tuples of size at most R. However, this model is also restrictive for

many problem domains like drug activity prediction, since it enforces that bag sizes

are finite and bounded, whereas molecules can exist in infinitely many conformations.

We can also represent the generative model of Sabato and Tishby (2012) in a

similar way as for the IID r-tuple model. We simplify the space of bags to be atomic

distributions over r ≤ R tuples, and allow an arbitrary distribution DB over bags

rather than requiring that P(B(x1,...,xr)) =
∏r

i=1 P(xi). Now, DX is not fixed, so we

can define it in terms of Condition 1 of MI-GEN so that that condition is automat-

ically satisfied. The bag-labeling function F is still defined in terms of the arbitrary

instance-labeling function f , so Condition 2 is still trivially satisfied. Furthermore, by

similar reasoning as in Equation 3.9, π = 1
R

in this generative model, so Condition 4

is satisfied. However, the γ > 0 assumption (Condition 3) is no longer automatically

satisfied by this generative process, since arbitrary distributions over tuples are al-

lowed. Hence, while Sabato and Tishby (2012) analyze bag concept learnability with

MI-GEN
(
0, 1

R

)
, we require MI-GEN

(
γ, 1

R

)
⊂ MI-GEN

(
0, 1

R

)
for instance concept

50

CHAPTER 3. BAGS AS DISTRIBUTIONS

xij

1 ≤ j ≤ r
F̂
(
{xij}

)DX
f

1 ≤ i ≤ n

(a) The IID r-tuple model

{xij}ri≤Rj=1 F̂
(
{xij}

)
DX∗ f

1 ≤ i ≤ n

(b) The arbitrary R-tuple model

Figure 3.4: Previous generative models for MI data.

learnability. In Proposition 6.1, we discuss how the γ > 0 assumption is not required

for directly learning bag concepts in our generative model.

Babenko et al. (2011) propose treating bags in the MI setting as manifolds in

the instance space X. While this allows describing a bag with an infinite number of

instances, it assigns an equal “weight” to every instance. However, for a domain like

drug activity prediction, a molecule is more likely to exist in certain conformations

than in others. The varying weight of instances is naturally handled in our setting,

but we do not treat bags as manifolds over instances, so our results may not apply

to the generative process in which bags are manifolds.

The most similar generative model in prior work (Xu, 2003) also proposed to model

bags as distributions, but only focused on analyzing empirical results for the bag-

labeling task. Accordingly, the proposed probabilistic relationship between instance-

and bag-labeling functions given in Definition 3.1 are novel. Furthermore, Xu (2003)

focused on the case when each bag distribution has a parametric form, with a distri-

bution over parameters used to define DB . In Section 6.3, we discuss bag classification

algorithms that can be used under our generative model without requiring such strong

assumptions.

3.4 Applicability to Problem Domains

At the beginning of this chapter, we motivated MI-GEN using the 3-dimensional

Quantitative Structure–Activity Relationship (3D-QSAR) domain. In this section,

51

CHAPTER 3. BAGS AS DISTRIBUTIONS

we elaborate on how bags can naturally be viewed as distributions in various other

problem domains (see Table 2.1) and which labeling tasks illustrated in Figure 3.3 are

of interest in each domain. Of course, as described in Section 3.3, standard generative

models are special cases of MI-GEN, so previous applications of MIL for which it is

most natural to think of bags as finite sets of instances can still be incorporated in

this model.

Drug Activity Prediction

For the drug activity prediction or the 3D-QSAR problem, it is natural to think of each

molecule as a distribution over conformations. While it is natural to view learning

molecule-level activity F as the ultimate goal of 3D-QSAR, it is also important to

learn the instance-labeling function f . Knowing whether an individual conformation

binds to a receptor provides information about the structure of the receptor’s binding

site, which is practically difficult to measure directly. Hence, learning both instance-

and bag-labeling functions are important in the 3D-QSAR domain.

Text Categorization

While it is popular to represent documents as a flat “bag of words” using a single

feature vector comprised of word frequencies (Salton and McGill, 1983), prior work has

acknowledged the benefits of representing document-specific structure. In particular,

latent Dirichlet allocation (LDA) models each document as a mixture of distributions

over words (Blei et al., 2003). Of course, LDA can also be applied to a coarser-grained

representation in which documents are distributions over n-grams or paragraphs,

which are like individual instances in the MI setting (Blei et al., 2003). Hence,

treating documents as distributions is already a natural and popular representation

for text. On the other hand, LDA treats each document distribution as taking a

specific parametric form, whereas our results and analysis do not make any parametric

52

CHAPTER 3. BAGS AS DISTRIBUTIONS

Figure 3.5: An example from the CBIR domain when a positive image does not
contain a positive instance (the notebook) after segmentation.

assumptions about bag-level distributions.

As for 3D-QSAR, both document-level and instance-level categorization is impor-

tant in the text categorization domain. For example, if certain types of documents

like survey articles discuss various subjects, then it might be important to determine

not just that the document as a whole discusses a particular subject, but also which

specific passage or paragraph discusses the subject.

Content-Based Image Retrieval

Applying our generative framework to the CBIR task requires viewing images as

distributions over objects such that the objects in each image are a sample from the

corresponding distribution. However, it is not immediately clear what it means in this

setting to have a positive bag from which only negative instances have been sampled.

That is, whether an image contains an object is defined in terms of F̂ , not some

abstract image-labeling function F .

However, just as for 3D-QSAR, our generative process allows for noisy behavior

during bag-generation. In 3D-QSAR, it is possible that a computational chemistry

tool enumerating low-energy conformations will miss the binding conformation within

a positive molecule. Likewise, extracting a set of objects from images is often per-

53

CHAPTER 3. BAGS AS DISTRIBUTIONS

formed using segmentation achieved through local optimization (Andrews et al., 2003;

Carson et al., 2002).2 Therefore, it is possible that no single instance in a bag gener-

ated from a positive image will correspond to the positive instance. Figure 3.5 shows

an example from the SIVAL dataset when, due to lighting conditions, the positive

“notebook” instance in the image is grouped with the table during segmentation (Set-

tles et al., 2008). This kind of “noise” is naturally captured by our generative model

as the discrepancy between F̂ and F .

As for the other domains discussed, the bag-labeling function F is not the only

latent variable of interest in CBIR. In additional to labeling new images, a CBIR

system might be interested in determining the location of the object of interest within

an image, which requires learning the instance-labeling function f .

3.5 Multiple-Instance Learning with Noisy Bags

The generative model described in Definition 3.1 allows for a form of bag-level label

noise when π = 0. That is, when π = 0, it is possible for a positive bag to contain

no positive instances, which corresponds to “noisy” bags with incorrect labels in the

standard MI setting. In Section 4.1 and Section 5.1, we show that it is possible to

learn instance-level concepts in the presence of such noise.

On the other hand, MI-GEN does not allow noisy negative bags that contain some

positive instances. All positive instances must appear in positive bags. In Section 5.3,

we show that it is possible to relax this assumption as well and retain instance concept

learnability. We call this relaxation the noisy MI (NMI) setting.

Let η be the maximum fraction of the time that any positive instance appears in

a negative bag. Intuitively, since negative instances appear at least γ fraction of the

time in negative bags, if a positive instance also appeared η ≥ γ fraction of the time

in negative bags, it would be indistinguishable from a negative instance. Thus, our

2See Appendix A.1.2 for a detailed description of how bags are generated from images.

54

CHAPTER 3. BAGS AS DISTRIBUTIONS

generalized model assumes that η < γ so that positive and negative instances can

be distinguished. In Section 5.3, we prove this assertion more rigorously. Below, we

formally specify the generalized generative model:

Definition 3.2 (NMI-GEN). Given any γ ∈ (0, 1] and η ∈ [0, γ), NMI-GEN(γ, η) is

the set of all tuples (DX , DB , f, F) that satisfy the conditions:

1. P(x) =
∫
B P(x | B) d P(B)

2. ∀x : f(x) = 1 =⇒ P [F (B) = 0 | x] ≤ η

3. ∀x : f(x) = 0 =⇒ P [F (B) = 0 | x] ≥ γ.

The new generative model in Definition 3.2 relaxes Condition 2 in Definition 3.1.

Hence, MI-GEN(γ) = NMI-GEN(γ, 0), so that MI-GEN is a special case of NMI-GEN

with η = 0. Note that since we do not discuss bag learnability under this model,

Condition 4 from Definition 3.1 is no longer included in the definition of NMI-GEN

(π = 0 is permitted).

The concepts allowed by NMI-GEN include some generalized MI concepts from

the Generalized MIL (GMIL) setting (Scott et al., 2005), as described in Section 2.1.3.

In particular, the GMIL framework of Scott et al. (2005) allows positive bags to be

labeled according to whether they contain multiple types of instances from different

subclasses of the class of positive instances. Section 2.1.3 describes an example GMIL

problem of learning to classify images of beaches. Such images must contain instances

of both sand and water to be positive, otherwise, they might be pictures of deserts or

oceans.

If we consider the “sand” and “water” subclasses to contain the positive instances

(the instances that are necessary, though perhaps not sufficient, for a bag to be pos-

itive), then a positive “sand” instance in the beach image classification task might

appear in a negatively labeled desert image. The NMI model described in Defini-

tion 3.2 can account for this possibility.

55

CHAPTER 3. BAGS AS DISTRIBUTIONS

Of course, not all GMIL concepts as defined by Scott et al. (2005) can be expressed

within NMI-GEN. That is, whereas the γ > 0 assumption encapsulates most practical

applications of MIL, the η < γ assumption is a relatively stronger. In the beach

example, requiring that η < γ might significantly limit the relative proportion of

beach to desert images in the dataset, so that sand instances do not appear too often

in negative bags relative to positive bags. Therefore, the generative processes allowed

by NMI-GEN represent only a limited, though still significant, subset of all GMIL

problems. Chapter 6 discusses the ability of some approaches to learn bag-level GMIL

concepts under weaker assumptions.

3.6 Summary

In this chapter, we described a new generative model for the MI setting in which

bags are viewed as distributions over instances. The sets of instances observed in a

training set are then viewed as samples from each underlying bag distribution. We

then introduced several additional assumptions that we show entail instance and bag

concept learnability in the following chapters. We discussed the relationship between

the proposed model and those found in prior work. We also discussed how the model

can be generalized to incorporate a form of “noise” on bag-level labels.

56

Chapter 4

Learning Accurate Concepts from

MI Data

In this chapter, we describe new theoretical results that highlight the advantages

of the generative model proposed in Chapter 3.1 In particular, the new generative

model allows new results about instance- and bag-concept learnability that previously

only held under a much stronger set of assumptions. As we describe in Chapter 5,

additional theoretical results imply the surprising but testable ability of standard

supervised approaches to learn to rank instances and bags from MI data. Table 4.1

summarizes the theoretical contributions made in this and the following chapter,

which demonstrates the learnability of the instance concept f , empirical bag-labeling

function F̂ , and bag-labeling function F with respect to both accuracy and ranking

as measured by area under the ROC curve (AUC). The results in this chapter and

the following chapter use a model of the instance labeling function f to derive models

for the bag-labeling functions F̂ and F . Additional results in Chapter 6 discuss

approaches for directly learning bag concepts. Table 4.2 provides an overview of the

results on learning either instance or bag concepts using instance- or bag-labeling

1Results on instance concept learnability also appear in Doran and Ray (2014).

57

CHAPTER 4. LEARNING ACCURATE CONCEPTS FROM MI DATA

Table 4.1: A summary of the learnability results in Chapter 4 and Chapter 5.

Accuracy AUC

Instance f Theorem 4.1
Theorem 5.1

Theorem 5.4†

Bag
F̂ Theorem 4.2 Theorem 5.2

F Theorem 4.3 Theorem 5.3
†Results for NMI-GEN.

Table 4.2: A summary of results addressing different learning tasks and strategies.

. . . using
instance-level

classifiers.

. . . using
bag-level
classifiers.

Learning
instance-level

concepts. . .

Section 4.1
Section 5.1

Section 7.2
(Hardness Result)

Learning
bag-level

concepts. . .

Section 4.2
Section 5.2

Chapter 6

functions.

As described in Section 2.4, defining the ability of an algorithm to learn a good

approximation of a target concept requires some metric by which the quality of the

approximation is to be measured. Traditionally, the quality of a classifier is measured

in terms of expected 0–1 loss, as defined in Equation 2.10. This metric formalizes the

intuitive notion of accuracy, or the fraction of all test data points correctly classified.

We begin by investigating the ability of algorithms to learn accurate concepts from

MI data in this sense. While there is only one learning task in the supervised setting,

there are now both instance- and bag-concept learning tasks in the MI setting, which

we explore separately in the following sections. Table 4.3 shows the notation used for

the concepts in this chapter.

58

CHAPTER 4. LEARNING ACCURATE CONCEPTS FROM MI DATA

Table 4.3: Legend of the basic notation used in Chapter 4.

Symbol Description/Definition

X Space of instances

B Space of bags (distributions over instances)

X∗ Set of bag samples (sets of instances)

xij Instance xij ∈ X
Bi Bag Bi ∈ B
Xi Bag sample {xij}mij=1 ∈ X∗, xij ∼ Bi (ml ≤ |Xi| ≤ mu)

(ml, mu) mi (Minimum, Maximum) Bag Sample Size

f Instance-Labeling Concept

F Bag-Labeling Concept

F̂ Empirical Bag-Labeling Concept F̂ (Xi) , maxj f(xij)

g Instance-Labeling Hypothesis

Ĝ Empirical Bag-Labeling Hypothesis Ĝ(Xi) , maxj g(xij)

4.1 Learning Accurate Instance Concepts

Section 2.4.1 describes the probably approximately correct (PAC) framework, which

formalizes what it means to learn accurate concepts from supervised data. Since the

generative process described in Chapter 3 differs from that for supervised learning,

we must restate what it means to “PAC” learn an accurate instance concept under

this model.

In the supervised setting, the learnability of some fixed concept class F is discussed

without making any assumptions about the distribution over instances. The definition

of MI-GEN in Definition 3.1 similarly allows any instance distribution, with which

many bag distributions are consistent in the sense of Condition 1. To ensure that the

target concept f is a member of the concept class F , we must further restrict the set

of models allowed by the generative process as follows:

Definition 4.1 (MI-GENF). For any γ ∈ (0, 1] and π ∈ [0, 1]:

MI-GENF(γ, π) ,
{

(DX , DB , f, F) ∈ MI-GEN(γ, π) : f ∈ F
}
.

59

CHAPTER 4. LEARNING ACCURATE CONCEPTS FROM MI DATA

Now, we can formally define PAC learnability for the MI setting:

Definition 4.2 (Instance MI PAC-learning). We say that an algorithm A MI PAC-

learns instance concept class F from MI data when for any tuple (DX , DB , f, F) ∈

MI-GENF(γ) with γ > 0, and εI, δ > 0, A requires O
(
poly(1

γ
, 1
εI
, 1
δ
)
)

bag-labeled in-

stances sampled independently from the MI generative process in Figure 3.1(c) to

produce an instance hypothesis g with risk Rf (g) < εI with probability at least 1 − δ

over samples.

Note that because our generative model allows us to discuss the marginalized

instance distribution DX , the risk Rf (g) = Ex∼DX
[
1[f(x) 6= g(x)]

]
is measured with

respect to this distribution exactly as in Equation 2.10. Now we show that instance

concepts are MI PAC-learnable in the sense of Definition 4.2:

Theorem 4.1. An instance concept class F with VC dimension VC(F) is Instance

MI PAC-learnable using O
(

1
εIγ

(
VC(F) log 1

εIγ
+ log 1

δ

))
examples.

Proof. The proof proceeds by showing that learning instance concepts from MI data

is equivalent to learning a standard instance concept in the presence of one-sided

label noise; that is, noisy labels on the negative instances only. Then, recent results

(Simon, 2012) imply the learnability of the underlying instance concept.

By Condition 1 in Definition 3.1, we can treat bag-labeled instances as being drawn

from the underlying instance distribution DX . Instances are observed with some label

noise with respect to true labels given by f . Since positive instances never appear in

negative bags (by Condition 2 of Definition 3.1), noise on instances is one-sided. If

every negative instance appears in negative bags at least some γ fraction of the time

(by Condition 3), then the maximum one-sided noise rate is η = 1− γ. Since γ > 0,

η < 1, which is required for learnability. Under our generative assumptions, the noise

is “semi-random” in that noise rate might vary across instances, but is bounded by

60

CHAPTER 4. LEARNING ACCURATE CONCEPTS FROM MI DATA

η < 1. Thus, learning an instance concept is equivalent to learning from data with

one-sided label noise in this sense.

The result of Simon (2012) shows that in the presence of one-sided, semi-random

noise, when a concept class F has Vapnik–Chervonenkis (VC) dimension VC(F), F is

PAC-learnable from O
(

1
εI(1−η)

(
VC(F) log 1

εI(1−η)
+ log 1

δ

))
examples using a “min-

imum one-sided disagreement” strategy. This strategy entails choosing a classifier

that minimizes the number of disagreements on positively-labeled examples while

perfectly classifying all negatively-labeled examples. This strategy also works in the

special case that all instances and bags are positive (η = 0, or γ = 1, since there are

no negative instances). Substituting 1− γ for η in the bound of Simon (2012) yields

the bound in terms of γ.

We note that Theorem 4.1 allows for “noisy” positive bags without positive in-

stances (π = 0), since the additional bag-level noise is essentially absorbed into η,

but not noisy negative bags that contain positive instances.

4.2 Learning Accurate Bag Concepts

As for instance concept learnability, we must formally define what we mean to learn

accurate bag concepts in the MI setting. As described in Chapter 3, there are two

bag-labeling functions we might be interested in learning. In our generative model,

we assume that the MI relationship between bag and instance labels holds at the

level of the generative process. That is, bags are directly assigned labels by a bag

concept F . On the other hand, given a set of instances sampled from a bag, we might

be interested in learning the more traditional bag-labeling concept in the MI setting,

F̂ (Xi) = maxj f(xij), which determines whether an empirically observed bag sample

Xi ∈ X∗ contains any positive instance (Equation 3.8). We call this the empirical bag

labeling function, and we can define the risk of a bag-labeling concept Ĝ with respect

61

CHAPTER 4. LEARNING ACCURATE CONCEPTS FROM MI DATA

to the underlying empirical bag-labeling concept F̂ as follows:

RF̂ (Ĝ) = E
[
1[F̂ (X) 6= Ĝ(X)]

]

=

∫

B

∫

X∗
1[F̂ (X) 6= Ĝ(X)] d P(X | B) d P(B),

(4.1)

where P(X | B) is the probability of sampling the set of instancesX from bag B. Since

we assume that instances are sampled IID according to B, P(X | B) =
∏

x∈X P(x |

B). Given a formal definition of the risk of an empirical bag-labeling function, we

can define learnability with respect to this function below:

Definition 4.3 (Empirical Bag MI PAC-learning). We say that an algorithm A MI

PAC-learns empirical bag-labeling functions derived from instance concept class F

when for any (DX , DB , f, F) ∈ MI-GENF(γ) with γ > 0, and εB, δ > 0, A requires

O
(
poly(1

γ
, 1
εB
, 1
δ
)
)

bag-labeled instances sampled independently from the MI generative

process in Figure 3.1(c) to produce an empirical bag-labeling function Ĝ with risk

RF̂ (Ĝ) < εB with probability at least 1− δ over samples.

To show empirical bag concept learnability under our generative model, we will

show that by learning an accurate enough instance concept g, the resulting empirical

bag-labeling concept given by Ĝ(Xi) = maxj g(xij) will have low risk with respect to

F̂ . Thus, we start with a bound on RF̂ (Ĝ) in terms of Rf (g).

Lemma 4.1. Let Rf (g) be the risk of an instance labeling concept g, and RF̂ (Ĝ)

be the risk of the empirical bag-labeling function Ĝ(Xi) = maxj g(xij). Then if bag

sample sizes are bounded by mu (∀i : |Xi| ≤ mu), RF̂ (Ĝ) ≤ muRf (g).

Proof. First, observe that when all elements of an empirical bag Xi are labeled cor-

rectly by g, F̂ (Xi) = Ĝ(Xi), so when F̂ (Xi) 6= Ĝ(Xi), at least one instance in Xi

is labeled incorrectly by g. In set notation, this implication is equivalent to the

62

CHAPTER 4. LEARNING ACCURATE CONCEPTS FROM MI DATA

statement:

{
Xi : F̂ (Xi) 6= Ĝ(Xi)

}
⊆
{
Xi :

(
f(xi1) 6= g(xi1)

)
∨ . . . ∨

(
f(xim) 6= g(xim)

)}
.

Using indicator function (1[·]) notation, the statement above implies:

1
[
F̂ (Xi) 6= Ĝ(Xi)

]
≤ 1

[(
f(xi1) 6= g(xi1)

)
∨ . . . ∨

(
f(xim) 6= g(xim)

)]

= 1
[∨

xij∈Xi
(
f(xij) 6= g(xij)

)]

≤
∑

xij∈Xi
1 [f(xij) 6= g(xij)] .

Using this inequality in the definition of risk for empirical bag-labeling functions

(Equation 4.1) yields:

RF̂ (Ĝ) =

∫

B

∫

X∗
1
[
F̂ (Xi) 6= Ĝ(Xi)

]
d P(Xi | B) d P(B)

≤
∫

B

∫

X∗

∑

xij∈Xi
1 [f(xij) 6= g(xij)] d P(Xi | B) d P(B).

By the independence of the instances xij ∈ Xi, and the bound mu on bag sample

sizes, we can rewrite the inner integral to conclude that:

RF̂ (Ĝ) ≤
∫

B
mu

∫

X
1 [f(x) 6= g(x)] d P(x | B) d P(B)

= mu

∫

X
1 [f(x) 6= g(x)] d P(x)

= muRf (g).

Exchanging the order of the integrals and marginalizing out the individual bag dis-

tributions to obtain an integral with respect to the instance distribution follows from

Condition 1 in Definition 3.1.

Given the bound demonstrated in Lemma 4.1, we can easily derive the following

63

CHAPTER 4. LEARNING ACCURATE CONCEPTS FROM MI DATA

result:

Theorem 4.2. Empirical bag-labeling functions derived from instance concept class

F with VC dimension VC(F) are PAC-learnable from MI data using

O
(
mu
εBγ

(
VC(F) log mu

εBγ
+ log 1

δ

))

examples.

Proof. The general strategy is to learn an approximation g for f ∈ F using minimum

one-sided disagreement as mentioned in the proof of Theorem 4.1 and then to derive

an empirical bag-labeling function Ĝ from g.

For a desired bound εB on RF̂ (Ĝ), by using εI = εB
mu

in Theorem 4.1, this ensures

that the resulting instance classifier is such that Rf (g) < εB
mu

with high probability.

Combined with the result in Lemma 4.1, this implies that RF̂ (Ĝ) ≤ muRf (g) <

mu

(
εB
mu

)
= εB, so RF̂ (Ĝ) < εB as desired. Substituting εI = εB

mu
into the bound in

Theorem 4.1 gives the bound as stated in Theorem 4.2.

Again, Theorem 4.2 allows for noisy positive bags without positive instances (π =

0). Furthermore, in the special case when every bag sample is a singleton X = {x},

then mu = 1 and F̂ ({x}) = f(x). Thus, the instance concept learnability result in

Theorem 4.1 is really just a special case of learning an empirical bag-labeling function

with bags of size 1 as in Theorem 4.2.

Next, we turn our attention to learning the underlying bag-labeling function F .

During both training and testing, we are only given access to a sample Xi from

each bag Bi with which we can estimate F (Bi). Therefore, we will again learn an

empirical bag labeling function Ĝ(Xi). However, now we will assess the quality of Ĝ

64

CHAPTER 4. LEARNING ACCURATE CONCEPTS FROM MI DATA

with respect to the underlying bag-labeling function F as follows:

RF (Ĝ) = E
[
1[F (B) 6= Ĝ(X)]

]

=

∫

B

∫

X∗
1[F (B) 6= Ĝ(X)] d P(X | B) d P(B).

(4.2)

The definition of bag concept learnability then takes the same form as that in

Definition 4.3 with the risk as given in Equation 4.2. As we will show in Lemma 4.2,

we now also require the further assumption that π, minimum fraction of positive

instances in positive bags, is nonzero.

Definition 4.4 (Bag MI PAC-learning). We say that an algorithm A MI PAC-

learns bag-labeling functions derived from instance concept class F when for any

(DX , DB , f, F) ∈ MI-GENF(γ, π) with γ, π > 0, and εB, δ > 0, algorithm A re-

quires O
(
poly(1

γ
, 1
π
, 1
εB
, 1
δ
)
)

bag-labeled instances sampled independently from the MI

generative process in Figure 3.1(c) to produce an empirical bag-labeling function Ĝ

with risk RF (Ĝ) < εB with probability at least 1− δ over samples.

In order to show learnability of the bag-labeling concept F , we adopt a similar

strategy as for Theorem 4.2 in which we first learn an instance-labeling concept g,

then use g to derive an empirical bag-labeling concept Ĝ. Since Theorem 4.2 shows

that we can a learn a concept Ĝ that accurately models F̂ , what remains to be shown

is that F̂ is an accurate model of F under some additional conditions. First, we prove

the following Lemma, that decomposes the risk RF (Ĝ) into the discrepancy between

Ĝ and F̂ , and the discrepancy between F̂ and F .

Lemma 4.2. For any empirical bag-labeling concept Ĝ,

RF (Ĝ) ≤ RF̂ (Ĝ) +RF (F̂).

Proof. First, note that if Ĝ(X) = F̂ (X) and F̂ (X) = F (B), then Ĝ(X) = F (B).

65

CHAPTER 4. LEARNING ACCURATE CONCEPTS FROM MI DATA

Thus, if Ĝ(X) 6= F (B), then either Ĝ(X) 6= F̂ (X) or F̂ (X) 6= F (B). In set notation,

this is equivalent to the statement:

{
(X,B) : Ĝ(X) 6= F (B)

}
⊆
{

(X,B) :
(
Ĝ(X) 6= F̂ (X)

)
∨
(
F̂ (X) 6= F (B)

)}
.

Using indicator function notation, the statement above implies:

1
[
Ĝ(X) 6= F (B)

]
≤ 1

[(
Ĝ(X) 6= F̂ (X)

)
∨
(
F̂ (X) 6= F (B)

)]

≤ 1
[(
Ĝ(X) 6= F̂ (X)

)]
+ 1
[(
F̂ (X) 6= F (B)

)]
.

Finally, substituting the expression above into the definitions of risk yields:

RF (Ĝ) =

∫

B

∫

X∗
1
[
Ĝ(X) 6= F (B)

]
d P(X | B) d P(B)

≤
∫

B

∫

X∗
1
[(
Ĝ(X) 6= F̂ (X)

)]
d P(X | B) d P(B)

+

∫

B

∫

X∗
1
[(
F̂ (X) 6= F (B)

)]
d P(X | B) d P(B)

= RF̂ (Ĝ) +RF (F̂).

Now, we derive a bound on the discrepancy between the empirical bag-labeling

function F̂ and the underlying bag-labeling function F . Since this discrepancy arises

when we do not sample a positive instance within a positive bag, the bound depends

on the minimum bag sample size and the minimum fraction π of positive instances

in every positive bag.

Lemma 4.3. Suppose bag samples are of size at least ml (∀i : ml ≤ |Xi|), then

RF (F̂) ≤ (1− π)ml.

66

CHAPTER 4. LEARNING ACCURATE CONCEPTS FROM MI DATA

Proof. Given the definition of RF (F̂), we can decompose it as such:

RF (F̂) =

∫

B

∫

X∗
1[F (Bi) 6= F̂ (Xi)] d P(Xi | Bi) d P(Bi)

=

∫

B+

∫

X∗
1[F (Bi) 6= F̂ (Xi)] d P(Xi | Bi) d P(Bi)

+

∫

B−

∫

X∗
1[F (Bi) 6= F̂ (Xi)] d P(Xi | Bi) d P(Bi).

On the set of negative bags B−, F and F̂ always agree, since only negative instances

are sampled within negative bags. Therefore, the second term of the decomposition

can be eliminated and we are left with:

RF (F̂) =

∫

B+

∫

X∗
1[F (Bi) 6= F̂ (Xi)] d P(Xi | Bi) d P(Bi).

Now, we observe that for a positive bag Bi, the only way that F and F̂ can disagree

is if every instance in Xi is negative. Using basic properties of indicator functions

(namely, that 1 [
∧
iEi] =

∏
i 1[Ei]), we can use this fact to rewrite the expression

above as:

RF (F̂) =

∫

B+

∫

X∗
1[F (Bi) 6= F̂ (Xi)] d P(Xi | Bi) d P(Bi)

=

∫

B+

∫

X∗
1
[∧

xij∈Xi
(
f(xij) = 0

)]
d P(Xi | Bi) d P(Bi)

=

∫

B+

∫

X∗

∏

xij∈Xi
1 [f(xij) = 0] d P(Xi | Bi) d P(Bi).

Since the instances xij ∈ Xi are independent, we can rewrite the integral as:

RF (F̂) =

∫

B+

∫

X∗

∏

xij∈Xi
1 [f(xij) = 0] d P(Xi | Bi) d P(Bi)

=

∫

B+

∏

xij∈Xi

(∫

X
1 [f(xij) = 0] d P(xij | Bi)

)
d P(Bi)

67

CHAPTER 4. LEARNING ACCURATE CONCEPTS FROM MI DATA

≤
∫

B+

∏

xij∈Xi
(1− π) d P(Bi)

≤
∫

B+
(1− π)ml d P(Bi)

= (1− π)ml
∫

B+
d P(Bi)

≤ (1− π)ml .

Finally, we can now show the following learnability result with respect to the

underlying bag-labeling function. However, note that in Lemma 4.3, the error RF (F̂)

decreases with the minimum bag size ml. Thus, in order to achieve low error with

respect to F , we must ensure that bags in the test set are sufficiently large. Therefore,

the following result is stated under the additional condition that the test bag sample

sizes mi satisfy some constraints. Note that these constraints arise naturally from the

process that samples instances from bag distributions.

Theorem 4.3. Bag-labeling functions derived from instance concept class F with VC

dimension VC(F) are PAC-learnable from MI data using

O
(
mu
εBγ

(
VC(F) log mu

εBγ
+ log 1

δ

))
(4.3)

examples when test bag sample sizes are bounded by ml ≤ m ≤ mu and ml is large

enough such that ml ≥ 1
π

log 2
εB

. Furthermore, if the upper bound mu on bag sizes is

also such that mu = O
(

1
εBπ

)
, then bag-labeling functions are learnable using

O
(

1
ε2Bγπ

(
VC(F) log 1

εBγπ
+ log 1

δ

))
(4.4)

examples.

Proof. Intuitively, we can learn an instance-labeling function g according to Theo-

68

CHAPTER 4. LEARNING ACCURATE CONCEPTS FROM MI DATA

rem 4.1 and then use the resulting empirical bag-labeling function Ĝ. By combining

the previously stated results, we can bound RF (Ĝ) as:

RF (Ĝ) ≤ RF̂ (Ĝ) +RF (F̂) (by Lemma 4.2)

≤ muRf (g) +RF (F̂) (by Lemma 4.1)

≤ muRf (g) + (1− π)ml . (by Lemma 4.3)

In the case that π = 1, then the second term in the sum is zero. Otherwise, suppose

the minimum bag size is such that:

ml ≥ 1
π

log 2
εB
≥ log εB

2

log(1− π)
= log1−π

εB
2
,

where the second inequality follows from the fact that π ≤ − log(1−π) for π ∈ (0, 1).

Therefore, since (1− π) < 1, we have that:

(1− π)ml ≤ (1− π)log1−π
εB
2 = εB

2
.

Furthermore, when learning the instance concept g, we can choose εI to be such

that εI = εB
2mu

. Since g will be such that Rf (g) < εI with probability (1− δ), with the

same probability we have that:

RF (Ĝ) ≤ muRf (g) + (1− π)ml

< mu

(
εB

2mu

)
+ εB

2
= εB.

Substituting the expression for εI in terms of εB into the bound in Theorem 4.1

gives the sample complexity bound in Equation 4.3, which is the same bound as stated

in Theorem 4.2.

In the case that there is also a conservative upper bound on sample size mu =

69

CHAPTER 4. LEARNING ACCURATE CONCEPTS FROM MI DATA

O
(

1
εBπ

)
, which is consistent with ml ≥ 1

π
log 2

εB
, we can derive an expression for

learnability in terms of π. Substituting this bound into that of Theorem 4.2 gives the

second sample complexity bound as stated in Equation 4.4.

4.3 Discussion

The results presented in Section 4.1 and Section 4.2 follow the same basic strategy.

First, minimum one-sided disagreement is used to learn an accurate instance concept

g in the presence of one-sided noise on bag-labeled instances. Then, for the bag-

labeling task, instance labels are aggregated using an empirical bag-labeling function

Ĝ to approximate the empirical bag-labeling function F̂ or the underlying bag-labeling

function F . The idea of combining instance labels to produce a bag-labeling function

is used by many existing MI algorithms, as described in Chapter 7.

However, under the generative model that treats bags as distributions, the bag-

labeling results derived in Section 4.2 are somewhat counterintuitive. On the one

hand, if bags are distributions from which we observe samples, then the larger the

samples, the more information an algorithm has about the underlying bag distribu-

tion. Intuitively, it seems that the better an algorithm can estimate the underlying

bag distribution, which is the object of interest for classification, the better it can

learn a concept to label new bags. On the other hand, the result in Theorem 4.2

suggests that it is harder to learn from larger bag sizes, since roughly O(mu logmu)

more examples are required to learn an accurate concept.

Essentially, the source of this incoherence in reasoning is the use of an instance-

labeling concept g to derive the bag-labeling concept Ĝ. In the process of combining

instance labels to label a bag, small errors in the instance labeling function g com-

pound quickly. For example, g must label all instances in a negative bag correctly

for Ĝ to label the bag correctly. As bag size increases, it becomes less likely that g

70

CHAPTER 4. LEARNING ACCURATE CONCEPTS FROM MI DATA

More General
Assumptions

Instance
Concepts

Bag
Concepts

(Long and
Tan, 1998)

APRs with
Product

Distributions

(Auer et al.,
1998)

APRs with
IID r-tuples

(Blum and
Kalai, 1998)

IID r-tuples

Hardness Results
(Auer et al., 1998; Sabato

and Tishby, 2012)

Our Results

MI-GEN
(Definition 3.1)

Theorem 4.3
Theorem 4.2

Theorem 4.1

(Sabato and
Tishby, 2012)

Arbitrary
r-tuples

Figure 4.1: Relation to prior learnability results.

will agree with f across all instances.

Therefore, despite our positive results suggesting that learning an accurate instance-

labeling function is sufficient to learn an accurate bag-labeling function, in practice,

it might be advantageous to approach the instance- and bag-labeling tasks separately.

That is, if one is interested in learning an accurate instance-labeling concept, then

minimum one-sided disagreement can be applied. Otherwise, if one is interested in

learning an accurate bag-concept, then a supervised algorithm that directly learns

from labeled bag samples should be employed. We will explore this hypothesis in

more detail in Chapter 6.

4.4 Relation to Prior Learnability Results

An overview of our results in the context of prior work is shown in Figure 4.1. Early

work on instance learnability shows that APRs are learnable from MI data, but

under the restrictive assumption that each bag contains r IID instances sampled

from a product distribution (Long and Tan, 1998). Later work by Auer et al. (1998)

extends these results to the case when the instance distribution is no longer a product

distribution, but the instances are still sampled IID from a single distribution across

bags. The most recent results on instance concept learnability in the MI setting are

described by Blum and Kalai (1998). Like the proof of Theorem 4.1, Blum and Kalai

(1998) also reduce the problem of learning instance concepts to learning from noisy

71

CHAPTER 4. LEARNING ACCURATE CONCEPTS FROM MI DATA

examples. However, the proof in Blum and Kalai (1998) requires that the label noise

on negative examples be uniformly random. This condition is met under the strong

assumption made in that work, that instances in all bags are drawn IID from the same

distribution over instances. On the other hand, the result in Theorem 4.1 applies to

our more general model in which the noise rate can vary across instances. Hence,

our results rely heavily on the recent work of Simon (2012), which shows that it is

possible to learn from instances corrupted with semi-random one-sided noise.

The bag learnability results in Section 4.2 show that an accurate bag concept can

be learned by learning an accurate instance concept and deriving a bag concept by

combining instance labels within a bag. Other recent work on bag concept learnability

takes a different approach. The strategy of Sabato and Tishby (2012) is to directly

learn empirical bag-labeling concepts using empirical risk minimization (ERM). That

is, they suppose that an algorithm selects an instance-labeling function g ∈ F that

minimizes RF̂ (Ĝ). As described in Section 2.4.2, general sample complexity bounds

exist for empirical risk minimization (ERM) in terms of capacity measures such as

VC dimension of a hypothesis class. Essentially, Sabato and Tishby (2012) proceed

by proving that the capacity of the function class
{
Ĝ : Ĝ(Xi) = maxj g(xij), g ∈ F

}

is bounded in terms of the capacity of F . In fact, the results of Sabato and Tishby

(2012) apply to more general cases in which the combining function used to derive

a bag-labeling function from an instance-labeling function is other than the max

function. However, by directly learning a bag-labeling function in this way, the results

of Sabato and Tishby (2012) have nothing definite to say about the learnability of

instance concepts.

As indicated in Figure 4.1, the results in Section 4.2 are not a strict generalization

of those in Sabato and Tishby (2012), nor are those in Sabato and Tishby (2012)

a generalization of those in Section 4.2. In particular, since MI-GEN treats bags

as distributions, the results in Section 4.2 apply to cases not considered in Sabato

72

CHAPTER 4. LEARNING ACCURATE CONCEPTS FROM MI DATA

and Tishby (2012), in which bags are assumed to have finite size. On the other

hand, while our generative model can encapsulate aspects of the generative model in

Sabato and Tishby (2012) (see Section 3.3), arbitrary distributions over r-tuples are

not permitted as in prior work.

Other recent work has discussed the difficulty, both theoretically and in practice,

to relate the performance of the same classifier on the instance- and bag-labeling tasks

(Tragante do Ó et al., 2011). In contrast, Lemma 4.1 illustrates a clear connection

between the accuracy of an instance concept and that of the resulting empirical

bag concept. Lemma 4.1 highlights an advantage of the relationship between bag

and instance distributions in our generative model. In particular, Condition 1 of

Definition 3.1 is employed to marginalize out the effect of individual bag distributions

so that error on bags can be expressed directly in terms of the error on instances.

On the other hand, suppose we have an arbitrary empirical bag-labeling function

Ĝ, not necessarily Ĝ(Xi) = maxj g(xij), and we use it to produce instance labels

by applying it to singleton bags, as in g(x) = Ĝ({x}). Our model does not bound

the error of the instance-labeling function f in terms of the error of Ĝ, unless it

happens to be the case that Ĝ({x}) = g(x). Since many practical algorithms use a

bag-level ERM approach as in the work of Sabato and Tishby (2012), the accuracy of

the resulting instance-level classifiers is often not correlated in practice with bag-level

accuracy (Tragante do Ó et al., 2011). Thus, one should directly learn the instance

concept if a good instance-labeling function is desired.

4.5 Relation to Prior Hardness Results

The positive learnability results in Section 4.1 and Section 4.2 do not contradict

existing hardness results about learning in the MI setting. Essentially, most hardness

results are shown under the scenarios that lie on the far right of Figure 4.1. For

73

CHAPTER 4. LEARNING ACCURATE CONCEPTS FROM MI DATA

example, Sabato and Tishby (2012) observe that if only positive bags are generated,

then learning the bag-labeling function is trivial, but no label information about

instances is provided. In this case, learning instance labels is equivalent to learning

in the unsupervised learning setting, for which no PAC-style guarantees can be made.

However, the additional assumptions in MI-GEN preclude the case when only positive

bags appear, since the negative instances would never appear in negative bags as

required by Condition 3 in Definition 3.1.

Similarly, under the weak assumption in which arbitrary distributions over r-

tuples are allowed, Auer et al. (1998) show that that efficiently PAC-learning MI

instance concepts is impossible (unless NP = RP2). While the results on instance

and bag learnability stemming from Theorem 4.1 show that a polynomial number of

examples can be used to learn accurate concepts, they do not bound the computa-

tional complexity of learning from the examples. In particular, minimum one-sided

disagreement is known to be NP-hard for certain concept classes and loss functions

(Simon, 2012). Therefore, for some concept classes, instance and bag concepts are

not efficiently PAC-learnable in the sense of Definition 2.2.

The apparent contradiction between our learnability results and the hardness re-

sults of Auer et al. (1998) is resolved by observing that MI-GEN precludes the scenario

used to reduce learning disjunctive normal form (DNF) formulae to learning APRs

from MI data. In the reduction used by Auer et al. (1998), each instance corresponds

to a (variable assignment, clause) pair, and a bag is formed for each variable assign-

ment by including a pair with that variable assignment for each clause. Bags are

sampled uniformly over all variable assignments. Suppose a particular variable as-

signment v satisfies the first clause c1, but not the second clause c2. Then the instance

(v, c1) is positive, but (v, c2) is negative. However, (v, c2) only ever appears in bags

2RP is the class of decision problems for which a probabilistic Turing machine terminates in
polynomial time, always returns NO when the answer is NO, and returns YES with probability at least
1
2 when the answer is YES.

74

CHAPTER 4. LEARNING ACCURATE CONCEPTS FROM MI DATA

along with (v, c1); that is, in positive bags. This violates the condition that γ > 0, or

that negative instances appear with some probability in negative bags, so our results

do not apply to this hard scenario.

Similarly, our generative model precludes scenarios used to show the hardness

of learning hyperplane concepts for MI data (Kundakcioglu et al., 2010; Diochnos

et al., 2012; Doran and Ray, 2013b). It is unknown whether there is an algorithm

to efficiently learn hyperplanes that minimize one-sided disagreement. However, even

ERM under 0–1 loss is NP-hard for the concept class of hyperplanes (Ben-David et al.,

2003), which are widely used in practice for supervised learning. Thus, while previous

results have characterized the hardness of MI learning as resulting from non-identical

distributions across bags, our results suggest that the hardness arises from cases in

which γ = 0, or when negative instances only occur in negative bags.

4.6 Must Instances be Dependent Samples?

As observed in prior work, most real-world examples of MIL have bags that contain

non-IID instances (Zhou et al., 2009). Thus, our assumption that bag samples Xi are

drawn IID according to their corresponding bag distributions Bi might seem unreal-

istic. However, note that our generative model does allow for dependencies between

instances at the level of bag distributions, Bi. That is, although the samples Xi are

drawn from bag distributions independently, we can use such independent samples

to approximate the behavior of empirical bag-labeling functions on nonindependent

samples.

As a concrete example, consider the arbitrary R-tuple model as illustrated in

Figure 3.4(b). This model allows for arbitrary distributions over tuples of size at

most R, which can be used to represent bags with relationships between instances.

As described in Section 3.3, it is possible to represent this model within MI-GEN

75

CHAPTER 4. LEARNING ACCURATE CONCEPTS FROM MI DATA

where each bag is an atomic distribution over the instances in the tuple and the

distribution over bags corresponds to the original distribution over tuples. Given

this representation, π = 1
R

in our model. Applying the result in Theorem 4.3, we

see that if bag sizes in our model are of size m =
⌈

1
π

log 2
εB

⌉
=
⌈
R log 2

εB

⌉
, then bag

concepts are learnable with O
(

R
εBγ

log 1
εB

(
VC(F) log R

εBγ
+ log 1

δ

))
examples. If we

had actually observed the R elements of the tuple, then the empirical bag-labeling

function F̂ would be identical to the underlying bag-labeling function in our model,

F . Then, according to Theorem 4.2, we could learn the underlying bag concept with

O
(

R
εBγ

(
VC(F) log R

εBγ
+ log 1

δ

))
examples, given bags of size R. However, given

independent samples, we now need a factor of size O
(

log 1
εB

)
larger bag samples and

number of training examples in order to achieve the same accuracy. Thus, within a

reasonable factor of sizeO
(

log 1
εB

)
, we can achieve the same results using independent

samples as if we had observed nonindependent samples.

4.7 Summary

In this chapter, we described new positive learnability results for learning instance

or bag concepts from data generated by MI-GEN. We described how our generative

model allows for learnability while excluding scenarios used to show hardness under

other generative models. Nevertheless, our generative process extends prior results on

instance concept learnability that are over a decade old (Blum and Kalai, 1998). We

also showed that MI-GEN can incorporate the non-IID instance assumption within

bag-specific distributions over instances, so assuming that samples from individual

bags are drawn independently is not a restrictive assumption in our model.

76

Chapter 5

Learning to Rank from MI Data

Learnability results are often stated as in Chapter 4 with respect to the accuracy

metric. However, other metrics often provide a more useful characterization of al-

gorithm performance in practice. For example, for the 3D-QSAR problem, it is not

necessary to accurately predict the activity of every molecule. Instead, a classifier

can produce a ranked list indicating its confidence that each molecule is active. The

set of active molecules with the highest predicted activity can then be investigated

further by chemists.

In the 3D-QSAR example, a desirable property of a classifier is that it appropri-

ately ranks bags or instances. That is, it assigns a higher real-valued confidence that a

conformation is positive to actual positive conformations than to negative conforma-

tions. The AUC metric, described in Section 2.4.4, is commonly used to measure the

ranking performance of a classifier. We show in this section that classifiers with high

AUC are also learnable from MI data under our generative model. Unlike the prior

work on learning accurate concepts from MI data as shown in Figure 4.1, there has

been virtually no prior work on learning to rank in the MI setting. That is, although

ranking algorithms have been developed for MIL (Bergeron et al., 2008), there is no

formal analysis of the performance of such approaches. Furthermore, we show that

77

CHAPTER 5. LEARNING TO RANK FROM MI DATA

Table 5.1: Legend of the basic notation used in Chapter 5.

Symbol Description/Definition

X Space of instances

B Space of bags (distributions over instances)

X∗ Set of bag samples (sets of instances)

xij Instance xij ∈ X
Bi Bag Bi ∈ B
Xi Bag sample {xij}mij=1 ∈ X∗, xij ∼ Bi (ml ≤ |Xi| ≤ mu)

(ml, mu) mi (Minimum, Maximum) Bag Sample Size

c p-concept for bag-labeled instances c(x) , P [F (B) = 1 | x]

h Instance-Labeling p-concept

Ĥ Empirical Bag-Labeling p-concept Ĥ(Xi) , maxj h(xij)

pneg, p pneg , P [f(x) = 0] p , min{pneg, 1− pneg}
P̂neg, P̂ P̂neg , P

[
F̂ (X) = 0

]
P̂ , min{P̂neg, 1− P̂neg}

Pneg, P Pneg , P [F (B) = 0] P , min{Pneg, 1− Pneg}

learning high-AUC concepts from MI data is easier than learning accurate concepts in

the sense that it can be achieved using standard empirical risk minimization (ERM)

approaches. This suggests that standard supervised algorithms can learn high-AUC

concepts from MI data generated according to MI-GEN, a surprising hypothesis that

we evaluate in the final section.1

5.1 Learning High-AUC Instance Concepts

Prior work has shown that the AUC is equivalent to the probability that a randomly

selected positive example will be assigned a higher confidence than a randomly se-

lected negative example (Hanley and McNeil, 1982). We can define a corresponding

instance AUC error of a real-valued hypothesis h as 1−AUC, or the probability that

1Results on instance concept learnability with respect to AUC appear in Doran and Ray (2014).

78

CHAPTER 5. LEARNING TO RANK FROM MI DATA

a negative instance is assigned a higher confidence than a positive instance:

RAUC
f (h) =

∫

X

∫

X
1[h(x−) > h(x+)] d P(x+ | f(x+) = 1) d P(x− | f(x−) = 0)

=

∫
X−
∫
X+

1[h(x−) > h(x+)] d P(x+) d P(x−)

P [f(x) = 1] P [f(x) = 0]

=
1

(1− pneg)pneg

∫

X−

∫

X+

1[h(x−) > h(x+)] d P(x+) d P(x−).

(5.1)

The first step follows from the definition of conditional probability, and we introduce

pneg = P [f(x) = 0] for notational convenience (see Table 5.1 for a list of notation

used in this section). By definition, this quantity is zero in the cases when either all

instance are positive or all instances are negative.

Given the formal definition of AUC, we can begin to describe how it is possible

to learn high-AUC instance concepts from MI data. Since a classifier’s confidence

values are relevant for the AUC metric, we will consider the hypothesis class corre-

sponding to a classifier to be a probabilistic concept (p-concept) class C, as described

in Section 2.4.3. For high-AUC instance learnability, we will show that it is sufficient

to learn a p-concept h ∈ C that models the p-concept c(x) = P [F (B) = 1 | x], the

probability of observing instance x in a positive bag as defined in Equation 3.5.

To ensure that the target concept c is also a member of C, we must formally

restrict the set of bag labeling functions and distributions that are permitted by the

generative model as follows:

Definition 5.1 (MI-GENC). For any γ ∈ (0, 1] and π ∈ [0, 1]:

MI-GENC(γ, π) ,
{

(DX , DB , f, F) ∈ MI-GEN(γ, π) :
(
x 7→ P [F (B) = 1 | x]

)
∈ C
}
.

Learnability of a p-concept with high AUC is then defined with respect to p-

concept class C:

79

CHAPTER 5. LEARNING TO RANK FROM MI DATA

0 1− γ 1− γ
2

1

) (
ε ε

c(x−) h(x−)

c(x+)

h(x+)

Figure 5.1: The intuition behind Theorem 5.1. A hypothesis h that closely approxi-
mates c will correctly rank instances with high probability.

Definition 5.2 (Instance MI AUC-PAC-learning). We say that an algorithm A MI

AUC-PAC-learns instance p-concept class C from MI data when for any (DX , DB , f, F) ∈

MI-GENC(γ) with γ > 0, and εI, δ > 0, algorithm A requires O
(
poly(1

γ
, 1
εI
, 1
δ
)
)

bag-

labeled instances sampled independently from the MI generative process in Figure 3.1(c)

to produce an instance p-concept hypothesis h with risk RAUC
f (h) < εI with probability

at least 1− δ over samples.

Whereas learning accurate instance concepts as in Definition 4.2 required the use

of minimum one-sided disagreement, we show in Theorem 5.1 that it is possible to

learn high-AUC concepts using ERM. In particular, the strategy used in the following

theorem is to learn a p-concept h that models the concept c defined in Equation 3.5

using standard ERM. The intuition is that c already achieves perfect AUC; that is,

RAUC
f (c) = 0. The reason is that for any negative instance x− and positive instance

x+, c(x−) ≤ 1 − γ < 1 = c(x+), see Figure 5.1 for an illustration. If we learn a p-

concept h that closely approximates c to within some ε, then with high probability, h

will also correctly rank instances. This reasoning is formalized in the theorem below:

Theorem 5.1. An instance p-concept class C with pseudo-dimension PD(C) is In-

stance MI AUC-PAC-learnable using O
(

1
(εIγp)4

(
PD(C) log 1

εIγp
+ log 1

δ

))
examples

with standard ERM approaches, where p = min{pneg, 1− pneg}.

Proof. For any c ∈ C, we can use ERM with respect to the quadratic loss function as

described in Section 2.4.3 to learn a hypothesis h such that E
[
(h(x)−c(x))2

]
< ε with

80

CHAPTER 5. LEARNING TO RANK FROM MI DATA

probability 1 − δ across samples. By Jensen’s inequality, this bounds the expected

absolute deviation between h and c:

E
[
|h(x)− c(x)|

]
≤
√

E
[
(h(x)− c(x))2

]
<
√
ε.

Then, by Markov’s inequality, this expression bounds the probability over examples

that |h(x)− c(x)| exceeds some constant t:

P
[
|h(x)− c(x)| > t

]
≤ E

[
|h(x)− c(x)|

]

t
<

√
ε

t
. (5.2)

Therefore, with high probability, |h(x)− c(x)| is small for small ε.

Now, we can proceed by following the intuition illustrated in Figure 5.1. In par-

ticular, we will show that the AUC risk is bounded when h and c agree on examples

with high probability. First, suppose |h(x)− c(x)| ≤ γ
2

for both of a pair (x+, x−) of

positive and negative instances. Then for the negative instance, x−, by Definition 3.1,

Condition 3:

h(x−) ≤ c(x−) + γ
2
≤ (1− γ) + γ

2
= 1− γ

2
.

Similarly, for the positive instance, x+, by Definition 3.1, Condition 2:

h(x+) ≥ c(x+)− γ
2

= 1− γ
2
.

Hence, we have that h(x−) ≤ h(x+).

By contraposition of the conclusion above, if h(x−) > h(x+), then it is either the

case that |h(x−)− c(x−)| > γ
2

or that |h(x+)− c(x+)| > γ
2
. In set theoretic terms,

81

CHAPTER 5. LEARNING TO RANK FROM MI DATA

this means:

{
(x+, x−) : h(x−) > h(x+)

}

⊆
{

(x+, x−) : |h(x−)− c(x−)| > γ
2
∨ |h(x+)− c(x+)| > γ

2

}

In indicator function notation, this implies:

1
[
h(x−) > h(x+)

]
≤ 1

[
|h(x−)− c(x−)| > γ

2
∨ |h(x+)− c(x+)| > γ

2

]

≤ 1
[
|h(x−)− c(x−)| > γ

2

]
+ 1
[
|h(x+)− c(x+)| > γ

2

]
.

Substituting this expression into the definition of RAUC
f (h) (Equation 5.1) yields:

RAUC
f (h) =

∫
X−
∫
X+

1[h(x−) > h(x+)] d P(x+) d P(x−)

(1− pneg)pneg

≤
∫
X−
∫
X+

1
[∣∣h(x−)− c(x−) > γ

2

∣∣] d P(x+) d P(x−)

(1− pneg)pneg

+

∫
X−
∫
X+

1
[
|h(x+)− c(x+)| > γ

2

]
d P(x+) d P(x−)

(1− pneg)pneg

=

∫
X− 1

[∣∣h(x−)− c(x−) > γ
2

∣∣] d P(x−)

pneg

+

∫
X+

1
[
|h(x+)− c(x+)| > γ

2

]
d P(x+)

1− pneg

.

Then, using the definition p = min{pneg, 1− pneg}, this becomes:

RAUC
f (h) ≤

∫
X− 1

[∣∣h(x−)− c(x−) > γ
2

∣∣] d P(x−)

p

+

∫
X+

1
[
|h(x+)− c(x+)| > γ

2

]
d P(x+)

p

=

∫
X 1
[∣∣h(x)− c(x) > γ

2

∣∣] d P(x)

p
=

P
[
|h(x)− c(x)| > γ

2

]

p
.

82

CHAPTER 5. LEARNING TO RANK FROM MI DATA

Finally, using the inequality derived in Equation 5.2, we have:

RAUC
f (h) ≤ P

[
|h(x)− c(x)| > γ

2

]

p
<

2
√
ε

γp
.

Therefore, it is sufficient to choose ε = (εIγp)
2

4
when learning h via ERM as so that

RAUC
f (h) < εI.

Finally, the sample complexity bound results from substituting ε = (εIγp)
2

4
into

the existing bound in Equation 2.11 for learning p-concepts using ERM (Kearns and

Schapire, 1994).

Comparing Theorem 5.1 with Theorem 4.1 on learning accurate instance con-

cepts, we see that neither results require that positive instances appear in positive

bags (π > 0). In both cases, the addition label noise affects γ, but is tolerated by

the underlying algorithm. The key difference between these results is that high-AUC

concepts can be learned via standard ERM approaches, whereas accurate concept

learning requires minimum one-sided disagreement. Additionally, the sample com-

plexity bound in Theorem 5.1 contains an additional factor p that accounts for class

imbalance. Intuitively, this factor appears because it is difficult to learn to effectively

rank instances from different classes when one class appears very infrequently in the

training set (p is small).

5.2 Learning High-AUC Bag Concepts

As for accuracy, we might be interested in learning either high-AUC instance or

bag concepts from MI data. Following a similar strategy as employed in Section 4.2

for learning accurate bag concepts, here we will consider two measures of bag-level

performance of a bag concept Ĥ derived from an instance concept h. The same

combining function as in Chapter 4, Ĥ(Xi) = maxj h(xij), is commonly used to derive

83

CHAPTER 5. LEARNING TO RANK FROM MI DATA

real-valued bag-labeling functions in prior work (Ray and Craven, 2005). Following

the analysis in Section 4.2, we will measure performance of Ĥ with respect to both F̂ ,

the empirical bag-labeling function, and later F , the underlying bag-labeling function.

For the empirical bag-labeling function, F̂ , the intuitive definition of AUC is the

probability that a bag-level hypothesis Ĥ assigns a higher value to a bag sample given

that it is labeled positive by F̂ (that is, containing at least one positive instance)

than another bag sample labeled negative by F̂ (containing no positive instances).

Formally, we can define the corresponding AUC-based risk as follows:

RAUC
F̂

(Ĥ) =

∫
B
∫
B
∫
X∗−

∫
X∗+

1
[
Ĥ(X−) > Ĥ(X+)

]
. . .

. . . d P(X+ | B+) d P(X− | B−) d P(B+) d P(B−)

P
[
F̂ (X) = 1

]
P
[
F̂ (X) = 0

]

=

∫
B
∫
B
∫
X∗−

∫
X∗+

1
[
Ĥ(X−) > Ĥ(X+)

]
. . .

. . . d P(X+ | B+) d P(X− | B−) d P(B+) d P(B−)

(1− P̂neg)P̂neg

.

(5.3)

Above, X∗− is the set of all negative bag samples, and X∗+ the set of all positive bag

samples. The notation P̂neg = Pr
[
F̂ (X) = 0

]
is used for convenience. Now, we can

define learnability with respect to this metric:

Definition 5.3 (Empirical Bag MI AUC-PAC-learning). We say that an algorithm

A MI AUC-PAC-learns empirical bag-labeling functions derived from p-concept class

C when for any (DX , DB , f, F) ∈ MI-GENC(γ) with γ > 0, and εB, δ > 0, algorithm

A requires O
(
poly(1

γ
, 1
εB
, 1
δ
)
)

bag-labeled instances sampled independently from the MI

generative process in Figure 3.1(c) to produce an empirical bag-labeling function Ĥ

with risk RAUC
F̂

(Ĥ) < εB with probability at least 1− δ over samples.

We will now show learnability of empirical bag-labeling functions by reducing the

problem to learning an accurate model of the p-concept c. Hence, the approach of the

proof follows that for learning accurate empirical bag-labeling functions. However,

84

CHAPTER 5. LEARNING TO RANK FROM MI DATA

because the relationship between instance- and bag-level AUC is more complex than

for accuracy, there is no analog to Lemma 4.1. Instead, we proceed directly with the

result:

Theorem 5.2. Empirical bag-labeling functions derived from p-concept class C with

pseudo-dimension PD(C) are AUC-PAC-learnable from MI data using

O

(
m4
u

(εBγP̂)
4

(
PD(C) log mu

(εBγP̂)
+ log 1

δ

))

examples with standard ERM approaches, where

P̂ , min{P̂neg, 1− P̂neg} ≥ min{Pneg, 1− pneg},

and mu is an upper bound on bag sample size.

Proof. As in Theorem 5.1, we will learn a p-concept h to model c accurately with

high probability. Then, given bag samples X+ with at least one positive instance

and X− with all negative instances, suppose that |h(x)− c(x)| ≤ γ
2

for all instances

across both samples. Then by the same argument as in Theorem 5.1 as illustrated in

Figure 5.1, at least one instance in X+ is assigned a label by h that is at least 1− γ
2
,

and all instances in X− are assigned a label by h of at most 1 − γ
2
. Therefore, the

maximum label assigned in X+, Ĥ(X+), is greater than or equal to the maximum

label in X−, Ĥ(X−).

By contraposition, if Ĥ(X−) > Ĥ(X+), then the label h(x) of some instance x in

either X+ or X− deviates by more than γ
2

from c(x). That is:

{
(X+, X−) : Ĥ(X−) > Ĥ(X+)

}

⊆



(X+, X−) :


 ∨

x∈X+

|h(x)− c(x)| > γ
2


 ∨


 ∨

x∈X−
|h(x)− c(x)| > γ

2







85

CHAPTER 5. LEARNING TO RANK FROM MI DATA

Therefore, in indicator function notation:

1
[
Ĥ(X−) > Ĥ(X+)

]
≤
∑

x∈X+

1
[
|h(x)− c(x)| > γ

2

]
+
∑

x∈X−
1
[
|h(x)− c(x)| > γ

2

]
.

Using the inequality above in the definition of RAUC
F̂

(Ĥ) in Equation 5.3 gives:

RAUC
F̂

(Ĥ) ≤

∫
B
∫
B
∫
X∗−

∫
X∗+
∑

x∈X+
1
[
|h(x)− c(x)| > γ

2

]
. . .

. . . d P(X+ | B+) d P(X− | B−) d P(B+) d P(B−)

(1− P̂neg)P̂neg

+

∫
B
∫
B
∫
X∗−

∫
X∗+
∑

x∈X− 1
[
|h(x)− c(x)| > γ

2

]
. . .

. . . d P(X+ | B+) d P(X− | B−) d P(B+) d P(B−)

(1− P̂neg)P̂neg

Since the integrands above only depend on X+ and X−, we can rewrite the expression

using the fact that

∫

X∗−
d P(X− | B−) d P(B−) = P

[
F̂ (X) = 0

]
= P̂neg

∫

X∗+
d P(X+ | B+) d P(B+) = P

[
F̂ (X) = 1

]
= 1− P̂neg.

The result is:

RAUC
F̂

(Ĥ) ≤
∫
B
∫
X∗+
∑

x∈X+
1
[
|h(x)− c(x)| > γ

2

]
d P(X+ | B+) d P(B+)

(1− P̂neg)

+

∫
B
∫
X∗−
∑

x∈X− 1
[
|h(x)− c(x)| > γ

2

]
d P(X− | B−) d P(B−)

P̂neg

≤
∫
B
∫
X∗+
∑

x∈X+
1
[
|h(x)− c(x)| > γ

2

]
d P(X+ | B+) d P(B+)

P̂

+

∫
B
∫
X∗−
∑

x∈X− 1
[
|h(x)− c(x)| > γ

2

]
d P(X− | B−) d P(B−)

P̂

86

CHAPTER 5. LEARNING TO RANK FROM MI DATA

=

∫
B
∫
X∗
∑

x∈X 1
[
|h(x)− c(x)| > γ

2

]
d P(X | B) d P(B)

P̂
.

By the independence of instances x ∈ X, the upper bound mu on bag size, and

Condition 1 in Definition 3.1, we can rewrite the expression above as:

RAUC
F̂

(Ĥ) ≤ mu

P̂

∫

B

∫

X
1
[
|h(x)− c(x)| > γ

2

]
d P(x | B) d P(B)

=
mu

P̂

∫

X
1
[
|h(x)− c(x)| > γ

2

]
d P(x)

=
mu

P̂
P
[
|h(x)− c(x)| > γ

2

]
.

Then, by Markov’s inequality in Equation 5.2,

RAUC
F̂

(Ĥ) ≤ mu

P̂
P
[
|h(x)− c(x)| > γ

2

]
<

2mu

√
ε

γP̂
. (5.4)

Therefore, choosing ε =
(εBγP̂)

2

4m2
u

, is sufficient to learn Ĥ with RAUC
F̂

(Ĥ) < εB. Substi-

tuting this ε into the bounds in Equation 2.11 gives the sample complexity of learning

Ĥ as stated in the theorem.

Finally, we show that P̂ ≥ min{Pneg, 1 − pneg} as asserted in the theorem, which

demonstrates that P̂ is independent of the bag size m (so there is no hidden depen-

dence on bag size). First, observe that P̂neg ≥ Pneg. The reason is that whenever

a negative bag is sampled, a sample of only negative instances is guaranteed to be

sampled from the bag. Thus, the probability of a negative sample of instances is at

least the probability of sampling a negative bag.

Additionally, 1− P̂neg ≥ 1− pneg. This is true because the probability of a sample

containing a positive instance is at least the probability that the very first instance

sampled is positive, which is 1− pneg.

87

CHAPTER 5. LEARNING TO RANK FROM MI DATA

Combining the observations above, we get:

P̂ , min{P̂neg, 1− P̂neg}

≥ min{Pneg, 1− pneg}.

Note that Theorem 5.1 is a special case of Theorem 5.2 when mu = 1. In this case

P̂neg = pneg when samples all have size 1, so P̂ = p and the sample complexity is the

same.

Now, we can examine AUC-learnability with respect to the true bag-labeling func-

tion, F . To define AUC with respect to F , we measure the probability that a sample

X+ is labeled higher by Ĥ than X− is, given that X+ is sampled from a positive bag

and X− is sampled from a negative bag. Formally, the AUC risk of Ĥ with respect

to F is:

RAUC
F (Ĥ) =

∫
B−
∫
B+
∫
X∗
∫
X∗ 1

[
Ĥ(X−) > Ĥ(X+)

]
. . .

. . . d P(X+ | B+) d P(X− | B−) d P(B+) d P(B−)

P [F (B) = 1] P [F (B) = 0]

=

∫
B−
∫
B+
∫
X∗
∫
X∗ 1

[
Ĥ(X−) > Ĥ(X+)

]
. . .

. . . d P(X+ | B+) d P(X− | B−) d P(B+) d P(B−)

(1− Pneg)Pneg

.

(5.5)

The notation Pneg = P [F (B) = 0] is used to denote the probability of sampling a

negative bag from the distribution over bags. We define the risk to be zero in the

case that this probability is equal to either 0 or 1.

As for accuracy, the risk of an empirical bag-labeling function now depends on

how representative a sample is of the underlying bag. Thus, in the definition of AUC-

learnability with respect to F (Definition 5.4), we now again require an additional

88

CHAPTER 5. LEARNING TO RANK FROM MI DATA

assumption that positive instances appear some π > 0 fraction of the time in positive

bags.

Definition 5.4 (Bag MI AUC-PAC-learning). We say that an algorithm A MI

AUC-PAC-learns bag-labeling functions derived from p-concept class C when for any

(DX , DB , f, F) ∈ MI-GENC(DX , f, γ, π) with γ, π > 0, and εB, δ > 0, algorithm A

requires O
(
poly(1

γ
, 1
π
, 1
εB
, 1
δ
)
)

bag-labeled instances sampled independently from the MI

generative process in Figure 3.1(c) to produce an empirical bag-labeling function Ĥ

with risk RAUC
F (Ĥ) < εB with probability at least 1− δ over samples.

Again, we will learn an instance p-concept h that models c, and then show that

a sufficiently accurate p-concept can produce an empirical bag-labeling function Ĥ

that models F with high AUC. To do this, we will show that the AUC error of Ĥ

with respect to F , RAUC
F (Ĥ), is bounded in terms of the AUC error of Ĥ with respect

to F̂ , RAUC
F̂

(Ĥ).

Lemma 5.1. Suppose bag samples are of size at least ml (∀i : ml ≤ |Xi|), then

RAUC
F (Ĥ) ≤ 1

Pneg
RAUC
F̂

(Ĥ) + (1− π)ml.

Proof. We can derive the inequality in Lemma 5.1 by transforming the definition

of RAUC
F (Ĥ) in Equation 5.5 to that of RAUC

F̂
(Ĥ) in Equation 5.3. Starting from

RAUC
F (Ĥ), we get:

RAUC
F (Ĥ) =

∫
B−
∫
B+
∫
X∗
∫
X∗ 1

[
Ĥ(X−) > Ĥ(X+)

]
. . .

. . . d P(X+ | B+) d P(X− | B−) d P(B+) d P(B−)

(1− Pneg)Pneg

=

∫
B−
∫
B+
∫
X∗
∫
X∗+

1
[
Ĥ(X−) > Ĥ(X+)

]
. . .

. . . d P(X+ | B+) d P(X− | B−) d P(B+) d P(B−)

(1− Pneg)Pneg

(A)

89

CHAPTER 5. LEARNING TO RANK FROM MI DATA

+

∫
B−
∫
B+
∫
X∗
∫
X∗−

1
[
Ĥ(X−) > Ĥ(X+)

]
. . .

. . . d P(X+ | B+) d P(X− | B−) d P(B+) d P(B−)

(1− Pneg)Pneg

. (B)

Starting with (B), we see that since 1
[
Ĥ(X−) > Ĥ(X+)

]
≤ 1, we can rewrite this

term as:

(B) ≤
∫
B−
∫
B+
∫
X∗
∫
X∗−

d P(X+ | B+) d P(X− | B−) d P(B+) d P(B−)

(1− Pneg)Pneg

=

∫
B+
∫
X∗−

d P(X+ | B+) d P(B+)

(1− Pneg)

≤
∫
B+(1− π)ml d P(B+)

(1− Pneg)
= (1− π)ml .

The second step follows from the fact that
∫
X∗−

d P(X+ | B+) is the probability of

sampling only negative instances within a positive bag of size at least ml, which is at

most (1− π)ml .

Continuing with term (A), we can rewrite this as:

(A) =

∫
B−
∫
B+
∫
X∗−

∫
X∗+

1
[
Ĥ(X−) > Ĥ(X+)

]
. . .

. . . d P(X+ | B+) d P(X− | B−) d P(B+) d P(B−)

(1− Pneg)Pneg

(C)

+

∫
B−
∫
B+
∫
X∗+

∫
X∗+

1
[
Ĥ(X−) > Ĥ(X+)

]
. . .

. . . d P(X+ | B+) d P(X− | B−) d P(B+) d P(B−)

(1− Pneg)Pneg

. (D)

Now, we see that (D) = 0, since it involves an integral over bags with positive instances

in negative bags, which occurs with probability zero by Condition 2 in Definition 3.1.

For (C), since 0 ≤ 1
[
Ĥ(X−) > Ĥ(X+)

]
, we can bound this term by taking the

90

CHAPTER 5. LEARNING TO RANK FROM MI DATA

outermost integrals with respect to the entire bag space:

(C) ≤

∫
B
∫
B
∫
X∗−

∫
X∗+

1
[
Ĥ(X−) > Ĥ(X+)

]
. . .

. . . d P(X+ | B+) d P(X− | B−) d P(B+) d P(B−)

(1− Pneg)Pneg

≤
(

(1− P̂neg)P̂neg

(1− Pneg)Pneg

)

∫
B
∫
B
∫
X∗−

∫
X∗+

1
[
Ĥ(X−) > Ĥ(X+)

]
. . .

. . . d P(X+ | B+) d P(X− | B−) d P(B+) d P(B−)

(1− P̂neg)P̂neg

.

Using the definition of RAUC
F̂

(Ĥ) in Equation 5.3, we get that:

(C) ≤
(

(1−P̂neg)P̂neg

(1−Pneg)Pneg

)
RAUC
F̂

(Ĥ) ≤ 1
Pneg

RAUC
F̂

(Ĥ).

The second inequality results by observing that samples of only negative instances

can be sampled within negative or positive bags, so Pneg ≤ P̂neg ≤ 1 and 1− Pneg ≥

1− P̂neg.

Combining the terms above, we have that:

RAUC
F (Ĥ) = (A) + (B) =

(
(C) + (D)

)
+ (B)

≤ 1
Pneg

RAUC
F̂

(Ĥ) + (1− π)ml .

Finally, given the bound in Lemma 5.1, we can derive a result on learning high-

AUC bag concepts with respect to the underlying bag-labeling function F . As with

the results in Theorem 4.3, we state the results conditioned on the fact that bag

sizes mi respect some constraints to account for the error that naturally results from

insufficiently large samples of instances in positive bags.

Theorem 5.3. Bag-labeling functions derived from p-concept class C with pseudo-

91

CHAPTER 5. LEARNING TO RANK FROM MI DATA

dimension PD(C) are AUC-PAC-learnable from MI data using

O

(
m4
u

(εBγP̂Pneg)
4

(
PD(C) log mu

(εBγP̂Pneg)
+ log 1

δ

))
. (5.6)

examples using standard ERM approaches when bag sample sizes are bounded by ml ≤

m ≤ mu and ml ≥ 1
π

log 2
εB

, where P̂ = min{P̂neg, 1 − P̂neg}. Additionally, if the

maximum bag size mu is such that mu = O
(

1
εBπ

)
, then learnability is possible with

O

(
1

(ε2BγπP̂Pneg)
4

(
PD(C) log 1

(εBγπP̂Pneg)
+ log 1

δ

))
. (5.7)

examples.

Proof. As in Theorem 5.2, we will use ERM to learn a p-concept h to model c accu-

rately with high probability. Then, we can bound RAUC
F (Ĥ) using:

RAUC
F (Ĥ) ≤ 1

Pneg

RAUC
F̂

(Ĥ) + (1− π)ml (by Lemma 5.1)

≤ 2mu

√
ε

γP̂Pneg

+ (1− π)ml . (by Theorem 5.2, Equation 5.4)

In the case that π = 1, then the second term in the sum is zero. Otherwise, suppose

the minimum bag size is such that:

ml ≥ 1
π

log 2
εB
≥ log εB

2

log(1− π)
= log1−π

εB
2
,

where the second inequality follows from the fact that π ≤ − log(1−π) for π ∈ (0, 1).

Therefore, since (1− π) < 1, we have that:

(1− π)ml ≤ (1− π)log1−π
εB
2 = εB

2
.

Furthermore, when learning the instance p-concept h, we can choose ε to be such

92

CHAPTER 5. LEARNING TO RANK FROM MI DATA

that ε =
(
εBγP̂Pneg

4mu

)2

. By the bound on RAUC
F (Ĥ), with probability (1− δ), we have:

RAUC
F (Ĥ) ≤ 2mu

√
ε

γP̂Pneg

+ (1− π)ml

≤ εB
2

+
εB
2

= εB.

Substituting the expression for ε in terms of εB into the bound in Equation 2.11

for learning p-concepts using ERM (Kearns and Schapire, 1994) gives a sample com-

plexity of:

O

(
m4
u

(εBγP̂Pneg)
4

(
PD(C) log mu

(εBγP̂Pneg)
+ log 1

δ

))

as stated in Equation 5.6. If there is also a conservative upper bound on bag sample

size mu = O
(

1
εBπ

)
, then by substituting this bound into that above gives the bound

as stated in Equation 5.7.

5.3 Learning High-AUC MI Concepts with Noise

Section 3.5 describes how we can generalize MI-GEN to account for positive instances

occurring some of the time in negative bags. Such scenarios correspond to a subset

of those allowed under the Generalized MIL (GMIL) setting (Scott et al., 2005).

Unfortunately, if positive instances occur in negative bags, then the label noise present

in bag-labeled instances becomes two-sided. In this case, we may no longer be able

to use a minimum one-sided disagreement strategy to learn accurate concepts.

On the other hand, as we show in this section, it is still possible to learn high-

AUC instance concepts if positive instances occur a small fraction of the time in

negative bags. However, we only discuss the learnability of instance concepts, not

bag concepts. The reason is that the max combining function can no longer be used

93

CHAPTER 5. LEARNING TO RANK FROM MI DATA

0 1− γ 1− η1− γ+η
2

1

) (
ε ε

c(x−) h(x−)

c(x+)

h(x+)

Figure 5.2: The intuition behind Theorem 5.4. A hypothesis h that closely approxi-
mates c will correctly rank instances with high probability when η < γ.

to derive bag labels from instance labels. In Chapter 6, we discuss a more general

GMIL setting (see Definition 6.1), in which bag-level learners can be directly applied

using kernel methods.

The intuition behind why we can learn high-AUC instance concepts in the presence

of noisy bags is shown in Figure 5.2. As in Figure 5.1, we can learn a p-concept h that

models c, the probability of an instance appearing in a positive bag. For a negative

instance x−, c(x−) ≤ 1− γ as before by Condition 2 in Definition 3.2. However, now

for a positive instance x+, c(x+) is no longer 1, but is at least 1 − η by Condition 1

in Definition 3.2. However, as Figure 5.2 shows, there is still a “margin” between the

values assigned by c to positive and negative instances, so an accurate model h of c

can still rank instances appropriately.

The theorem on instance AUC learnability under NMI-GEN is analogous to The-

orem 5.1 with modified definitions of learnability. First, we define the set of bag

labeling functions and distributions consistent with a p-concept class:

Definition 5.5 (NMI-GENC). For any γ ∈ (0, 1] and η ∈ [0, γ):

NMI-GENC(γ, η) ,
{

(DX , DB , f, F) ∈ NMI-GEN(γ, η) :
(
x 7→ P [F (B) = 1 | x]

)
∈ C
}
.

Then, we can define learnability with respect to this class of noisy MI concepts:

94

CHAPTER 5. LEARNING TO RANK FROM MI DATA

Definition 5.6 (Instance NMI AUC-PAC-learning). We say that an algorithm A

NMI AUC-PAC-learns instance p-concept class C from MI data when for any tu-

ple (DX , DB , f, F) ∈ NMI-GENC(γ, η) with γ > 0, 0 ≤ η < γ, and εI, δ > 0,

A requires O
(
poly(1

(γ−η)
, 1
εI
, 1
δ
)
)

bag-labeled instances sampled independently from the

MI generative process in Figure 3.1(c) to produce an instance hypothesis h with risk

RAUC
f (h) < εI with probability at least 1− δ over samples.

Finally, we can state the theorem below:

Theorem 5.4. An instance p-concept class C with pseudo-dimension PD(C) is In-

stance NMI AUC-PAC-learnable using O
(

1
(εI(γ−η)p)4

(
PD(C) log 1

εI(γ−η)p
+ log 1

δ

))
ex-

amples with standard ERM approaches, where p = min{pneg, 1− pneg}.

Proof. For any c ∈ C, we start as in Theorem 5.1 by using ERM to learn a hypothesis

h such that E
[
(h(x)− c(x))2

]
< ε with probability 1− δ across samples.

Then, we can follow the strategy illustrated in Figure 5.2. In particular, we will

show that the AUC risk is bounded when h and c agree on examples with high

probability. Suppose |h(x)− c(x)| ≤ γ−η
2

for both of a pair (x+, x−) of positive and

negative instances. Then for the negative instance, x−, by Definition 3.2, Condition 3:

h(x−) ≤ c(x−) + γ−η
2
≤ (1− γ) + γ−η

2
= 1− γ+η

2
.

For the positive instance, x+, by Definition 3.2, Condition 2:

h(x+) ≥ c(x+)− γ−η
2

= 1− η − γ−η
2

= 1− γ+η
2
.

Hence, we have that h(x−) ≤ h(x+).

Following this observation, we can proceed exactly as in Theorem 5.1 using γ−η
2

95

CHAPTER 5. LEARNING TO RANK FROM MI DATA

rather than γ
2

as the bound on |h(x)− c(x)|. Accordingly, we find that:

RAUC
f (h) ≤ P

[
|h(x)− c(x)| > γ−η

2

]

p
.

Using the Markov’s inequality in Equation 5.2, we have:

RAUC
f (h) ≤ P

[
|h(x)− c(x)| > γ−η

2

]

p
<

2
√
ε

(γ − η)p
.

Therefore, it is sufficient to choose ε = (εI(γ−η)p)2

4
when learning h via ERM so that

RAUC
f (h) < εI. The sample complexity bound follows from Equation 2.11 as in The-

orem 5.1.

5.4 Discussion

The results on AUC learnability in the MI setting are surprising, because they imply

the testable hypothesis that standard supervised approaches can be used to learn

about instance and bag labels in the MI setting. The work that introduced the MI

setting evaluated the performance, in terms of accuracy, of supervised approaches

on MI problems and found them to perform poorly (Dietterich et al., 1997). Later

empirical work found that supervised algorithms actually performed quite well on MI

problems, in terms of AUC (Ray and Craven, 2005). This apparent discrepancy can

be explained with the results in this chapter. Supervised approaches can perform well

in terms of AUC on MI problems, but not, it seems, with respect to accuracy.

While the results in Chapter 4 do not formally show that supervised approaches

cannot learn high-accuracy concepts, we conjecture that this is the case due to the one-

sided noise inherent in learning to discriminate classes. As illustrated in Figure 5.1,

the fact that negative instances appear some γ > 0 fraction of the time in negative

bags means that learning to approximate c can be used to rank instances. However,

96

CHAPTER 5. LEARNING TO RANK FROM MI DATA

accurately labeling instances using an approximation of c requires choosing a threshold

to discriminate between positive and negative instances. If the value of γ were known

in advance, then such a threshold might be selected at 1− γ
2
, for example. However,

without knowledge of γ or other further assumptions about the generative process,

proving that such a threshold might be selected accurately is a direction for future

work.

5.5 Empirical Evaluation

Because the results in this chapter imply the surprising fact that standard supervised

algorithms can be used to learn concepts with high-AUC, but not high accuracy,

from MI data, we explicitly evaluate this hypothesis using real-world MI datasets. As

always, there are some differences between theory and practice that might confound

the experimental results. Below we first explain these two key differences and argue

why they do not threaten the validity of our experimental results. Then, we discuss

the remainder of our experimental methodology and results.

5.5.1 Single Instance Learning

In these experiments, we use single-instance learning (SIL) to apply supervised algo-

rithms to MI data. The single-instance learning (SIL) procedure takes an MI dataset

and applies to every instance the label of its bag. Hence, like in the generative model

described in Chapter 3 used to show the theoretical results in this chapter, the SIL

training set consists of bag-labeled instances. However, unlike in the generative model

used in this chapter, SIL samples more than one instance per bag. As a result, SIL

potentially introduces some “correlation” between instances in the training set. Fig-

ure 3.1 provies a comparison of the generative model of Chapter 3 (Figure 3.1(c)) and

that of SIL (Figure 3.1(b)).

97

CHAPTER 5. LEARNING TO RANK FROM MI DATA

We could make SIL more closely resemble our generative model by randomly dis-

carding all but one instance in every bag. However, this would dramatically reduce

the size of most practical MI datasets and would needlessly “throw away” the infor-

mation associated with the discarded instances. Instead, we use all instances in the

dataset, and ignore the fact that they are potentially correlated, thereby assuming

that every instance is sampled from an independent bag. The correlation could change

the training distribution over instances, but this should hurt the performance of the

supervised algorithm if it has any significant effect at all. Therefore, comparing SIL

to MI-specific algorithms provides a comparison that is fair to the MI approaches.

5.5.2 Risk Minimization Approaches

The results on AUC learnability for MI data use results on learning via empirical

risk minimization (ERM). ERM requires that some concept class C is fixed in ad-

vance, and a hypothesis h ∈ C that minimizes empirical risk (in terms of accuracy)

is selected. In practice, however, C might not be known a priori. Thus, structural

risk minimization (SRM) strategies are often used in practice, which simultaneously

select a hypothesis h that minimizes empirical risk while controlling the capacity of

the class from which h is selected. The standard support vector machine (SVM) is

a structural risk minimization (SRM) approach, where the parameter C, selected via

cross-validation, controls the trade-off between risk minimization and regularization.

Although our theoretical result holds for ERM, we will use the SRM-based SVM

for these experiments. The same SRM strategy is used across all of the baseline

algorithms.

Similarly, the SVM outputs confidence values that range from (−∞,∞) rather

than from [0, 1]. Thus, the SVM technically does not learn a p-concept. However,

prior work has shown how it is possible to fit a logistic regression model to an SVM’s

outputs to derive associated probabilities (Platt, 1999). However, since the resulting

98

CHAPTER 5. LEARNING TO RANK FROM MI DATA

rescaling of the data does not affect the relative rankings of the real-valued outputs

produced by the SVM, the AUC of the classifier does not change. Accordingly,

we report results using the raw confidence values produced by the SVM in these

experiments.

5.5.3 Methodology

To evaluate our hypothesis that a supervised SVM can perform well with respect to

AUC for learning instance- and bag-labeling functions, we use a total of 55 real-world

datasets across a variety of problem domains (see Table A.2). Of the 55 datasets, 45 of

them have instance labels, which are only used to test the instance-level performance

of classifiers, not for training.

The SIL approach combined with a standard supervised SVM is compared with

four popular baseline MI SVM approaches: mi-SVM, MI-SVM (Andrews et al., 2003),

MICA (Mangasarian and Wild, 2008), and the “instance” variant of KI-SVM (Li

et al., 2009), which have been specifically designed to learn bag or instance labels

from MI data. A brief description of these approaches can be found in Table 2.3.

We evaluate algorithms using 10-fold stratified cross-validation, with 5-fold inner-

validation used to select parameters using random search (Bergstra and Bengio, 2012).

Parameter selection is performed separately for each metric (accuracy and AUC) with

respect to bag-level labels (since instance-level labels are unavailable at training time,

even during cross-validation). We use the RBF kernel with all algorithms, with scale

parameter γ ∈ [10−6, 101], and regularization–loss trade-off parameter C ∈ [10−2, 105].

The L2 norm is used for regularization in all algorithms.

To statistically compare the classifiers, we use the approach described by Demšar

(2006). We use the nonparametric Friedman test to reject the null hypothesis that

the algorithms perform equally at an α = 0.001 significance level. Finally, we plot

the average ranks using a critical difference diagram, which uses the Nemenyi test to

99

CHAPTER 5. LEARNING TO RANK FROM MI DATA

12345

MICA
SIL

KI-SVM
MI-SVM
mi-SVM

CD

(a) Instance Accuracy

12345

MICA
SIL

KI-SVM
MI-SVM
mi-SVM

CD

(b) Bag Accuracy

12345

MICA
KI-SVM

SIL
mi-SVM
MI-SVM

CD

(c) Instance AUC

12345

MICA
KI-SVM

MI-SVM
mi-SVM
SIL

CD

(d) Bag AUC

Figure 5.3: The average ranks (lower is better) of approaches on the instance- and
bag-labeling tasks, evaluated using either accuracy or AUC. Statistically insignificant
differences in performance are indicated with horizontal lines.

identify statistically equivalent groups of classifiers at an α = 0.05 significance level.

5.5.4 Results and Discussion

The results are summarized using critical difference diagrams in Figure 5.3. For

accuracy and AUC, the ranks of the approaches are averaged across the 45 instance-

labeled datasets for the instance-level metrics and across the 55 datasets for the

bag-level metrics. Lower ranks indicate better performance. A detailed description

of the datasets and methodology can be found in Appendix A, with a full table of

results in Appendix A.2.1.

As expected, SIL performs relatively poorly with respect to either instance- or bag-

level accuracy. However, it is somewhat surprising that with respect to accuracy, SIL

performs as well as some existing MI approaches. On the other hand, with respect to

AUC, the relative performance of SIL increases significantly, and SIL performs as well

the best MI approaches. For instance-level AUC, SIL is the highest-ranked approach.

For bag-level AUC, SIL is not the best approach on average, but it is statistically

equivalent to the top MI approaches. Since more samples are required to learn a

bag-level concept using SIL, it could be that performance would improve even more

100

CHAPTER 5. LEARNING TO RANK FROM MI DATA

with a larger training sample. For the other MI algorithms, their relative rankings

do not change significantly across either metric for either learning task.

These surprising results support the theoretical framework described in Chapter 3.

In particular, the experimental results suggest that the assumptions made by our

generative model hold in practice in many cases. For example, we claim that the

assumption that negative instances appear in negative bags (γ > 0) is weak and

reasonable for many MI domains. In content-based image retrieval (CBIR), negative

background segments are likely to appear at least some of the time in images without

the object of interest. The experimental results provide empirical support for this

claim across the four domains on which we evaluate the classifiers. Of course, there

might be domains for which this assumption does not hold. Determining whether

any learnability results can be derived under weaker assumptions is an interesting

question for future work.

There are also several ways that the theoretical and empirical results in this chap-

ter can inform future work on MI learning. As mentioned earlier, the first work on

MIL used accuracy as a performance measure, and found the SIL approach to be

inaccurate in the MI setting for labeling bags (Dietterich et al., 1997). As a result,

subsequent studies rarely used it as a baseline when evaluating new MI techniques.

However, our results suggest that SIL should be used as a baseline when evaluating

new MI approaches, especially if the intended application involves ranking bags or

instances.

For researchers looking to learn high-AUC instance concepts from MI data, our

results suggest that supervised approaches often suffice for this purpose in practice.

Since supervised approaches are typically more computationally efficient than their

MI counterparts, our theoretical and empirical justification for using supervised ap-

proaches with MI data provides a valuable practical benefit. The results in Figure 5.4

support this claim. The training time required by the algorithms for each dataset is

101

CHAPTER 5. LEARNING TO RANK FROM MI DATA

1 2 3 4 5

Instance-Level AUC Rank

1

2

3

4

5
Tr

ai
ni

ng
Ti

m
e

R
an

k

KI-SVM

MICA
mi-SVM

MI-SVM
SIL

Pareto Frontier

1 2 3 4 5

Bag-Level AUC Rank

1

2

3

4

5

Tr
ai

ni
ng

Ti
m

e
R

an
k

KI-SVM

MICA
mi-SVM

MI-SVM
SIL

Figure 5.4: Comparison of supervised and MI-specific approaches in terms of running
time and classification performance (AUC). Lower ranks correspond to better perfor-
mance and faster training time. The Pareto frontier shows algorithms that are not
dominated by any other algorithm along both dimensions.

ranked with 1 corresponding to the fastest algorithm, and these ranks are averaged

across datasets. Then, the combined performance of each approach in terms of both

AUC and training time is shown in Figure 5.4. The Pareto frontier, the set of algo-

rithms for which there does not exist any other algorithm that has better performance

along both dimensions, is indicated in the figure. SIL is at or near the Pareto frontier

for both instance- and bag-labeling.

For learning high-AUC bag-labeling concepts, MI algorithms still have a slight (but

statistically insignificant) advantage over SIL in terms of classifier performance and

training time. However, as the next chapter shows, our generative model suggests that

even better performance can be attained by applying standard supervised approaches

directly to the bag-level learning task using kernels.

102

CHAPTER 5. LEARNING TO RANK FROM MI DATA

5.6 Summary

In this chapter, we argued that for many real-world applications of MIL, it is sufficient

to rank instances or bags rather than assign accurate binary labels. Accordingly, we

derived results about the ability to find high-AUC rankings of instances or bags from

data generated by a process in MI-GEN. The surprising aspect of these results is

that such rankings can be found via standard supervised approaches. We evaluated

this surprising hypothesis empirically and found that supervised approaches can in

fact learn to rank from MI data in practice. Thus, the empirical results support the

assumptions made by MI-GEN.

103

Chapter 6

Learning Bag Hyperplanes from

MI Data

In the previous chapters, we derived new learnability results for the MI setting that

described how instance or bag concepts could be learned from MI data. For learning

bag-level concepts we relied on first learning an instance-level concept f to derive

an empirical bag-labeling function F̂ based on f in order to model the bag-labeling

function F . In fact, this is a similar strategy required by prior models in which

learnability is discussed (Blum and Kalai, 1998; Sabato and Tishby, 2012). On the

other hand, the results in this chapter are based on the observation that for the bag-

labeling task within MI-GEN, supervised approaches are sufficient to learn either

accurate or high-AUC concepts from MI data.

The reason why supervised approaches are sufficient for bag-labeling in our gen-

erative model can be seen in Figure 3.1(a). In particular, since we assume that a

bag-labeling function F exists that explicitly assigns labels to bags, F can be learned

assuming there is some feature-vector representation for bags Bi. As it happens,

there exist recent kernel-based approaches that can represent distributions, and thus

bags, as single vectors in a feature space. We discuss these approaches below and

104

CHAPTER 6. LEARNING BAG HYPERPLANES FROM MI DATA

describe the relationship between these approaches and some alternatives that have

been proposed in prior work. Since we are interested in a kernel-based representation

for bags, we focus in this chapter on specifically learning hyperplanes from MI data

rather than more general concepts as in the prior chapter.

6.1 Learning Hyperplanes from Distributions

In this section, we establish certain properties of kernels applied to distributions that

make learning from distributions possible. In particular, we describe the “injectiv-

ity” and “universality” properties of distribution kernels. Injectivity ensures that

distributions are represented uniquely in a feature space, and universality ensures

that a kernel can be used to represent arbitrary continuous functions over distribu-

tions. Recent work has investigated these properties of distribution kernels (Muandet

et al., 2012), which when used with a standard supervised support vector machine

(SVM) are called support measure machines (SMMs), since examples are probability

measures rather than vectors.

As described in Section 2.3.2, the normalized set kernel (NSK) with averaging

normalization can be viewed as an instance of the kernel mean embedding, which

maps distributions into a feature space. The NSK used with an SVM is one example

of an SMM. We are interested in analyzing when such an SMM might be successfully

applied to learning concepts in MI-GEN. First, in order to learn from distributions,

we desire that the NSK faithfully represents the distribution it embeds into a feature

space. In other words, for any two distinct distributions P and Q, these distributions

should be represented differently in the feature space so that ‖µ(P)− µ(Q)‖H 6= 0.

In other words, kernel mean embedding (the feature map of the NSK) should be

injective.

By definition, a kernel is characteristic whenever the resulting kernel mean em-

105

CHAPTER 6. LEARNING BAG HYPERPLANES FROM MI DATA

bedding is injective. Sriperumbudur et al. (2010) show that a kernel is characteristic

whenever it is universal. A kernel is universal when the set of functions F it can repre-

sent (of the form f(x) =
∑m

i=1 αik(x, xi) + b) is a uniformly dense subset of the space

C(X) of bounded, continuous functions over the input space (Micchelli et al., 2006).

In this context, the set of function representable by a kernel is typically called the

reproducing kernel Hilbert space (RKHS). The popular radial basis function (RBF)

kernel (Equation 2.9) is an example of a universal kernel.

Even though the NSK can provide a unique representation for distributions (and

thus bags), is the class of functions over bags that an SVM learn using the NSK

universal? That is, can an SVM using an NSK be used to learn arbitrarily good (in

the uniform norm) approximations of continuous functions over distributions? These

questions have been addressed by recent work on the SMM (Muandet et al., 2012).

In particular, the work by Muandet et al. (2012) describes the set of functions F

on probability distributions that can be learned with the SMM. Let P(X) be the set

of probability distributions on an input space X and C(X) be the set of bounded,

continuous functions on X. Then the reproducing kernel Hilbert space (RKHS),

the set of functions representable by the kernel mean embedding induced by some

universal instance kernel, is dense in the set:

F =

{
P 7→

∫

X
g dP : P ∈P(X), g ∈ C(X)

}
. (6.1)

These are the functions we get by taking the expected value of a fixed but arbitrary

continuous function with respect to probability distributions. However, the function

class F is a subset of C(P(X)), the set of all bounded, continuous functions over the

set of probability distributions (with respect to the weak topology on P(X)). Thus,

the mean embedding defined in terms of a universal kernel with respect to C(X) is

not itself universal with respect to C(P(X)).

106

CHAPTER 6. LEARNING BAG HYPERPLANES FROM MI DATA

However, as shown by Christmann and Steinwart (2010), it is possible to construct

a universal kernel with respect to C(P(X)) using an additional level of embedding.

That is, using the RBF kernel defined with respect to the mean embeddings of two

distributions P and Q:

k(P ,Q) = e−γ‖µ(P)−µ(Q)‖2H , (6.2)

is universal with respect to C(P(X)) when µ is injective and X is compact. Note

that the kernel in Equation 6.2 is equivalent in form to the RBF kernel given in

Equation 2.9, but treatsH rather than X as the input space. This iterated embedding

is referred to as a level-2 embedding (Muandet et al., 2012).

6.2 Learning Bag Hyperplanes from Distributions

Given the ability of the NSK and level-2 embedding to classify distributions, we can

analyze the ability of the SMM with these kernels to learn bag concepts from MI-GEN

and Generalized MIL (GMIL). When discussing kernel-based hyperplane classifiers, it

is more natural to consider labels to be {−1, 1} rather than {0, 1} as in prior chapters.

Thus, we adopt this notation for the remainder of this chapter. The first result shows

that the NSK can learn bag concepts from MI-GEN given that instances are separable

by a continuous function:

Proposition 6.1. Let (DX , DB , f, F) ∈ MI-GEN(0, π) for any π > 0. Further,

suppose there exists g ∈ C(X), a bounded, continuous function on X, that separates

instances with some margin. That is, f(x) = −1 =⇒ g(x) ≤ −1 and f(x) = 1 =⇒

g(x) ≥ 1. Then the NSK with a universal instance kernel can separate bags with

respect to F .

Proof. Since g is a bounded, continuous function, the sets Xn = {x : f(x) = −1}

and Xp = {x : f(x) = 1} are disjoint, closed sets. Taking for granted that X is a

107

CHAPTER 6. LEARNING BAG HYPERPLANES FROM MI DATA

normal space,1 by Urysohn’s Lemma, there exists a continuous function h : X → [0, 1]

such that f(x) = −1 =⇒ h(x) = 0 and f(x) = 1 =⇒ h(x) = 1. Then (1)

G(B) = 2
π

∫
X h d P(B) − 1 separates bags and (2) G can be uniformly approximated

by the NSK with a universal kernel.

Assertion (1) follows from the definition of h and MI-GEN. The function h acts

like an indicator function for the set of positive instances, so
∫
X h d P(B) quantifies

the support of bag distribution B over the positive instances. According to MI-GEN,

the support is 0 for negative bags, and at least π for positive bags. Thus, G(B) will

be at least +1 for positive bags, and −1 for negative bags, so G separates bags with

respect to F .

Finally, assertion (2) follows from the results of Muandet et al. (2012) as described

in Equation 6.1.

It is worth noting that unlike instance concept learnability results, Proposition 6.1

holds whenever γ ≥ 0, even when γ = 0. That is, if one is only interested in learning

a bag concept, then the condition that negative instances appear in negative bags is

no longer required. Furthermore, if the conditions of Proposition 6.1 are not met,

but the bag-labeling function F ∈ C(P(X)), then the level-2 embedding kernel can

be used to learn F .

The next proposition shows that GMIL concepts (Scott et al., 2005) can also be

represented using an SMM with a universal level-2 embedding kernel. Recall that

GMIL concepts (see Section 2.1.3) require that multiple types of instances be present

or absent in a bag for it to be positive. For example, in classifying images of beaches,

an image must contain both “sand” and “water” instances, otherwise it might be a

picture of a desert or an ocean. First, we define a notion of GMIL compatible with a

generative model in which bags are distributions.

1A topological space is normal if for any disjoint closed sets A and B in the space, there are
disjoint open sets U and V containing A and B, respectively (Folland, 1999).

108

CHAPTER 6. LEARNING BAG HYPERPLANES FROM MI DATA

Definition 6.1 (Distribution-Based GMIL). Let {Ci}ai=1 be a set of “attractive”

classes and {Ci}ri=1 be a set of “repulsive” classes, each a subset of X. A bag B

“hits” a class Ci if
∫
Ci

d P(B) ≥ ci > 0 for some class-specific threshold ci. Likewise,

a bag “misses” a class if
∫
Ci

d P(B) = 0. An instance of a GMIL problem (DB , F) is

such that every bag B in the support of DB either hits or misses each class, and F

assigns labels to each bag such that B is positive if and only if it “hits” some mini-

mum number k of attractive classes and misses some minimum number s of repulsive

classes.

Given Definition 6.1, we can show the following:

Proposition 6.2. Suppose there exists a bounded, continuous function gi that sep-

arates every class Ci from the other classes with some margin. Then the universal

level-2 kernel can arbitrarily approximate in the uniform norm a function that sepa-

rates bags according to a GMIL concept F .

Proof. Since a universal kernel can arbitrarily approximate continuous functions, it

suffices to show that a GMIL concept F is separable with a continuous function.

By the same argument in the proof of Proposition 6.1, there is a function hi for

each Ci such that x ∈ Ci =⇒ hi(x) = 1 and x 6∈ Ci =⇒ hi(x) = 0. Thus,

Hi(B) = max
{

1, 1
ci

∫
X h d P(B)

}
is a function that is 1 if B hits class Ci and 0 if

B misses Ci. Furthermore, each Hi is a continuous function over bags since it is a

composition of continuous functions.

Then, for a GMIL concept F as described in Definition 6.1, the following concept

separates F :

G(B) = 2 min

{
a∑

i=1

Hi(B)− k,
r∑

i=1

(1−Hi(B))− s
}
− 1.

The minimum is at least 1 if the number of hits and misses are both above their

respective thresholds k and s. Thus, G(B) ≥ 1 for positive bags according to F , and

109

CHAPTER 6. LEARNING BAG HYPERPLANES FROM MI DATA

G(B) ≤ −1 for negative bags.

Finally, note that G is a composition of the continuous max function with contin-

uous functions over bags, so it is in fact continuous and can be approximated by an

element of the RKHS of the level-2 embedding kernel.

The results above show that as distribution classifiers, the NSK and level-2 em-

beddings are powerful enough to represent general MI concepts. These results assume

that perfect information about each bag Bi is known during training. However, in

practice, only samples of instances are observed within each bag, as indicated in Fig-

ure 3.1(b). Nevertheless, as described in Section 2.3.2, empirical estimates of kernel

mean embeddings converge quickly to the underlying embeddings as the sample size

within each bag increases (Sriperumbudur et al., 2010).

No prior work has applied the level-2 embedding kernel to MI classification prob-

lems. However, other bag-level kernels have been defined for solving general MI clas-

sification problems. In the following section, we discuss some alternative approaches,

and discuss their their relationship to the NSK and level-2 embedding kernels.

6.3 Bag Kernels as Distribution Kernels

In this section, we explore several other bag-level kernel embeddings that have been

proposed for the MI setting. We describe that, in many cases, it is possible to view

these kernels as naturally treating bags like distributions or samples from distribu-

tions.

EMD. The Earth-Mover’s Distance (EMD), also known as the Wasserstein metric,

is a popular distance metric commonly used within the content-based image retrieval

(CBIR) domain (Rubner et al., 2000). The EMD is a proper distance metric between

distributions, and its name come from an intuitive description of how it operates. If

one views one distribution as a pile of dirt, and the other distribution as a hole in

110

CHAPTER 6. LEARNING BAG HYPERPLANES FROM MI DATA

the ground, then the EMD is a measure of the minimum amount of work, in terms

of mass of dirt times Euclidean distance across the ground traveled, that it takes to

fill the hole with the pile.

Given any distance metric, such as the EMD, a kernel can be constructed using

the generalized RBF kernel (Schölkopf and Smola, 2002):

kd(xi, xj) = e−γd(xi,xj)
p

, (6.3)

which is a generalization of Equation 2.9, for which d(xi, xj) = ‖xi − xj‖2 and p = 2.

Thus, a kernel between bags Bi and Bj using the EMD with p = 1 is defined as

follows:

kEMD(Bi, Bj) = e−γ EMD(Bi,Bj). (6.4)

The performance of the EMD kernel for MI classification has been explored in prior

work (Amores, 2013).

The EMD kernel in Equation 6.4 and the level-2 embedding kernel in Equa-

tion 6.2 are actually members of the same family of RBF kernels given by Equa-

tion 6.3. In fact, the distance metric corresponding the level-2 kernel in Equation 6.2,

‖µ(P)− µ(Q)‖H , is known as the Maximum Mean Discrepancy (MMD), and has

been studied in prior work (Gretton et al., 2007). Therefore, the empirical level-2

embedding kernel between bags can be rewritten in the form of Equation 6.3 as:

kMMD(Bi, Bj) = e−γMMD(Bi,Bj)
2

. (6.5)

Given the similar form of Equation 6.4 and Equation 6.5, it is easy to see the

connection between the level-2 embedding kernel and the EMD kernel approaches.

Both are based on distance metrics defined on the space of distributions (or samples

from distributions). In fact, both distance metrics induce the same weak topology on

111

CHAPTER 6. LEARNING BAG HYPERPLANES FROM MI DATA

the space of distributions over instances, P(X), when the instance space is separable

(Sriperumbudur et al., 2010). As discussed above, the level-2 embedding kernel is

universal in its ability to represent continuous functions over distributions. Although

it intuitively seems that the EMD kernel should have similar representational abilities,

it is still an open question as to whether the EMD kernel is similarly universal over

the space of distributions.

Box-Counting Kernel. The box-counting kernel was specifically designed to

represent GMIL concepts (Tao et al., 2004, 2008). The box-counting kernel is mo-

tivated by the assumption that “attractive” and “repulsive” classes of points as de-

scribed in Definition 6.1 are contained within axis-parallel boxes in the feature space.

Note that this is a stronger assumption than is made in Proposition 6.2, which allows

these classes to be arbitrary closed sets. The box-counting kernel then constructs a

Boolean feature corresponding to every axis-parallel box in a discretized version of

the feature space. A box is represented with such a feature vector with a “1” for

every feature with the corresponding box containing some point in the bag, and “0”

for every feature whose corresponding box does not contain any points from the bag.

Because it is intractable to explicitly enumerate all such features, Tao et al. (2004)

use a kernel by observing that the inner product between two Boolean feature vectors

as described above will be equal to the number of boxes that contain points from both

bags involved in the inner product. Hence, the kernel is called the “box-counting”

kernel. However, the box-counting problem is #P-complete, so an approximation is

used to make even the kernel computation tractable (Tao et al., 2004). The approx-

imation scheme finds a value within a factor of ε of the true count with probability

1− δ, in poly(mu, k,
1
ε
, 1
δ
) time, where m is the bag size and k is the dimensionality of

the input feature space (see Table 6.1 for a comparison of computation complexity).

MILES and YARDS. Another set of approaches for standard MI classification

construct a representation for bags by using an RBF kernel as a similarly measure

112

CHAPTER 6. LEARNING BAG HYPERPLANES FROM MI DATA

between bags in a dataset and instances in a dataset. First, each instance in a

dataset is represented using a feature vector of length |X|, with each feature an RBF

kernel between that instance and one of the xi ∈ X. This representation is similar

to the “empirical” kernel representation used by the box-counting kernel. Then,

some function combines the individual feature representations to construct a bag-

level feature representation.

The Multiple-Instance Learning via Embedded Instance Selection (MILES) algo-

rithm (Chen et al., 2006) combines instance representations using the max function,

whereas the Yet Another Radial Distance-based Similarity measure (YARDS) ap-

proach (Foulds, 2008) uses the average instance representation to construct a bag-level

feature vector. The original MILES paper used a linear SVM with L1 regularization

to learn a “sparse” classifier that used fewer of the |X| features. However, we find that

using the standard L2 regularization with an RBF kernel outperforms the originally

proposed formulation.

By averaging over instance feature representations, YARDS is using a mean em-

bedding to represent each bag. However, YARDS uses an explicit feature embedding

by enumerating the values of the kernel between each instance and the instances in X.

Thus, YARDS can be viewed as a kernel mean embedding that uses an “empirical”

version of the kernel feature map, which is equivalent to the implicit kernel feature

map up to a linear rescaling of the features (Schölkopf and Smola, 2002).

Under the view of bag feature embedding of YARDS as described above, when the

YARDS features are used with an RBF kernel, the RBF kernel performs a secondary

embedding of bags analogous to the universal level-2 kernel. Thus, when YARDS is

used with a standard SVM and an RBF kernel, it can learn the same concepts as the

level-2 kernel used with the SMM. However, some practical differences between these

approaches might be observed due to the linear rescaling of features, as we show in

Section 6.4.

113

CHAPTER 6. LEARNING BAG HYPERPLANES FROM MI DATA

and . Several kernels have been designed for the MI setting that represent

bags as graphs of related instances (Zhou et al., 2009). The MIGraph and miGraph

approaches first construct graphs for each bag by connecting two instances in a bag

with an edge if they are within a distance of τ of each other. As a heuristic, τ is

chosen as the average distance between instances in a bag. The corresponding edge

is weighted with a normalized reciprocal of the distance between the instances.

Like the NSK, the MIGraph kernel is a sum of pairwise kernel values between

instances and edges across two bags Bi, Bj and their corresponding graphs G(Bi),

G(Bj):

kMIGraph(Bi, Bj) =
∑

xi∈Bi

∑

xj∈Bj
kI(xi, xj) +

∑

ei∈G(Bi)

∑

ej∈G(Bj)

kedge(ei, ej).

A kernel on edges is defined by representing each edge as a set of features. If an edge

e connects instances xi and xj, then e is represented using four features that include

the degree of xi, the degree of xj, the weight of the edge divided by the sum of the

edge weights originating from xi, and the weight of the edge divided by the sum of

the edge weights originating from xj. Then, a standard kernel such as the RBF kernel

between these feature vectors can be used as the edge kernel.

The miGraph kernel is a computationally more efficient version of MIGraph that

is equivalent to a weighted version of the NSK. In particular, kmiGraph can be written

as:

kmiGraph(Bi, Bj) =
1∑
iwi

1∑
j wj

∑

xi∈Bi

∑

xj∈Bj
wiwjkI(xi, xj).

The weight wi for each instance xi ∈ B is computed as follows:

wi =


∑

xj∈B
1 [(xi, xj) ∈ G(B)]



−1

.

That is, wi is the reciprocal of the number of instances adjacent to xi in the graph

114

CHAPTER 6. LEARNING BAG HYPERPLANES FROM MI DATA

G(B) of bag B. G(B) contains an edge for every pair of instances whose distance is

less than some threshold τ and includes self-edges.

The computation of miGraph therefore gives more weight to instances that lie in

less densely populated regions of the feature space within each bag. Under the view

of bags as distributions, miGraph can be viewed as performing the mean embedding

on a weighted sample, or a sample drawn from a modified version of the bag’s un-

derlying distribution. Intuitively, the modification of the bag’s distribution increases

the probability mass over regions with low mass and decreases the mass over regions

with originally high mass. As a result, the modified bag distribution is more uniform

over the support of the original distribution. Such a reweighting might provide an

advantage when the support rather than distribution of instances within a bag is a

more discriminating feature of bags. As observed in prior work (Zhou et al., 2009),

when τ is very large and G(Bi) is fully connected or τ is very small so that G(Bi)

contains only self-edges, kmiGraph is equivalent to the NSK because all instance weights

are identical. In these limiting cases, the connection between miGraph and the NSK

becomes apparent.

6.4 Empirical Evaluation

In this section, we compare the bag-level classification performance of select bag

kernels discussed above. Furthermore, we discuss several practical details of the

approaches, which show that distribution-based methods tend to also be more efficient

than those derived using other heuristics.

We hypothesize that because bags are best understood as samples from distribu-

tions, kernels defined to act on distributions should outperform approaches that do not

explicitly make this assumption. Furthermore, the theoretical results in Section 6.1

suggest that the level-2 embedding kernel provides a more powerful representation

115

CHAPTER 6. LEARNING BAG HYPERPLANES FROM MI DATA

than the NSK for learning from distributions (Muandet et al., 2012). The results

presented below are the first application of the level-2 embedding to MI classification

problems. Apart from the level-2 embedding, we expect other approaches that treat

bags as distributions to perform well if the proposed model captures the underlying

generative process of the data.

6.4.1 Methodology

Because bag-labeling approaches are generally more computationally efficient than

instance-labeling approaches, we are able to use all available datasets from various

problem domains. Only bag-level labels are used for training and evaluation of algo-

rithms for these datasets.

We use 10-fold stratified cross-validation to evaluate algorithm performance in

terms of accuracy and AUC, with 5-fold inner cross-validation and random parameter

search (Bergstra and Bengio, 2012) used to select parameters. For the box-counting

kernel, we use the default parameters from the original work (Tao et al., 2008): ε =

0.1, δ = 0.01, and the 50th root with the normalized empirical kernel. The box-

counting kernel also requires feature values to be integral, so we multiply original

feature values by 102–103 and truncate to produce features with roughly the same

numbers of significant digits as used in the original experiments. We search for the

C parameter of the SVM within the range [10−3, 109]. Of MIGraph and miGraph,

we present results from the latter, which achieved better performance. We use the

Euclidean distance to construct the neighborhood graph, with the average distance

between all training instances used as the threshold τ . Of MILES and YARDS, we

again select the latter approach as it had better performance. For the approaches

other than the box-counting kernel, the range [10−3, 109] is used to select C. The

EMD and NSK with averaging normalization only have a single RBF γ parameter

selected from the range [10−6, 101]. The miGraph kernel also has a γ parameter

116

CHAPTER 6. LEARNING BAG HYPERPLANES FROM MI DATA

123456

Box
mi-Graph

YARDS

EMD
Level-2
NSK

CD

(a) Accuracy

123456

Box
YARDS

mi-Graph

EMD
Level-2
NSK

CD

(b) AUC

Figure 6.1: Ranks (lower is better) of the various bag kernel approaches on the bag-
labeling task. The critical difference diagrams show the average rank of each technique
across datasets, with techniques being statistically different at an α = 0.05 significance
level if the ranks differ by more than the critical difference (CD) indicated above the
axis. Thick horizontal lines indicate statistically indistinguishable groups (i.e. a
technique is statistically different from any technique to which it is not connected
with a horizontal line).

selected from the same range, as well as a τ parameter that is chosen heuristically per

bag as the average distance between instances in the bag. The YARDS and level-2

embedding approaches have an additional γ parameter to perform the embeddings,

and this additional parameter is selected over the range [10−6, 101] for YARDS and

[10−4, 103] for the level-2 kernel.

We use the approach described by Demšar (2006) to statistically compare the

kernel approaches. We use the Friedman test to reject the null hypothesis that the

algorithms perform equally at an α = 0.001 significance level, and an α = 0.05

significance level for the Nemenyi test and resulting critical difference diagram shown

in Figure 6.1. A detailed description of the datasets and methodology can be found

in Appendix A, with a full table of results in Appendix A.2.2.

6.4.2 Results and Discussion

With respect to either accuracy or AUC, the results in Figure 6.1 are generally consis-

tent with the theoretical discussion presented in Section 6.3. The NSK and miGraph

approaches produce very similar representations of the data, and also perform very

similarly with no significant difference across datasets. Likewise, the level-2 embed-

ding and EMD kernels do not significantly differ, which enforces the conjecture that

117

CHAPTER 6. LEARNING BAG HYPERPLANES FROM MI DATA

they have equivalent representational abilities. According to the theoretical discus-

sion in Section 6.3, YARDS is an empirical version of the level-2 embedding, which

is reflected by the statistically equivalent performance of these approaches.

Although the level-2 embedding offers greater representational power than the

NSK, the performance of these approaches is also statistically equivalent. This likely

reflects the fact that many of the problems studied respect the standard MI assump-

tion, and do not require generalized MI concepts to separate bags. The box-counting

kernel is also designed to represent generalized MI concepts, but it is an outlier that

performs significantly worse that the other approaches. On the other hand, for the

TRX protein dataset for which the box-counting kernel was specifically proposed, the

box-counting kernel does outperform the NSK, which might be unable to represent

the more general underlying MI concept. Nevertheless, the level-2 and EMD kernels

perform at least as well as the box-counting kernel on this dataset. The performance

of the box-counting kernel is especially low for the 20 high-dimensional Newsgroups

datasets. As the number of potential boxes grows exponentially with the number

of dimensions, the box-counting kernel appears to over-fit to the training data very

quickly as the dimensionality of the instance space increases.

6.4.3 Practical Considerations

One significant advantage of directly learning bag-level concepts using bag kernels is

computational efficiency. After the bag-level kernel matrix is computed, the subse-

quent SVM optimization procedure must solve a problem of size proportional to the

number of bags rather than the number of instances. An empirical comparison of

bag- and instance-level classifiers is discussed further in Chapter 7.

However, within the set of bag kernel classifiers, each approach requires differing

amounts of time to construct the kernel matrix and train a classifier. The trade-off

between training time and accuracy can be informative for selecting a bag kernel to

118

CHAPTER 6. LEARNING BAG HYPERPLANES FROM MI DATA

1 2 3 4 5 6

Accuracy Rank

1

2

3

4

5

6

Tr
ai

ni
ng

Ti
m

e
R

an
k

Box

EMD

mi-Graph

NSK

Level-2

YARDS

Pareto Frontier

1 2 3 4 5 6

AUC Rank

1

2

3

4

5

6

Tr
ai

ni
ng

Ti
m

e
R

an
k

Box

EMD

mi-Graph

NSK

Level-2

YARDS

Figure 6.2: Comparison of bag-level kernel classifiers in terms of running time and
classification performance (accuracy and AUC). Lower ranks correspond to better
performance and faster training time. The Pareto frontier shows algorithms that are
not dominated by any other algorithm along both dimensions.

apply in practice. Hence, Figure 6.2 shows a comparison of both the training time

required by the bag-level kernel methods and their performance in terms of either

accuracy or AUC. As for the other performance metrics, running time ranks are

computed by ranking the algorithms on each dataset, with 1 corresponding to the

fastest running time, and averaging the resulting ranks across datasets. Figure 6.2

shows the Pareto frontier, which is the set of approaches that are not outperformed

by any other approach along both dimensions.

Below is a discussion of the observed running time and other practical considera-

tions for the various bag kernels. A summary of the computation complexity for each

approach is given in Table 6.1.

NSK and level-2. The NSK and level-2 kernel embeddings have the same com-

putational complexity, despite the level-2 kernel constructing a more powerful repre-

sentation of bags. Of course, in practice, the level-2 kernel requires a constant factor

more mathematical operations than the NSK, so it takes more time in practice. As a

result, the NSK is the most efficient of the approaches explored in the experiments,

119

CHAPTER 6. LEARNING BAG HYPERPLANES FROM MI DATA

but the level-2 embedding achieves better performance on average.

EMD. The computation of the EMD requires solving an optimization program.

In the case of two samples X1 and X2, the EMD can be written formally as the

solution to the following problem:

EMD(Xi, Xj) = min
0≤wij

∑

xi∈Xi

∑

xj∈Xj
wij ‖xi − xj‖2 ,

s.t. ∀i :
∑

j

wij = 1

∀j :
∑

i

wij = 1.

(6.6)

In Equation 6.6, wij represents the amount of “dirt” that is moved from location xi to

location xj, and the constraints enforce that dirt, or probability mass, is conserved. As

such, the optimization in Equation 6.6 is an instance of the well-studied transportation

problem, which has a solution computable in cubic time in terms of the set sizes

(Edmonds and Karp, 1972). This makes the computation of the EMD relatively

efficient, but less so than that of the NSK or level-2 embedding.

Box-Counting Kernel. The box-counting kernel suffers from several practical

disadvantages. First, because its entries are computed using an approximation, the

resulting matrix might not be a positive-definite kernel (Tao et al., 2004). A related

issue is that the approximation presented in Tao et al. (2004) only bounds error

within a factor of ε with probability 1 − δ. With probability δ, the approximation

error is potentially unbounded, so the expected error of the kernel is also potentially

unbounded. Therefore, it is not immediately clear that there exist PAC-style bounds

on the ability of the box-counting kernel to learn GMIL concepts, which would require

the error of the classifier, and hence the quality of the kernel approximation, to be

bounded in expectation. Finally, note that the 1−δ probability of an ε-approximation

applies to each of the O
(
|B|2

)
kernel entry separately. Thus, the probability that all

120

CHAPTER 6. LEARNING BAG HYPERPLANES FROM MI DATA

entries in the kernel are ε-approximated is significantly lower than 1− δ.

Furthermore, because there are so many possible boxes in the discretized space,

the box counts along the diagonal of the kernel matrix (k(Bi, Bi) is the number

of boxes containing any points from Bi) tend to be extremely large relative to off-

diagonal entries. Often, all entries in the matrix are in magnitude beyond what

is representable using standard double-precision floating point numbers. To deal

with numerical and diagonal-dominance issues, an “empirical” version of the kernel

is used in which each row of the kernel matrix is viewed as a feature vector. The

entries of this empirical kernel matrix are then transformed by taking the 50th root to

avoid numerical overflow and reduce the dominance of the diagonal features. Later

versions of the kernel also deal with the diagonal-dominance issue by introducing

normalization (Tao et al., 2008), in which each kernel entry is normalized by the

number of boxes containing points from one bag or the other. However, the empirical

kernel transformation is still required to obtain reasonable results. In our experiments,

we use this empirical version of the box kernel and normalization heuristics to avoid

numerical issues. Nevertheless, Figure 6.2 shows that the box-counting kernel is quite

inefficient in comparison to other kernels.

MILES and YARDS. Due to the similarity between MILES and YARDS, we

only evaluate YARDS in our experiments, since it achieves better performance than

MILES does. Because YARDS explicitly enumerates |X| features before computing

the kernel, the computation complexity of the approach relative to that of the level-

2 kernel increases (|X| � |Bi|). However, in practice, we observe that YARDS

is slightly faster on average than the level-2 embedding, perhaps due to additional

constant factors in the level-2 computational complexity. On the other hand the

level-2 embedding achieves somewhat better classification performance on average

than YARDS does.

and . A significant disadvantage of the MIGraph kernel is its computation

121

CHAPTER 6. LEARNING BAG HYPERPLANES FROM MI DATA

Table 6.1: Complexity of computing bag-level kernel entries, where m denotes bag
size, |X| is the number of instances in the dataset, ε is an approximation factor for
the box-counting kernel, and 1− δ is the probability of ε-approximation.

Technique Complexity
NSK O (m2)

Level-2 Embedding O (m2)

O (m2)

MILES/YARDS O (m |X|)
EMD O (m3)

O (m4)

Box Counting O
(
m2 1

ε2
log 1

δ

)

complexity. Since the number of edges is a bag graph grows roughly as the square of

the bag size, computing all pairwise edge kernel values is quartic in terms of the bag

size. For bags with on the order of 100 instances, as is typical in some applications,

roughly 108 edge kernel values must be computed per entry of the MIGraph kernel.

The authors of the work on MIGraph acknowledge this disadvantage in the approach,

and therefore suggest using miGraph as a more efficient graph-based kernel (Zhou

et al., 2009). The miGraph kernel is also more accurate than MIGraph. Accordingly,

we only evaluate miGraph in our experiments.

The best-performing bag-level approaches studied in this chapter are the EMD and

level-2 embedding kernels. Each of these approaches is also based on an RBF kernel

derived from a distance metric between probability distributions. Thus, the results

in Figure 6.1 support our hypothesis that bags should be viewed as distributions

over instances. Furthermore, the results justify the novel application of the level-2

embedding to the MI classification setting. On the other hand, the box kernel, though

offering similar representational abilities in theory, performs poorly in practice.

122

CHAPTER 6. LEARNING BAG HYPERPLANES FROM MI DATA

6.5 Summary

In this chapter, we described how distribution kernels can be used to directly learn

bag-labeling functions with a standard SVM formulation. First, we provided the-

oretical guarantees about applying distribution kernels to bag-labeling concepts in

MI-GEN. Then, we showed how some existing bag kernels can be interpreted as

distribution kernels. With our experiments, we showed that distribution kernels gen-

erally outperform other bag kernels, even for GMIL tasks. Our results suggest that

instance of learning bag concepts through a combination of instance labels, the bag

concept can be more effectively learned in practice by directly applying standard

supervised approaches.

123

Chapter 7

On the Difficulty of Learning

Instance Hyperplanes from MI

Data

We showed in Chapter 4 and Chapter 5 that we can learning bag concepts through

instance concepts. Similarly, prior learnability results (Sabato and Tishby, 2012) show

that it is possible to learn bag-level concepts using an instance-level hypothesis class.

However, such approaches only work if an algorithm correctly measures the empirical

risk, or training error. We show that there is a fundamental trade-off for algorithms

that attempt to learn MI bag concepts using this strategy.1 In particular, if we want

to construct a convex optimization program to find instance-level hyperplanes that

label bags, then such a program will inevitably fail to correctly measure the error

on the training set. So in the case of instance hyperplanes, it is not possible to use

efficient convex optimization procedures to find a good bag classifier in general.

1An analysis of the trade-offs required by MI support vector machine (SVM) classifiers appears
in Doran and Ray (2013b).

124

CHAPTER 7. ON THE DIFFICULTY OF LEARNING INSTANCE
HYPERPLANES FROM MI DATA

7.1 Learning Instance Hyperplanes

In this section, we first describe three desirable properties of the standard supervised

SVM approach. Then, we supplement known hardness results for learning hyper-

planes from MI data by showing that no MI SVM formulation can have all three of

these properties. While prior results describe the computational complexity of finding

hyperplanes that consistently classify a dataset (Sabato and Tishby, 2012), we show

that MI SVM formulations that perform bag-level structural risk minimization (SRM)

using instance-level hyperplanes are inherently nonconvex, and therefore inefficient to

solve in general, with respect to any loss function that appropriately measures risk.

This suggests that bag-level hyperplanes should be learned directly using supervised

approaches, as discussed in Chapter 6.

As described in Section 2.2.1, the standard supervised SVM selects a hyperplane

of the form 〈w, x〉 + b to classify examples. As in Chapter 6, we adopt the standard

convention in this chapter that labels of bags and instances are taken from {−1, 1}

rather than {0, 1}. The optimization program in Equation 2.2 has a space of solu-

tions (the feasible region) corresponding to the space of classifying hyperplanes. The

relationship that the SVM enforces between these two spaces has several intuitive

and desirable properties.

First, consider the SVM formulation of Equation 2.2, duplicated below for conve-

nience:

min
w,b,ξ

Regularization︷ ︸︸ ︷
1
2
‖w‖2 +

Loss︷ ︸︸ ︷
C
∑

i

ξi,

s.t. yi (〈w, xi〉+ b) ≥ 1− ξi, ξi ≥ 0.

(7.1)

Recall that the first term in the objective function selects the hyperplane with the

largest margin to perform regularization of the hypothesis space, which provably leads

to better generalization on new examples. The second term in the objective function

measures the loss of the solution, which is a measure of how much the solution

125

CHAPTER 7. ON THE DIFFICULTY OF LEARNING INSTANCE
HYPERPLANES FROM MI DATA

misclassifies the data in the training set.

A hyperplane is consistent with a training set when it correctly classifies each

example in the dataset according to the rule f(xi) = sign (〈w, xi〉+ b) = yi. Now,

consider all solutions of Equation 2.2 for which the loss term is precisely zero. Given

the constraints in the optimization program, all such solutions correspond to consis-

tent hyperplanes. Thus, we say that the formulation is “sound.” Conversely, for any

consistent hyperplane, there exists a solution in the optimization program in which

the slack variables are zero and the loss term is also zero. Accordingly, we say that

the formulation is “complete.” Therefore, there is a natural correspondence between

consistent hyperplanes and zero-loss solutions of the SVM formulation. Finally, the

SVM optimization program is convex, which means that it can be solved efficiently

(with a number of iterations polynomial in the size of the training set).

These three properties, soundness, completeness, and convexity, have made the

SVM a popular approach to classification in the supervised setting. In particular,

soundness and completeness are required so that the loss of a solution is evaluated

properly and the selected hyperplane generalizes to new examples. The desirability

of these properties is also present in the MI setting. However, as demonstrated in

Section 7.1.2, many popular MI SVM algorithms lack one or more of these proper-

ties. Furthermore, we prove that a trade-off between soundness, completeness, and

convexity is fundamental in the MI setting for hyperplane classifiers. Below, we for-

mally describe this result and empirically explore the practical effects of the trade-offs

made by popular MI SVM algorithms. Finally, we contrast the hardness of directly

learning MI hyperplanes with the positive learnability results derived under the new

generative model.

126

CHAPTER 7. ON THE DIFFICULTY OF LEARNING INSTANCE
HYPERPLANES FROM MI DATA

7.1.1 Consistency, Soundness, and Completeness

As discussed intuitively above, we would like for MI SVMs to possess soundness and

completeness properties with respect to the relationship between the set of consistent

hyperplanes and the set of zero-loss solutions. To formalize these notions for the

MI setting, first let H be a space of classifying hyperplanes (w, b) defined over the

instance space X. For an MI dataset (B, Y), a consistent hyperplane correctly labels

all bags; that is, it labels at least one instance in each positive bag as positive, and

all instances in negative bags as negative:

Definition 7.1 (Consistency). A classifying hyperplane (w, b) is consistent with

(B, Y) if for each Bi ∈ B:





∃xij ∈ Bi : 〈w, xij〉+ b ≥ 1 if Yi > 0

∀xij ∈ Bi : 〈w, xij〉+ b ≤ −1 if Yi < 0

A consistent hyperplane separates bags, but not necessarily instances (e.g. an

instance in a positive bag can lie within the margin as long as some other instance is

classified as positive). Let C ⊆ H denote the set of all consistent hyperplanes. Some

algorithms are formulated with respect to a stronger notion of consistency in which

each instance must lie outside the margin of the classifier:

Definition 7.2 (Strong Consistency). A classifying hyperplane is strongly consistent

with (B, Y) if it is consistent and for each instance xij, either 〈w, xij〉+ b ≥ 1 or

〈w, xij〉+ b ≤ −1 .

The two definitions of consistency lead to equivalent hardness results. Below,

“consistency” refers to the weaker form of unless otherwise noted.

In the standard supervised SVM shown in Equation 7.1, a combination of loss

minimization and regularization known as SRM is used to select a classifying hyper-

plane. MI SVMs can also be written using the same abstract formulation. That is,

127

CHAPTER 7. ON THE DIFFICULTY OF LEARNING INSTANCE
HYPERPLANES FROM MI DATA

learning hyperplanes for MI data via SRM entails solving an optimization problem

of the form:

min
s∈F

λΩ(s) + `(s), (7.2)

with a solution space S, a feasible region F ⊆ S, a regularizer Ω, a nonnegative loss

function `, and a trade-off parameter λ.2 An “MI optimization program” will refer to

any program of the form in Equation 7.2 for which there exists a continuous function

µ : S → H that maps solutions in S to classifying hyperplanes in H.

Most MI SVMs used in practice are encompassed by this general formulation.

Typically, the variables (w, b) are included directly in the optimization program, in

which case µ simply projects a solution s ∈ S onto the dimensions corresponding to

(w, b). The definitions above can also be extended to kernelized versions of the SVM

formulation (see Equation 2.3). When a kernel function k(·, ·) is used, the space of

hyperplane classifiers H is the kernel feature space, and s ∈ S contains variables αj

such that a hyperplane f ∈ H is represented via f(xi) =
∑

j αjk(xj, xi) + b.

We can now define two desired properties of a loss function ` used in an MI

optimization program. For any MI dataset, if a hyperplane (w, b) is consistent, then

there should exist a corresponding solution s (µ(s) = (w, b)) with zero loss, since

the hyperplane properly “separates” bags in the sense of Definition 7.1. Conversely,

every zero-loss solution s should correspond (again, via µ) to a consistent hyperplane

(w, b); otherwise, the hyperplane misclassifies bags without penalty. We call these

two properties “completeness” and “soundness.”

Definition 7.3 (Soundness). An MI optimization program is sound if for any dataset,

all feasible, zero-loss solutions correspond to consistent hyperplanes; that is, if µ(Z) ⊆

C.

2For notational convenience, the trade-off parameter is a coefficient of the regularization term in
Equation 7.2, whereas it is a coefficient of the loss term in Equation 7.1. The two formulations are
equivalent with λ = 1

C .

128

CHAPTER 7. ON THE DIFFICULTY OF LEARNING INSTANCE
HYPERPLANES FROM MI DATA

Definition 7.4 (Completeness). An MI optimization program is complete if for any

dataset, there exists a feasible, zero-loss solution corresponding to every consistent

hyperplane; that is, if C ⊆ µ(Z).

Therefore, sound and complete MI optimization programs have the property that

µ(Z) = C, or that the set of feasible, zero-loss solutions corresponds to the set of

consistent hyperplanes. Note that these properties are quantified over all datasets, so

although they focus on the datasets for which consistent hyperplanes exist, they apply

to all MI optimization programs of the form in Equation 7.2. That is, these properties

naturally apply to algorithms that handle nonseparable data with regularization.

Though these properties in some sense “ignore” the behavior of such algorithms on

nonseparable datasets, any algorithm that correctly measures empirical risk must at

least do so correctly on separable datasets.

Finally, as for supervised learning, we desire the MI optimization program to be

convex so that an optimal solution can be found efficiently. We define this property

formally below:

Definition 7.5 (Convexity). An optimization program is convex if for any dataset,

and any λ ≥ 0, F is a convex set, and λΩ(s)+ `(s) is a convex function. With λ = 0,

this implies that `(s) is also a convex function.

7.1.2 Properties of Instance Hyperplane Classifiers

In the past decade, there have been numerous extensions of SVMs to the MI setting,

as described in Table 2.3. As described above, the ideal MI SVM approach is sound,

complete, and convex. However, each of the algorithms listed in Table 2.3 lacks one

or more of these three properties. Figure 7.1 summarizes the properties possessed

by each algorithm, with a detailed analysis found in prior work (Doran and Ray,

2013b). Some examples are provided below to show how these various approaches

129

CHAPTER 7. ON THE DIFFICULTY OF LEARNING INSTANCE
HYPERPLANES FROM MI DATA

Sound Complete

Convex

mi-SVM
MI-SVM

MICAstMIL

SIL
sbMIL

sMIL

KI-SVM

Figure 7.1: Soundness, completeness,
and convexity of various algorithms.

lack soundness or completeness. Then, Section 7.1.3 shows that no MI optimization

program can possess all three properties.

SIL (Sound, Convex). As a simple example, consider the single-instance learn-

ing (SIL) approach described in Section 5.5.1. SIL assigns each instance the label of

its bag, creating a supervised learning problem but mislabeling negative instances in

positive bags. SIL is sound, since each zero-loss solution labels at least one instance

(in fact, all instances) in a positive bag positive, corresponding to a consistent MI

hyperplane. However, because there are clearly consistent MI hyperplanes that do

not require all instances in positive bags to be positively classified. SIL is not com-

plete because it does not allow these solutions without loss. On the other hand, SIL

is convex because it uses the standard convex SVM formulation (see Equation 2.2).

In light of the discussion in Section 5.4, the incompleteness of SIL suggests that

it might not learn accurate bag concepts, which is confirmed by experimental obser-

vation in Figure 5.3. Section 7.1.4 continues the discussion about how the soundness

and completeness properties are related to the learnability of MI concepts.

(Sound, Complete). The MI-SVM approach (see Equation 2.4) is similar to the

standard SVM formulation, but uses a maximum over instance labels to compute loss

via bag-level slack variables (Andrews et al., 2003). For any consistent hyperplane,

130

CHAPTER 7. ON THE DIFFICULTY OF LEARNING INSTANCE
HYPERPLANES FROM MI DATA

there exists a positive instance in each positive bag with a label at least 1, so the

maximum label is at least 1 and the bag-level slack variable can be set to zero in

some solution corresponding to that hyperplane. Similarly, for each negative bag, all

instance labels are at most −1, so the maximum is at most −1 and the bag-level slack

variables can set to zero for negative bags. Since there is a zero-loss solution for every

consistent hyperplane, MI-SVM is complete.

On the other hand, suppose s is a zero-loss solution. Then the maximum label of

instances in each positive bag is at least 1, so some instance in each positive bag is

labeled positive. Furthermore, the maximum label of instances in each negative bag

is −1, so all instances in negative bags must have negative labels. Thus, µ(s) must

be consistent, so MI-SVM is sound. However, as discussed in Section 2.2.3, MI-SVM

is not convex because of the maximum function in the constraints.

(Sound, Complete under strong consistency). The mi-SVM formulation

(see Equation 2.5) uses standard SVM constraints while leaving the yi variables un-

known over {−1, +1} for instances in positive bags (Andrews et al., 2003). Opti-

mizing over binary labels makes the program nonconvex. An additional constraint
∑

j
yij+1

2
≥ 1 for positive bags ensures that at least one instance label in each positive

bag is positive and guarantees soundness.

Some MI SVM approaches, including mi-SVM, make stronger assumptions about

what it means for a hyperplane to be “consistent” with an MI dataset (see Defini-

tion 7.2). In particular, strong consistency also assumes that each instance has some

{−1,+1} label. Therefore, the set of strongly consistent hyperplanes C ′ is a subset

of consistent hyperplanes C. Soundness and completeness can also be defined with

respect to C ′ rather than C. This makes “strong soundness” a stronger condition than

soundness, and “strong completeness” a weaker condition than completeness. Thus,

a “complete” algorithm using the strong consistency assumption might not be com-

plete in the sense of Definition 7.4. However, under the generative assumption that

131

CHAPTER 7. ON THE DIFFICULTY OF LEARNING INSTANCE
HYPERPLANES FROM MI DATA

each instance has a label, weakening the condition for completeness in this way does

not affect the behavior of the algorithm with respect to SRM (the target classifying

hyperplane assigns a {−1,+1} label to each instance). Accordingly, such algorithms

are considered complete with this caveat. Because a proper choice of each yi allows

a zero-loss solution for any (strongly) consistent hyperplane, mi-SVM is complete.

KI-SVM (Complete, Convex). The key instance SVM (KI-SVM) algorithm

is an example of an MI optimization program that is not sound. KI-SVM uses mul-

tiple kernel learning, in which a convex combination of various kernel functions is

also learned during the optimization of the SVM (Lanckriet et al., 2004). The set of

kernels used corresponds to all possible ways of selecting a witness (or “key”) instance

from each positive bag. If there are n positive bags each with m instances, the opti-

mization program searches over convex combinations of mn kernels, each representing

one possible consistent instance labeling. Therefore, even though this formulation is

convex, the number of variables is exponential in the problem size. In practice, the

cutting plane algorithm (Kelley, 1960) is used to avoid enumerating these variables.

This approach is complete, since for any hyperplane corresponding to a consistent

labeling, selecting (via the convex combination) the kernel corresponding to that la-

beling makes the solution corresponding to that hyperplane feasible with zero loss.

On the other hand, there exist examples for which KI-SVM has zero-loss solutions

with datasets for which there is no consistent hyperplane, as we show in prior work

(Doran and Ray, 2013b).

sMIL (Convex). The sparse MIL (sMIL) algorithm uses weak constraints on

the labels of instances in positive bags (Bunescu and Mooney, 2007). Assuming

that in the worst case all but one instance in each positive bag is negative, the

average instance label within positive bags is controlled by a “balancing constraint”

1
|Bi|
∑

xij∈Bi
(
〈w, xij〉 + b

)
≥ 2−|Bi|

|Bi| − ξi. The standard supervised constraint is used

for negative instances. Because it uses weaker constraints on average instance labels,

132

CHAPTER 7. ON THE DIFFICULTY OF LEARNING INSTANCE
HYPERPLANES FROM MI DATA

Figure 7.2: Synthetic datasets illustrating when soundness and/or completeness fail
for sMIL and stMIL. (Left) An sMIL solution without loss allows a misclassification
of an arbitrary number of bags whose averages lie close to the wrong size of the
(inconsistent) classifier. (Right) A consistent MI separator with nonzero loss for
sMIL and stMIL.

the sMIL approach is convex, but is neither sound nor complete. A counterexample

to soundness is shown in Figure 7.2 (left). In the figure, all instances in positive

bags are marked with blue squares, and the negative instances are marked with red

circles. Because the misclassified bags contain four instances, they are allowed to

be within 2−4
4

= −1
2

of the margin without any loss. Therefore, this solution is

feasible and optimal without loss, but not consistent. In fact, an arbitrary number

of positive bags can be placed within the margin as shown, leading to an arbitrarily

poor classification of bags. A counterexample to the completeness of sMIL is shown

in Figure 7.2 (right). While the solution is consistent, it is not feasible without loss

because the average of the instances in the large positive bag lies below the separating

line and therefore does not satisfy the balancing constraint.

stMIL (Sound). The sparse transductive MIL (stMIL) formulation includes the

sMIL constraints, as well as |〈w, φ(xij)〉+ b| ≥ 1 − ξij for every instance xij in a

positive bag, which force instances within bags to be outside the margin (Bunescu

and Mooney, 2007). The addition of these constraints makes the problem nonconvex.

But like mi-SVM, these constraints impose a label on every instance, so stMIL is

133

CHAPTER 7. ON THE DIFFICULTY OF LEARNING INSTANCE
HYPERPLANES FROM MI DATA

sound by avoiding cases such as Figure 7.2 (left). The scenario in Figure 7.2 (right)

is also a counterexample to the completeness of stMIL because the instances in the

large bag satisfy the transductive constraint but violate the balancing constraint.

7.1.3 Fundamental Trade-Offs in Learning Instance Hyper-

planes

None of the algorithms discussed above are sound, complete, and convex. In fact,

this observation is no coincidence:

Theorem 7.1. No MI optimization program is sound, complete, and convex.

Proof. Suppose some MI optimization program is sound, complete, and convex. Then

for any dataset, ` is a convex function, so {s ∈ S : `(s) = 0} is a convex set. Since

the feasible region F is also convex, the set Z = F ∩ {s ∈ S : `(s) = 0} is convex

as well. Since Z is convex, it is a path-connected set. A set V ∈ S is path-connected

when for any two points v1, v2 ∈ V , there exists a continuous parametric function

p : [0, 1]→ S such that p(0) = v1, p(1) = v2, and p([0, 1]) ⊆ V . For a convex set, the

lines connecting any two points in the set are such paths.

Furthermore, since the MI optimization program is sound and complete, the map-

ping between the solution and hyperplane spaces is such that µ(Z) = C; that is, the

set of consistent hyperplanes is the image of the Z under µ. Since µ is continuous and

Z path-connected, this implies that C is path-connected. Intuitively, the image of a

path-connect set under a continuous function is also path-connected because the com-

position of continuous functions is also continuous. Thus, any path in Z composed

with µ produces a continuous path in C.

However, consider the one-dimensional dataset with a positive bag {−2, 2} and a

negative bag {−1, 1}. It is possible that such a dataset was sampled from a process

consistent with MI-GEN. A consistent linear “hyperplane” ((w, b) ∈ R2) must label

134

CHAPTER 7. ON THE DIFFICULTY OF LEARNING INSTANCE
HYPERPLANES FROM MI DATA

−4 −2 0 2 4

w

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

b
M

C

−4 −2 0 2 4

w

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

b

M

C

Figure 7.3: (Left) The shaded region shows the set C of consistent hyperplanes in
the space of hyperplanes (w, b) for the example in the proof of Theorem 7.1. (Right)
When a supervised labeling is applied to each instance, the set of consistent hyper-
planes becomes a convex set.

either 2 or −2 “positive” and the other instances negative. The “support vectors” for

these two scenarios are either −2 and −1, or 1 and 2. Therefore, the set of consistent

hyperplanes is the union of the regions where (1)w + b ≤ −1 and (2)w + b ≥ 1, or

where (−1)w+b ≤ −1 and (−2)w+b ≥ 1. This set is shown in Figure 7.3 (left), and is

clearly not path-connected (no path connects the two disjoint regions). Thus, we have

a contradiction with the implication that C is path-connected for every MI dataset,

so there cannot be a sound, complete, and convex MI optimization program.

Intuitively, the inability to satisfy all three properties is related to the disjoint

nature of the set of consistent hyperplanes, which is in turn related to the combina-

torial nature of the set of consistent instance labelings. In the standard supervised

setting, this difficulty does not arise, since the set of consistent hyperplanes forms a

convex set. For example, if we fix a labeling in the example of Theorem 7.1 so that

−2 is positive and the other instances are negative, the set of consistent hyperplanes

collapses to the convex set shown in Figure 7.3 (right).

Theorem 7.1 is in line with previous complexity results for MI classification via

hyperplanes (Kundakcioglu et al., 2010; Diochnos et al., 2012). For clarity, we include

135

CHAPTER 7. ON THE DIFFICULTY OF LEARNING INSTANCE
HYPERPLANES FROM MI DATA

the theorem below, expressed in terms of our formalism:

Theorem 7.2. Given an MI problem (B, Y), a set of bags with |Bi| ≤ k, k ≥ 3,

the decision problem MI−CONSIS of determining whether there exists a hyperplane

consistent with (B, Y) (i.e. is C = ∅?) is NP-complete. It is also NP-complete to

determine if C ′ = ∅, where C ′ is the set of strongly consistent hyperplanes.

The proof of Theorem 7.2 (Diochnos et al., 2012) reduces a 3−SAT instance to

an instance of MI−CONSIS such that there is a strongly consistent hyperplane if the

3−SAT formula is satisfiable and no consistent (in the usual sense) hyperplane if the

formula is not satisfiable. Thus, the proof works for either notion of consistency,

though the distinction is not made in the original work.

If there were a sound, complete, and convex MI optimization program, the ques-

tion C = ∅ is equivalent to asking whether Z = ∅, or whether there is a feasible,

zero-loss solution to the MI optimization program. Similarly, if a set kernel approach

is sound and complete, then CB = ∅ ⇐⇒ CI = ∅. Thus, if we could construct

a sound and complete set kernel in polynomial time, we could use it in conjunction

with a standard convex SVM formulation to search for a consistent bag classifier to

decide whether the instances were separable. In either case, we could solve an NP-

complete problem via a convex quadratic program (QP), which is generally regarded

to be efficiently solvable, albeit in a non-Turing model of computation (Ben-Tal and

Nemirovskĭı, 2001).

7.1.4 Consequences for Learnability

Section 7.1 intuitively described why soundness and completeness were important

properties for MI SVMs. The following provides a more detailed motivation for the

importance of these properties and describes the relationship of the results above

to recent learning theory results. This section concludes with a discussion of prior

learnability results with respect to the new results provided in Chapter 4.

136

CHAPTER 7. ON THE DIFFICULTY OF LEARNING INSTANCE
HYPERPLANES FROM MI DATA

MI optimization programs of the form given in Equation 7.2 attempt to find a

bag classifier by classifying individual instances with a hyperplane. Recent learning

theory results justify this strategy for learning bag concepts. In particular, Sabato

and Tishby (2012) show that the Vapnik–Chervonenkis (VC) dimension of the space

of bag hypotheses is bounded in terms of the VC dimension of the underlying instance

hypothesis space. The bound is general and holds for any instance hypothesis space,

including spaces of hyperplanes. Therefore, given an appropriate instance hypothesis

space (corresponding to a choice of kernel function), an MI SVM can learn to classify

bags via the SRM strategy in Equation 7.2.

However, there are two caveats regarding the learnability results of Sabato and

Tishby (2012). First, in order for an MI SVM to appropriately implement an SRM

strategy, the loss function ` must provide an accurate assessment of empirical risk of a

hypothesis. That is, the theoretical guarantees provided by Sabato and Tishby (2012)

do not apply to algorithms whose loss functions do not reflect true empirical risk of

a classifier on a training set. If an MI SVM is not sound, then empirical risk is not

actually being minimized. On the other hand, if an MI SVM is not complete, then

the approach unnecessarily restricts the hypothesis space, and the correct hypothesis

might be incorrectly ruled out. Thus, these properties are fundamental (and usually

trivially satisfied) in the supervised setting. However, as shown in Section 7.1.2, some

existing MI SVM formulations do not satisfy both of these properties. Clearly, the

process of constructing an SRM approach for MI classification is more subtle than

that for supervised learning.

The second caveat is that although one perceived benefit of using an instance

hypothesis class to construct a bag classifier is that the resulting instance hypothesis

can be used for the instance-labeling task, there are currently no theoretical results

guaranteeing that performing SRM at a bag level will produce a good hypothesis for

instance-level labeling. In fact, it has been observed in practice that there is often

137

CHAPTER 7. ON THE DIFFICULTY OF LEARNING INSTANCE
HYPERPLANES FROM MI DATA

little correlation between the bag- and instance-level performance of MI classifiers

(Tragante do Ó et al., 2011). In contrast, the theoretical results presented in Chap-

ter 4 start with instance learnability results, derived by optimizing an instance-level

risk function, and derive bag learnability results as a consequence. Furthermore, the

hardness results above highlight the difficulty of constructing SRM approaches that

can efficiently learn bag-level classifiers directly using instance-level hyperplanes. The

new theoretical framework presented Chapter 4 provides an advantage to those de-

signing new algorithms for MIL, which can leverage existing approaches for learning

from individual labeled instances.

Below is a discussion of one final alternative approach to learning bag-level la-

bels. While the methods discussed Section 7.1.2 using instance hypothesis classes to

construct bag-level classifiers by combining instance labels, it is possible to directly

learn bag labels by embedding bags in a feature space. The next section describes

the theoretical properties of bag-level classifiers, followed by an empirical comparison

of bag- and instance-level classifiers for MI classification.

7.2 Using Bag Kernels to Learn Instance Hyper-

planes

As discussed in Section 2.3.1, the normalized set kernel (NSK) is a kernel defined on

entire bags. Accordingly, the NSK maps entire bags into a feature space so that bag-

level hyperplanes can be used for bag classification. In this section, we explore the

properties of this approach with respect to the instance-labeling task. In particular,

we are interested in whether bag kernels can be used to derive instance-level classifiers.

138

CHAPTER 7. ON THE DIFFICULTY OF LEARNING INSTANCE
HYPERPLANES FROM MI DATA

7.2.1 Bag-Level Soundness and Completeness

Above, Definition 7.1 defines consistency of an MI classifier with respect to labels

assigned by an instance-labeling hyperplane. However, such a definition cannot be

immediately extended to the NSK (Equation 2.8). In particular, since bags become

individual points in a feature space, the set kernel corresponds to a spaceHB of hyper-

planes in the space of bags, not instances. There is a separate classifying hyperplane

space HI corresponding to the instance kernel kI. As in Definition 7.1, there is a set CI

of consistent solutions in the instance hyperplane space, and we say that kI separates

instances when CI 6= ∅ (there is some consistent hyperplane that separates instances).

Similarly, the set of consistent hyperplanes CB in the bag hyperplane space HB are

the hyperplanes that, in a supervised learning sense, separate bags by assigning the

appropriate label F (Bi) to each bag Bi in the dataset. A set kernel kNSK separates

bags when CB 6= ∅.

Since the set kernel approach uses the standard supervised SVM quadratic pro-

gram with a modified kernel, its loss function is not problematic (µ(Z) = CB); rather,

the questions of soundness and completeness must now consider the relationship be-

tween consistent hyperplanes in the bag (CB) and instance (CI) hyperplane spaces, as

done in prior work (Gärtner et al., 2002).

Definition 7.6 (Soundness for Set Kernels). A set kernel kNSK is sound w.r.t. in-

stance kernel kI iff for any MI dataset, kNSK separates bags only if kI separates in-

stances; i.e., (CB 6= ∅) =⇒ (CI 6= ∅).

Definition 7.7 (Completeness for Set Kernels). A set kernel kNSK is complete w.r.t.

instance kernel kI iff for any MI dataset, kNSK separates bags if kI separates instances;

i.e., (CI 6= ∅) =⇒ (CB 6= ∅).

For set kernels, soundness and completeness intuitively mean that it is possible

to construct a set kernel from an instance kernel such that a zero-loss, consistent

139

CHAPTER 7. ON THE DIFFICULTY OF LEARNING INSTANCE
HYPERPLANES FROM MI DATA

hyperplane exists in the set kernel feature space if and only if one exists in the original

instance kernel feature space. Note that these notions do not require a bijection

between CB and CI, because in general the feature maps corresponding to kI and kNSK

can have an arbitrarily complex relationship depending on the specific set kernel. We

show below that even this weak feature space correspondence is not maintained by

the NSK: while it is always possible to construct a complete NSK, such kernels might

not be sound in the sense of Definition 7.6.

7.2.2 Properties of Bag Hyperplane Classifiers

Prior work describes the application of set kernels, as defined Equation 2.8, to the

MI classification problem (Gärtner et al., 2002). The central theoretical results of

Gärtner et al. (2002) relate the ability of an instance kernel kI to separate instances

and the ability of the corresponding set kernel kSet to separate bags. In order to

ensure separability of bags by the set kernel given separability of instances given the

instance kernel, the set kernel is generalized to the MI kernel, kMI:

kMI(X1, X2) =
m∑

i=1

n∑

j=1

kpI (xi, xj). (7.3)

Here, p is an integer power of the instance kernel. Gärtner et al. (2002) present a

proof of the following result, which is obtained by appropriately selecting p:

Theorem 7.3 (Gärtner et al.). A bag-level concept 3 is separable by kMI with nonzero

margin if and only if the underlying instance concept is separable by the kernel kI with

nonzero margin.

Theorem 7.3 of seems to prove that the unnormalized MI kernel is sound and

complete with respect to Definition 7.6 and Definition 7.7. However, we show using

counterexamples that soundness does not hold for the NSK. On the other hand, we

3The bag-level concept is called the MI concept by Gärtner et al. (2002).

140

CHAPTER 7. ON THE DIFFICULTY OF LEARNING INSTANCE
HYPERPLANES FROM MI DATA

show that completeness still holds for the unnormalized MI kernel, and we extend

these results to the normalized version of the MI kernel:

kNSK(X1, X2) =

∑m
i=1

∑n
j=1 k

p
I (xi, xj)

fnorm(X1)fnorm(X2)
. (7.4)

The section concludes with a discussion of the implications of the NSK’s lack of

soundness.

Lemma 4.2 in Gärtner et al. (2002) shows that if an underlying instance concept

is separable by kI, then there is some power p > 0 for which the unnormalized set

kernel kMI separates bags. Gärtner et al. (2002) use a different, equivalent notion of

consistency in which instead of assigning ±1 labels to instances, a hyperplane cφ in

the feature space of a kernel with feature map φ assigns a label 1 ≤ 〈φ(xij), cφ〉 to

all positive instances, and 0 ≤ 〈φ(xij), cφ〉 ≤ 1 − ε to all negative instances. Here,

ε > 0 is some arbitrary margin. To better align our results with prior work, we adopt

these conventions for the remainder of this section, without loss of generality. We

start with our positive result: the completeness of the NSK.

Proposition 7.1. A bag-level concept is separable with kNSK (Equation 7.4), using

sufficiently large p, if the underlying instance concept is separable with margin ε by

kI, the bag size is bounded by m, and there are constants L and U such that 0 < L ≤

fnorm(Bi) ≤ U for all bags Bi.

Proof. Choose an integer power p > 0 satisfying p > − log(mU/L)
log(1−ε) .

Let cφ be the vector such that g(xij) = 〈φ(xij), cφ〉 separates the instance concept

in the instance kernel feature space. Then consider the function G on bags:

G(Bi) =
U

fnorm(Bi)

∑

xij∈Bi
〈φ(xij), cφ〉p .

If Bi is a positive bag, then by the MI assumption, at least one instance xij ∈ Bi

141

CHAPTER 7. ON THE DIFFICULTY OF LEARNING INSTANCE
HYPERPLANES FROM MI DATA

satisfies 〈φ(xij), cφ〉 ≥ 1, so:

G(Bi) ≥
U(1p)

fnorm(Bi)
≥ U

U
= 1.

On the other hand, if Bi is a negative bag, then all instances xij ∈ Bi satisfy

〈φ(xij), cφ〉 ≤ 1− ε, so:

G(Bi) ≤
Um(1− ε)p
fnorm(Bi)

≤ Um

L
(1− ε)p < Um

L
(1− ε)−

log(mU/L)
log(1−ε) = 1.

Therefore, this function separates bags.

To see that the function G(Bi) can be written as a inner product in the feature

space corresponding to kNSK, first note that if k(x, y) = 〈φ(x), φ(y)〉, and we raise

it to power p, this is also a positive definite kernel, which is equivalent to some

〈ψ(φ(x)), ψ(φ(y))〉. Therefore, the NSK feature map is given by

Φ(Bi) =

∑
xij∈Bi ψ(φ(xij))

fnorm(Bi)

. Therefore, we can rewrite G as:

G(Bi) =
U

fnorm(Bi)

∑

xij∈Bi
〈φ(xij), cφ〉p

=
U

fnorm(Bi)

∑

xij∈Bi
〈ψ(φ(xij)), ψ(cφ)〉

=

〈∑
xij∈Bi ψ(φ(xij))

fnorm(Bi)
, Uψ(cφ)

〉
= 〈Φ(Bi), CΦ〉 .

So G is a hyperplane CΦ in the normalized set kernel feature space.

Corollary 7.1. An bag-level concept is separable by kNSK (Equation 7.4) with averag-

ing normalization, using p > − 2 logm
log(1−ε) if the underlying instance concept is separable

with margin ε by kI and the bag size is bounded by m. The required value of p is

142

CHAPTER 7. ON THE DIFFICULTY OF LEARNING INSTANCE
HYPERPLANES FROM MI DATA

simply twice that required in the unnormalized case.

Proof. Given an upper bound m on bag size, the averaging normalization function

fnorm(Bi) = |Bi| is bounded by 1 ≤ |Bi| ≤ m, so using L = 1 and U = m in

Proposition 7.1, p > − 2 logm
log(1−ε) works to separate bags.

As discussed in Section 2.3.2, the NSK with averaging normalization is equivalent

to the kernel mean embedding. Thus, Corollary 7.1 shows that the kernel mean

embedding is complete in the sense of Definition 7.7. Proposition 7.1 can be viewed

as analogous to Proposition 6.1 in the standard MI generative process in which bags

are finite sets of instances rather than distributions.

Another noteworthy normalization procedure for the set kernel is feature-space

normalization, given by:

fnorm(X) = ‖Φ(X)‖H =
√
kNSK(X,X) =

√√√√
m∑

i=1

m∑

j=1

kpI (xi, xj). (7.5)

Essentially, the feature-space normalization ensures that the vector associated with a

set X has norm 1 in the set kernel feature space. We can show the completeness of

this normalized set kernel as well:

Corollary 7.2. A bag-level concept is separable by kNSK (Equation 7.4) with feature-

space normalization, using p > − 3 logm
2 log(1−ε) if the underlying instance concept is sep-

arable with margin ε by kI, the bag size is bounded by m, and kI is the radial basis

function (RBF) kernel (Equation 2.9).

Proof. The value of the RBF kernel is always positive, and bounded above by 1.

Therefore, if we raise the kernel to any power, p, this only decreases its value. As a

result, since bag sizes are bounded by m,

fnorm(X) =

√√√√
m∑

i=1

m∑

j=1

kpI (xi, xj) ≤

√√√√
m∑

i=1

m∑

j=1

1 = m.

143

CHAPTER 7. ON THE DIFFICULTY OF LEARNING INSTANCE
HYPERPLANES FROM MI DATA

−1 0 1

Feature 1 (x1)

−1

0

1

Fe
at

ur
e

2
(x

2
)

x2
1

√
2(x1 × x2)

x
2 2

Figure 7.4: Even though instances are not separable with a linear kernel (left), all
resulting bags are separable in the feature space of the MI kernel (right).

On the other hand, the RBF kernel has the property that for any x, kI(x, x) = 1.

Hence, even if all other pairwise kernel values are zero, we have:

fnorm(X) =

√√√√
m∑

i=1

m∑

j=1

kpI (xi, xj) ≥

√√√√
m∑

i=1

∑

j=i

1 =
√
m.

Therefore, we obtain the required value for p by using L =
√
m and U = m in

Proposition 7.1.

In contrast to the completeness shown in Proposition 7.1, a simple example can

be used to show that the NSK is not sound in the sense of Definition 7.6. That is, the

NSK can separate bags even when the corresponding instance kernel cannot separate

the instances. Consider the instance space X =
{

(1, 0), (−1, 0), (0, 1), (0,−1)
}

, with

respective labels {+1,+1,−1,−1} corresponding to XOR, as illustrated in Figure 7.4

(left). With a linear instance kernel kI(x, x
′) = 〈x, x′〉, the instance concept is clearly

not separable. However, with p = 2, the set kernel kMI(X,X
′) =

∑
x,x′ 〈x, x′〉

2 can

separate any MI dataset derived from these instances. To see why, consider the

explicit feature map φ of the quadratic kernel (x1, x2) 7→ (x2
1,
√

2x1x2, x
2
2), as described

in Chapter 2. Then, the set kernel feature map is the sum of instance kernel feature

144

CHAPTER 7. ON THE DIFFICULTY OF LEARNING INSTANCE
HYPERPLANES FROM MI DATA

1.0 1.5 2.0 2.5

Negative to Positive Bag Size Ratio

0.50

0.75

1.00

AU
C

No Norm. Feature Space Norm. Averaging Norm.

Figure 7.5: Certain types of NSK separate bags of different sizes with no underlying
MI concept. The y-axis shows AUC.

maps: Φ(X) =
∑

x∈X φ(x). The linear function f(X) = 〈Φ(X), (1, 0, 0)〉 in the

feature space of kMI(·, ·) then separates any MI dataset, since the first component

of the map Φ(X) is nonzero if and only if X contains either (1, 0) or (−1, 0). The

feature maps corresponding to bags of size at most 5 are shown in the right-hand

side of Figure 7.4. Gärtner et al. (2002) states that if fMI separates an MI dataset,

then fI(x) = fMI({x}) can separate instances. However, this is not sound under

our definition because fMI 6∈ HI; i.e., there is no instance hyperplane in the original

instance hyperplane space corresponding to the bag hyperplane applied to singleton

sets.

Finally, another form of unsoundness arises for set kernels due to the effects of bag

size. For example, consider an MI problem in which all bag instances are identical

(say xij = 1), but positive bags have size 10 while negative bags have size 5. Then

for an unnormalized linear kernel, the feature mapping of a positive bag will be 10,

while the negative bag feature space value will be 5. Clearly, there is no underlying

MI concept; yet, the set kernel is able to separate positive and negative bags in the

feature space via the effects of bag size. We illustrate this further in Figure 7.5 using

synthetic datasets. In these datasets, each instance has 25 features, which are drawn

independently from the standard normal distribution N (0, 1). There are 50 positive

bags, each with 10 instances, and 50 negative bags of sizes that vary across datasets.

145

CHAPTER 7. ON THE DIFFICULTY OF LEARNING INSTANCE
HYPERPLANES FROM MI DATA

Even though there is no underlying instance concept to learn, the set kernels with

either no normalization or feature space normalization (Equation 7.5) can learn to

distinguish between positive and negative bags as the discrepancy in sizes grows.

Therefore, the NSK is complete and convex, but not sound with respect to Defi-

nition 7.6. However, because the NSK is used in conjunction with the standard SVM

formulation, it can find bag-level hyperplanes without this issue. Thus, the NSK has

the ability to perform well with respect to the bag-labeling task, but its unsoundness

suggests that it might not perform well with respect to the instance labeling task (if

the bag-labeling function is restricted to singleton sets).

7.3 Empirical Evaluation

Below, we evaluate the performance of the instance- and bag-level classifiers described

in the previous sections. In particular our theoretical analysis suggests several hy-

potheses that we will evaluate. As discussed in Section 7.1.4, for instance-level clas-

sifiers we hypothesize that soundness and completeness are important properties of

classifiers, but that soundness is a more necessary property than completeness for

generalization. Additionally, we hypothesize that bag-level kernels such as the NSK

will not perform well at the instance-labeling task (Section 7.2). We examine these

hypotheses below.

7.3.1 Methodology

Due to the computational complexity of instance-based approaches, we use 42 MI

datasets from various domains to evaluate performance (see Table A.2). Instance

labels are available for 32 CBIR and Newsgroups datasets, and the remaining datasets

come from CBIR, text categorization, and 3D-QSAR. As in previous experiments,

instance labels are only used for evaluation, not training.

146

CHAPTER 7. ON THE DIFFICULTY OF LEARNING INSTANCE
HYPERPLANES FROM MI DATA

Since soundness and completeness are properties of algorithms that attempt to

maximize accuracy, we evaluate instance- and bag-level accuracy as performance mea-

sures. We use 10-fold cross-validation to access the accuracy of the 12 algorithms

described above, with random parameter search (Bergstra and Bengio, 2012) and

5-fold inner cross-validation to select parameters. We use the RBF kernel for all ap-

proaches, and it serves as the instance kernel in set kernel approaches. We implement

the normalized set kernel with averaging normalization (Equation 2.7). The RBF ker-

nel parameter γ is selected from [10−6, 101] and the regularization parameter C from

[10−2, 105]. For the set kernel, we fix p = 1, but with an RBF kernel, p can be absorbed

into the constant γ. The sparse balanced MIL (sbMIL) approach uses a parameter η

as an estimate of the fraction of true positive instances within positive bags, which

we search for within the range [0, 1]. For an algorithm requiring m ∈ {1, 2, 3} param-

eters, we evaluate 5m random parameter combinations for the search. For techniques

that rely on iteratively solving QPs, iteration continues at most 50 times or until

the change in objective function value falls below 10−6. MI classification algorithm

(MICA) was originally formulated using L1 regularization, but in our experiments we

use the L2 norm to provide a more direct comparison to other approaches. We only

use bag labels when performing parameter cross-validation, even for the instance-

labeling task (we only use instance labels to perform the final evaluation of instance

predictions pooled across the ten outer folds).

To statistically compare the classifiers, we use the approach described by Demšar

(2006), as in the experiments in Section 5.5. We use the Friedman test to reject the

null hypothesis that the algorithms perform equally at an α = 0.001 significance level.

Finally, we plot the average ranks with a critical difference diagram, which uses the

Nemenyi test to identify statistically equivalent groups of classifiers at an α = 0.05

significance level. The resulting diagrams are shown in Figure 7.6. Also shown in

Figure 7.6 are Venn diagrams with the average ranks of approaches with different

147

CHAPTER 7. ON THE DIFFICULTY OF LEARNING INSTANCE
HYPERPLANES FROM MI DATA

12345678910

NSK
SIL

MICA
I-KI-SVM

stMIL

MI-SVM
sbMIL
mi-SVM
sMIL
B-KI-SVM

CD
Sound Complete

Convex

5.5 4.4

6.7

5.4

5.3

(a) Instance Accuracy

12345678910

sMIL
stMIL
MICA

I-KI-SVM
SIL

sbMIL
NSK
MI-SVM
mi-SVM
B-KI-SVM

CD
Sound Complete

Convex

8.9 4.8

4.7

8.9

4.3

(b) Bag Accuracy

Figure 7.6: Ranks (lower is better) of the various MI SVM approaches on the instance
and bag labeling tasks using accuracy for evaluation. The critical difference diagrams
(Left) show the average rank of each technique across datasets, with techniques being
statistically different at an α = 0.1 significance level if the ranks differ by more than
the critical difference (CD) indicated above the axis. Thick horizontal lines indicate
statistically indistinguishable groups (i.e. a technique is statistically different from
any technique to which it is not connected with a horizontal line). The Venn diagrams
(Right) show the average ranks of techniques within each Sound/Complete/Convex
categorization.

subsets of the soundness, completeness, and convexity properties. In addition to the

approaches in Figure 7.1, the NSK approaches are categorized as complete and convex,

as described in Section 7.2.2. A detailed description of the datasets and methodology

can be found in Appendix A, with a full table of results in Appendix A.2.3.

7.3.2 Results and Discussion

Effect of Soundness and Completeness

In general, the results in Figure 7.6 are consistent with the hypothesis that soundness

and completeness lead to more accurate classifiers than approaches that lack these

148

CHAPTER 7. ON THE DIFFICULTY OF LEARNING INSTANCE
HYPERPLANES FROM MI DATA

properties. One interesting exception is sbMIL, which is among the best approach

for both instance- and bag-labeling despite being incomplete. The sbMIL algorithm

lacks completeness because it assumes that there is some fraction η of positive in-

stances within positive bags. Accordingly, it penalizes consistent hypotheses that do

not positively label the appropriate number of instances in positive bags. However,

although sbMIL essentially shrinks the space of feasible hypotheses, it does so in a

reasonable way. Furthermore, by using cross-validation to select η, a good classifier

consistent with the data can still be found. Hence, sbMIL is an example of how

sacrificing completeness appropriately might benefit performance.

Effect of the Labeling Task

In general, there are similar patterns of performance across techniques with different

combinations of properties for both the instance- and bag-labeling tasks. However,

one important exception is the NSK. For the instance-labeling task, the NSK is among

the worst approaches, which is consistent with our analysis of the NSK as being

unsound with respect to instance labeling. On the other hand, for the bag-labeling

task, the NSK is actually one of the best approaches. Again, this is consistent with

the fact that the NSK is sound and complete with respect to bag-labeling, for which

a standard supervised SVM is used. Our results show that even though the NSK

can find good bag separators, simply applying the resulting separator to instances as

singleton bags does not perform well at separating instances. Prior work empirically

observed that there might be little correlation between the performance of algorithms

on the two labeling tasks (Tragante do Ó et al., 2011). Our theoretical analysis now

provides a basis for understanding why this is the case for the NSK.

149

CHAPTER 7. ON THE DIFFICULTY OF LEARNING INSTANCE
HYPERPLANES FROM MI DATA

1 2 3 4 5 6 7 8 9 10

Instance-Level Accuracy Rank

1

2

3

4

5

6

7

8

9

10
Tr

ai
ni

ng
Ti

m
e

R
an

k

B-KI-SVM

I-KI-SVM

MICAmi-SVM

MI-SVM

NSK

sbMIL

SIL

sMIL

stMIL

Pareto Frontier

1 2 3 4 5 6 7 8 9 10

Bag-Level Accuracy Rank

1

2

3

4

5

6

7

8

9

10

Tr
ai

ni
ng

Ti
m

e
R

an
k

B-KI-SVM

I-KI-SVM

MICA
mi-SVM

MI-SVM

NSK

sbMIL

SIL

sMIL

stMIL

Figure 7.7: Comparison of MI SVM classifiers in terms of running time and classifi-
cation performance (accuracy). Lower ranks correspond to better performance and
faster training time. The Pareto frontier shows algorithms that are not dominated
by any other algorithm along both dimensions.

Time and Space Requirements

The relative running times of the algorithms are summarized along with classification

performance in terms of accuracy in Figure 7.7. The most noticeable trend is that

instance kernel approaches are much more computationally expensive than set kernel

approaches, since kernel sizes are O(|X|2) rather than O(|B|2). Larger kernels require

more memory and lead to significantly increased training time due to the increased

number of variables in the optimization program. Hence, in terms of bag-level clas-

sification performance, the NSK clearly dominates the other approaches except for

sbMIL. However, sbMIL does not significantly outperform the NSK, and it requires

a much longer training time due to the extra search for the balancing parameter η.

For instance-level classification performance, the MI-SVM achieves the best accuracy

with a relatively faster training time than sbMIL.

150

CHAPTER 7. ON THE DIFFICULTY OF LEARNING INSTANCE
HYPERPLANES FROM MI DATA

7.4 Summary

In this chapter, we first described a trade-off between soundness, completeness, and

convexity properties of SVMs that attempt to learn bag classifiers using instance-

level hyperplanes. We analyzed existing approaches in terms of these properties and

proved that no approach can have all three properties simultaneously. Then, we

performed an empirical comparison from which we can draw several conclusions (see

Figure 7.6). First, although our results show that sound and complete approaches

generally perform well on the instance-labeling task, the only theoretical guarantees

for such approaches apply to their performance on the bag-labeling task (Sabato

and Tishby, 2012), as described in Section 7.1.4. However, the results show that for

bag-labeling, approaches like the NSK that directly label bags are more efficient and

effective at performing this task. Therefore, our results suggest that the instance- and

bag-labeling tasks should be treated separately. For instance labeling, the results in

Chapter 4 provide theoretical guarantees and show that supervised approaches can

perform well at instance labeling given large enough sample sizes. On the other hand,

for bag labeling, it makes more sense to use bag-level classifiers rather than adapting

an instance hypothesis space to label bags.

151

Chapter 8

Shuffled Multiple-Instance

Learning

In the previous chapter, we saw how the two-level generative model can be used

to analyze existing MIL classification algorithms. This chapter introduces a new

resampling method for MIL, Shuffled Multiple-Instance Learning (SMILe), and uses

the theoretical framework introduced Chapter 3 to analyze SMILe.1 As shown below,

resampling approaches such as SMILe can improve performance when the size of the

training set is small. Thus, SMILe complements the asymptotic learnability results

presented in Chapter 4 by providing a practically effective approach for learning

from small samples. Furthermore, we show empirically that SMILe can improve the

instance-level accuracy of MI classifiers, even with large training samples.

8.1 Ensemble and Resampling Methods

As described in previous chapters, there are numerous algorithms available to per-

form classification in the supervised for MI settings. Given prior knowledge about a

problem, one might make an informed decision about which algorithm is best to use.

1The SMILe approach was described previously in Doran and Ray (2013a).

152

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

However, another approach is to simply create an ensemble of different classifiers and

combine their outputs via voting, averaging, or some other scheme.

Alternatively, one might train multiple copies of the same classifier using different

versions of the training dataset. One popular resampling approach is boosting (Fre-

und and Schapire, 1995). Boosting trains a series of classifiers in which the weights

of individual training examples are adjusted at each iteration to modify the training

distribution. The weights of examples misclassified by the classifier in the previous

iteration are increased so that the algorithm “focuses” more on classifying them cor-

rectly. At the end of the process, a weighted combination of the individual classifiers

is used as the final classifier. Interestingly, the boosting procedure has the theoreti-

cal property that it can transform a “weak” classification algorithm (guaranteed to

perform at least better than chance) into a “strong” classifier that can PAC learn the

target concept.

An even simpler ensemble method is a resampling approach known as bootstrap

aggregation, or “bagging” (Breiman, 1996). Bagging approximates drawing many

samples from the underlying training distribution by resampling with replacement

“bootstrap replicates” from the original training set. A classifier is trained on each

bootstrap replicate, and the resulting classifiers are averaged together to produce a

final ensemble classifier. Bagging can reduce the tendency of a classifier to overfit to

the original training set.

The boosting and bagging approaches have been extended to the MI setting (Zhou

and Zhang, 2003; Auer and Ortner, 2004; Antić and Ommer, 2013). However, these

adaptations apply only to the bag-labeling task. In the boosting approach (Auer

and Ortner, 2004), entire bags are reweighted to boost a weak bag classifier into a

strong bag classifier. Similarly, the MI bagging approaches (Zhou and Zhang, 2003;

Antić and Ommer, 2013) resample entire bags to improve the performance of bag-level

classification.

153

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

Below, we describe a novel resampling approach, SMILe and its basic properties.

Then, we analyze the properties of SMILe when combined with both instance- and

bag-labeling algorithms using insights from the proposed generative model.

8.2 The SMILe Approach

In MI bagging approaches (Zhou and Zhang, 2003), entire bags are resampled to

create bootstrap replicates of an MI dataset. Suppose instead that bags are split and

the instances recombined to produce new bags. For example, consider a small MI

dataset with three positive bags {x1, x2}, {x3, x4}, and {x5, x6}. According to the

standard MI assumption, at least one instance in each bag is positive. We assume

that this standard relationship between bag and instance labels in the training set

holds. That is, bag samples are large enough such that F (Bi) = F̂ (Bi) for every bag

in the training set. Without loss of generality, let x1, x3, and x5 be the “true” positive

instances within these positive bags. Now, suppose we (1) combine all instances from

positive bags, and (2) randomly sample three instances without replacement from

the combined set, then iterate these steps. We may get bags such as the following:

{x1, x4, x6} and {x2, x4, x5}.

It is no coincidence that each of the bags above contains at least one positive

instance, and is therefore also a positive bag. The only way to sample a negative

bag of size three is to sample the instances {x2, x4, x6} in some order, which occurs

with probability only
(

3
6

) (
2
5

) (
1
4

)
= 5%. Thus, each new bag produced by shuffling

together and sampling instances from positive bags is positive with high probability.

The shuffling process is uniformly random, and does not require knowing or estimating

individual instance labels during the resampling process. Of course, we could just as

easily sample shuffled negative bags from the set of all instances in negative bags.

The shuffled negative bags are always negative, since by assumption, only negative

154

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

Algorithm 1 SMILe: Shuffled Multiple-Instance Learning

Require: MI dataset (B, Y), noise rate εs, base learnerA, number of shuffled positive
bags |Sp|, number of shuffled negative bags |Sn|

1: Bp ← {Bi | Yi = +1}
2: Xp ←

⋃
Bi∈Bp Bi . “Positive Bag Instances”

3: Bn ← {Bi | Yi = −1}
4: Xn ←

⋃
Bi∈Bn Bi . “Negative Bag Instances”

5: s←
⌈
|Xp|
|Bp| log 1

εs

⌉
. Shuffled bag size based on Proposition 8.1

6: Sp ← SampleShuffledBags(Xp, |Sp| , s)
7: Sn ← SampleShuffledBags(Xn, |Sn| , s)
8: B′ ← B ∪ Sp ∪ Sn
9: Y ′ ← Y ∪ (|Sp| × [+1]) ∪ (|Sn| × [−1])

10: C ← A(B′, Y ′) . Train Classifier
11: return C

12: function SampleShuffledBags(pool, number, bag size)
13: S ← []
14: for i← 1 to number do
15: pooli ← pool . Same pool used for each shuffled bag
16: Si ← SampleBagWithoutReplacement(pooli, bag size)
17: end for
18: return S
19: end function

instances appear in negative bags. As we show later, for some algorithms, the addition

of shuffled negative bags can be useful to mitigate class imbalance induced by the

addition of shuffled positive bags.

Because resampling procedure described above shuffles instances across positive

bags, we call the approach Shuffled Multiple-Instance Learning (SMILe). The pseu-

docode for SMILe is shown in Algorithm 1. The approach takes an MI dataset

consisting of a list of bags B with associated binary labels Y (Yi ∈ {−1,+1}). Each

bag is a set of instances, or real-valued feature vectors: Bi = {xij ∈ Rn}. The positive

bags are denoted by Bp = {Bi | Yi = +1}, and the set of positive bag instances by

Xp =
⋃
Bi∈Bp Bi. Since positive bags also contain negative instances, not all instances

in Xp are positive. Similarly, Xn is the set of instances from negative bags, and all

instances in Xn are negative. The notation used throughout the paper is summarized

155

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

Table 8.1: Legend of the basic notation used in Chapter 8.

Symbol Definition Symbol Definition

B Bags Sp Shuffled Positive Bags

Y Bag Labels Sn Shuffled Negative Bags

Bp Pos. Bags, {Bi | Yi = +1} s Shuffled Bag Size

Bn Neg. Bags, {Bi | Yi = −1} εs Shuffled Pos. Bag Error

X Instances,
⋃
Bi∈B Bi

Xp Pos. Bag Insts.,
⋃
Bi∈Bp Bi

Xn Neg. Bag Insts.,
⋃
Bi∈Bn Bi

in Table 8.1.

The basic SMILe algorithm works by generating sets Sp of additional positive bags

and Sn of additional negative bags. Each shuffled bag contains s instances sampled

without replacement from Xp or Xn, the set of instances pooled from all positive or

negative bags, respectively. As we describe in Section 8.3, the shuffled bag size s

can be chosen to ensure a bound on the noise incurred by positively labeling shuffled

positive bags. The instances are replaced between the sampling of each bag in Sp or

Sn. An MI classification algorithm A is given the augmented training set B ∪Sp∪Sn
with associated labels, and the resulting classifier is used to predict new instance or

bag labels.

As a more concrete example of the shuffling process for positive bags, consider

an example from the content-based image retrieval (CBIR) domain. In this domain,

images are represented as structureless “bags” of segments, which roughly correspond

to object in the image. An image is positive if it contains at least one “positive” object

of interest. Figure 8.1 shows two positive images in which a Coke can is the object of

interest. Applying SMILe to these bags, we take the segments from the two images,

shuffle them together, and sample two sets of instances to produce the shuffled bags

on the right of Figure 8.1. As is apparent in the figure, the shuffled bags also contain

Coke cans, and so they are also positive bags. By sampling enough instances in the

shuffled bags, we ensure that they contain positive instances with high probability.

156

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

Figure 8.1: Left: Two positive images from the “Coke Can” class. Right: Two bags
generated by sampling instances from the two images above.

SMILe adds additional examples that can improve a classifiers performance on

the instance-labeling task. Intuitively, the justification for SMILe is that instances in

shuffled bags are presented to an MI learning algorithm in different contexts, rather

than remaining together in the same original bags as in other resampling approaches

(Zhou and Zhang, 2003). For the instance-labeling task in the MI setting, the “con-

text” that a bag provides corresponds to a logical constraint on the labels of the

instances within the bag. In particular, if all instances have underlying Boolean la-

bels, then the label of a bag is the logical disjunction of the labels of the instances

within the bag. For MI learning algorithms that attempt to learn a concept f that as-

signs “true” or “false” labels to positive and negative instances, respectively, positive

bags provide constraints on the set of concepts that are consistent with the possible

instance labelings in the dataset.

Interpreting bags as constraints on the set of consistent instance labeling func-

tions, we see that adding new bags can add new constraints on an instance-labeling

concept. For example, consider the small dataset above with three positive bags of

two instances each. From the first bag, {x1, x2}, we know that either x1 or x2 must be

157

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

a positive instance. After we add the shuffled bags, we infer that with high probabil-

ity, x1, x4, or x6 must be positive as well. If an algorithm is confident that x4 and x6

are negative, the added constraint means that x1 is likely to be the positive instance in

the shuffled bag and, thus, also in the original bag {x1, x2}. Generally speaking, these

additional shuffled bags introduce new constraints that are deduced probabilistically

from the initial training set. While rule-based algorithms might logically infer the

additional constraints from the original data, we show below that statistical learning

algorithms can benefit from having the additional constraints explicitly provided.

SMILe can also improve the performance of bag-labeling algorithms by providing

entirely new examples to an algorithm that uses bag-level information for classifica-

tion. In particular, some MI learning algorithms treat bags as graphs (Zhou et al.,

2009) or map entire bags to feature spaces (Gärtner et al., 2002). For such algo-

rithms, shuffled bags might possess properties not possessed by the original bags in

the dataset. On the one hand, this means that SMILe can provide additional in-

formation to such algorithms using either positive or negative shuffled bags. For

the instance-labeling case, shuffled negative bags do not provide any additional con-

straint information, since negative bags already imply instance-level constraints on

the definitively negative instances they contain. On the other hand, as we show, be-

cause the shuffled bags are no longer necessarily sampled from the underlying training

distribution over bags, SMILe may be less beneficial for the bag-labeling task than

the instance-labeling task. However, we also show empirically that when training set

sizes are small, such as in an active learning setting, the benefit of additional exam-

ples generated by SMILe outweighs the issues caused by shuffled bags affecting the

training distribution over bags.

For either bag- or instance-labeling algorithms, by adjusting the size of shuffled

bags, we can control the noise rate on the labels of additional positive bags (see

Proposition 8.2 in the following section). The noise adjustment provides an additional

158

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

benefit of SMILe. By sampling large enough positive bags, it is possible to reduce

existing positive bag label noise in the dataset. As we show below, the bag size

only grows logarithmically with the inverse of the desired noise rate, so the shuffled

bags required are not too large. The noise reduction improves generalization and

reduces over-fitting, so SMILe also provides a benefit similar to standard bootstrap

resampling.

As with other resampling approaches, SMILe can be used with any underlying MI

algorithm. While other approaches like bagging are ensemble methods that require

training multiple classifiers, SMILe can be implemented by simply adding shuffled

bags to the existing dataset and training the base MI algorithm on the augmented

sample. Thus, SMILe affords the advantages described above without requiring ad-

ditional storage costs associated with ensemble methods. Furthermore, the inter-

pretability of the base classifier is not affected as in ensemble methods. We also show

below how for some specific MI base learners, SMILe can be incorporated implic-

itly into the algorithm without requiring that additional shuffled bags be explicitly

added to the dataset. Thus, at least in some cases, the resampling of SMILe can be

introduced to an algorithm without increasing the problem size.

8.3 Basic Properties of SMILe

In this section, we establish some basic properties of SMILe. First, we describe how

the shuffled bag size s affects the noise rate on shuffled bag labels. Then, we describe

how the addition of shuffled bags can decrease the bag label noise rate in an MI

dataset.

We start by proving several results about the relationship between the shuffled bag

size, s, and the bag label noise rate on the positive shuffled bags Sp (the notation used

throughout this section is summarized in Table 8.1). We provide a worst-case analysis,

159

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

assuming only that there is at least one positive instance per positive bag. In the case

that the fraction of positive instances within positive bags is known, a tighter bound

can be similarly derived. When there is at least one positive instance per positive bag,

there are at least |Bp| true positive instances within Xp. The remaining |Xp| − |Bp|

instances within Xp are negative. Thus, in order to sample only negative instances

in a shuffled bag, one of the |Xp| − |Bp| instances must be sampled for each of the

s instances within the bag. To simplify the analysis, we consider the probability of

this occurring with replacement, which is an upper bound on the probability without

replacement. With replacement, the probability of sampling a negative instance s

times is at most ((|Xp| − |Bp|) / |Xp|)s. Therefore, the probability of a sampling a

negative shuffled bag decreases exponentially with the shuffled bag size. We formalize

this using the following lemma (whose proof is straightforward):

Lemma 8.1. For all x ≥ 0, x
1+x
≤ log(1 + x).

Proposition 8.1. Suppose a set of shuffled bags is generated from an MI dataset

without label noise on the original bags. Then if each shuffled bag is of size s ≥
|Xp|
|Bp| log 1

εs
, each resulting bag will be positive with probability 1− εs.

Proof. To bound the true label noise on shuffled positive bags, it is sufficient to bound

((|Xp| − |Bp|) / |Xp|)s by the desired noise level, εs. This requirement implies that:

εs ≥ ((|Xp| − |Bp|) / |Xp|)s

log εs ≥ s log ((|Xp| − |Bp|)/|Xp|)

log 1
εs
≤ s log (|Xp|/(|Xp| − |Bp|))

s ≥ 1
C

log 1
εs
,

where C = log (|Xp|/(|Xp| − |Bp|)) = log
(
1 +

(
|Bp|

/
(|Xp| − |Bp|)

))
. By Lemma 8.1,

C = log
(
1 +

(
|Bp|

/
(|Xp| − |Bp|)

))

160

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

≥ |Bp|
|Xp|−|Bp|

/(
1 + |Bp|

|Xp|−|Bp|

)

= |Bp|
|Xp|−|Bp|

/
|Xp|

|Xp|−|Bp| = |Bp|
|Xp| .

Thus, s ≥ |Xp|
|Bp| log 1

εs
≥ 1

C
log 1

εs
is a sufficient shuffled bag size.

In many cases, all bags in an MI dataset have the same size. For example, the

CBIR data shown in Figure 8.1 is generated such that bags contain roughly 30 in-

stances. In this case, it is more straightforward to express the bound on the noise

rate in terms of the bag size, b:

Corollary 8.1. Suppose a set of shuffled bags is generated from an MI dataset without

label noise on the original bags, which are each of size b. Then if each shuffled bag is

of size s ≥ b log 1
εs

, each resulting bag will be positive with probability 1− εs.

Proof. If a dataset contains |Bp| positive bags, each of size b, then |Xp| = b |Bp|.

Substituting this quantity into the coefficient of the bound in Proposition 8.1 gives:

s ≥ |Xp|
|Bp| log 1

εs
= b|Bp|
|Bp| log 1

εs
= b log 1

εs
.

Thus, to achieve a worst-case noise rate of 10% on shuffled bags for the CBIR

example with b ≈ 30, it suffices to sample bags of size s ≥ 68.

The bound given in Proposition 8.1 assumes a worst-case scenario in which bags

are maximally “sparse,” in that they contain only one positive instance. However, in

some cases, the true sparsity of positive instances might be given as prior knowledge,

or could be inferred from data Bunescu and Mooney (2007). In this case, we could

express the bound of Proposition 8.1 in a relaxed form:

Corollary 8.2. Suppose a set of shuffled bags is generated from an MI dataset without

label noise on the original bags. Further, suppose it is known that η fraction of the

instances Xp in positive bags are true positive instances. Then if each shuffled bag is

of size s ≥ 1
η

log 1
εs

, each resulting bag will be positive with probability 1− εs.

161

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

Proof. The proof proceeds as in Proposition 8.1, with the number of true positive

instances equal to η |Xp| rather than the worst case, |Bp|.

An advantage of SMILe that applies to both instance- and bag-labeling algorithms

is noise reduction. When there is existing positive bag label noise in an MI dataset,

the addition of appropriately-sized shuffled bags can produce an overall reduction in

noise.

Proposition 8.2. Suppose an MI dataset B contains bags with a false-positive label

noise rate of ε+ > 0. By choosing s > |Xp|
(1−ε+)|Bp| log 1

ε+
, the expected false-positive noise

rate on the resulting dataset Bp ∪ Sp will be ε̂ < ε+, where Sp is the set of positive

shuffled bags added to the dataset.

Proof. Given a false-positive noise rate of ε+ > 0, the worst case number of positive

instances in positive bags is reduced from |Bp| to (1 − ε+) |Bp|. Following as in the

proof of Proposition 8.1, for an arbitrary desired εs error rate on the labels of shuffled

bags, we can choose s, the size of a shuffled bag, to satisfy s ≥ |Xp|
(1−ε+)|Bp| log 1

εs
. The

resulting dataset has |Bp| bags with noise ε+, and |Sp| bags with noise εs, for an

expected false-positive noise rate of:

ε̂ =
ε+ |Bp|+ εs |Sp|
|Bp|+ |Sp|

.

If we choose εs small enough so that εs < ε+, this is sufficient to have ε̂ < ε+

when shuffled bags are added. Therefore, it is sufficient that s is chosen such that

s > |Xp|
(1−ε+)|Bp| log 1

ε+
.

Note that the advantage described in Proposition 8.2 does not hold for false-

negative bag label noise. That is, when there are incorrectly labeled negative bags

containing positive instances, it is possible that most of the negative shuffled bags are

noisy. For example, if there is a single highly corrupted negative bag containing many

162

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

positive instances, then resampling instances from negative bags might be likely to

include a corrupting positive instance. For this reason, if we expect negative bags

to be noisy for some task, shuffling should not be applied to those bags (|Sn| should

be set to zero in the pseudocode of Algorithm 1) unless the base learner is tolerant

to negative shuffled bag label noise. We describe such an algorithm in Section 8.5.

Shuffling can still be applied to positive bags in any case.

As above, the following corollaries can be derived from Proposition 8.2 in the case

when all bags have the same size b or there is a known fraction η of positive instances

in positive bags.

Corollary 8.3. Suppose an MI dataset B contains bags of size b with a false-positive

label noise rate of ε+ > 0. By choosing s > b
(1−ε+)

log 1
ε+

, the expected false-positive

noise rate on the resulting dataset Bp∪Sp will be ε̂ < ε+, where Sp is the set of positive

shuffled bags added to the dataset.

Proof. If a dataset contains |Bp| positive bags, each of size b, then |Xp| = b |Bp|.

Substituting this quantity into the coefficient of the bound in Proposition 8.2 gives:

s > |Xp|
(1−ε+)|Bp| log 1

ε+
= b|Bp|

(1−ε+)|Bp| log 1
ε+

= b
(1−ε+)

log 1
ε+
.

Corollary 8.4. Suppose an MI dataset B contains bags with a false-positive label

noise rate of ε+ > 0. Further, suppose it is known that η fraction of the instances

Xp in true positive bags are true positive instances. By choosing s > 1
(1−ε+)η

log 1
ε+

,

the expected false-positive noise rate on the resulting dataset Bp ∪ Sp will be ε̂ < ε+,

where Sp is the set of positive shuffled bags added to the dataset.

Proof. Given random noise on positive bags, the number of instances in true positive

bags is equal to |Xp| (1−ε+). By assumption, the number of true positive instances is

163

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

then equal to η |Xp| (1− ε+). The proof then proceeds as in Proposition 8.2, with the

number of true positive instances equal to η |Xp| (1−ε+) rather than |Bp| (1−ε+).

Next, we review some related resampling approaches for MI learning and some

possible alternatives to SMILe. Then, we discuss the effects of SMILe on the instance-

and bag-level distributions in the training set, as well as the behavior of SMILe

when combined with specific MI instance- and bag-level hyperplane classification

algorithms.

8.4 Related Approaches

In contrast to the boosting and bagging approaches described in Section 8.1, SMILe

is specific to the MI setting because it resamples instances from different bags to

create new bags that are not in the original training set. By creating new examples,

SMILe is most similar to an extension of prior work in the supervised setting that

investigates how “virtual examples” can be added a training set by applying known

class-preserving transformations such as rotations or translations to existing examples

to improve accuracy on the test set (Schölkopf et al., 1997). In the case of SMILe,

bag resampling is a transformation that approximately preserves class labels. Similar

approaches transform examples by adding noise, which provides a form of regulariza-

tion to a classifier, reducing the variance associated with the hypothesis class (Bishop,

1995). The motivation for SMILe is similar; by adding instance- and bag-level con-

straints in the form of new examples, SMILe also regularizes the hypothesis space

and reduces variance.

Recent work in the supervised learning setting has explored how the virtual and

noise-corrupted examples can be implicitly added to a training set by marginaliz-

ing out the distribution over virtual examples (Maaten et al., 2013). The resulting

formulation essentially attempts to minimize loss over an infinite number of virtual

164

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

Table 8.2: Comparison of SMILe to other approaches that recombine instances from
different bags. Only SMILe has the desired properties with small shuffled bags.

Resampling Approach
Avg. Shuffled

Bag Size
Adds

Constraints?
Reduces Bag
Label Noise?

SMILe s = |Xp|
|Bp| log 1

εs

(1) Resample all instances
|X|
|Xp|s

(2) Combine pairs of positive bags 2 |Xp||Bp|

(3) Combine pairs of positive and
negative bags

2 |X||B|

training examples. Experimental results show that implicitly providing an infinite

number of virtual examples substantially increases generalization of the resulting

classifiers. Furthermore, the procedure is computationally more efficient than train-

ing with explicitly added virtual examples. Below, we explore how ideas from this

work might be applied to the new training examples (bags) produced by SMILe.

In formulating a novel approach such as SMILe for constructing new bags from

existing training data, one might wonder whether there are alternative approaches

worth considering. For example, there are three immediate alternatives to SMILe for

generating new positive bags. Instead of sampling instances in positive shuffled bags

only from Xp, instances can be resampled from the set of instances in all bags, X (1).

Or, the instances from random pairs of positive bags can be combined to produce a

new positive bag (2). Finally, a random positive bag can be combined with a random

negative bag to produce a new positive bag (3). As summarized in Table 8.2, these

alternative each have some disadvantage compared with SMILe. In the case of (1),

resampling from all instances requires the shuffled bags to be larger by a factor of

(|X|/|Xp|) for a desired noise rate εs. Bags generated from approaches (2) and (3) do

not introduce new constraints to a classifier. That is, if a classifier has zero loss on

an initial set of bags, then it will also have zero loss on the bags of type (2) and (3)

generate from the initial set. Finally, approach (3) has the additional disadvantage

165

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

that it does not reduce bag label noise for positive bags in the initial dataset. Thus,

of these alternatives, only SMILe has the desired properties with a minimal shuffled

bag size.

8.5 Instance-Level Classification with SMILe

As described above, an advantage of SMILe is that it introduces additional examples

to an MI classification algorithm. As in prior work in the supervised setting (Bishop,

1995; Schölkopf et al., 1997), the addition of these new examples generated by SMILe

should regularize hypotheses by reducing the set of consistent hypotheses. First, we

analyze how SMILe generally affects the distribution over instances in a training set.

Then, because it is difficult to analyze how SMILe regularizes arbitrary classifiers, we

perform an analysis below with respect to the MI-SVMI algorithm (Han et al., 2010),

a variant of the widely used MI-SVM approach (Andrews et al., 2003).

8.5.1 Effect on the Instance-Level Distribution

As described in Chapter 4, the learnability of instance concepts from MI data uses

the notion of an instance-level distribution, defined in Chapter 3 that is obtained

by marginalizing out individual bag distributions. Learnability requires that the

instance-level distribution is identical for training and testing data. Since SMILe

is intended to act as a wrapper around existing MI algorithms, it should leave the

instance-level distribution invariant to ensure the learnability of instance-level con-

cepts.

Figure 3.1 illustrates how the distribution over training instances in practice differs

somewhat from that defined in Chapter 3. In particular, because multiple instances

are sampled within each bag, instances might be more “correlated” than if only a

single instance were sampled within each independently sampled bag. However, as

166

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

we observe in Section 5.5, this correlation seems to have little effect in practice.

Therefore, we can think of the set of training instances as a good approximation of a

sample from the underlying instance-level distribution.

Therefore, we desire that SMILe does not modify the distribution of instances in

the training set. In fact, note that for any value of shuffled bag size, s, the addition of

shuffled bags does not affect the distribution of in the dataset. Since instances within

positive and negative shuffled bags are drawn independently and uniformly from the

empirical class-conditional distributions, the distributions of instances in the shuffled

bags also conform to the class-conditional distributions over instances. As long as

the loss on the positive and negative bags in the dataset is balanced (e.g., using

weights based on the class proportions in the original training sample) according to

the original proportions of instances from each class, the overall instance distribution

is maintained. Thus, for the sake of learning an instance-labeling concept, SMILe

preserves the training distribution.

8.5.2 SMILe and MI-SVMI

We now analyze how SMILe affects the performance of a specific MI algorithm,

MI-SVMI (Han et al., 2010). In particular, we analyze how the loss function of

MI-SVMI is affected by the addition of shuffled bags, which provides insights into how

parameters such as shuffled bag size affect the hyperplane classifier that is learned.

Then, in an analysis similar to prior work in the supervised setting (Maaten et al.,

2013), we describe a new algorithm, SMILeSVM, which directly optimizes the ex-

pected loss incurred by shuffled bags. We show empirically that SMILeSVM has

practical advantages over explicitly adding shuffled bags and produces better perfor-

mance on the test set.

The original MI-SVM formulation (Andrews et al., 2003) works by solving a non-

convex quadratic program (QP), as shown in Equation 2.4. Prior work observed that

167

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

when using MI-SVM to label instances, using a max constraint to derive the label

of negative bags tends to ignore labels assigned by the classifier f to many of the

instances known to be negative (Han et al., 2010). The resulting classifier might

therefore have a high false positive error rate. Thus, a variant of MI-SVM, which

we denote MI-SVMI, explicitly incorporates instance-level constraints on instances in

positive bags (Han et al., 2010). With the appropriate coefficients to balance the loss

on positive and negative examples, the MI-SVMI optimization program is:

min
f∈H,Ξ

1
2
‖f‖2

H + C
|B|

(
|Bn|
|Xn|

∑

ij

ξ−ij + |Bp|
|Bp|
∑

i

Ξ+
i

)
,

s.t.





Yi
(
maxxij∈Bi f(xij)

)
≥ 1− Ξ+

i if Yi = +1

∀xij ∈ Bi : Yif(xij) ≥ 1− ξ−ij if Yi = −1

Ξ+
i ≥ 0, ξ−ij ≥ 0,

where ξ−ij are negative bag instance-level slack variables, Ξ+
i are positive bag-level

slack variables, and a hyperplane f is chosen from the reproducing kernel Hilbert

space (RKHS) H associated with some kernel.

MI-SVMI enforces the MI assumption that in each negative bag, all instances

must be negative. On the other hand, every positive bag in the dataset corresponds

to a constraint of the SVM QP, where the max in each constraint enforces the MI

relationship between bag and instance labels for positive bags. As written, it is clear

that the addition of positive shuffled bags will introduce further constraints into the

optimization program. However, the effect of shuffled bags is more apparent if the max

constraint is lifted into the objective function. In fact, each constraint is equivalent to

simply choosing the minimum instance-level slack variable ξ+
ij that would be required

if instance-level constraints were also introduced to instances in positive bags.

168

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

To see why, first observe that for the slack variables Ξ+
i of positive bags:

max
xij∈Bi

f(xij) ≥ 1− Ξ+
i

Ξ+
i ≥ 1− max

xij∈Bi
f(xij)

Ξ+
i ≥ min

xij∈Bi
(1− f(xij)) .

Since Ξ+
i ≥ 0, and the objective function penalizes Ξ+

i , the objective function is

minimized when Ξ+
i = minxij∈Bi max{0, 1− f(xij)}. For a supervised SVM, the slack

variable for a positive instance is ξ+
ij = max{0, 1 − f(xij)}. Thus, in the MI-SVMI

formulation, the slack variable for a positive bag is Ξ+
i = minxij∈Bi ξ

+
ij .

Given that we can rewrite positive bag constraints as described above, the MI-SVMI

formulation can be written as:

min
f∈H, ξ

1
2
‖f‖2

H + C
|B|


|Bn|

Negative Bag Loss︷ ︸︸ ︷
1
|Xn|

∑

xij∈Xn
ξ−ij + |Bp|

Positive Bag Loss︷ ︸︸ ︷
1
|Bp|

∑

Bi∈Bp
min
xij∈Bi

ξ+
ij


 , (8.1)

s.t. Yif(xij) ≥ 1− ξij, ξij ≥ 0.

The reformulation above allows us to easily analyze how the addition of positive and

negative shuffled bags affects the loss terms corresponding to positive and negative

bags as decomposed in Equation 8.1. In particular, as written above, it becomes

clear that 1
|Xn|

∑
xij∈Xn ξ

−
ij corresponds to the average or expected loss incurred by an

instance in a negative bag, and 1
|Bp|
∑

Bi∈Bp minxij∈Bi ξ
+
ij is the expected value of the

minimum slack within a positive bag.

Now, we can consider the consequences when these expected values are taken not

with respect to the original training sample, but with respect to the generative process

corresponding to SMILe in which bags are generated by sampling instances uniformly

from Xn or Xp. Since there are only a finite number of possible shuffled bags of a

169

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

fixed size, all occurring with an equal probability, the expected loss is equivalent to

the average loss over all possible shuffled bags. As with the analysis in Section 8.3,

we make the simplifying assumption that sampling is performed with replacement.

The assumption becomes more aligned with the process described in Algorithm 1 as

the training set size increases. With this assumption, we use S−s and S+
s to refer to

the distribution over negative or positive shuffled bags of size s corresponding to the

SMILe generative process.

For negative shuffled bags, the analysis is straightforward. If we sample a set Sn of

negative shuffled bags and combine all negative instances into a set X ′n =
⋃
Si∈Sn Si,

then every instance in X ′n is sampled uniformly from Xn. Because we assume that

instances are sampled independently within all shuffled bags, the size of the shuffled

negative bags is irrelevant. With respect to a fixed classifier f , the expected loss

incurred by f on the shuffled negative bags is:

E
Sn∼S−s |Sn|


 1
|X′n|

∑

xij∈X′n

ξ−ij


 = 1

|X′n|
∑

xij∈X′n

Exkl∼Uniform(Xn)

[
ξ−kl
]

= 1
|X′n| |X

′
n|Exkl∼Uniform(Xn)

[
ξ−kl
]

= 1
|Xn|

∑

xij∈Xn
ξ−ij , (8.2)

which is identical to the loss incurred by f on the original negative bags in the dataset.

Thus, negative shuffled bags do not provide any additional constraint information for

negative instances, as described intuitively above.

SMILe has a different effect on the expected loss incurred by a classifier f on

positive shuffled bags. For a set of positive shuffled bags, Sp, we can write the expected

loss as:

E
Sp∼S+s |Sp|


 1
|Sp|

∑

Bi∈Sp
min
xij∈Bi

ξ+
ij


 = 1

|Sp|

|Sp|∑

i=1

ES+∼S+s

[
min
xkl∈S+

ξ+
kl

]

170

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

= ES+∼S+s

[
min
xkl∈S+

ξ+
kl

]
. (8.3)

Thus, it suffices to analyze the expected loss incurred by f on a single positive shuffled

bag S+ of size s.

For notational convenience, let {σk}|Xp|k=1 be a classifier-specific re-indexing of the

slack variables corresponding to all positive instances Xp in the original training

set. For a fixed classifier f , the slack variables are ordered high-to-low so that for

1 ≤ k < |Xp|, σk ≥ σk+1. Ties can be broken arbitrarily. Let rankf (ξ
+
ij) be the high-

to-low order of the slack variable ξ+
ij so that ξ+

ij = σrankf (ξ+ij)
. The random variable

minxij∈S+ ξ+
ij with S+ ∼ S+

s takes one of the values of σk. The expected value is

the sum of these σk weighted by the likelihood that the random variable takes the

corresponding value:

ES+∼S+s

[
min
xij∈S+

ξ+
ij

]
=

|Xp|∑

k=1

PS+∼S+s

[
σk = min

xij∈S+
ξ+
ij

]
σk

=

|Xp|∑

k=1

PS+∼S+s

[
k = rankf

(
min
xij∈S+

ξ+
ij

)]
σk

=

|Xp|∑

k=1

PS+∼S+s

[
k = max

xij∈S+
rankf (ξ

+
ij)

]
σk.

The final step is justified by observing that since rankf is a high-to-low (by magnitude)

ranking of the slack variables, the smallest slack variable value has the highest value

assigned by rankf . In this form, we can rewrite the expression for the probability in

the following way:

PS+∼S+s

[
k = max

xij∈S+
rankf (ξ

+
ij)

]
= PS+∼S+s

[
k

|Xp|
= max

xij∈S+

rankf (ξ
+
ij)

|Xp|

]
.

Since each xij ∈ S+ is independently sampled (assuming sampling with replace-

ment for simplicity), we can consider the behavior of the individual random variable

171

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

(
rankf (ξ

+
ij)
/
|Xp|

)
. Because xij is sampled uniformly from Xp, ξ

+
ij is sampled uniformly

from the set of all slacks on positive instances. Accordingly, the rank of the slack

variable rankf (ξ
+
ij) is sampled according to a uniform distribution over {1, 2, . . . , k}.

This means that
(
rankf (ξ

+
ij)
/
|Xp|

)
∼ Uniform

({
1
|Xp| ,

2
|Xp| , . . . , 1

})
. We can make an

approximation here by observing that as |Xp| → ∞,

Uniform
({

1
|Xp| ,

2
|Xp| , . . . , 1

})
⇒

weakly
Uniform ([0, 1]) .

So for large numbers of instances in positive bags, it follows that:

rankf (ξ
+
ij)

|Xp|
∼

approx.
Uniform ([0, 1])

max
xij∈S+

rankf (ξ
+
ij)

|Xp|
∼

approx
max
xij∈S+

Uniform ([0, 1])

∼ Beta(s, 1).

The last step uses the fact that the maximum of a sample of |S+| = s uniform

random variables over [0, 1] is distributed according to the beta distribution whose

unnormalized likelihood function is d(r) = rs−1 (Gentle, 2009). Figure 8.2 shows that

even with relatively few instances in positive bags, the quality of the beta distribution

approximation above falls within 1% of the true distribution in terms of assigning

probability mass to slack variables.

Now, we can return to the original task of calculating the expected loss incurred

by a classifier f on a shuffled bag. Recall that the expected loss is the sum of each

positive instance slack value σk, weighted by the likelihood that the minimum slack

across all instances in the shuffled positive bag is σk. Given the analysis above, we

can approximate the likelihood that the random variable
(
rankf (ξ

+
ij)
/
|Xp|

)
is k/|Xp|

using the beta likelihood d (k/|Xp|) = (k/|Xp|)s−1. Equivalently, we can approximate

the likelihood that the random variable rankf (ξ
+
ij) is k by d(k) = ks−1. A proper

172

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

100 101 102

Shuffled Bag Size (s)

10−3

10−2

10−1

S
um

of
A

bs
ol

ut
e

D
ev

ia
tio

n |Xp| = 10

|Xp| = 25

|Xp| = 50

|Xp| = 100

Figure 8.2: An illustration of the
quality of the beta distribution ap-
proximation for different numbers of
instances in positive bags and shuffled
bag sizes. The approximation qual-
ity is measured as the sum of abso-
lute differences between the true den-
sity function values over slack vari-
ables and those assigned by the beta
distribution.

probability density function is obtained by normalizing d to yield p(k) = 1
K
ks−1,

where K =
∑|Xp|

k=1 k
s−1. The resulting expression for expected loss is then:

ES+∼S+s

[
min
xij∈S+

ξ+
ij

]
=

|Xp|∑

k=1

PS+∼S+s

[
k = max

xij∈S+
rankf (ξ

+
ij)

]
σk

≈ 1

K

|Xp|∑

k=1

ks−1σk.

As a final step in deriving the expected loss, we wish to rewrite the expression

above so that it is stated in terms of the original slack variables ξ+
ij rather than σk. For

this purpose, we use the rankf notation, observing that by definition, k = rankf (σk).

Therefore,

ES+∼S+s

[
min
xij∈S+

ξ+
ij

]
≈ 1

K

|Xp|∑

k=1

rankf (σk)
s−1σk

=
1

K

∑

xij∈Xp
rankf (ξ

+
ij)

s−1
ξ+
ij .

The last equality follows because the order of the variables σk are no longer important;

the index k only serves to couple a slack variable with its rank. So given the bijection

between {σk} and {ξ+
ij}, we can rewrite the expression using ξ+

ij . Using the equivalence

from Equation 8.3, the expected loss incurred by f on a set Sp of positive shuffled

173

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

bags is:

E
Sp∼S+s |Sp|


 1
|Sp|

∑

Bi∈Sp
min
xij∈Bi

ξ+
ij


 ≈ 1

K

∑

xij∈Xp
rankf (ξ

+
ij)

s−1
ξ+
ij . (8.4)

Given the expression above for the expected loss incurred by f on positive shuffled

bags, we can analyze how the addition of these shuffled bags might affect the selected

optimal classifier. The original MI-SVMI formulation in Equation 8.1 only uses a

single instance slack variable from each positive bag in the objective function to

represent the loss of f incurred on each positive bag. Thus, for any fixed f , only a

possibly small fraction |Bp||Xp| of the positive instances are used to evaluate the classifier.

On the other hand, the expected loss incurred by adding shuffled positive bags is an

expression that involves a weighted combination of all positive instance slack variables.

The shuffled bag size s affects how the positive instance slack variables are weighted

in the loss expression. When s = 1, the expected loss is:

E
Sp∼S+1

|Sp|


 1
|Sp|

∑

Bi∈Sp
min
xij∈Bi

ξ+
ij


 ≈ 1

K

∑

xij∈Xp
rankf (ξ

+
ij)

0
ξ+
ij =

1

|Xp|
∑

xij∈Xp
ξ+
ij ,

which is just the average loss of f on all positive bag instances (assumed to all have

positive labels). Thus, the case s = 1 corresponds to the addition of “strong” instance-

level constraints that include each instance equally in evaluating loss. In fact, the

expected loss on positive bags with s = 1 is symmetric to the expected loss of negative

shuffled bags given in Equation 8.2, which are both similar to the losses used single-

instance learning (SIL), the supervised approach in which all instances in Xn and Xp

are treated as negative and positive instances, respectively. Since not all instances

in Xp are positive, it might seem that adding such positive shuffled “singleton” bags

introduces too much label noise or completely destroys the +information provided

by the structure within bags. However, as described in Chapter 4, such an approach

174

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

actually learn high-AUC concepts.

In the other extreme case, when s→∞, the majority of the weight is focused on

the smallest positive instance slack variable ξ+
ij for which |Xp| = rankf (ξ

+
ij). If there

are multiple instances with zero slack at any point during optimization, meaning

that the instances are classified as positive by the current hyperplane, then the effect

of the regularization will be to maximize the margin and allow some positive bag

instances to fall within the margin. As a result, the slack values of these instances

will increase. However, for all but one instance, the increase in slack comes without

consequence. Therefore, at an optimal solution, only a single positive bag instance in

the dataset is used to evaluate the quality of f , unless multiple instances happen to

lie directly along the boundary of the margin. Thus, when s is large, the noise rate on

the shuffled bags is small, but the shuffled bags provide little additional information

to the classifier.

For other intermediate values of s, we can determine what portion of the mass

in the weighted sum is assigned to the fraction t of the most-misclassified instances.

These are the instances with the largest slack variables, which are {σ1, . . . , σt|Xp|}

in the re-indexed set that orders slack values from high to low. As above, when we

assume a large sample, the weights on these instances’ slacks are distributed according

to Beta(s, 1) with probability density function p(r) = srs−1, where r is the scaled

rank of a slack variable (r = k/|Xp| for σk). Therefore, the total mass on the fraction

t of instances with the largest slack variables is
∫ t

0
srs−1dr = ts. If the classifier

produces a correct labeling of instances, then at most (|Xp| − |Bp|)/|Xp| fraction of

the instances in Xp are actually negative and will have large slack values. Therefore,

((|Xp| − |Bp|)/|Xp|)s fraction of the loss is wrongly incurred due to these instances.

The amount of incorrectly attributed loss decreases with s, and corresponds precisely

to the worst-case noise rate as given in Proposition 8.1.

In summary, deriving the expected loss on shuffled bags as in Equation 8.4 provides

175

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

insight into the effect of shuffled bags on the MI-SVMI optimization program. In

particular, the effect of the shuffled bag size parameter s becomes more apparent.

When s = 1, SMILe reduces to training a supervised classifier on the training set of

bag-labeled instances. On the other hand, when s → ∞, the classifier will tend to

ignore all but one positive bag instance. For intermediate values, the classifier will

focus on correctly classifying a subset of the instances in the positive bags. Of the

remaining examples, in the worst case the classifier will place ((|Xp| − |Bp|)/|Xp|)s

fraction of the focus on the true negative instances in positive bags, which is consistent

with the worst-case noise rate of Proposition 8.1.

8.5.3 SMILeSVM

In addition to allowing us to make observations about how shuffled bags affect the ob-

jective function of the MI-SVMI classifier, the analysis in Section 8.5.2 also suggests

a way of modifying the MI-SVMI optimization program to avoid explicitly adding

shuffled bags to the dataset. In particular, suppose we add a very large number of

negative and positive shuffled bags to the training set in proportion to the original

class ratios. In the limit of infinitely many shuffled bags, the loss function Equa-

tion 8.1 will be dominated by the expected loss on negative and positive shuffled

bags. Thus, the behavior of MI-SVMI with many shuffled bags can be approximated

by substituting the expression in Equation 8.2 for negative bag loss and Equation 8.4

for positive bag loss. The result is:

min
f∈H, ξ

1
2
‖f‖2

H + C
|B|


|Bn|

Negative Bag Loss︷ ︸︸ ︷
1
|Xn|

∑

xij∈Xn
ξ−ij + |Bp|

Positive Bag Loss︷ ︸︸ ︷
1

K

∑

xij∈Xp
rankf (ξ

+
ij)

s−1
ξ+
ij


 ,

s.t. Yif(xij) ≥ 1− ξij, ξij ≥ 0.

Unfortunately, the formulation as written above is difficult to optimize, since

176

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

rankf (ξ
+
ij) is a discontinuous function of f and ξ+

ij . Therefore, we must rewrite the

objective function, particularly the expression in Equation 8.4, such that the opti-

mization becomes tractable. To this end, we introduce some additional notation.

Let ξ+ be a vector of the positive instance slack variables (in any order). Let ρ be

an arbitrarily ordered vector of weights corresponding to the weights in the sum of

Equation 8.4; that is, ρk = ks−1 for 1 ≤ k ≤ |Xp|. In order to match up the slack

variables with their appropriate weights, we can use a classifier-specific permutation

matrix, given by:

P
(f)
ij =





1 if rankf (ξ
+
j) = i

0 otherwise.

Then, the expected loss in Equation 8.4 can be written succinctly as:

E
Sp∼S+s |Sp|


 1
|Sp|

∑

Bi∈Sp
min
xij∈Bi

ξ+
ij


 ≈ 1

K

∑

xij∈Xp
rankf (ξ

+
ij)

s−1
ξ+
ij = 1

K
ρᵀP(f)ξ+. (8.5)

Of course, the appropriate permutation matrix P(f) above is still a discontinuous

function of the classifier f . However, now we will show that we can relax the ex-

pression in Equation 8.5 to be a minimization problem that can be absorbed into the

overall SVM objective function. Then, optimization can be performed by iteratively

fixing a permutation matrix, optimizing the remainder of the objective function, then

minimizing with respect to the permutation matrix. The strategy is thus to relax the

objective function by replacing P(f) with an arbitrary permutation matrix, P ∈ P .

Then, we use the following result:

Lemma 8.2. For any classifier f and associated positive instance slack variables ξ+

177

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

as defined in Equation 8.1, the following equality holds:

min
P∈P

ρᵀPξ+ = ρᵀP(f)ξ+,

where P is the set of permutation matrices of size |Xp|.

Proof. Although the left-hand side of the equation above is a discrete optimization

over permutation matrices, it can be relaxed to a convex linear program (LP). This

fact follows from the Birkhoff–von Neumann theorem (Birkhoff, 1946; von Neumann,

1953), which states that the doubly-stochastic matrices (matrices whose rows and

columns each sum to one) are the convex hull of permutation matrices. Thus, for a

fixed ρ and ξ+, the left-hand side of the equation above has a global minimum that

occurs at a vertex of the convex hull, which is a permutation matrix. Thus, we must

simply show that P(f) is a local minimizer of the LP; that is, that moving to any

adjacent vertex of P(f) increases the objective function on the left-hand side.

Any adjacent vertex of P(f) can be obtained by swapping two elements in the

permutation, say (P(f)ξ+)j and (P(f)ξ+)k with j < k, since (P(f)ξ+)j ≥ (P(f)ξ+)k

and ρj < ρk, we have that:

ρj
(
(P(f)ξ+)j − (P(f)ξ+)k

)
≤ ρk

(
(P(f)ξ+)j − (P(f)ξ+)k

)

ρj(P
(f)ξ+)j + ρk(P

(f)ξ+)k ≤ ρk(P
(f)ξ+)j + ρj(P

(f)ξ+)k.

This means that P(f) is a local minimizer of the expression, which means that it is a

global minimum as stated in the Lemma.

Lemma 8.2 allows us to rewrite the expression for the expected loss of shuffled

bags in Equation 8.5 in a way that is independent of the current classifier f , but still

178

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

depends on the current slack variables ξ+:

E
Sp∼S+s |Sp|


 1
|Sp|

∑

Bi∈Sp
min
xij∈Bi

ξ+
ij


 ≈ 1

1ᵀρ
min
P∈P

ρᵀPξ+. (8.6)

The normalization constant K is rewritten above as K =
∑|Xp|

k=1 k
s−1 = 1ᵀρ, where 1

is a vector of ones. For negative shuffled bags, let ξ− be a vector of the negative bag

instance slack variables (in any order). Then we can express Equation 8.2 succinctly

as:

E
Sn∼S−s |Sn|


 1
|X′n|

∑

xij∈X′n

ξ−ij


 = 1

|Xn|1
ᵀξ−. (8.7)

Substituting the expressions in Equation 8.5 for negative bag loss and Equation 8.6

for positive bag loss into Equation 8.1 yields the following formulation:

min
f∈H, ξ,P∈P

1
2
‖f‖2

H + C
|B|

(
|Bn|
|Xn|1

ᵀξ− + |Bp|
1ᵀρ

ρᵀPξ+
)
, (8.8)

s.t. Yif(xij) ≥ 1− ξij, ξij ≥ 0.

We refer to the formulation in Equation 8.8 as SMILeSVM.

Since, as for MI-SVMI, the SMILeSVM optimization program is nonconvex, we

use an iterative approach to solve it in practice. First, P is initialized to 1
|Xp|11ᵀ, the

“average” permutation matrix that places an equal weight on each slack variable, and

the other variables are used to minimize the resulting standard SVM formulation that

learns from weighted instances. Then, with the other variables fixed, the objective

function is optimized with respect to P, which amounts to permuting the vector

ρ so that the weights appear in the order corresponding to the values of ξ+. The

alternating process repeats until P is unchanged, or a maximum number of iterations

has been exceeded. The procedure is illustrated in Algorithm 2.

179

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

Algorithm 2

Require: MI dataset (B, Y), shuffled bag size s, regularization–loss trade-off param-
eter C, maximum iterations maxiters

1: (X, y)← {(xij, Yi) | xij ∈ Bi, (Bi, Yi) ∈ (B, Y)}
2: Xn ← {xi | yi = −1}
3: Xp ← {xi | yi = +1}
4: 1p ← [1 | 1 ≤ k ≤ |Xp|]ᵀ
5: 1n ← [1 | 1 ≤ k ≤ |Xn|]ᵀ
6: ρ← [ks−1 | 1 ≤ k ≤ |Xp|]ᵀ
7: Cn ← C |Bn|

|B||Xn|1n

8: Cp ← C |Bp|
|B|1ᵀ

pρ
ρ

9: Plast ← 1
|Xp|1p1

ᵀ
p

10: for 1 to maxiters do
11: f ←WeightedSVM([Xp;Xn], [+1p;−1n], [Cn;CpPlast])

12: Pij ←
{

1 if rank(1− f(Xp[j])) = i

0 otherwise

13: if P = Plast then
14: break
15: end if
16: Plast ← P
17: end for
18: return f

The primary advantage of SMILeSVM is that it directly optimizes the expected

loss with respect to shuffled bags. Accordingly, additional shuffled bags do not need

to be explicitly added to the MI dataset, which would unnecessarily increase the

number of variables in the MI-SVMI QP. In our experiments, we show that directly

solving the SMILeSVM formulation leads to significantly improved performance over

MI-SVMI or what is achievable by explicitly adding practically feasible numbers of

shuffled bags to the original dataset.

8.6 Bag-Level Classification with SMILe

Now we discuss the effect of SMILe on bag-level classification. Unlike for the dis-

tribution over instances, the distribution over bags changes under SMILe. We first

180

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

discuss the effect of SMILe on the bag-level distribution, then discuss how this affects

the kernel-based bag-level normalized set kernel (NSK) classifier.

8.6.1 Effect on Bag-Level Distribution

Although we saw that SMILe does not affect the distribution of instances in a training

set, it clearly affects the distribution over bags. For example, consider a generative

process in which two instances x1 and x2 are almost surely never sampled within the

same bag, but each is sampled with some nonzero probability in some set of separate

positive bags. Then, with nonzero probability, the instances will occur within the

same shuffled bag. However, since this shuffled bag almost surely never appeared in

the original distribution DB over bags, the distribution over bags must have changed

with the addition of shuffled bags.

In fact, assuming a large training sample, we can characterize the expected dis-

tribution over shuffled bags. Since instances are sampled from positive bags to

generate positive shuffled bags, the distribution over these instances is given by

P(x) =
∫
B+ P(x | B) d P(B), which we denote DX+ . Similarly, the distribution over

instances in negative shuffled bags is P(x) =
∫
B− P(x | B) d P(B), denoted DX− . We

call DX+ and DX+ the class-conditional instance distributions. Therefore, if bags are

viewed as distributions, then all positive (or negative) shuffled bags are identical to

DX+ (or DX−). The bag samples themselves differ due to sampling variance, which

depends on bag size. Therefore, the MI generative process with SMILe collapses DB

to a distribution over two bags, given by DX+ and DX+ . The probability mass as-

signed to each of these two bags is given by the fraction of shuffled bags of each class

added to the dataset.

181

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

8.6.2 SMILe and the NSK

Given our understanding of how SMILe affects the distribution over bags, we can

analyze the behavior of the NSK when SMILe is applied to a training set. Recall that

the NSK, discussed in Section 2.3.1, averages instances under some kernel feature

map (see Figure 2.7). We can use kernel principal component analysis (KPCA) to

visualize how the original and shuffled bags are embedding into the feature space

using the NSK with a radial basis function (RBF) kernel (Schölkopf et al., 1998).

Figure 8.3 shows such a plot for the “Checkered Scarf vs. Data Mining Book” dataset

from the CBIR domain. The RBF is used as an instance kernel, with the median

distance between instances used as a heuristic for the RBF scale parameter. The

shuffled bags are generated using a size that guarantees a worst-case noise rate of

εs = 10%. Blue circles are positive bags, and red squares are negative bags. A

Gaussian distribution has been fitted to each bag-level class-conditional distribution.

When we add a sampled set of positive and negative shuffled bags (the hollow points

in Figure 8.3) to the training set, we see that these bags share the same mean as

the class-conditional distribution, but not the same variance. By fitting two more

Gaussian distributions to the shuffled positive and negative bags, we clearly see that

the distribution over shuffled bags differs from that over the original bags in the

training set.

We can more formally analyze the behavior of the NSK demonstrated in Fig-

ure 8.3. Since the NSK treats positive and negative bags symmetrically, we will only

analyze the behavior of positive shuffled bags; the analysis for negative shuffled bags

is identical. Let µ(Xp) be the mean embedding of the set of positive instances. When

the shuffled bag size s is sufficiently large, the mean embedding of a positive shuffled

182

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

PC 1

P
C

2

Figure 8.3: A KPCA plot of the NSK feature space embeddings of the positive bags
(filled blue circles), negative bags (filled red squares), positive shuffled bags (hollow
blue circles), and negative shuffled bags (hollow red squares) for the “Checkered Scarf
vs. Data Mining Book” dataset. Fitted Gaussians are shown for both original and
shuffled bags of each class.

bag µ(S+) is close to µ(Xp). Furthermore, we can rewrite µ(Xp) as:

µ(Xp) =
1

|Xp|
∑

xk∈Xp
φ(xk)

=
1

|Xp|


· · ·+ |Bi|

1

|Bi|
∑

xij∈B+
i

φ(xij) + · · ·




=
1∑

Bi∈Bp |Bi|
∑

Bi∈Bp
|Bi|µ(Bi).

Thus, the kernel mean embedding of Xp is a weighted average of the mean embed-

dings of each bag. When all bags are the same size, as is often the case in practice,

the expression simplifies to µ(Xp) = 1
|Bp|
∑

Bi∈Bp µ(Bi), a simple average of the bag

embeddings.

Therefore, in the feature space of the instance kernel kI, the shuffled bags generally

lie close to the average of the bag embeddings, as observed in Figure 8.3. In practice,

there is some variance due to sampling around these class-conditional embeddings,

but as the shuffled bag size increases, the variance of the embeddings around µ(Xp)

and µ(Xn) will decrease.

183

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

8.6.3 CC-NSK

Since we know the actual distributions from which shuffled bags are sampled, we

can explicitly embed these distributions into the NSK feature space. In particular,

we can use Xp and Xn as empirical samples from the underlying class-conditional

instance distributions, DX+ and DX− . For simplicity, we consider the case when s is

sufficiently large so that the variance of the embeddings around these class-conditional

embeddings is small. It is an open question for future work to consider how the

shuffled bag size s affects the variance of the embeddings. In the case of large bags,

adding shuffled bags is simply like adding many copies of µ(Xp) and µ(Xn) to the

dataset. When many such bags are added, the loss due to the original bags becomes

negligible. Therefore, adding shuffled bags of each class proportional to |Bp| and |Bn|

yields the following simple formulation:

min
α+, α−,

b,
ξ+, ξ−

1
2



α+

α−




ᵀ 

kNSK(Xp, Xp) kNSK(Xp, Xn)

kNSK(Xn, Xp) kNSK(Xn, Xn)






α+

α−


+ C

|B|



|Bp|

|Bn|




ᵀ 

ξ+

ξ−




s.t. α+kNSK(Xp, Xp) + α−kNSK(Xn, Xp) + b ≥ 1− ξ+, ξ+ ≥ 0,

α+kNSK(Xp, Xn) + α−kNSK(Xn, Xn) + b ≤ −1 + ξ−, ξ− ≥ 0.

(8.9)

We call the approach in Equation 8.9 the class-conditional NSK (CC-NSK), since

it uses the NSK to learn from the class-conditional distributions of instances from

which Xp and Xn are samples. While the kernel computation for the NSK still takes

O(|X|2) time, the resulting SVM in Equation 8.9 only has 5 variables regardless of the

problem size, so it can be solved in constant time. Pseudocode for an implementation

of the CC-NSK that uses standard weighted SVM with a precomputed kernel is shown

in Algorithm 3.

Of course, since the embeddings of Xp and Xn are averages of the embeddings of all

184

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

Algorithm 3 CC-NSK

Require: MI dataset (B, Y), regularization–loss trade-off parameter C, instance ker-
nel kI

1: (X, y)← {(xij, Yi) | xij ∈ Bi, (Bi, Yi) ∈ (B, Y)}
2: Xn ← {xi | yi = −1}
3: Xp ← {xi | yi = +1}
4: Cn ← C |Bn||B|
5: Cp ← C |Bp||B|
6: K11 ← NSK(kI, Xp, Xp)
7: K12 ← NSK(kI, Xp, Xn)
8: K21 ← NSK(kI, Xn, Xp)
9: K22 ← NSK(kI, Xn, Xn)

10: f ←WeightedSVM(K, [+1;−1], [Cn;Cp]) . Uses precomputed kernel
11: return f

12: function NSK(kI, X1, X2)
13: sum← 0
14: for i← 1 to |X1| do
15: for j ← 1 to |X2| do
16: sum← sum + kI(X1[i], X2[j])
17: end for
18: end for
19: sum← sum/(|X1| |X2|)
20: return sum

21: end function

bags in Bp and Bn, it may be that the CC-NSK will not generalize well in practice. On

the other hand, for small sample sizes, averaging embeddings might help to regularize

the hypothesis space. Therefore, the benefit of adding many shuffled bags with the

NSK might vary depending on the application. We evaluate these hypotheses in the

experiments below.

8.7 Empirical Evaluation

In this section, we describe several experiments to evaluate whether the addition of

shuffled bags through SMILe improves the accuracy of MI classifiers. We explore

both the standard MI classification setting and the active learning setting in which

185

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

training set sizes are initially small. For both sets of experiments, we evaluate the

use of SMILe with the MI-SVMI on the instance-labeling task and SMILe with the

NSK for the bag-labeling task. Furthermore, we evaluate the performance of the new

SMILeSVM and CC-NSK algorithms. The experimental results allow us to draw the

following conclusions:

• SMILeSVM significantly improves instance-level classification performance mea-

sured across 32 datasets (see Figure 8.4).

• SMILeSVM significantly improves instance-level active learning performance

measured across 32 datasets (see Figure 8.10).

• The CC-NSK or SMILe with the NSK do not improve bag-level classification

performance, possibly due to the change induced in the bag-level distribution

(see Figure 8.7, Figure 8.9).

• Both the CC-NSK and SMILe with the NSK significantly improve bag-level

active learning performance measured across 40 datasets (see Figure 8.11).

A more detailed summary of these conclusions and recommendations for the applica-

tion of SMILe in practice can be found in Section 8.8.

8.7.1 Instance-Labeling Task

We hypothesize that by adding additional instance-level constraints to an MI clas-

sifier, SMILe can improve the instance-labeling performance of such classifiers. As

with our analysis in Section 8.5, we investigate the use of SMILe with the MI-SVMI

classification algorithm. Furthermore, we evaluate the newly proposed SMILeSVM

algorithm, which encodes the addition of many shuffled bags without increasing the

problem size. We compare the proposed approach to the baseline of MI-SVMI without

shuffled bags, as well as to another resampling approach for the MI setting, bag-level

186

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

bagging (Zhou and Zhang, 2003). We hypothesize that SMILe will outperform bag-

level bagging, which does not introduce new instance-level constraints.

Methodology

In order to determine the performance of MI classifiers for the instance-labeling task,

we must use MI datasets that have been annotated with instance labels (note that

instance labels are not used during training). Accordingly, we use 12 instance-labeled

spatially independent, variable area, and lighting (SIVAL) datasets from the CBIR

domain and 20 Newsgroups datasets from the text categorization domain. A detailed

description of the dataset properties can be found in Appendix A.1.

We train the base MI-SVMI algorithm with 0, 25, and 50 shuffled positive bags

generated as described in Algorithm 1. The shuffled bag size s is chosen so that the

worst-case noise rate εs = 10%. Table 8.3 shows the shuffled bag sizes used for each

dataset, as well as the true positive shuffled bag label noise rate that occurs with

each choice of s. Due to datasets with several true positive instances per positive

bag, the actual noise rate is much smaller in practice than the worst case estimate.

The SMILeSVM approach given in Equation 8.8 is also evaluated using the same

shuffled bag size parameter corresponding to εs = 10%. Additionally, we train the

MI-SVMI algorithm on the instance-labeled datasets using up to 50 bootstrap repli-

cates obtained via bag-level bagging (Zhou and Zhang, 2003), in which |B| bags are

resampled with replacement from the original dataset to create each replicate.

We use the RBF kernel k(x, x′) = exp(−γ ‖x −+x′‖2) with MI-SVMI and SMILeSVM.

The kernel parameter γ ∈ 10[−6, 1] and SVM loss–regularization trade-off parameter

C ∈ 10[−3, 5] are selected using random parameter search Bergstra and Bengio (2012)

with 5-fold inner cross-validation on the training set. We use an outer 10-fold strati-

fied cross-validation to evaluate algorithm performance by pooling predictions across

the folds. The maximum number of iterations for iterative optimization procedures

187

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

Table 8.3: Properties of the datasets used for the experiments. The rightmost columns
compare the average bag size to the shuffled bag size s selected so that εs = 10%, and
the actual label error rate resulting from that bag size.

Dataset avgi |Bi| s Actual εs
musk1 5 9 —
musk2 65 59 —

elephant 7 17 —
tiger 6 12 —
fox 7 14 —
field 9 20 —

flower 9 20 —
mountain 9 20 —

OHSUMED1 7 18 —
OHSUMED2 8 19 —

Apple vs. Coke Can 32 72 3× 10−4

Banana vs. Gold Medal 32 72 2× 10−5

Blue Scrunge vs. Ajax Orange 32 71 1× 10−4

Cardboard Box vs. Candle with Holder 32 72 0
Checkered Scarf vs. Data Mining Book 32 73 0

Dirty Work Gloves vs. Dirty Running Shoe 32 72 0
Fabric Softener Box vs. Glazed Wood Pot 32 72 0

Julie’s Pot vs. Rap Book 32 72 0
Smiley Face Doll vs. Felt Flower Rug 32 72 0
Striped Notebook vs. Green Tea Box 32 72 0

WD-40 Can vs. Large Spoon 32 72 0
Wood Rolling Pin vs. Translucent Bowl 31 72 2× 10−5

alt.atheism 53 122 3× 10−2

comp.graphics 31 71 4× 10−2

comp.os.ms-windows.misc 50 116 4× 10−2

comp.sys.ibm.pc.hardware 47 109 3× 10−2

comp.sys.mac.hardware 43 100 3× 10−2

comp.windows.x 31 72 3× 10−2

misc.forsale 51 118 4× 10−2

rec.autos 34 80 4× 10−2

rec.motorcycles 48 110 3× 10−2

rec.sport.baseball 34 79 4× 10−2

rec.sport.hockey 20 46 4× 10−2

sci.crypt 42 96 4× 10−2

sci.electronics 32 74 5× 10−2

sci.med 30 70 4× 10−2

sci.space 37 86 3× 10−2

soc.religion.christian 49 112 3× 10−2

talk.politics.guns 35 80 4× 10−2

talk.politics.mideast 32 75 4× 10−2

talk.politics.misc 45 105 4× 10−2

talk.religion.misc 48 111 4× 10−2

188

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

is set to 50. Since SMILe only trains on a single random resampling, we perform 10

repetitions for each outer training fold to reduce variance in the performance estimate

caused by the resampling procedure. A separate pool across the 10 folds is kept for

each repetition, and the resulting pooled performance measures are averaged across

repetitions.

Because there is a large imbalance between positive and negative instances in

the datasets, we use balanced accuracy to evaluate predictions. Balanced accuracy is

defined as the average of the true-positive rate and true-negative rate. We only use the

true instance-level labels to evaluate performance, so we only compute instance-level

balanced accuracy on the predictions pooled on outer folds. Therefore, we use bag-

level balanced accuracy (which is essentially accuracy because classes are balanced in

our datasets at the bag level) for parameter selection during the inner cross-validation.

We use the Wilcoxon signed-rank test to test the null hypothesis that the perfor-

mance of SMILe or SMILeSVM differs significantly from MI-SVMI across datasets.

Independent tests are used to make pairwise comparisons between the approaches

and the baseline with a significance level of α = 0.05.

Results and Discussion

Figure 8.4 shows a summary of results comparing SMILe and SMILeSVM to the base

MI-SVMI classifier. Appendix A.2.4 lists a full table of numerical results. Figure 8.5

shows learning curves for bag-level bagging. To more easily compare across datasets,

the percent improvement relative to the baseline of MI-SVMI without bagging is

shown. The average percent improvement across datasets is plotted as a dashed line.

In Figure 8.4, we see that SMILeSVM, which simulates adding a large sample of

shuffled bags to the traing set, improves performance significantly across datasets with

α = 0.05 significance. Adding a finite number of shuffled bags occasionally improves

performance, but not always. When 25 bags are added, there is no significant increase

189

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%
Pe

rc
en

tI
m

pr
ov

ed
ov

er
M

IS
V

M
I

MISVMI+
SMILe (25)

MISVMI+
SMILe (50)

SMILeSVM
(εs = 10%)

Worse

Better

Figure 8.4: A summary of the percentage of the datasets for which SMILe or im-
proves performance in terms of instance-level balanced accuracy over the baseline
algorithm. Statistically significant differences are indicated with a star for increases
in performance and a triangle for decreases in performance.

0 10 20 30 40 50

Bagging Iterations

-20.0%

-15.0%

-10.0%

-5.0%

0.0%

5.0%

R
el

at
iv

e
Im

pr
ov

em
en

t

Figure 8.5: A plot of the percent improvement in performance relative to the baseline
algorithm using bag-level bagging. The solid line shows how the average performance
across datasets changes as various numbers of bootstrap replicates are used. The
dashed lines show the minimum and maximum improvement.

190

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

102 103 104 105

Total Instances (Training + Shuffled)

10−3

10−2

10−1

100

101

102

103

104

105

106

Tr
ai

ni
ng

Ti
m

e
(s

)

SMILe+MI-SVM
SMILeSVM

SMILe+NSK
CC-NSK

Figure 8.6: A comparison of the training times of the NSK (blue squares) and (green
circles) with SMILe, as well as that of the CC-NSK (dashed blue line) and of (solid
green line). Least-squares fits of the training times are plotted as black dashed lines.

or decrease in performance across the 32 datasets. However, when 50 shuffled bags

are added to each dataset, the performance decreases significantly.

We conjecture that when many shuffled bags are added to the dataset, the com-

plexity of the resulting QP may cause the decrease in performance. In particular,

the addition of 50 shuffled bags more than doubles the number of instances and con-

straints for some datasets, which tends to make the nonconvex MI-SVMI optimization

procedure more challenging to solve numerically than that of SMILeSVM. Further-

more, the additional bags quadruples the kernel size and approaches the limit of what

can be stored in memory.

The performance of SMILeSVM supports our hypothesis that the addition of

shuffled bags can improve the performance of an MI classification algorithm. There

are only 4 of 32 datasets for which SMILe or SMILeSVM does not improve the

performance of MI-SVMI. However, due to the negative practical consequences of

explicitly adding shuffled bags to the dataset, we recommending using SMILeSVM

explicitly rather than adding shuffled bags with SMILe.

Figure 8.6 shows a comparison of the running times of SMILeSVM and MI-SVMI

with SMILe. The solid green line shows the average runtime of SMILeSVM. Because

191

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

of the additional iterative optimization required, SMILeSVM takes longer to run

than MI-SVMI with shuffled bags (green circles). However, a best-fit line shows

that explicitly adding shuffled bags will eventually require more training time than

SMILeSVM, which implicitly uses an infinite number of shuffled bags. On the other

hand, as discussed above, memory remains the bottleneck when explicitly adding

shuffled bags, so MI-SVMI with SMILe will likely encounter practical issues before

the dataset exceeds roughly 25,000 instances in size.

The results in Figure 8.5 show that bag-level bagging does not improve, and even

harms, performance of instance-level MI classification. These results align with our

hypothesis that resampling entire bags does not add instance-level constraint infor-

mation to the classifier. While bag-level bagging might improve bag-labeling perfor-

mance, recent work has described how good bag-level performance does not necessar-

ily imply good instance-level performance (Tragante do Ó et al., 2011). Therefore,

for the instance-labeling task, SMILe improves performance while resampling entire

bags does not.

8.7.2 Bag-Labeling Task

We hypothesize that although SMILe alters the bag-level distribution of the training

set, it can improve the performance of bag-level labeling by providing additional novel

examples to an MI classification algorithm. As in Section 8.6, we focus our empirical

analysis on the use of SMILe with the NSK. We also investigate the use of bag-level

bagging with the NSK as an alternative resampling approach.

Methodology

As for the instance-labeling experiments, we use 12 SIVAL datasets and 20 News-

groups datasets. However, because instance-level labels are no longer required for

evaluation of bag-labeling approaches, we additionally include 3 animal and 3 scene

192

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

image datasets from the CBIR domain, 2 from the 3D-QSAR domain, and 2 from

the text categorization domain (see Table A.2). The properties of these datasets are

listed in Table 8.3, with additional details in Appendix A.1.

We train an SVM using the NSK with 0, 25, and 50 shuffled bags of each class. We

choose the shuffled bag size so that the worst-case label noise on the shuffled positive

bags is εs = 10% (see Table 8.3 for the shuffled bag sizes used for each dataset). We

also evaluate the CC-NSK approach given in Equation 8.9. The CC-NSK does not

take any parameters beyond the kernel and SVM parameters. We also evaluate bag-

level bagging with the NSK using all datasets. We use up to 50 bootstrap replicates

as for the instance-labeling experiments. We use the RBF kernel for the instance

kernel kI used to construct the NSK. Parameter selection and cross-validation are

performed as described above for instance-labeling experiments.

Because the datasets we use for bag-labeling experiments have roughly equal num-

bers of positive and negative bags, we use accuracy to evaluate performance. We use

the Wilcoxon signed-rank test to test the null hypothesis that the performance of

SMILe or CC-NSK differs significantly from the NSK across datasets. Independent

tests are used to make pairwise comparisons between the approaches and the baseline

with α = 0.05 significance.

Results and Discussion

Figure 8.7 summarizes the performance of SMILe and the CC-NSK compared with

the baseline NSK approach. A full table of results can be found in Appendix A.2.4.

Figure 8.8 shows the results of bag-level bagging with the NSK base classifier. As

in the instance-labeling experiments above, we plot relative percent improvement to

make comparison easier across datasets. The dashed line shows the average percent

improvement of bagging with increasing numbers of bootstrap replicates used along

the x-axis.

193

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%
Pe

rc
en

tI
m

pr
ov

ed
ov

er
N

S
K

NSK+
SMILe (25) NSK+

SMILe (50) CC-NSK

Worse

Better

Figure 8.7: A summary of the percentage of the datasets for which SMILe or the
CC-NSK improves performance in terms of bag-level accuracy over the baseline NSK
approach. Statistically significant differences are indicated with a triangle for de-
creases in performance.

0 10 20 30 40 50

Bagging Iterations

-40.0%

-30.0%

-20.0%

-10.0%

0.0%

10.0%

20.0%

R
el

at
iv

e
Im

pr
ov

em
en

t

Figure 8.8: A plot of the percent improvement in performance relative to the baseline
NSK approach using bag-level bagging. The solid line shows how the average perfor-
mance across datasets changes as various numbers of bootstrap replicates are used.
The dashed lines shows the minimum and maximum improvements.

194

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

First, we observe that if we add a small number of shuffled bags, the accuracy of

SMILe relative to the baseline NSK occasionally improves, but for less than half of

the datasets. As the number of shuffled bags increases towards the limiting case of

the CC-NSK, the benefit of SMILe decreases and accuracy is statistically worse than

the baseline after 50 shuffled bags are added.

The decrease in performance with large numbers of shuffled bags, or the limiting

case simulated by the CC-NSK, is likely due to the difference between the train and

test distributions over bags induced by SMILe, as discussed in Section 8.6. For bag-

level classifiers like the NSK, the discrepancy between train and test distributions can

lead to bad generalization, and might contribute to the poor performance observed

in Figure 8.7. We conjecture that similar behavior would be observed for other MI

algorithms that map entire bags into a feature space for classification. As noted in

prior work, some bag-level classifiers can take advantage of the structure of instances

within bags (Zhou et al., 2009), but SMILe disrupts this structure. We note that

similar behavior is not observed for instance-labeling approaches, since SMILe does

not alter the underlying distribution over instances as it does the distribution over

bags—instances are sampled from the underlying instance distribution.

We observe that the performance of bag-level SMILe varies across datasets. For

example, SMILe benefits performance for the “elephant” dataset, but significantly

reduced the performance for the “Julie’s Pot vs. Rap Book” dataset. We conjec-

ture that such differences can be at least partially explained by the fact that SMILe

introduces a discrepancy between the training and test distributions over bags, as de-

scribed above. To test this conjecture, we explicitly measure the difference between

the original training distribution and the distribution over shuffled bags induced by

SMILe using a kernel-based two-sample test (Gretton et al., 2007, 2009). To apply

the two-sample test to distributions over bags, we use the universal “level-2” embed-

ding kernel (Muandet et al., 2012). That is, we first embed bags into an RKHS using

195

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

10−24 10−22 10−20 10−18 10−16 10−14 10−12 10−10 10−8 10−6 10−4 10−2 100

Two-Sample Test p-value

-40.0%

-30.0%

-20.0%

-10.0%

0.0%

10.0%

C
C

-N
S

K
R

el
at

iv
e

Im
pr

ov
em

en
t

Cardboard Box vs. Candle with Holdermisc.forsale

WD-40 Can vs. Large Spoon

talk.politics.misc

comp.graphics
comp.windows.x

Apple vs. Coke Can

talk.politics.mideast

talk.politics.guns

Smiley Face Doll vs. Felt Flower Rug

tiger

sci.space

Checkered Scarf vs. Data Mining Book

rec.sport.hockey

rec.sport.baseball

Dirty Work Gloves vs. Dirty Running Shoe

Wood Rolling Pin vs. Translucent Bowl

alt.atheism

Striped Notebook vs. Green Tea Box

sci.electronics

comp.os.ms-windows.misc

comp.sys.mac.hardware
soc.religion.christian

Fabric Softener Box vs. Glazed Wood Pot

rec.motorcycles

sci.med

talk.religion.misc

fox

comp.sys.ibm.pc.hardware

Julie’s Pot vs. Rapbook

rec.autos

sci.crypt

Blue Scrunge vs. Ajax Orange

elephant

Banana vs. Gold Medal

musk1

Least Squares (R = 0.35)

Figure 8.9: A plot demonstrating the relationship between the performance of the CC-
NSK and the distance between the original training distribution and the distribution
over shuffled bags, as measured by the kernel-based MMD test statistic p-value.

the RBF kernel with the γ selected via cross validation in the experiments described

above, and then embed the resulting distributions over bags into an RKHS using a

second RBF kernel with the bandwidth parameter selected using the median heuristic

(Gretton et al., 2009). The two samples compared are the original set of bags and

a set of shuffled bags containing the same number of positive and negative bags as

the original training set. We use the biased Maximum Mean Discrepancy (MMD)

test statistic, with a Gamma distribution used to approximate the null distribution

(Gretton et al., 2009).

Figure 8.9 shows the relative performance of the CC-NSK (with respect to the

baseline with no shuffled bags) as a function of the p-value of the MMD test statistic.

Datasets with zero p-values are omitted. For datasets with large p-values, the two-

sample test does not detect a large difference between the distributions over original

and shuffled bags. In this case, we observe that there is often little degradation in

196

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

performance when using SMILe. On the other hand, as the p-value of the MMD test

statistic decreases, meaning that there is a more apparent discrepancy between the

original and shuffled bag distributions, SMILe tends to negatively affect the perfor-

mance of the base classifier. The Pearson correlation coefficient between log p-values

and relative performance is 0.35, which suggests a modest but statistically significant

(α = 0.05) relationship between the change in distribution as measured by the two-

sample test and the performance of SMILe. Because the correlation is low, despite

being significant, there are likely other factors that contribute to the poor performance

of SMILe when used with the NSK for classification. For example, we conjecture that

because the NSK with an RBF kernel essentially represents linear concepts over bags

(Muandet et al., 2012), the variance reduction afforded by SMILe does not lead to an

improvement in performance given the number of bags in the training sample. We

show in Section 8.7.3 that with fewer training bags, SMILe can provide an advantage

in most cases. On the other hand, the results in Figure 8.9 themselves suggests that

SMILe can be conservatively applied to bag-level classifiers when there is not a signif-

icant difference between the training and shuffled bag distributions according to the

kernel two-sample test. However, there are clearly some scenarios in which SMILe

improves performance despite the discrepancy between distributions.

Additionally, we note that the results in Figure 8.7 appear to support our hypoth-

esis that the CC-NSK approximates the limiting behavior of the NSK with many

shuffled bags. To further quantify the relationship between the CC-NSK and the

NSK with SMILe, we measure the correlation between the improvements over the

baseline NSK of both approaches. After 50 shuffled bags, the Pearson correlation

coefficient is 0.32, with is statistically significant at α = 0.05. Therefore, the results

suggest that, as hypothesized, the behavior of SMILe with the NSK is significantly

related to the performance of the CC-NSK when large numbers of bags are used.

Though the CC-NSK solves a constant-sized optimization program, Figure 8.6

197

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

shows that the average training time of the CC-NSK (dashed blue line) is not sig-

nificantly less than that of the NSK without shuffled bags (left-most blue circles).

This is because both CC-NSK and the NSK require computing a kernel matrix with

O(|X|2) entries. Although the NSK additionally requires solving a QP, which takes

roughly O(|B|3) time, |X| � |B| for many datasets, so the additional time is rel-

atively negligible in practice. On the other hand, running time does increase with

more explicitly added shuffled bags, so CC-NSK does have an advantage over SMILe

in terms of running time.

Finally, we observe that bagging slightly decreases performance on average for

this task. This is possibly due to low bag-level label noise in most of these datasets,

which consist of manually annotated images (so that, for example, it is very rare that

an image from the “Coke Can” class will be mislabeled as not containing a Coke can,

etc.) and Newsgroups posts with ground-truth labels.

8.7.3 Active Learning Task

As argued in Section 8.2, SMILe can be viewed as adding “virtual examples” to

a training set, which provides a form of regularization by reducing the variance in

the underlying hypothesis class. Regularization can be particularly useful when the

training set is small. Furthermore, a small training sample does not provide a reliable

estimate of the underlying distribution over bags. For these reasons, the benefits of

SMILe might outweigh the issues caused by the changes in distribution for bag-level

labeling, as discussed above. Small datasets arise naturally in the active learning

domain, in which an oracle (e.g., a human user of the system) is iteratively queried

for labels to learn an accurate classifier using very few labeled examples. Active

learning in the MI setting was introduced in prior work (Settles et al., 2008), where

instance labels are queried to improve an instance classifier initially trained with few

labeled bags. In these experiments, we instead focus on a setting in which a user is

198

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

queried for the labels of bags to train a classifier for predicting the labels of either

instances or bags in a test dataset. As above, we evaluate active learning with bag-

and instance-labeling approaches (NSK and MI-SVMI), as well as the novel CC-NSK

and SMILeSVM techniques.

Methodology

For the active learning experiments, we use the same datasets as described in the ex-

periments above. Because only small training samples are used during active learning,

we do not perform cross-validation for parameters. Instead, we fix the RBF kernel

parameter γ and the SVM regularization–loss trade-off parameter C to be the values

found via cross-validation in the experiments above. For the case of SMILe with ei-

ther the NSK or MI-SVMI, we use the parameter values found using cross-validation

on the corresponding baselines without shuffled bags. Thus, if any bias is introduced

in the SMILe+MI-SVMI or SMILe+NSK experiments, it is in favor of the baseline

with no shuffled bags.

We compute performance using predictions pooled across an outer 10-fold cross-

validation. Within each training fold, we repeat the active learning procedure 20

times. The active learning procedure is repeated 20 times. The active learning

procedure consists of sampling an initial number of labeled bags, either 5 or 10 from

each class. The remaining bags form an unlabeled “pool.” At each iteration, some

fraction of shuffled bags are added to the training set to train the base classifier using

SMILe. For MI-SVMI, either 0%, 50%, or 100% of the number of positive training

bags are used, for a maximum of 40 shuffled bags of each class. For the NSK, the same

fractions are used for shuffled positive and negative bags. No shuffled bags are added

when the CC-NSK or SMILeSVM are used as the learners. We select the shuffled bag

size corresponding to a worst-case noise rate of εs = 10%. Then we use the “simple

margin” strategy (Tong and Koller, 2002) to query a batch of k = 2 labels of the bags

199

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

Algorithm 4 SMILe Active Learning

Require: Initial MI dataset (B0, Y0), unlabeled pool Bpool, bag-labeling oracle O,
noise rate εs, base learner A, fraction of shuffled positive bags σp, fraction of
shuffled negative bags σn, step size k, iterations n

1: Bt ← B0

2: Yt ← Y0

3: C0 ← SMILe(Bt, Yt, εs,A, σp
∣∣B+

t

∣∣ , σn
∣∣B−t

∣∣) . Initial classifier
4: for i← 1 to dn/ke do
5: Ypool ← Ci−1(Bpool) . Estimate labels of examples in pool
6: for j ← 1 to k do
7: m← arg mini |Ypool[i]| . Find example closest to SVM hyperplane
8: Ypool.pop(m) . Remove label for next iteration
9: Bm ← Bpool.pop(m)

10: Bt ← Bt ∪Bm

11: Yt ← Yt ∪ O(Bm)
12: end for
13: Ci ← SMILe(Bt, Yt, εs,A, σp

∣∣B+
t

∣∣ , σn
∣∣B−t

∣∣)
14: end for
15: return {Ci}

that are closest to the SVM separator. After every batch of queries, the resulting

classifier is retrained with the additional labeled bags and evaluated on the held-out

test fold. The process described above continues until the labels of n = 30 bags have

been queried. Algorithm 4 gives an overview of the procedure.

As in the experiments above, we use accuracy to evaluated bag-labeling perfor-

mance and balanced accuracy to evaluate performance at the instance level. After

each active learning query, classifier predictions are made on the 10 held-out test folds

and pooled to compute accuracy. Then, these accuracy values are averaged across

the 20 repetitions using different sets of initial bags to reduce variance due to sam-

pling/resampling. After each batch of queries, we use a Wilcoxon signed-rank test

to test the null hypothesis that the performance of the procedure with SMILe differs

from the baseline of active learning without the addition of any shuffled bags.

200

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

0 5 10 15 20 25 30

Queries

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Pe
rc

en
tI

m
pr

ov
em

en
t

ov
er

M
I-S

V
M

I

5 Initial Bags

0 5 10 15 20 25 30

Queries

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%
10 Initial Bags

σp = 50%

σp = 100%

SMILeSVM

Figure 8.10: (Instance-Level MI Active Learning) Each plot shows an active
learning experiment starting with 5 or 10 initial bags. For either 50% shuffled bags,
100% shuffled bags, or the , the y-axis represents the fraction of the times (across
the 32 instance-labeled datasets) that SMILe outperforms the baseline of the with
no shuffled bags. The results are plotted as the number of bag label queries increases
along the x-axis. Stars and triangles indicate a significant increases and decreases in
performance with SMILe relative to baseline balanced accuracy values using a 2-sided
Wilcoxon signed-rank test at 0.05 significance.

0 5 10 15 20 25 30

Queries

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Pe
rc

en
tI

m
pr

ov
em

en
t

ov
er

N
S

K

5 Initial Bags

0 5 10 15 20 25 30

Queries

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%
10 Initial Bags

σp, σn = 50%

σp, σn = 100%

CC-NSK

Figure 8.11: (Bag-Level MI Active Learning) Each plot shows an active learning
experiment starting with 5 or 10 initial bags. For either 50% shuffled bags, 100%
shuffled bags, or the CC-NSK, the y-axis represents the fraction of the times (across
the 42 datasets) that SMILe outperforms the baseline of the NSK with no shuffled
bags. The results are plotted as the number of bag label queries increases along the
x-axis. Stars indicate a significant difference between SMILe and baseline accuracy
values using a 2-sided Wilcoxon signed-rank test at 0.05 significance.

201

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

Results and Discussion

Figure 8.10 and Figure 8.11 show the active learning results. Figure 8.10 shows

the fraction of the time that SMILe or SMILeSVM outperforms the baseline of the

MI-SVMI with no shuffled bags with respect to instance-level balanced accuracy.

Similarly, Figure 8.11 shows the fraction of the time that either SMILe or the CC-

NSK outperforms the baseline of the NSK with no shuffled bags on bag-level accuracy.

In both cases, significant differences for either better or worse performance according

to the Wilcoxon signed-rank test with α = 0.05 significance are indicated with stars

or triangles, respectively.

The instance-level results in Figure 8.10 show a benefit of SMILe for improving

the performance of the MI-SVMI. As for the classification experiments, SMILeSVM

clearly improves the performance of active learning relative to the baseline MI-SVMI

approach. SMILe with a finite number of shuffled bags does not improve the per-

formance of the baseline classifier, but actually leads to lower balanced accuracy.

However, this result is not surprising given that the parameters have been fixed to

those that produce the best performance of the baseline on the full training set.

The bag-level results in Figure 8.11 confirm our intuition that bag-level SMILe

can be beneficial when datasets are small. In fact, even the CC-NSK, which per-

forms poorly relative to the NSK on the full datasets, outperforms the baseline NSK

approach in the active learning scenario. Thus, using small datasets, our results

demonstrate that SMILe and the CC-NSK can prevent over-fitting by regularizing

the hypothesis space. In the case of active learning, the benefit of the regulariza-

tion afforded by SMILe can outweigh the issues caused by distorting the training

distribution.

202

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

Which variant
of SMILe is
applicable?

Labeling Task?

Small training set
(Active Learning)?

Two-sample test
between original
and shuffled bags

rejects null
hypothesis?

(Figure 8.4,
Figure 8.10)

CC-NSK
(Figure 8.11)

CC-NSK or
NSK+SMILe

with small
number of

shuffled bags
(Figure 8.9)

Further
exploration
needed to
determine

whether SMILe
will improve
performance

bag

instance

no

yes

noyes

Figure 8.12: A flowchart summarizing recommendations for applying SMILe in prac-
tice, given the experimental results above.

8.8 Summary

In this chapter, we presented a new resampling approach for the MI setting in which

new bags can be constructed to augment a small dataset. We used the new generative

model to analyze the effect of the resampling process on instance- and bag-level distri-

butions, and to develop new SVM-based classifiers. We then performed experiments,

which inform when SMILe might be applied in practice. Given the experimental

results, our recommendations for applying SMILe are presented as a flowchart in Fig-

ure 8.12. For the instance-labeling task, our results show SMILeSVM to be superior

203

CHAPTER 8. SHUFFLED MULTIPLE-INSTANCE LEARNING

in practice to explicitly adding shuffled bags (Figure 8.4). Furthermore, SMILeSVM

improves performance significantly across datasets in both the standard classification

and active learning settings (Figure 8.10). For bag-labeling, SMILe, and especially

the CC-NSK, consistently improves performance when bag sizes are small in the

active learning setting (Figure 8.11). For the standard classification task, SMILe

can hurt the performance of bag-level classifiers (Figure 8.7). However, as long as

the shuffled bags do not significantly affect the training distribution, it appears that

SMILe will not hurt performance (Figure 8.9). Otherwise, SMILe could be applied

to the bag-level classification task after checking the difference between the shuffled

bag distribution and the original bag distribution.

204

Chapter 9

Conclusions

Although MIL is a well-established learning framework for which many algorithms

exist, the theoretical basis for the setting has received relatively little attention. Pre-

vious models of how data is generated in the MI setting make assumptions that are

not realistic (Blum and Kalai, 1998; Zhou et al., 2009). For example, the IID r-tuple

model assumes that instances across all bags are drawn from the same distribution,

when for the 3D-QSAR domain, this would imply that every molecule had an iden-

tical distribution over conformations. With these simplified generative models, a few

positive learnability results are known (Blum and Kalai, 1998), but most results under

relaxed models show that MIL is hard in the worst case (Auer et al., 1998).

At the same time, empirically, several counterintuitive observations have been

observed in the literature. First, some work shows that if area under the ROC curve

(AUC) is used as an evaluation metric, supervised learning algorithms appear to

perform well on MIL tasks (Ray and Craven, 2005). Second, other work shows that

unlike the generative assumption made in prior models that instance labels determine

bag labels, in practice, there can be little correlation between the performance of MI

algorithms on these two tasks (Tragante do Ó et al., 2011).

The contributions of this work, summarized below, include the introduction of a

205

CHAPTER 9. CONCLUSIONS

new theoretical framework for the MI setting that can (1) make sense of counterin-

tuitive empirical observations, (2) be used to demonstrate new positive learnability

results, (3) analyze existing MI algorithms in a way that explains their behavior, and

(4) develop and apply novel approaches to the MI learning problem.

9.1 Summary

My contribution is a two-level generative model that leverages the observation that

bags can be viewed as distributions over instances. This generative model is de-

scribed in detail in Chapter 3. I show that this generative model has explanatory

and predictive power, both theoretically and empirically. It is primarily motivated by

an attempt to be more realistic for real-world problem domains, such as 3D-QSAR,

where molecules can be represented by a distribution over conformations. In fact, I

show that most of the surprising empirical observations in literature can be explained

under this new model. First, I show in Chapter 4 that instance and bag concepts are

learnable under the model, providing the first positive instance learnability results

since Blum and Kalai (1998), of which our results are a generalization. Further, we

show in Chapter 5 that the new generative model allows us to show that supervised

algorithms can learn to rank from MI data.

A summary of the theoretical results on instance and bag concept learnability can

be found in Table 4.1. The results require some additional weak assumptions about

the relationship between bag and instance labels, as summarized in Table 9.1. For

instance learnability, we require that each negative instance appears some fraction

of the time in negative bags (γ > 0). Otherwise, such instances would be indistin-

guishable from positive instances, which naturally appear only in positive bags. For

bag learnability, we require that positive instances occur some fraction of the time in

every positive bag (π > 0). If not, then there would be positive bags containing only

206

CHAPTER 9. CONCLUSIONS

Table 9.1: A summary of the assumptions required for various results.

. . . using
instance-level

classifiers.

. . . using
bag-level
classifiers.

Learning
instance-level

concepts. . .

Theorem 4.1
Theorem 5.1

γ > 0
—

Learning
bag-level

concepts. . .

Theorem 4.3
Theorem 5.3
γ > 0, π > 0

Proposition 6.1
π > 0

negative instances, which would be indistinguishable from negative bags that natu-

rally only contain negative instances by the MI assumption. Essentially, the γ > 0

assumption is only essential for learning instance labels (see Chapter 4). For learning

bag labels with a universal distribution kernel, only the π > 0 assumption is required

(see Chapter 6). Both assumptions are only required simultaneously if one wishes to

learn bag labels using an instance-level classifier whose predictions are combined via

the max function (see Chapter 4). However, the results in Chapter 6 suggest that

bag-level classifiers should be used for the bag-level learning task.

Finally, we introduce a new resampling approach, SMILe, which adds additional

labeled bags to an MI training set. We show that SMILe can improve the performance

of MI classifiers when the training set is initially small, as in the active learning setting.

We use our generative model to analyze how the resampling procedure affects the

generative process of the data.

We present empirical results that support the theoretical predictions made under

our generative model. Our results also provide some indication of when certain ap-

proaches should be used in practice to learn from MI data. Figure 9.1 summarizes the

lessons learned from the empirical results. The first relevant question is whether the

training sample is large or small in terms of the number of bags. Since the theoretical

results in Chapter 4 only show asymptotic learnability, specialized algorithms might

207

CHAPTER 9. CONCLUSIONS

perform best when the sample size is small. In particular, if prior knowledge of the

problem domain is available, then additional assumptions might be used to design

a “generative” classifier that incorporates these assumptions. Otherwise, the results

in Chapter 8 show that SMILe can improve the performance of both instance- and

bag-level classifiers when the training set is small.

If the dataset is large, then generative classifiers could become inefficient, even

if prior information is available. However, depending on the learning task, the use

of more efficient supervised approaches is justified. For the bag-level classification

task, Chapter 6 shows that using distribution-based kernels with a standard SVM

implementation achieves state-of-the-art performance on the bag-labeling task with

respect to either accuracy or AUC.

For the instance-level classification task, the choice of algorithm depends on the

performance metric. If high AUC is desired, then a good classifier can be learned

using single-instance learning (SIL), which labels every instance with its bag’s label

and trains a supervised classifier, such as an SVM. Theoretical and empirical support

for this claim is provided in Chapter 5. If high accuracy is desired, then one can use a

minimum one-sided disagreement strategy (see Chapter 4). However, although mini-

mum one-sided disagreement is straightforward, it is not commonly used in practice.

One alternative, as described in Chapter 8, is to use SMILeSVM, a new resampling-

based SVM approach that we propose for the MI setting. We show empirically that

SMILe improves instance-level balanced accuracy of the MI-SVMI classifier.

Thus, while empirical results show that specialized MI techniques such as SMILe

perform well in certain scenarios, out-of-the-box supervised algorithms can achieve

good performance for many MI learning tasks. As a consequence for future empiri-

cal studies, our results suggest that newly proposed MI-specific approaches should be

compared not just to existing MI baselines, but also to their supervised counterparts

to clearly establish their value.

208

CHAPTER 9. CONCLUSIONS

What
approach to

use?

Sample Size?
Prior

Knowledge?
SMILe

(Chapter 8)

Refine
Generative

Model

Labeling Task? Metric?

Min. One-Sided
Disagreement
(Chapter 4) or

SMILeSVM
(Chapter 8)

Distribution
Kernel & SVM

(Chapter 6)

SIL & SVM
(Chapter 5)

small no

yes

large

bag

instance acc.

AUC

Standard Supervised Approaches

SMILe

Figure 9.1: A summary of the recommended approaches for various MI learning
scenarios, with the chapters containing theoretical or empirical justification.

Finally, our theoretical and empirical results also offer an explanation for why

instance and bag labels are not correlated. Learning bag labels is computationally

challenging using an instance-labeling hypothesis space (see Chapter 7), but our model

offers a way to directly learn bag labels. In particular, we explore the application of

distribution kernels to MI data. We show that previous bag-level kernel approaches

can be explained as variations of the distribution kernel approaches (Chapter 6). Ex-

perimentally, many of these approaches are (a) efficient relative to instance-based

approaches and (b) more accurate at predicting bag labels. As part of this work, we

present a novel application of the level-2 kernel (Muandet et al., 2012) to MI prob-

lems, and we show that the performance of the kernel is promising. The empirical

consequence of this work clearly demonstrates that the bag- and instance-level learn-

209

CHAPTER 9. CONCLUSIONS

ing tasks should be treated separately, as treated by our generative process, and that

different algorithms are appropriate at each level.

9.2 Future Work

Of course, we have only just begun to analyze the consequence of viewing bags in

the MI setting as distributions. Below is a brief outline of some interesting research

questions and directions that are suggested by our work.

One interesting technical question raised by the analysis in Section 6.3 concerns the

representational power of the Earth-Mover’s Distance (EMD) kernel. As described,

the EMD and the Maximum Mean Discrepancy (MMD) are both metrics on the

space of probability distributions, and both induce the same “weak” topology on

that space. However, one key difference between these metrics is that the MMD is

Hilbertian (it can be expressed in terms of an inner product), whereas the EMD is

not. Currently, the proof of the universality of the MMD when used with the radial

basis function (RBF) kernel relies on the fact that it is a Hilbertian metric. However,

intuition suggests that the EMD used with an RBF kernel might be universal as

well. Demonstrating the universality of this EMD kernel, or showing why it is not

universal, is an interesting open question for future work, especially given the excellent

performance of the EMD kernel for MI problems.

Another theoretical question of interest is whether specific algorithms are neces-

sary to learn accurate concepts from MI data. In the results we present in Chapter 4,

the minimum one-sided disagreement approach is required to learn accurate concepts

from MI data. In contrast, the results in Chapter 5 demonstrate that standard su-

pervised approaches can learn to rank from MI data. However, we have now shown

that it is not possible to also use standard supervised approaches for learning accu-

rate concepts. While we conjecture that learning accurate concepts with standard

210

CHAPTER 9. CONCLUSIONS

supervised approaches is not generally possible in the MI setting, this remains an

open question.

Section 2.1.3 discusses MI regression as a generalization of the standard MI classi-

fication setting. In MI regression, bag labels are real-valued, and formed through

some more general combination of instance labels. Very recent work has estab-

lished some theoretical guarantees for distribution-based kernel methods applied to

the distribution-regression problem (Szabó et al., 2014). Such results can be used

to show the learnability of bag-level concepts in the MI regression setting. Another

open direction is to derive analogous instance-concept learnability results in this set-

ting. Formulating such a result could be more challenging due to the many possible

ways that real-valued bag labels could be derived from real-valued instance labels.

It is unclear whether supervised approaches might be able to learn real-valued MI

instance-level concepts.

The generative model proposed in this work make very few assumptions about

the distribution over bags and the distributions corresponding to the bags them-

selves. Consequently, the learnability results derived in Chapter 4 only describe the

asymptotic behavior of a learning algorithm when a large training sample is avail-

able. On the other hand, with more specific generative assumptions, it is possible to

learn an accurate model from a much smaller training set. Classifiers that make as-

sumptions about the data distribution and learn to model the joint distribution over

examples and their labels are called “generative” classifiers. Classifiers that directly

model the conditional distribution of labels given instances are called “discrimina-

tive.” For example, näıve Bayes is a generative classifier and logistic regression is

the corresponding discriminative classifier (Ng and Jordan, 2002). Näıve Bayes tends

to perform better than logistic regression for small samples, but logistic regression

eventually outperforms näıve Bayes as the samples grow (Ng and Jordan, 2002).

Most work on classification in the MI setting has been to develop discrimina-

211

CHAPTER 9. CONCLUSIONS

tive classifiers, such as SVMs. For instance, MI logistic regression (Ray and Craven,

2005) was developed roughly 5 years prior to a version of näıve Bayes for the MI

setting (Hernández and Inza, 2011). However, given the theoretical conclusions of

our work, summarized in Figure 9.1, supervised approaches can actually outperform

many MI-specific approaches with large training datasets, which is the realm in which

discriminative approaches are advantageous. Therefore, our work suggests that fu-

ture work should place more emphasis on developing generative multiple-instance

algorithms which can perform well when the training sample is small.

For real-world domains such as computational biology, some examples are inher-

ently high-dimensional. For example, millions of nucleotide pairs can be used to

describe the genome of an individual. Therefore, dimensionality reduction plays an

essential role in supervised learning for reducing the complexity of a model needed

to classify examples. In the MI setting, dimensionality reduction might play an ad-

ditional role. In particular, dimensionality reduction might be used to induce the

property that negative instances appear in negative bags (γ > 0), a key assumption

of the generative model proposed in Chapter 3. For example, consider the 3D-QSAR

domain. Suppose that each molecular conformation was described precisely with

a very large feature vector. Because every conformation is unique, given a precise

enough description, no conformation will appear in two different bags. Thus, no neg-

ative instance in a positive bag will ever appear in a negative bag, violating the γ > 0

assumption. In this case, dimensionality reduction might be used to abstract away

irrelevant properties of conformations such that it is possible to observe all negative

instances in negative bags some fraction of the time.

As motivated in the introduction (Chapter 1), the MI representation is one of the

most basic ways of representing structured data. However, there are many other forms

of structured data with examples that are represented as tree, graphs, or relations

stated in first-order logic. We have shown that by applying the idea of learning from

212

CHAPTER 9. CONCLUSIONS

distributions to the MI setting, we are able to derive positive learnability results.

Therefore, it might be possible to extend some of the techniques developed in our

work to analyzing problems for other forms of structured data as well.

In relational learning, examples are expressed not as feature vectors, but as state-

ments about the attributes of objects and the relationships between objects expressed

in first-order logic. The expression of attributes and relations is accomplished using

predicates. For example, given objects x1 and x2, attributes might be expressed

as in attribute1(x1), attribute2(x1), and a relationship might be expressed as

relationship(x1, x2). Relationships might also be expressed using universal or ex-

istential quantification over a free variable. A relational learning dataset consists of

a set of objects, attributes, and relations. The learning task might be to predict

whether unseen objects have a particular attribute, which plays a role like a class

label in supervised classification, given a set of known attributes and relations. Alter-

natively, in the relational learning setting, the task could be to predict the existence

of a relationship between objects. Relational learning has many real-world applica-

tions, especially for learning from web and social network data. On social networks,

relationships naturally exist between users, such as “friends” on Facebook, “connec-

tions” on LinkedIn, or “followers” on Twitter. Predicting when such relationships are

likely to exist is important for recommending new friends, connections, or followers

to users.

The supervised, MI, and relational learning settings possess strictly increasing

representational power, as summarized in Figure 9.2. The results in Chapter 5 show

that even though it might not be straightforward to learn accurate concepts from MI,

it is possible to learn to rank bags and instances in the MI setting. Therefore, it might

also be possible to learn to rank in the relational learning setting, under some weak

assumptions, even when learning accurate concepts might be hard. Thus, our results

for the MIL framework might provide a “bridge” between relatively easy supervised

213

CHAPTER 9. CONCLUSIONS

Representational Power

Supervised
Learning

Multiple-Instance
Learning

Relational
Learning

Propositions Relations

Instances Bags Focus of this work

Figure 9.2: A summary of the relative representational power of the supervised,
multiple-instance, and relational learning frameworks.

learning problems and generally challenging relational learning problems.

9.3 Conclusion

Although there are many future directions to explore, this work constitutes a signifi-

cant contribution to MIL. The bags-as-distributions model described in Chapter 3 is

straightforward, and it provides a more accurate description of the generative process

for many real-world MI problems, as we support with empirical results. Furthermore,

the generative model allows us to show positive results for learnability of instance-

and bag-level concepts from MI data. For many practical scenarios, good models

can be learned using standard supervised approaches, which are much more efficient,

well-understood, and robust in practice than MI-specific approaches. The model can

also be used to analyze MI-specific approaches such as SMILe, which can improve

performance in scenarios for which supervised approaches perform poorly. Hence, we

believe that our work contributes to an understanding of the MI setting in a way

that will inform future research directions and impact the way that MIL is applied

in practice.

214

Appendix A

Experiments and Results

The experiments used for this work were implemented in Python using NumPy (As-

cher et al., 2001) and SciPy (Jones et al., 2001) for general matrix computations, the

CVXOPT library (Dahl and Vandenberghe, 2009) for solving QPs, and scikit-learn

(Pedregosa et al., 2011) for the SVM implementation used for the experiments in

Section 6.4. We use the authors’ original MATLAB code, found at http://lamda.

nju.edu.cn/code_KISVM.ashx, for the KI-SVM approaches (Liu et al., 2012). Sim-

ilarly, a Python wrapper around the original box-counting kernel implementation is

used (Tao et al., 2008). Code for the remaining MI SVM implementations, the EMD,

and other experiments is at http://engr.case.edu/doran_gary/code.html. This

work made use of the High Performance Computing Resource in the Core Facility for

Advanced Research Computing at Case Western Reserve University.

A.1 Datasets

The datasets used for the experiments above come from a variety of problem domains,

listed in Table 2.1. For clarity, the 56 total datasets have been organized into 8

groups with similar properties. The properties of these groups are summarized in

Table A.1. Since it is practically infeasible to perform all experiments using all

215

http://lamda.nju.edu.cn/code_KISVM.ashx
http://lamda.nju.edu.cn/code_KISVM.ashx
http://engr.case.edu/doran_gary/code.html

APPENDIX A. EXPERIMENTS AND RESULTS

Table A.1: Dataset Groups

Domain Group Datasets Features Instance Labels?
3D-QSAR Musk 2 166

CBIR
Animal 3 230
Scene 3 15
SIVAL 12 30

Text
Newsgroups 20 200
OHSUMED 2 6668–6842

Audio Birdsong 13 38
Protein TRX 1 8

Table A.2: Dataset groups used in various experiments

Group S
ec

ti
o
n

5
.5

S
ec

ti
o
n

7
.3

S
ec

ti
o
n

6
.4

S
ec

ti
o
n

8
.7

Musk
Animal
Scene
SIVAL

Newsgroups
OHSUMED

Birdsong
TRX

datasets, some subsets of these groups are used in each experiment above. Table A.2

summarizes which dataset groups are used in different sets of experiments. More

detailed properties of these datasets are described in the following sections.

Table A.3: 3D-QSAR Datasets

Group Dataset Bags Instances

Musk
musk1 92 476
musk2 102 6598

216

APPENDIX A. EXPERIMENTS AND RESULTS

Table A.4: CBIR Datasets

Group Index Dataset Bags Instances

Animal
elephant 200 1391

fox 200 1320
tiger 200 1220

Scene
field 200 1800

flower 200 1800
mountain 200 1800

SIVAL

1 Apple vs. Coke Can 120 3789
2 Banana vs. Gold Medal 120 3783
3 Blue Scrunge vs. Ajax Orange 120 3780
4 Cardboard Box vs. Candle with Holder 120 3791
5 Checkered Scarf vs. Data Mining Book 120 3811
6 Dirty Work Gloves vs. Dirty Running Shoe 120 3801
7 Fabric Softener Box vs. Glazed Wood Pot 120 3796
8 Julie’s Pot vs. Rap Book 120 3793
9 Smiley Face Doll vs. Felt Flower Rug 120 3799
10 Striped Notebook vs. Green Tea Box 119 3776
11 WD-40 Can vs. Large Spoon 120 3786
12 Wood Rolling Pin vs. Translucent Bowl 120 3778

A.1.1 3D-QSAR Datasets

The two musk datasets taken from the UCI repository (Frank and Asuncion, 2010)

are summarized in Table A.3. These datasets come from the original work on MIL

(Dietterich et al., 1997), described in Chapter 1. The dataset consists of molecules

which experts judge by smell to be either musky or not musky. A molecule smells

musky if it activates a certain smell receptor. Each molecule (bag) is described as a set

of low-energy conformations (instances). Each conformation is placed in a standard

orientation, and described by features constructed by measuring the distance along

a ray starting at a reference point to the surface of the conformation. The main

difference between these two datasets are the number of molecules, and the number of

conformations used to describe each molecule (there are more for the musk2 dataset).

217

APPENDIX A. EXPERIMENTS AND RESULTS

A.1.2 CBIR Datasets

The CBIR datasets are listed in Table A.4. There are three groups of datasets com-

prised of animal, scene, and object images. The animal and scene images come from

the Corel suite, and the others from the spatially independent, variable area, and

lighting (SIVAL) dataset (Rahmani et al., 2005). All three groups of datasets are

generated via different techniques, but each follow the same general template. First

each image (bag) is segmented to form a set of instances. Then, each instance is

described using a set of features derived from local colors or textures.

The scene datasets (Maron and Ratan, 1998) are segmented by moving a square

“blob” across the image. The features of each blob are the mean RGB color values of

pixels within the blob, as well as the differences in the mean color values in the four

adjacent blobs above, below, and to the sides. As a result, 3× 5 = 15 total features

describe each instance.

The animal datasets (Andrews et al., 2003) are segmented using the Blobworld

algorithm (Carson et al., 2002), which models the joint distribution over color, texture,

and position features as a mixture of Gaussian distributions. The instances are then

described using the features identified within each “blob.”

Finally, the SIVAL datasets are constructed using the ACCIO! approach (Rah-

mani et al., 2005). After segmenting images, ACCIO! describes each segment using 3

color and 3 texture features for each segment and its 4 neighbors immediately above,

below and to the sides, for a total of 6× 5 = 30 features.

We use a version of the SIVAL dataset that has been manually annotated with

instance-level labels (Settles et al., 2008). The original dataset contains 25 images

classes, each corresponding to pictures of objects taken on various backgrounds. To

create a set of smaller datasets, we randomly pair up images classes to create 12

one-vs.-one datasets, as shown in Table A.4. For brevity, we refer to these datasets

in the results using the indices given in the second column.

218

APPENDIX A. EXPERIMENTS AND RESULTS

Table A.5: Text Datasets

Group Index Dataset Bags Instances

Newsgroups

1 alt.atheism 100 5443
2 comp.graphics 100 3094
3 comp.os.ms-windows.misc 100 5175
4 comp.sys.ibm.pc.hardware 100 4827
5 comp.sys.mac.hardware 100 4473
6 comp.windows.x 100 3110
7 misc.forsale 100 5306
8 rec.autos 100 3458
9 rec.motorcycles 100 4730
10 rec.sport.baseball 100 3358
11 rec.sport.hockey 100 1982
12 sci.crypt 100 4284
13 sci.electronics 100 3192
14 sci.med 100 3045
15 sci.space 100 3655
16 soc.religion.christian 100 4677
17 talk.politics.guns 100 3558
18 talk.politics.mideast 100 3376
19 talk.politics.misc 100 4788
20 talk.religion.misc 100 4606

OHSUMED
1 OHSUMED1 400 3224
2 OHSUMED2 400 3344

A.1.3 Text Datasets

The text categorization datasets are listed in Table A.5. The semi-synthetic News-

groups datasets (Settles et al., 2008) were generated by randomly sampling a number

of posts from known online discussion topics. Hence, the labels of the instances are

known for this dataset. Each post (instance) is represented using word frequency

features describing the post.

The OHSUMED datasets are generated from the medical document classification

task (Andrews et al., 2003). Each document (bag) is split into overlapping passages

(instances) containing a maximum of 50 words each. As for the Newgroups datasets,

these datasets are represented using word frequency features.

219

APPENDIX A. EXPERIMENTS AND RESULTS

Table A.6: Audio Datasets

Group Index Dataset Bags Instances

Birdsong

1 Brown Creeper 548 10232
2 Chestnut-backed Chickadee 548 10232
3 Dark-eyed Junco 548 10232
4 Hammond’s Flycatcher 548 10232
5 Hermit Thrush 548 10232
6 Hermit Warbler 548 10232
7 Olive-sided Flycatcher 548 10232
8 Pacific-slope Flycatcher 548 10232
9 Red-breasted Nuthatch 548 10232
10 Swainson’s Thrush 548 10232
11 Varied Thrush 548 10232
12 Western Tanager 548 10232
13 Winter Wren 548 10232

A.1.4 Audio Datasets

The audio classification datasets in Table A.6 all come from the birdsong classification

task (Briggs et al., 2012). The audio was recorded using unattended microphones in

the H. J. Andrews Experimental Forest. A bag is 10 seconds of audio recording, and

multiple labels of a bag correspond to the songs of the bird species present in the 10-

second clip. A segmentation in time–frequency space is used to construct instances,

each of which is described using the shape, frequency profile, and other statistics of

the segment. The bird species corresponding to each segment has been manually

annotated by experts.

Since there are multiple bird species present in each bag, the dataset is broken

into 13 one-vs.-rest binary classification problems in which one species is the positive

class, and the rest are considered the negative class.

A.1.5 Protein Dataset

There is one protein sequence classification dataset, TRX, summarized in Table A.7.

The problem is to identify members of the Thioredoxin-fold “superfamily” of proteins

220

APPENDIX A. EXPERIMENTS AND RESULTS

Table A.7: Protein Datasets

Group Dataset Bags Instances
TRX TRX 193 26611

that contain similar subsequences of amino acids (Wang et al., 2004). A sequence

of amino acids corresponding to a protein (bag) is represented using properties of

subsequences (instances) surrounding a central “motif” within the protein sequence.

Since this dataset contains many instances, it is practically infeasible to use instance-

based kernel classifiers. Thus, TRX is only used in experiments that compute bag-

level kernels (see Table A.2).

A.2 Results

This section lists detailed numerical results for the experiments above. The results

are organized by chapter.

A.2.1 Chapter 5 (Single-Instance Learning)

The full results for Section 5.5.4 are listed below. Table A.8 gives the instance-level

accuracy results for Figure 5.3(a), Table A.9 gives the instance-level AUC results for

Figure 5.3(c), Table A.10 shows the bag-level accuracy results for Figure 5.3(b), and

Table A.11 shows the bag-level AUC results for Figure 5.3(d).

Table A.8: Instance-level accuracy results for Section 5.5.4. The best result is indi-
cated in boldface.

Dataset SIL MI-SVM mi-SVM KI-SVM MICA
SIVAL01 0.808 0.964 0.964 0.945 0.498
SIVAL02 0.509 0.947 0.933 0.935 0.926
SIVAL03 0.855 0.908 0.953 0.929 0.768
SIVAL04 0.734 0.885 0.828 0.881 0.884
SIVAL05 0.839 0.812 0.896 0.765 0.711
SIVAL06 0.811 0.872 0.865 0.872 0.885
SIVAL07 0.433 0.869 0.880 0.862 0.864

continued. . .

221

APPENDIX A. EXPERIMENTS AND RESULTS

Table A.8: Instance-level accuracy results (continued).

Dataset SIL MI-SVM mi-SVM KI-SVM MICA
SIVAL08 0.640 0.899 0.876 0.858 0.869
SIVAL09 0.685 0.936 0.919 0.919 0.917
SIVAL10 0.899 0.904 0.955 0.872 0.905
SIVAL11 0.789 0.894 0.954 0.867 0.411
SIVAL12 0.738 0.915 0.573 0.938 0.933

Newsgroups01 0.970 0.992 0.991 0.988 0.987
Newsgroups02 0.781 0.985 0.985 0.976 0.879
Newsgroups03 0.878 0.987 0.991 0.876 0.985
Newsgroups04 0.982 0.990 0.989 0.984 0.732
Newsgroups05 0.988 0.991 0.984 0.985 0.300
Newsgroups06 0.541 0.981 0.982 0.979 0.966
Newsgroups07 0.986 0.990 0.988 0.987 0.221
Newsgroups08 0.080 0.990 0.988 0.977 0.975
Newsgroups09 0.097 0.992 0.990 0.986 0.396
Newsgroups10 0.144 0.989 0.989 0.979 0.966
Newsgroups11 0.198 0.985 0.985 0.978 0.533
Newsgroups12 0.933 0.987 0.988 0.984 0.878
Newsgroups13 0.986 0.994 0.996 0.937 0.888
Newsgroups14 0.131 0.980 0.986 0.979 0.687
Newsgroups15 0.021 0.989 0.988 0.983 0.380
Newsgroups16 0.015 0.990 0.951 0.984 0.979
Newsgroups17 0.844 0.986 0.983 0.887 0.508
Newsgroups18 0.988 0.993 0.983 0.982 0.973
Newsgroups19 0.983 0.989 0.989 0.987 0.730
Newsgroups20 0.015 0.987 0.967 0.980 0.876

Birdsong01 0.931 0.955 0.955 0.946 0.941
Birdsong02 0.977 0.976 0.969 0.968 0.965
Birdsong03 0.993 0.993 0.992 0.992 0.992
Birdsong04 0.971 0.943 0.956 0.942 0.939
Birdsong05 0.997 0.997 0.997 0.997 0.997
Birdsong06 0.988 0.986 0.977 0.987 0.983
Birdsong07 0.973 0.967 0.965 0.970 0.973
Birdsong08 0.956 0.937 0.944 0.962 0.955
Birdsong09 0.961 0.956 0.971 0.950 0.960
Birdsong10 0.988 0.989 0.989 0.986 0.983
Birdsong11 0.994 0.993 0.995 0.993 0.986
Birdsong12 0.993 0.991 0.989 0.985 0.987
Birdsong13 0.900 0.928 0.930 0.926 0.921

222

APPENDIX A. EXPERIMENTS AND RESULTS

Table A.9: Instance-level AUC results for Section 5.5.4. The best result is indicated
in boldface.

Dataset SIL MI-SVM mi-SVM KI-SVM MICA
SIVAL01 0.758 0.872 0.836 0.758 0.898
SIVAL02 0.867 0.841 0.782 0.761 0.815
SIVAL03 0.676 0.588 0.795 0.690 0.934
SIVAL04 0.647 0.651 0.859 0.595 0.836
SIVAL05 0.954 0.810 0.961 0.906 0.754
SIVAL06 0.619 0.489 0.603 0.516 0.703
SIVAL07 0.895 0.784 0.903 0.780 0.725
SIVAL08 0.868 0.852 0.768 0.556 0.759
SIVAL09 0.829 0.730 0.824 0.771 0.581
SIVAL10 0.882 0.788 0.948 0.686 0.721
SIVAL11 0.965 0.795 0.952 0.746 0.600
SIVAL12 0.566 0.541 0.515 0.690 0.623

Newsgroups01 0.980 0.953 0.968 0.834 0.584
Newsgroups02 0.904 0.899 0.864 0.850 0.572
Newsgroups03 0.866 0.783 0.782 0.686 0.576
Newsgroups04 0.923 0.883 0.885 0.846 0.612
Newsgroups05 0.951 0.922 0.906 0.796 0.537
Newsgroups06 0.946 0.948 0.895 0.824 0.587
Newsgroups07 0.907 0.853 0.835 0.827 0.604
Newsgroups08 0.753 0.881 0.909 0.808 0.551
Newsgroups09 0.711 0.962 0.979 0.869 0.560
Newsgroups10 0.660 0.947 0.908 0.746 0.565
Newsgroups11 0.728 0.971 0.980 0.968 0.702
Newsgroups12 0.958 0.961 0.942 0.767 0.536
Newsgroups13 0.970 0.939 0.911 0.920 0.608
Newsgroups14 0.823 0.903 0.884 0.902 0.614
Newsgroups15 0.736 0.949 0.955 0.930 0.553
Newsgroups16 0.454 0.938 0.906 0.940 0.600
Newsgroups17 0.946 0.913 0.921 0.854 0.565
Newsgroups18 0.964 0.914 0.922 0.797 0.605
Newsgroups19 0.931 0.914 0.826 0.803 0.558
Newsgroups20 0.573 0.884 0.914 0.912 0.556

Birdsong01 0.762 0.925 0.907 0.704 0.708
Birdsong02 0.895 0.884 0.849 0.574 0.748
Birdsong03 0.782 0.729 0.673 0.636 0.599
Birdsong04 0.966 0.927 0.932 0.905 0.858
Birdsong05 0.686 0.439 0.641 0.422 0.498
Birdsong06 0.627 0.741 0.581 0.540 0.719
Birdsong07 0.782 0.570 0.857 0.441 0.814
Birdsong08 0.836 0.615 0.796 0.552 0.774

continued. . .

223

APPENDIX A. EXPERIMENTS AND RESULTS

Table A.9: Instance-level AUC results (continued).

Dataset SIL MI-SVM mi-SVM KI-SVM MICA
Birdsong09 0.920 0.940 0.915 0.889 0.702
Birdsong10 0.858 0.859 0.879 0.763 0.757
Birdsong11 0.989 0.971 0.970 0.982 0.712
Birdsong12 0.954 0.907 0.918 0.490 0.745
Birdsong13 0.799 0.640 0.806 0.605 0.589

Table A.10: Bag-level accuracy results for Section 5.5.4. The best result is indicated
in boldface.

Dataset SIL MI-SVM mi-SVM KI-SVM MICA
musk1 0.848 0.772 0.848 0.870 0.511
musk2 0.804 0.833 0.647 0.755 0.696

elephant 0.740 0.815 0.750 0.830 0.680
fox 0.645 0.585 0.590 0.540 0.550

tiger 0.780 0.785 0.770 0.725 0.535
field 0.725 0.805 0.760 0.700 0.650

flower 0.775 0.815 0.800 0.810 0.780
mountain 0.830 0.855 0.860 0.790 0.615
SIVAL01 0.558 0.875 0.850 0.600 0.617
SIVAL02 0.542 0.867 0.758 0.708 0.558
SIVAL03 0.750 0.667 0.817 0.642 0.500
SIVAL04 0.583 0.658 0.525 0.583 0.700
SIVAL05 0.650 0.917 0.908 0.842 0.658
SIVAL06 0.650 0.600 0.733 0.650 0.833
SIVAL07 0.517 0.950 0.917 0.950 0.967
SIVAL08 0.542 0.933 0.775 0.450 0.725
SIVAL09 0.533 0.900 0.833 0.817 0.733
SIVAL10 0.655 0.807 0.798 0.714 0.840
SIVAL11 0.575 0.975 0.892 0.783 0.583
SIVAL12 0.583 0.533 0.500 0.683 0.808

Newsgroups01 0.540 0.870 0.840 0.580 0.500
Newsgroups02 0.720 0.820 0.760 0.470 0.490
Newsgroups03 0.650 0.640 0.740 0.470 0.480
Newsgroups04 0.670 0.750 0.770 0.480 0.480
Newsgroups05 0.770 0.790 0.740 0.690 0.480
Newsgroups06 0.630 0.780 0.790 0.700 0.480
Newsgroups07 0.690 0.750 0.770 0.540 0.500
Newsgroups08 0.500 0.800 0.790 0.570 0.540
Newsgroups09 0.500 0.860 0.850 0.600 0.470
Newsgroups10 0.500 0.830 0.850 0.620 0.560
Newsgroups11 0.500 0.890 0.890 0.720 0.500
Newsgroups12 0.570 0.790 0.720 0.520 0.460

continued. . .

224

APPENDIX A. EXPERIMENTS AND RESULTS

Table A.10: Bag-level accuracy results (continued).

Dataset SIL MI-SVM mi-SVM KI-SVM MICA
Newsgroups13 0.820 0.880 0.940 0.510 0.520
Newsgroups14 0.510 0.830 0.820 0.570 0.490
Newsgroups15 0.500 0.800 0.860 0.620 0.510
Newsgroups16 0.500 0.780 0.530 0.560 0.560
Newsgroups17 0.660 0.720 0.700 0.640 0.450
Newsgroups18 0.700 0.860 0.700 0.650 0.490
Newsgroups19 0.660 0.690 0.660 0.620 0.500
Newsgroups20 0.490 0.720 0.650 0.630 0.510
OHSUMED1 0.728 0.650 0.762 0.670 0.627
OHSUMED2 0.637 0.552 0.595 0.520 0.500
Birdsong01 0.726 0.912 0.916 0.823 0.704
Birdsong02 0.865 0.880 0.830 0.819 0.818
Birdsong03 0.976 0.984 0.964 0.956 0.964
Birdsong04 0.929 0.995 0.991 0.998 0.996
Birdsong05 0.974 0.974 0.974 0.973 0.974
Birdsong06 0.894 0.914 0.947 0.916 0.925
Birdsong07 0.841 0.896 0.891 0.849 0.841
Birdsong08 0.790 0.847 0.885 0.854 0.792
Birdsong09 0.945 0.903 0.947 0.858 0.940
Birdsong10 0.940 0.956 0.953 0.934 0.885
Birdsong11 0.978 0.960 0.978 0.974 0.858
Birdsong12 0.978 0.969 0.949 0.925 0.922
Birdsong13 0.945 0.923 0.949 0.971 0.801

Table A.11: Bag-level AUC results for Section 5.5.4. The best result is indicated in
boldface.

Dataset SIL MI-SVM mi-SVM KI-SVM MICA
musk1 0.922 0.845 0.943 0.836 0.849
musk2 0.897 0.949 0.661 0.665 0.913

elephant 0.919 0.912 0.916 0.676 0.871
fox 0.662 0.589 0.632 0.500 0.615

tiger 0.859 0.856 0.853 0.673 0.688
field 0.923 0.871 0.908 0.687 0.847

flower 0.907 0.873 0.921 0.810 0.759
mountain 0.916 0.915 0.935 0.759 0.830
SIVAL01 0.626 0.954 0.875 0.643 0.933
SIVAL02 0.826 0.952 0.731 0.747 0.863
SIVAL03 0.785 0.666 0.716 0.708 0.906
SIVAL04 0.657 0.683 0.831 0.697 0.957
SIVAL05 0.985 0.964 1.000 0.938 0.914
SIVAL06 0.648 0.756 0.753 0.542 0.918

continued. . .

225

APPENDIX A. EXPERIMENTS AND RESULTS

Table A.11: Bag-level AUC results (continued).

Dataset SIL MI-SVM mi-SVM KI-SVM MICA
SIVAL07 0.793 0.993 0.972 0.969 0.974
SIVAL08 0.874 0.998 0.812 0.488 0.865
SIVAL09 0.907 0.979 0.822 0.768 0.709
SIVAL10 0.819 0.772 0.930 0.643 0.785
SIVAL11 0.981 1.000 0.987 0.817 0.736
SIVAL12 0.601 0.621 0.516 0.692 0.710

Newsgroups01 0.928 0.931 0.870 0.746 0.535
Newsgroups02 0.873 0.794 0.878 0.826 0.538
Newsgroups03 0.755 0.715 0.805 0.640 0.517
Newsgroups04 0.765 0.767 0.727 0.631 0.511
Newsgroups05 0.776 0.842 0.760 0.800 0.538
Newsgroups06 0.814 0.862 0.837 0.741 0.521
Newsgroups07 0.802 0.798 0.789 0.844 0.576
Newsgroups08 0.674 0.810 0.837 0.759 0.532
Newsgroups09 0.728 0.925 0.918 0.784 0.552
Newsgroups10 0.752 0.904 0.900 0.696 0.550
Newsgroups11 0.709 0.975 0.957 0.816 0.669
Newsgroups12 0.844 0.805 0.858 0.695 0.530
Newsgroups13 0.971 0.911 0.914 0.930 0.602
Newsgroups14 0.648 0.825 0.861 0.869 0.600
Newsgroups15 0.742 0.886 0.913 0.928 0.555
Newsgroups16 0.564 0.860 0.538 0.838 0.543
Newsgroups17 0.630 0.787 0.751 0.674 0.533
Newsgroups18 0.864 0.874 0.797 0.771 0.558
Newsgroups19 0.754 0.812 0.745 0.640 0.548
Newsgroups20 0.575 0.807 0.757 0.770 0.520
OHSUMED1 0.958 0.914 0.954 0.779 0.816
OHSUMED2 0.740 0.638 0.775 0.520 0.715
Birdsong01 0.894 0.974 0.976 0.807 0.824
Birdsong02 0.902 0.895 0.895 0.570 0.827
Birdsong03 0.908 0.916 0.909 0.747 0.755
Birdsong04 0.999 0.998 0.989 0.992 0.945
Birdsong05 0.664 0.623 0.542 0.529 0.699
Birdsong06 0.926 0.915 0.964 0.728 0.975
Birdsong07 0.931 0.928 0.934 0.617 0.919
Birdsong08 0.913 0.901 0.921 0.723 0.908
Birdsong09 0.984 0.941 0.962 0.897 0.787
Birdsong10 0.947 0.975 0.956 0.819 0.862
Birdsong11 0.991 0.988 0.991 0.995 0.803
Birdsong12 0.996 0.961 0.993 0.609 0.737
Birdsong13 0.980 0.948 0.985 0.885 0.780

226

APPENDIX A. EXPERIMENTS AND RESULTS

A.2.2 Chapter 6 (Bag-Level Hyperplane Classifiers)

For Section 6.4, which evaluates bag-level kernels, the bag-level accuracy results in

Figure 6.1(a) are listed in Table A.12. Similarly, the bag-level AUC results are shown

in Table A.13.

Table A.12: Bag-level accuracy results for Section 6.4. The best result is indicated in
boldface.

Dataset EMD Level-2 NSK mi-Graph YARDS Box
musk1 0.924 0.837 0.826 0.837 0.880 0.848
musk2 0.853 0.882 0.863 0.853 0.853 0.814

elephant 0.900 0.840 0.840 0.855 0.810 0.835
fox 0.670 0.605 0.640 0.580 0.570 0.645

tiger 0.865 0.840 0.835 0.810 0.795 0.735
field 0.840 0.820 0.825 0.825 0.815 0.810

flower 0.850 0.865 0.805 0.850 0.800 0.810
mountain 0.880 0.860 0.855 0.855 0.865 0.825
SIVAL01 0.883 0.917 0.875 0.842 0.850 0.792
SIVAL02 0.958 0.917 0.892 0.858 0.733 0.658
SIVAL03 0.950 0.950 0.942 0.925 0.858 0.783
SIVAL04 0.975 0.992 0.992 0.792 0.933 0.783
SIVAL05 0.992 0.983 0.992 0.942 0.983 0.942
SIVAL06 0.950 0.942 0.933 0.883 0.892 0.883
SIVAL07 0.942 0.883 0.875 0.967 0.900 0.917
SIVAL08 0.933 0.908 0.908 0.775 0.767 0.817
SIVAL09 0.942 0.967 0.925 0.892 0.908 0.892
SIVAL10 0.992 0.958 0.950 0.882 0.874 0.857
SIVAL11 0.958 0.950 0.958 0.933 0.892 0.783
SIVAL12 0.925 0.917 0.892 0.817 0.825 0.800

Newsgroups01 0.790 0.820 0.820 0.840 0.810 0.660
Newsgroups02 0.760 0.790 0.770 0.780 0.800 0.600
Newsgroups03 0.730 0.690 0.610 0.730 0.710 0.570
Newsgroups04 0.820 0.730 0.750 0.720 0.800 0.490
Newsgroups05 0.810 0.790 0.810 0.770 0.820 0.610
Newsgroups06 0.830 0.730 0.760 0.820 0.840 0.630
Newsgroups07 0.770 0.650 0.640 0.700 0.670 0.630
Newsgroups08 0.760 0.740 0.630 0.790 0.760 0.590
Newsgroups09 0.880 0.810 0.770 0.810 0.830 0.610
Newsgroups10 0.840 0.820 0.810 0.790 0.800 0.740
Newsgroups11 0.880 0.860 0.860 0.850 0.840 0.850
Newsgroups12 0.740 0.680 0.670 0.720 0.720 0.590
Newsgroups13 0.920 0.920 0.860 0.860 0.910 0.520

continued. . .

227

APPENDIX A. EXPERIMENTS AND RESULTS

Table A.12: Bag-level accuracy results for bag-level kernels (continued).

Dataset EMD Level-2 NSK mi-Graph YARDS Box
Newsgroups14 0.820 0.760 0.800 0.840 0.820 0.600
Newsgroups15 0.860 0.850 0.880 0.830 0.840 0.730
Newsgroups16 0.770 0.760 0.680 0.760 0.770 0.640
Newsgroups17 0.750 0.780 0.730 0.750 0.770 0.590
Newsgroups18 0.790 0.790 0.760 0.760 0.820 0.600
Newsgroups19 0.720 0.680 0.720 0.730 0.750 0.630
Newsgroups20 0.730 0.770 0.610 0.690 0.720 0.480
OHSUMED1 0.792 0.892 0.887 0.868 0.865 0.500
OHSUMED2 0.677 0.688 0.695 0.677 0.693 0.500
Birdsong01 0.905 0.892 0.894 0.891 0.889 0.867
Birdsong02 0.905 0.901 0.867 0.905 0.900 0.909
Birdsong03 0.964 0.969 0.965 0.960 0.964 0.971
Birdsong04 0.996 0.998 0.998 0.996 0.998 0.998
Birdsong05 0.974 0.976 0.974 0.974 0.974 0.974
Birdsong06 0.949 0.945 0.949 0.934 0.943 0.943
Birdsong07 0.942 0.938 0.934 0.931 0.920 0.907
Birdsong08 0.907 0.909 0.874 0.892 0.903 0.827
Birdsong09 0.962 0.947 0.953 0.931 0.954 0.949
Birdsong10 0.974 0.962 0.960 0.947 0.947 0.958
Birdsong11 0.982 0.974 0.971 0.978 0.978 0.969
Birdsong12 0.980 0.980 0.976 0.949 0.969 0.969
Birdsong13 0.965 0.980 0.969 0.973 0.956 0.969

TRX 0.891 0.865 0.850 0.902 0.865 0.865

Table A.13: Bag-level AUC results for Section 6.4. The best result is indicated in
boldface.

Dataset EMD Level-2 NSK mi-Graph YARDS Box
musk1 0.968 0.933 0.944 0.939 0.957 0.930
musk2 0.956 0.961 0.948 0.841 0.918 0.926

elephant 0.965 0.909 0.902 0.912 0.904 0.916
fox 0.697 0.680 0.704 0.669 0.626 0.723

tiger 0.936 0.908 0.889 0.862 0.860 0.869
field 0.921 0.917 0.928 0.921 0.917 0.906

flower 0.936 0.932 0.857 0.920 0.906 0.898
mountain 0.909 0.902 0.900 0.878 0.886 0.896
SIVAL01 0.966 0.956 0.951 0.918 0.904 0.884
SIVAL02 0.993 0.978 0.971 0.909 0.803 0.711
SIVAL03 0.995 0.988 0.988 0.987 0.930 0.894
SIVAL04 0.998 0.999 0.999 0.905 0.990 0.862
SIVAL05 1.000 0.999 1.000 0.999 0.999 0.988
SIVAL06 0.986 0.992 0.977 0.955 0.954 0.938

continued. . .

228

APPENDIX A. EXPERIMENTS AND RESULTS

Table A.13: Bag-level AUC results for bag-level kernels (continued).

Dataset EMD Level-2 NSK mi-Graph YARDS Box
SIVAL07 0.993 0.979 0.961 0.990 0.961 0.959
SIVAL08 0.977 0.951 0.973 0.783 0.851 0.897
SIVAL09 0.980 0.977 0.970 0.976 0.924 0.963
SIVAL10 1.000 0.997 0.997 0.980 0.957 0.966
SIVAL11 0.991 0.984 0.996 0.969 0.933 0.878
SIVAL12 0.969 0.965 0.969 0.898 0.879 0.851

Newsgroups01 0.859 0.877 0.885 0.872 0.861 0.712
Newsgroups02 0.867 0.874 0.868 0.897 0.879 0.556
Newsgroups03 0.814 0.760 0.630 0.651 0.772 0.569
Newsgroups04 0.830 0.838 0.809 0.759 0.833 0.606
Newsgroups05 0.853 0.857 0.821 0.843 0.835 0.578
Newsgroups06 0.894 0.856 0.817 0.849 0.882 0.679
Newsgroups07 0.758 0.680 0.606 0.783 0.780 0.638
Newsgroups08 0.784 0.698 0.701 0.798 0.840 0.665
Newsgroups09 0.892 0.707 0.723 0.849 0.866 0.674
Newsgroups10 0.846 0.919 0.831 0.883 0.852 0.790
Newsgroups11 0.831 0.916 0.883 0.943 0.916 0.874
Newsgroups12 0.809 0.674 0.675 0.845 0.795 0.642
Newsgroups13 0.934 0.762 0.974 0.838 0.925 0.428
Newsgroups14 0.775 0.743 0.728 0.865 0.856 0.650
Newsgroups15 0.901 0.850 0.950 0.856 0.919 0.766
Newsgroups16 0.826 0.820 0.738 0.822 0.830 0.706
Newsgroups17 0.764 0.776 0.817 0.765 0.793 0.667
Newsgroups18 0.846 0.824 0.855 0.892 0.831 0.663
Newsgroups19 0.718 0.772 0.724 0.735 0.818 0.603
Newsgroups20 0.804 0.855 0.624 0.816 0.790 0.463
OHSUMED1 0.885 0.955 0.967 0.944 0.919 0.500
OHSUMED2 0.727 0.789 0.793 0.761 0.760 0.500
Birdsong01 0.962 0.961 0.951 0.939 0.945 0.932
Birdsong02 0.933 0.909 0.865 0.883 0.919 0.927
Birdsong03 0.913 0.977 0.959 0.902 0.856 0.927
Birdsong04 1.000 0.984 1.000 1.000 1.000 0.987
Birdsong05 0.955 0.770 0.753 0.873 0.714 0.829
Birdsong06 0.982 0.976 0.979 0.982 0.973 0.973
Birdsong07 0.984 0.979 0.974 0.967 0.971 0.965
Birdsong08 0.961 0.953 0.921 0.945 0.952 0.898
Birdsong09 0.984 0.979 0.969 0.978 0.952 0.948
Birdsong10 0.911 0.982 0.963 0.973 0.980 0.985
Birdsong11 0.998 0.997 0.992 0.987 0.990 0.993
Birdsong12 0.969 0.983 0.993 0.964 0.986 0.986
Birdsong13 0.997 0.998 0.994 0.996 0.993 0.996

continued. . .

229

APPENDIX A. EXPERIMENTS AND RESULTS

Table A.13: Bag-level AUC results for bag-level kernels (continued).

Dataset EMD Level-2 NSK mi-Graph YARDS Box
TRX 0.899 0.887 0.760 0.872 0.833 0.873

A.2.3 Chapter 7 (Instance-Level Hyperplane Classifiers)

The results for Chapter 7 are shown below. In Section 7.3, which explores instance-

level hyperplane classifiers, the instance-level accuracy results summarized in Fig-

ure 7.6(a) are shown in Table A.14 and Table A.15. Due to space limitations, the

12 algorithms analyzed are split across two tables. Similarly, the bag-level accuracy

results summarized in Figure 7.6(b) are split across Table A.16 and Table A.17.

Table A.14: Instance-level accuracy for Section 7.3. The best result is indicated in
boldface.

Dataset SIL MICA sMIL stMIL sbMIL
SIVAL01 0.808 0.498 0.948 0.948 0.971 . . .
SIVAL02 0.509 0.926 0.935 0.935 0.939 . . .
SIVAL03 0.855 0.768 0.945 0.945 0.976 . . .
SIVAL04 0.734 0.884 0.877 0.877 0.888 . . .
SIVAL05 0.839 0.711 0.732 0.732 0.805 . . .
SIVAL06 0.811 0.885 0.877 0.877 0.887 . . .
SIVAL07 0.433 0.864 0.810 0.810 0.865 . . .
SIVAL08 0.640 0.869 0.863 0.863 0.922 . . .
SIVAL09 0.685 0.917 0.911 0.911 0.942 . . .
SIVAL10 0.899 0.905 0.866 0.866 0.917 . . .
SIVAL11 0.789 0.411 0.846 0.846 0.908 . . .
SIVAL12 0.738 0.933 0.936 0.936 0.923 . . .

Newsgroups01 0.970 0.987 0.987 0.987 0.990 . . .
Newsgroups02 0.781 0.879 0.984 0.979 0.989 . . .
Newsgroups03 0.878 0.985 0.987 0.987 0.988 . . .
Newsgroups04 0.982 0.732 0.986 0.986 0.988 . . .
Newsgroups05 0.988 0.300 0.984 0.984 0.989 . . .
Newsgroups06 0.541 0.966 0.977 0.977 0.982 . . .
Newsgroups07 0.986 0.221 0.988 0.987 0.987 . . .
Newsgroups08 0.080 0.975 0.977 0.980 0.987 . . .
Newsgroups09 0.097 0.396 0.985 0.985 0.989 . . .
Newsgroups10 0.144 0.966 0.980 0.980 0.988 . . .

continued. . .

230

APPENDIX A. EXPERIMENTS AND RESULTS

Table A.14: Instance-level accuracy for Section 7.3 (continued).

Dataset SIL MICA sMIL stMIL sbMIL
Newsgroups11 0.198 0.533 0.966 0.966 0.986 . . .
Newsgroups12 0.933 0.878 0.984 0.984 0.989 . . .
Newsgroups13 0.986 0.888 0.981 0.981 0.997 . . .
Newsgroups14 0.131 0.687 0.982 0.978 0.984 . . .
Newsgroups15 0.021 0.380 0.980 0.980 0.987 . . .
Newsgroups16 0.015 0.979 0.985 0.988 0.989 . . .
Newsgroups17 0.844 0.508 0.981 0.981 0.980 . . .
Newsgroups18 0.988 0.973 0.980 0.980 0.990 . . .
Newsgroups19 0.983 0.730 0.986 0.986 0.989 . . .
Newsgroups20 0.015 0.876 0.986 0.986 0.984 . . .

Table A.15: Instance-level accuracy for Section 7.3 (continued). The best result is
indicated in boldface.

Dataset MI-SVM mi-SVM I-KI-SVM B-KI-SVM NSK
SIVAL01 . . . 0.964 0.964 0.945 0.952 0.456
SIVAL02 . . . 0.947 0.933 0.935 0.890 0.540
SIVAL03 . . . 0.908 0.953 0.929 0.947 0.482
SIVAL04 . . . 0.885 0.828 0.881 0.883 0.598
SIVAL05 . . . 0.812 0.896 0.765 0.787 0.795
SIVAL06 . . . 0.872 0.865 0.872 0.886 0.489
SIVAL07 . . . 0.869 0.880 0.862 0.867 0.756
SIVAL08 . . . 0.899 0.876 0.858 0.859 0.596
SIVAL09 . . . 0.936 0.919 0.919 0.919 0.361
SIVAL10 . . . 0.904 0.955 0.872 0.875 0.547
SIVAL11 . . . 0.894 0.954 0.867 0.868 0.778
SIVAL12 . . . 0.915 0.573 0.938 0.931 0.517

Newsgroups01 . . . 0.992 0.991 0.988 0.986 0.864
Newsgroups02 . . . 0.985 0.985 0.976 0.879 0.918
Newsgroups03 . . . 0.987 0.991 0.876 0.981 0.902
Newsgroups04 . . . 0.990 0.989 0.984 0.983 0.875
Newsgroups05 . . . 0.991 0.984 0.985 0.980 0.910
Newsgroups06 . . . 0.981 0.982 0.979 0.977 0.856
Newsgroups07 . . . 0.990 0.988 0.987 0.978 0.817
Newsgroups08 . . . 0.990 0.988 0.977 0.977 0.904
Newsgroups09 . . . 0.992 0.990 0.986 0.988 0.876
Newsgroups10 . . . 0.989 0.989 0.979 0.979 0.892
Newsgroups11 . . . 0.985 0.985 0.978 0.984 0.896
Newsgroups12 . . . 0.987 0.988 0.984 0.986 0.858
Newsgroups13 . . . 0.994 0.996 0.937 0.977 0.913
Newsgroups14 . . . 0.980 0.986 0.979 0.983 0.832
Newsgroups15 . . . 0.989 0.988 0.983 0.984 0.850

continued. . .

231

APPENDIX A. EXPERIMENTS AND RESULTS

Table A.15: Instance-level accuracy for Section 7.3 (continued).

Dataset MI-SVM mi-SVM I-KI-SVM B-KI-SVM NSK
Newsgroups16 . . . 0.990 0.951 0.984 0.981 0.874
Newsgroups17 . . . 0.986 0.983 0.887 0.982 0.860
Newsgroups18 . . . 0.993 0.983 0.982 0.987 0.883
Newsgroups19 . . . 0.989 0.989 0.987 0.984 0.849
Newsgroups20 . . . 0.987 0.967 0.980 0.900 0.841

Table A.16: Bag-level accuracy for Section 7.3. The best result is indicated in bold-
face.

Dataset SIL MICA sMIL stMIL sbMIL
musk1 0.848 0.511 0.750 0.728 0.859 . . .
musk2 0.804 0.696 0.608 0.618 0.843 . . .

elephant 0.740 0.680 0.520 0.590 0.810 . . .
fox 0.645 0.550 0.520 0.515 0.600 . . .

tiger 0.780 0.535 0.590 0.615 0.800 . . .
field 0.725 0.650 0.500 0.500 0.810 . . .

flower 0.775 0.780 0.500 0.500 0.805 . . .
mountain 0.830 0.615 0.500 0.500 0.815 . . .
SIVAL01 0.558 0.617 0.500 0.500 0.883 . . .
SIVAL02 0.542 0.558 0.500 0.500 0.808 . . .
SIVAL03 0.750 0.500 0.500 0.500 0.925 . . .
SIVAL04 0.583 0.700 0.500 0.500 0.817 . . .
SIVAL05 0.650 0.658 0.500 0.500 0.975 . . .
SIVAL06 0.650 0.833 0.500 0.500 0.750 . . .
SIVAL07 0.517 0.967 0.500 0.500 0.958 . . .
SIVAL08 0.542 0.725 0.500 0.500 0.908 . . .
SIVAL09 0.533 0.733 0.500 0.500 0.925 . . .
SIVAL10 0.655 0.840 0.504 0.504 0.899 . . .
SIVAL11 0.575 0.583 0.500 0.500 0.967 . . .
SIVAL12 0.583 0.808 0.500 0.500 0.700 . . .

Newsgroups01 0.540 0.500 0.500 0.500 0.830 . . .
Newsgroups02 0.720 0.490 0.510 0.510 0.820 . . .
Newsgroups03 0.650 0.480 0.500 0.500 0.720 . . .
Newsgroups04 0.670 0.480 0.510 0.510 0.680 . . .
Newsgroups05 0.770 0.480 0.500 0.500 0.770 . . .
Newsgroups06 0.630 0.480 0.510 0.510 0.760 . . .
Newsgroups07 0.690 0.500 0.500 0.500 0.730 . . .
Newsgroups08 0.500 0.540 0.500 0.500 0.810 . . .
Newsgroups09 0.500 0.470 0.500 0.500 0.820 . . .
Newsgroups10 0.500 0.560 0.500 0.500 0.840 . . .
Newsgroups11 0.500 0.500 0.500 0.500 0.840 . . .
Newsgroups12 0.570 0.460 0.500 0.500 0.770 . . .

continued. . .

232

APPENDIX A. EXPERIMENTS AND RESULTS

Table A.16: Bag-level accuracy for Section 7.3 (continued).

Dataset SIL MICA sMIL stMIL sbMIL
Newsgroups13 0.820 0.520 0.530 0.530 0.950 . . .
Newsgroups14 0.510 0.490 0.500 0.500 0.830 . . .
Newsgroups15 0.500 0.510 0.500 0.500 0.800 . . .
Newsgroups16 0.500 0.560 0.500 0.500 0.720 . . .
Newsgroups17 0.660 0.450 0.500 0.500 0.730 . . .
Newsgroups18 0.700 0.490 0.500 0.500 0.800 . . .
Newsgroups19 0.660 0.500 0.500 0.500 0.740 . . .
Newsgroups20 0.490 0.510 0.510 0.510 0.710 . . .
OHSUMED1 0.728 0.627 0.500 0.500 0.932 . . .
OHSUMED2 0.637 0.500 0.500 0.500 0.618 . . .

Table A.17: Bag-level accuracy for Section 7.3. The best result is indicated in bold-
face.

Dataset MI-SVM mi-SVM I-KI-SVM B-KI-SVM NSK
musk1 . . . 0.772 0.848 0.870 0.815 0.913
musk2 . . . 0.833 0.647 0.755 0.745 0.814

elephant . . . 0.815 0.750 0.830 0.690 0.845
fox . . . 0.585 0.590 0.540 0.555 0.615

tiger . . . 0.785 0.770 0.725 0.760 0.825
field . . . 0.805 0.760 0.700 0.745 0.815

flower . . . 0.815 0.800 0.810 0.765 0.740
mountain . . . 0.855 0.860 0.790 0.795 0.845
SIVAL01 . . . 0.875 0.850 0.600 0.758 0.842
SIVAL02 . . . 0.867 0.758 0.708 0.575 0.908
SIVAL03 . . . 0.667 0.817 0.642 0.783 0.825
SIVAL04 . . . 0.658 0.525 0.583 0.750 0.883
SIVAL05 . . . 0.917 0.908 0.842 0.942 0.958
SIVAL06 . . . 0.600 0.733 0.650 0.800 0.908
SIVAL07 . . . 0.950 0.917 0.950 0.967 0.908
SIVAL08 . . . 0.933 0.775 0.450 0.675 0.800
SIVAL09 . . . 0.900 0.833 0.817 0.875 0.867
SIVAL10 . . . 0.807 0.798 0.714 0.731 0.966
SIVAL11 . . . 0.975 0.892 0.783 0.742 0.933
SIVAL12 . . . 0.533 0.500 0.683 0.683 0.933

Newsgroups01 . . . 0.870 0.840 0.580 0.750 0.850
Newsgroups02 . . . 0.820 0.760 0.470 0.510 0.770
Newsgroups03 . . . 0.640 0.740 0.470 0.580 0.730
Newsgroups04 . . . 0.750 0.770 0.480 0.570 0.750
Newsgroups05 . . . 0.790 0.740 0.690 0.620 0.760
Newsgroups06 . . . 0.780 0.790 0.700 0.720 0.800
Newsgroups07 . . . 0.750 0.770 0.540 0.580 0.690

continued. . .

233

APPENDIX A. EXPERIMENTS AND RESULTS

Table A.17: Bag-level accuracy for Section 7.3 (continued).

Dataset MI-SVM mi-SVM I-KI-SVM B-KI-SVM NSK
Newsgroups08 . . . 0.800 0.790 0.570 0.630 0.720
Newsgroups09 . . . 0.860 0.850 0.600 0.720 0.830
Newsgroups10 . . . 0.830 0.850 0.620 0.710 0.800
Newsgroups11 . . . 0.890 0.890 0.720 0.820 0.830
Newsgroups12 . . . 0.790 0.720 0.520 0.630 0.730
Newsgroups13 . . . 0.880 0.940 0.510 0.580 0.920
Newsgroups14 . . . 0.830 0.820 0.570 0.660 0.820
Newsgroups15 . . . 0.800 0.860 0.620 0.660 0.880
Newsgroups16 . . . 0.780 0.530 0.560 0.660 0.780
Newsgroups17 . . . 0.720 0.700 0.640 0.590 0.750
Newsgroups18 . . . 0.860 0.700 0.650 0.770 0.800
Newsgroups19 . . . 0.690 0.660 0.620 0.630 0.710
Newsgroups20 . . . 0.720 0.650 0.630 0.600 0.730
OHSUMED1 . . . 0.650 0.762 0.670 0.642 0.885
OHSUMED2 . . . 0.552 0.595 0.520 0.565 0.682

A.2.4 Chapter 8 (SMILe)

Table A.18 shows the results using SMILe with MI-SVMI by explicitly adding 25 or

50 shuffled positive bags, or directly using the SMILeSVM formulation. Similarly,

Table A.19 shows the results using SMILe with the NSK by explicitly adding 25 or

50 shuffled positive bags, or directly using the CC-NSK formulation.

Table A.18: Comparison of performance (instance-level balanced accuracy) of to
with SMILe using 25 and 50 shuffled bags and . In all cases εs = 10%. Boldface
indicates when an approach outperforms , and the final row indicates significant
differences (α = 0.05) from across datasets.

MI-SVMI MI-SVMI + MI-SVMI + SMILeSVM
Dataset SMILe (25) SMILe (50) (εs = 10%)
SIVAL01 0.737 0.717 0.752 0.874
SIVAL02 0.658 0.637 0.640 0.705
SIVAL03 0.656 0.770 0.762 0.470
SIVAL04 0.545 0.558 0.551 0.639
SIVAL05 0.656 0.609 0.650 0.801
SIVAL06 0.511 0.506 0.494 0.554

continued. . .

234

APPENDIX A. EXPERIMENTS AND RESULTS

Table A.18: Instance-level results for SMILe (continued).

MI-SVMI MI-SVMI + MI-SVMI + SMILeSVM
Dataset SMILe (25) SMILe (50) (εs = 10%)
SIVAL07 0.650 0.650 0.656 0.641
SIVAL08 0.634 0.615 0.644 0.778
SIVAL09 0.649 0.597 0.660 0.746
SIVAL10 0.717 0.757 0.629 0.815
SIVAL11 0.633 0.594 0.662 0.697
SIVAL12 0.546 0.496 0.514 0.502

Newsgroups01 0.670 0.733 0.691 0.784
Newsgroups02 0.767 0.835 0.752 0.844
Newsgroups03 0.702 0.704 0.623 0.763
Newsgroups04 0.724 0.756 0.644 0.767
Newsgroups05 0.755 0.744 0.759 0.756
Newsgroups06 0.768 0.792 0.523 0.644
Newsgroups07 0.716 0.659 0.720 0.749
Newsgroups08 0.819 0.740 0.730 0.845
Newsgroups09 0.818 0.780 0.777 0.804
Newsgroups10 0.813 0.783 0.771 0.785
Newsgroups11 0.884 0.572 0.841 0.738
Newsgroups12 0.777 0.768 0.734 0.790
Newsgroups13 0.933 0.849 0.861 0.876
Newsgroups14 0.789 0.803 0.789 0.831
Newsgroups15 0.812 0.760 0.813 0.814
Newsgroups16 0.654 0.773 0.689 0.751
Newsgroups17 0.751 0.608 0.736 0.828
Newsgroups18 0.808 0.817 0.752 0.792
Newsgroups19 0.762 0.725 0.718 0.774
Newsgroups20 0.736 0.592 0.657 0.757

w.r.t. MI-SVMI: — — Worse Better

Table A.19: Comparison of performance (bag-level accuracy) of the NSK to the NSK
with SMILe using 25 and 50 shuffled bags and to the CC-NSK. Bag size is chosen for
SMILe so that εs = 10%. The final row indicates significant differences from NSK.

NSK NSK + NSK + CC-NSK
Dataset SMILe (25) SMILe (50)
musk1 0.845 0.874 0.876 0.804
musk2 0.843 0.862 0.802 0.833

elephant 0.820 0.833 0.841 0.825
fox 0.575 0.570 0.589 0.595

tiger 0.810 0.813 0.817 0.790
field 0.825 0.814 0.789 0.770

continued. . .

235

APPENDIX A. EXPERIMENTS AND RESULTS

Table A.19: Bag-level results for SMILe (continued).

NSK NSK + NSK + CC-NSK
Dataset SMILe (25) SMILe (50)

flower 0.805 0.823 0.780 0.705
mountain 0.860 0.839 0.866 0.815

OHSUMED1 0.868 0.788 0.846 0.833
OHSUMED2 0.683 0.696 0.691 0.723

SIVAL01 0.842 0.914 0.888 0.833
SIVAL02 0.858 0.910 0.883 0.575
SIVAL03 0.917 0.920 0.861 0.717
SIVAL04 0.742 0.901 0.968 0.767
SIVAL05 0.992 0.975 0.985 0.925
SIVAL06 0.942 0.954 0.928 0.742
SIVAL07 0.917 0.908 0.859 0.817
SIVAL08 0.925 0.611 0.801 0.575
SIVAL09 0.925 0.926 0.865 0.775
SIVAL10 0.950 0.866 0.851 0.807
SIVAL11 0.933 0.888 0.896 0.750
SIVAL12 0.892 0.866 0.843 0.692

Newsgroups01 0.800 0.838 0.804 0.830
Newsgroups02 0.790 0.783 0.739 0.780
Newsgroups03 0.760 0.718 0.726 0.700
Newsgroups04 0.800 0.795 0.701 0.770
Newsgroups05 0.800 0.788 0.791 0.800
Newsgroups06 0.780 0.778 0.655 0.760
Newsgroups07 0.660 0.715 0.731 0.680
Newsgroups08 0.760 0.751 0.758 0.780
Newsgroups09 0.850 0.840 0.816 0.850
Newsgroups10 0.800 0.779 0.765 0.760
Newsgroups11 0.820 0.846 0.833 0.860
Newsgroups12 0.770 0.743 0.719 0.770
Newsgroups13 0.900 0.899 0.735 0.890
Newsgroups14 0.820 0.826 0.831 0.800
Newsgroups15 0.850 0.807 0.805 0.850
Newsgroups16 0.770 0.768 0.768 0.770
Newsgroups17 0.780 0.771 0.761 0.730
Newsgroups18 0.810 0.811 0.799 0.830
Newsgroups19 0.690 0.686 0.674 0.660
Newsgroups20 0.740 0.706 0.630 0.670

w.r.t. NSK: — — Worse Worse

236

Bibliography

Amar, R. A., Dooly, D. R., Goldman, S. A., and Zhang, Q. (2001). Multiple-instance

learning of real-valued data. In Proceedings of the International Conference on

Machine Learning, pages 3–10.

Amores, J. (2013). Multiple instance classification: Review, taxonomy and compar-

ative study. Artificial Intelligence, 201:81–105.

Andrews, S., Tsochantaridis, I., and Hofmann, T. (2003). Support vector machines for

multiple-instance learning. In Advances in Neural Information Processing Systems,

pages 561–568.

Antić, B. and Ommer, B. (2013). Robust multiple-instance learning with superbags.

In Proceedings of the Asian Conference on Computer Vision, pages 242–255.

Ascher, D., Dubois, P. F., Hinsen, K., Hugunin, J., and Oliphant, T. (2001).

Numerical Python. Lawrence Livermore National Laboratory, Livermore, CA.

http://numpy.scipy.org/.

Auer, P., Long, P. M., and Srinivasan, A. (1998). Approximating hyper-rectangles:

learning and pseudorandom sets. Journal of Computer and System Sciences,

57(3):376–388.

Auer, P. and Ortner, R. (2004). A boosting approach to multiple instance learning.

237

http://numpy.scipy.org/

BIBLIOGRAPHY

In Machine Learning Journal: European Conference on Machine Learning 2004,

volume 3201 of Lecture Notes in Computer Science, pages 63–74. Springer.

Babenko, B., Verma, N., Dollár, P., and Belongie, S. (2011). Multiple instance learn-

ing with manifold bags. In Proceedings of the International Conference on Machine

Learning, pages 81–88.

Bartlett, P. and Shawe-Taylor, J. (1999). Generalization performance of support

vector machines and other pattern classifiers. In Advances in Kernel Methods,

pages 43–54. MIT Press.

Ben-David, S., Eiron, N., and Long, P. M. (2003). On the difficulty of approximately

maximizing agreements. Journal of Computer and System Sciences, 66(3):496–514.

Ben-Tal, A. and Nemirovskĭı, A. (2001). Lectures on modern convex optimization:

analysis, algorithms, and engineering applications. MPS-SIAM Series on Opti-

mization. SIAM.

Bergeron, C., Zaretzki, J., Breneman, C., and Bennett, K. P. (2008). Multiple instance

ranking. In Proceedings of the International Conference on Machine Learning, pages

48–55.

Bergstra, J. and Bengio, Y. (2012). Random search for hyper-parameter optimization.

Journal of Machine Learning Research, 13:281–305.

Birkhoff, G. (1946). Three observations on linear algebra. Revista Universidad Na-

cional de Tucumán, Serie A, 5:147–151.

Bishop, C. M. (1995). Training with noise is equivalent to Tikhonov regularization.

Neural Computation, 7(1):108–116.

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent Dirichlet allocation. Journal

of Machine Learning Research, 3:993–1022.

238

BIBLIOGRAPHY

Blockeel, H., Page, D., and Srinivasan, A. (2005). Multi-instance tree learning. In

Proceedings of the International Conference on Machine Learning, pages 57–64.

Blum, A. and Kalai, A. (1998). A note on learning from multiple-instance examples.

Machine Learning Journal, 30:23–29.

Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth, M. (1987). Occam’s razor.

Information Processing Letters, 24:377–380.

Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth, M. K. (1989). Learnability

and the Vapnik–Chervonenkis dimension. Journal of the Association for Computing

Machinery, 36(4):929–965.

Breiman, L. (1996). Bagging predictors. Machine Learning Journal, 24(2):123–140.

Briggs, F., Fern, X. Z., and Raich, R. (2012). Rank-loss support instance machines for

MIML instance annotation. In Proceedings of the 18th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 534–542.

Bunescu, R. and Mooney, R. (2007). Multiple instance learning from sparse positive

bags. In Proceedings of the International Conference on Machine Learning, pages

105–112.

Carson, C., Belongie, S., Greenspan, H., and Malik, J. (2002). Blobworld: Image seg-

mentation using expectation-maximization and its application to image querying.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(8):1026–1038.

Chen, Y., Bi, J., and Wang, J. Z. (2006). MILES: Multiple-instance learning via

embedded instance selection. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 28(12):1931–1947.

Christmann, A. and Steinwart, I. (2010). Universal kernels on non-standard input

spaces. Advances in Neural Information Processing Systems, pages 406–414.

239

BIBLIOGRAPHY

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine learning,

20(3):273–297.

Cramer, R. D., Patterson, D. E., and Bunce, J. D. (1988). Comparative molecular

field analysis (CoMFA). Effect on binding of steroids to carrier proteins. Journal

of the American Chemical Society, 110(18):5959–5967.

Dahl, J. and Vandenberghe, L. (2009). CVXOPT: A Python package for convex

optimization. http://abel.ee.ucla.edu/cvxopt.

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Jour-

nal of Machine Learning Research, 7:1–30.

Diestel, J. and Uhl, J. J. (1977). Vector Measures. Mathematical surveys and mono-

graphs. American Mathematical Society.

Dietterich, T. G., Lathrop, R. H., and Lozano-Pérez, T. (1997). Solving the multiple

instance problem with axis-parallel rectangles. Artificial Intelligence, 89(1–2):31–

71.

Diochnos, D., Sloan, R., and Turán, G. (2012). On multiple-instance learning of

halfspaces. Information Processing Letters.

Doran, G. and Ray, S. (2013a). SMILe: Shuffled multiple-instance learning. In

Proceedings of the AAAI Conference on Artificial Intelligence, pages 260–266.

Doran, G. and Ray, S. (2013b). A theoretical and empirical analysis of support vector

machine methods for multiple-instance classification. Machine Learning Journal,

pages 1–24.

Doran, G. and Ray, S. (2014). Learning instance concepts from multiple-instance data

with bags as distributions. In Proceedings of the AAAI Conference on Artificial

Intelligence, pages 1802–1808.

240

http://abel.ee.ucla.edu/cvxopt

BIBLIOGRAPHY

Edmonds, J. and Karp, R. M. (1972). Theoretical improvements in algorithmic effi-

ciency for network flow problems. Journal of the Association for Computing Ma-

chinery, 19(2):248–264.

Folland, G. (1999). Real Analysis: Modern Techniques and Their Applications. Pure

and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts. Wiley.

Foulds, J. and Frank, E. (2010). A review of multi-instance learning assumptions.

The Knowledge Engineering Review, 25(01):1–25.

Foulds, J. R. (2008). Learning instance weights in multi-instance learning. PhD thesis,

The University of Waikato.

Frank, A. and Asuncion, A. (2010). UCI machine learning repository.

Freund, Y. and Schapire, R. E. (1995). A desicion-theoretic generalization of on-line

learning and an application to boosting. In Computational Learning Theory, pages

23–37. Springer.

Gärtner, T. (2008). Kernels for structured data, volume 72 of Series in Machine

Perception and Artificial Intelligence. World Scientific.

Gärtner, T., Flach, P., Kowalczyk, A., and Smola, A. (2002). Multi-instance kernels.

In Proceedings of the International Conference on Machine Learning, pages 179–

186.

Gentle, J. (2009). Computational Statistics. Statistics and Computing. Springer.

Gretton, A., Borgwardt, K., Rasch, M., Schölkopf, B., and Smola, A. (2007). A kernel

method for the two-sample-problem.

Gretton, A., Borgwardt, K. M., Rasch, M., Schölkopf, B., and Smola, A. J. (2006).

A kernel method for the two-sample-problem. In Advances in Neural Information

Processing Systems, pages 513–520.

241

BIBLIOGRAPHY

Gretton, A., Fukumizu, K., Harchaoui, Z., and Sriperumbudur, B. K. (2009). A fast,

consistent kernel two-sample test. In Advances in Neural Information Processing

Systems, pages 673–681.

Han, Y., Tao, Q., and Wang, J. (2010). Avoiding false positive in multi-instance

learning. In Advances in Neural Information Processing Systems, pages 811–819.

Hanley, J. A. and McNeil, B. J. (1982). The meaning and use of the area under a

receiver operating characteristic (ROC) curve. Radiology, 143(1):29–36.

Haussler, D. (1992). Decision theoretic generalizations of the PAC model for neural

net and other learning applications. Information and computation, 100(1):78–150.

Hernández, J. and Inza, I. (2011). Learning naive bayes models for multiple-instance

learning with label proportions. In Advances in Artificial Intelligence, pages 134–

144. Springer.

Jones, E., Oliphant, T., Peterson, P., et al. (2001). SciPy: Open source scientific

tools for Python. http://www.scipy.org/.

Kearns, M. J. and Schapire, R. E. (1994). Efficient distribution-free learning of prob-

abilistic concepts. Journal of Computer and System Sciences, 48(3):464–497.

Kelley, Jr., J. E. (1960). The cutting-plane method for solving convex programs.

Journal of the Society for Industrial & Applied Mathematics, 8(4):703–712.

Kimeldorf, G. and Wahba, G. (1971). Some results on Tchebycheffian spline functions.

Journal of Mathematical Analysis and Applications, 33(1):82–95.

Kundakcioglu, O., Seref, O., and Pardalos, P. (2010). Multiple instance learning via

margin maximization. Applied Numerical Mathematics, 60(4):358–369.

242

http://www.scipy.org/

BIBLIOGRAPHY

Kwok, J. T. and Cheung, P.-M. (2007). Marginalized multi-instance kernels. In Pro-

ceedings of the International Joint Conference on Artificial Intelligence, volume 7,

pages 901–906.

Lanckriet, G., Cristianini, N., Bartlett, P., Ghaoui, L., and Jordan, M. (2004). Learn-

ing the kernel matrix with semidefinite programming. Journal of Machine Learning

Research, 5:27–72.

Li, Y.-F., Kwok, J. T., Tsang, I. W., and Zhou, Z.-H. (2009). A convex method for

locating regions of interest with multi-instance learning. In Machine Learning and

Knowledge Discovery in Databases, pages 15–30. Springer.

Liu, G., Wu, J., and Zhou, Z.-H. (2012). Key instance detection in multi-instance

learning. In Proceedings of the Asian Conference on Machine Learning, pages 253–

268.

Long, P. and Tan, L. (1998). PAC learning axis-aligned rectangles with respect to

product distributions from multiple-instance examples. Machine Learning Journal,

30(1):7–21.

Maaten, L., Chen, M., Tyree, S., and Weinberger, K. Q. (2013). Learning with

marginalized corrupted features. In Proceedings of the International Conference on

Machine Learning, pages 410–418.

Mangasarian, O. and Wild, E. (2008). Multiple instance classification via successive

linear programming. Journal of Optimization Theory and Applications, 137:555–

568.

Maron, O. (1998). Learning from Ambiguity. PhD thesis, Department of Electrical

Engineering and Computer Science, MIT, Cambridge, MA.

243

BIBLIOGRAPHY

Maron, O. and Ratan, A. L. (1998). Multiple-instance learning for natural scene

classification. In Proceedings of the International Conference on Machine Learning,

pages 341–349.

Micchelli, C. A., Xu, Y., and Zhang, H. (2006). Universal kernels. Journal of Machine

Learning Research, 7:2651–2667.

Muandet, K., Fukumizu, K., Dinuzzo, F., and Schölkopf, B. (2012). Learning from

distributions via support measure machines. In Advances in Neural Information

Processing Systems, pages 10–18.

Ng, A. Y. and Jordan, M. I. (2002). On discriminative vs. generative classifiers: A

comparison of logistic regression and naive bayes. page 841.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,

Cournapeau, D., Brucher, M., Perrot, M., and E., D. (2011). Scikit-learn: Machine

Learning in Python. Journal of Machine Learning Research, 12:2825–2830.

Platt, J. C. (1999). Probabilistic outputs for support vector machines and comparisons

to regularized likelihood methods. In Advances in Large Margin Classifiers.

Rahmani, R., Goldman, S. A., Zhang, H., Krettek, J., and Fritts, J. E. (2005). Lo-

calized content based image retrieval. In Proceedings of the 7th ACM SIGMM In-

ternational Workshop on Multimedia Information Retrieval, pages 227–236. ACM.

Ramon, J. and De Raedt, L. (2000). Multi instance neural networks. In Proceedings

of the ICML 2000 Workshop on Attribute-Value and Relational Learning.

Ray, S. and Craven, M. (2005). Supervised versus multiple instance learning: an

empirical comparison. In Proceedings of the International Conference on Machine

Learning, pages 697–704.

244

BIBLIOGRAPHY

Ray, S. and Page, D. (2001). Multiple instance regression. In Proceedings of the

International Conference on Machine Learning, pages 425–432.

Rubner, Y., Tomasi, C., and Guibas, L. J. (2000). The earth mover’s distance as a

metric for image retrieval. International Journal of Computer Vision, 40(2):99–121.

Sabato, S. and Tishby, N. (2012). Multi-instance learning with any hypothesis class.

Journal of Machine Learning Research, 13:2999–3039.

Salton, G. and McGill, M. (1983). Introduction to modern information retrieval.

McGraw-Hill Computer Science Series. McGraw-Hill.

Schölkopf, B., Herbrich, R., and Smola, A. J. (2001). A generalized representer theo-

rem. In Helmbold, D. and Williamson, B., editors, Computational Learning Theory,

volume 2111 of Lecture Notes in Computer Science, pages 416–426. Springer Berlin

Heidelberg.

Schölkopf, B. and Smola, A. (2002). Learning with kernels: support vector machines,

regularization, optimization, and beyond. MIT Press.

Schölkopf, B., Smola, A., and Müller, K.-R. (1998). Nonlinear component analysis as

a kernel eigenvalue problem. Neural Computation, 10(5):1299–1319.

Schölkopf, S. P., Vapnik, V., and Smola, A. (1997). Improving the accuracy and speed

of support vector machines. pages 375–381.

Scott, S., Zhang, J., and Brown, J. (2005). On generalized multiple-instance learning.

International Journal of Computational Intelligence and Applications, 5(1):21–35.

Settles, B., Craven, M., and Ray, S. (2008). Multiple-instance active learning. In

Advances in Neural Information Processing Systems, pages 1289–1296.

Simon, H. U. (2012). PAC-learning in the presence of one-sided classification noise.

Annals of Mathematics and Artificial Intelligence, pages 1–18.

245

BIBLIOGRAPHY

Smola, A., Gretton, A., Song, L., and Schölkopf, B. (2007). A Hilbert space embed-

ding for distributions. In Algorithmic Learning Theory, pages 13–31. Springer.

Song, L., Fukumizu, K., and Gretton, A. (2013). Kernel embeddings of conditional

distributions: A unified kernel framework for nonparametric inference in graphical

models. Signal Processing Magazine, IEEE, 30(4):98–111.

Sriperumbudur, B. K., Fukumizu, K., Gretton, A., Schölkopf, B., and Lanckriet, G.

R. G. (2012). On the empirical estimation of integral probability metrics. Electronic

Journal of Statistics, 6:1550–1599.

Sriperumbudur, B. K., Gretton, A., Fukumizu, K., Schölkopf, B., and Lanckriet, G. R.

(2010). Hilbert space embeddings and metrics on probability measures. Journal of

Machine Learning Research, 99:1517–1561.

Szabó, Z., Gretton, A., Póczos, B., and Sriperumbudur, B. (2014). Two-stage sampled

learning theory on distributions. http://arxiv.org/abs/1402.1754.

Tao, Q., Scott, S. D., Vinodchandran, N., Osugi, T. T., and Mueller, B. (2008).

Kernels for generalized multiple-instance learning. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 30(12):2084–2098.

Tao, Q., Scott, S. D., Vinodchandran, N. V., and Osugi, T. T. (2004). SVM-based

generalized multiple-instance learning via approximate box counting. In Proceedings

of the International Conference on Machine Learning, pages 779–806.

Tong, S. and Koller, D. (2002). Support vector machine active learning with appli-

cations to text classification. Journal of Machine Learning Research, 2:45–66.

Tragante do Ó, V., Fierens, D., and Blockeel, H. (2011). Instance-level accuracy

versus bag-level accuracy in multi-instance learning. In Proceedings of the 23rd

Benelux Conference on Artificial Intelligence.

246

http://arxiv.org/abs/1402.1754

BIBLIOGRAPHY

Valiant, L. G. (1984). A theory of the learnable. Communications of the ACM,

27(11):1134–1142.

Vapnik, V. and Kotz, S. (2006). Estimation of Dependences Based on Empirical Data.

Information science and statistics. Springer.

Vapnik, V. N. and Chervonenkis, A. Y. (1971). On the uniform convergence of relative

frequencies of events to their probabilities. Theory of Probability & Its Applications,

16(2):264–280.

von Neumann, J. (1953). A certain zero-sum two-person game equivalent to the

optimal assignment problem. Contributions to the Theory of Games, 2:5–12.

Wagstaff, K. L. (2012). Machine learning that matters. In Proceedings of the Inter-

national Conference on Machine Learning.

Wagstaff, K. L., Lane, T., and Roper, A. (2008). Multiple-instance regression with

structured data. In Proceedings of the 4th International Workshop on Mining Com-

plex Data.

Wang, C., Scott, S. D., Zhang, J., Tao, Q., Fomenko, D. E., and Gladyshev, V. N.

(2004). A study in modeling low-conservation protein superfamilies. Technical

report, Department of Computer Science, University of Nebraska.

Xu, X. (2003). Statistical learning in multiple instance problems. Master’s thesis,

The University of Waikato.

Xu, X. and Frank, E. (2004). Logistic regression and boosting for labeled bags of

instances. In Pacific-Asia Conference on Knowledge Discovery and Data Mining,

pages 272–281.

Yu, Y., Cheng, H., Schuurmans, D., and Szepesvári, C. (2013). Characterizing the

247

BIBLIOGRAPHY

representer theorem. In Proceedings of the 30th International Conference on Ma-

chine Learning, pages 570–578.

Zhang, Q. and Goldman, S. (2001). EM-DD: An improved multiple-instance learning

technique. In Advances in Neural Information Processing Systems, pages 1073–

1080.

Zhou, Z., Sun, Y., and Li, Y. (2009). Multi-instance learning by treating instances

as non-IID samples. In Proceedings of the International Conference on Machine

Learning, pages 1249–1256.

Zhou, Z. and Zhang, M. (2003). Ensembles of multi-instance learners. In Machine

Learning: ECML 2003, volume 2837 of Lecture Notes in Computer Science, pages

492–502. Springer.

Zhou, Z.-H. and Zhang, M.-L. (2002). Neural networks for multi-instance learning. In

Proceedings of the International Conference on Intelligent Information Technology.

248

	List of Tables
	List of Figures
	Acknowledgments
	List of Acronyms
	Glossary
	Abstract
	Introduction
	Background and Related Work
	Learning Frameworks
	Supervised Learning
	Multiple-Instance Learning
	Generalizations of Multiple-Instance Classification

	Kernel Methods
	Support Vector Machines
	Kernels and Nonlinear Classifiers
	Multiple-Instance SVMs

	Kernel Embeddings of Sets and Distributions
	Set Kernels
	Kernel Mean Embeddings
	Related Kernels

	Learning Theory
	Probably Approximately Correct
	Capacity Measures
	Probabilistic Concepts
	Area Under the Receiver Operating Characteristic Curve
	Multiple-Instance Learnability and Hardness Results

	Bags as Distributions
	The Generative Model
	The Empirical Bag-Labeling Function
	Relationship to Prior Models
	Applicability to Problem Domains
	Multiple-Instance Learning with Noisy Bags
	Summary

	Learning Accurate Concepts from MI Data
	Learning Accurate Instance Concepts
	Learning Accurate Bag Concepts
	Discussion
	Relation to Prior Learnability Results
	Relation to Prior Hardness Results
	Must Instances be Dependent Samples?
	Summary

	Learning to Rank from MI Data
	Learning High-AUC Instance Concepts
	Learning High-AUC Bag Concepts
	Learning High-AUC MI Concepts with Noise
	Discussion
	Empirical Evaluation
	Single Instance Learning
	Risk Minimization Approaches
	Methodology
	Results and Discussion

	Summary

	Learning Bag Hyperplanes from MI Data
	Learning Hyperplanes from Distributions
	Learning Bag Hyperplanes from Distributions
	Bag Kernels as Distribution Kernels
	Empirical Evaluation
	Methodology
	Results and Discussion
	Practical Considerations

	Summary

	On the Difficulty of Learning Instance Hyperplanes from MI Data
	Learning Instance Hyperplanes
	Consistency, Soundness, and Completeness
	Properties of Instance Hyperplane Classifiers
	Fundamental Trade-Offs in Learning Instance Hyperplanes
	Consequences for Learnability

	Using Bag Kernels to Learn Instance Hyperplanes
	Bag-Level Soundness and Completeness
	Properties of Bag Hyperplane Classifiers

	Empirical Evaluation
	Methodology
	Results and Discussion

	Summary

	Shuffled Multiple-Instance Learning
	Ensemble and Resampling Methods
	The SMILe Approach
	Basic Properties of SMILe
	Related Approaches
	Instance-Level Classification with SMILe
	Effect on the Instance-Level Distribution
	SMILe and MI-SVMI
	SMILeSVM

	Bag-Level Classification with SMILe
	Effect on Bag-Level Distribution
	SMILe and the NSK
	CC-NSK

	Empirical Evaluation
	Instance-Labeling Task
	Bag-Labeling Task
	Active Learning Task

	Summary

	Conclusions
	Summary
	Future Work
	Conclusion

	Appendices
	Experiments and Results
	Datasets
	3D-QSAR Datasets
	CBIR Datasets
	Text Datasets
	Audio Datasets
	Protein Dataset

	Results
	Chapter 5 (Single-Instance Learning)
	Chapter 6 (Bag-Level Hyperplane Classifiers)
	Chapter 7 (Instance-Level Hyperplane Classifiers)
	Chapter 8 (SMILe)

	Bibliography

