
CARIAL: Cost-Aware Software Reliability Improvement with Active Learning

Boya Sun*, Gang Shu†, Andy Podgurski†, Soumya Ray†
*Google Inc, †EECS Department, Case Western Reserve University

sunboya@google.com, {gang.shu, podgurski, sray}@case.edu

Abstract—In the context of field testing (operational testing) of
software, we address the problem of balancing the potential
reduction in failure risk that developers may achieve by
reviewing captured test executions to identify failures (and by
successfully debugging their causes) against the cost of
reviewing the tests. To achieve a desirable balance, we propose
a cost-sensitive active learning strategy. Our approach guides
developers in selecting a sample of test executions to review
and label, and it calls for them to profile execution dynamics
and characterize the symptoms and relative severity levels of
failures. Profiles, labels, failure symptoms, and severity levels
are used by the active learner to construct and refine a
mapping between examined and unexamined tests, on one
hand, and possible defects, on the other hand. This mapping is
used together with estimates of test review costs to guide the
selection of additional tests. We evaluate our approach on
three subject programs and show that it (1) produces
reasonable predictions of risk reduction and (2) significantly
improves severity-weighted reliability for each subject
program, with relatively low developer effort.

Keywords-Operational testing, reliability improvement,
delivered reliability, active learning, risk reduction, cost-sensitive
analysis

I. INTRODUCTION
For a given software system or application, there are

often substantial differences among potential test inputs in
the costs associated with evaluating the input-output
behavior they induce. Evaluation of test results typically
requires developers either to examine actual output manually
or to determine expected output in advance so that it can be
compared automatically to actual output. In general, the cost
of evaluating a test’s results increases with the size and
complexity of the test input and of the output it generates.
Among test inputs that induce software failures, there are
often large differences in the benefits obtained, in terms of
improved operational reliability, by finding and repairing the
software defects they reveal. This is because some defects
are triggered more frequently in the field than others and
because different defects cause failures of different severities.

Few proposed software testing techniques (see Section
VI) are guided explicitly by consideration of the differences
in the costs and benefits associated with individual test
inputs, perhaps because it is often difficult to predict them
prior to testing. However, testers do commonly favor small
and relatively simple test cases [31][33], presumably to
reduce the effort they must expend in constructing tests,
checking the results, and debugging failures. This practice
runs the risk of missing defects triggered by more complex
inputs from end users. The difficulty of evaluating complex
outputs helps explain why developers do not routinely

capture inputs in the field [30] when it is feasible, in order to
replay and check them or to reuse the inputs for regression
testing. It is typical for developers to rely mainly on users to
discover and report field failures, though users often perform
these tasks poorly [10].

In this paper, we propose a novel, proactive approach to
improving software reliability in the context of field testing.
It applies to software that has already been deployed, at least
for beta testing, and that possibly has also been modified.
The approach, which is called Cost-Aware Reliability
Improvement with Active Learning (CARIAL), is intended to
balance the costs of reviewing test output against
improvements in severity-weighted operational reliability
that are predicted to result from fixing the defects the tests
may reveal. CARIAL does this by interactively guiding
developers, using a cost-sensitive active learning technique
to investigate an incrementally-chosen sample of software
executions, captured in the field, and to provide feedback to
the learning algorithm. The algorithm uses the feedback
together with execution profiles to construct and refine a
mapping between examined and unexamined test executions,
on one hand, and possible defects, on the other hand. This
mapping is used to empirically estimate the reduction in
operational risk (defined as expected loss due to failures)
that will result if a putative defect is revealed and debugged.
Estimates of risk reduction and of test review costs are used
to select further tests for developers to review. The former
estimates may also be used by developers to help decide
whether the software is ready for general release.

CARIAL does not require feedback from end users and it
does not require developers to assign specific costs to inputs
or to software failures. It does require a means of roughly
assessing the relative costs of reviewing test outputs, based
on properties such as input and output size or complexity. It
also requires that a significant and representative sample of
complete program inputs be captured in the field. Finally, it
requires that developers examine and label selected
executions (PASS/FAIL), characterize failure symptoms, and
assign levels of relative severity to the failures. We argue
that in many scenarios, these requirements are reasonable
and well-justified by the potential benefits of our approach.

Our work makes the following contributions:
• We propose a novel adjunct to field testing,

CARIAL, which balances the cost of test-output
examination by developers against predicted
improvements in severity-weighted reliability.

• We developed a cost-sensitive active learning
algorithm (CostHSAL) to predict, using execution
profiles and developer feedback, the risk reduction

mailto:sunboya@google.com�

that will result from fixing an apparent defect,
taking failure rate and severity levels into
consideration.

• We report on an empirical evaluation of CARIAL,
involving three software projects. The results
indicate that CARIAL improves risk reduction, with
relatively low developer effort.

The remainder of the paper is organized as follows:
Section II gives a brief introduction to the concepts and
techniques used in this paper; Section III introduces the
CARIAL framework; Section IV describes the CostHSAL
algorithm in detail; Section V presents experimental results
characterizing the effectiveness of the framework; Section
VI summarizes related work; and Section VII concludes the
paper and describes future work.

II. BACKGROUND
In this section, we introduce the concepts of field test

corpus, failure regions, defect failure rates, and risk from a
defect. We also briefly discuss cost-sensitive active learning,
the machine learning technique we employ.

A. Field Test Corpus, Failure Regions, Defect Failure Rate
The operational input distribution of a software system is

the probability distribution of its (complete) inputs in a
particular environment [6]. For the purpose of estimating
software reliability, it is not necessary to characterize the
operational distribution analytically. A random sample of
suitable size adequately characterizes the distribution. We
assume that a large random sample or corpus of test
inputs/executions is captured in the field, in a way that
permits replay and review of executions [30]. This field test
corpus will be sub-sampled by the active learner.

In the field test corpus, there will typically be one success
region and several failure regions. The success region
contains all inputs that induce passing executions. Each
failure region Fi contains the inputs that induce failures by
triggering a particular defect di. Let TC be the field test
corpus. Assuming there are k underlying defects, TC can be
decomposed as follows:

TC = S ∪ F1 ∪ F2 ∪ …∪ Fk
Figure 1a illustrates a test corpus with a success region and
several failure regions. Note that the latter may overlap,
since an input may trigger several defects and thus belong to
several failure regions. In this case, we define new failure
regions corresponding to each subset of defects that can be
triggered by an input. This makes the failure regions non-
overlapping (Figure 1b), and some regions are associated
with “superdefects” that are composed of simpler defects.
With this modification, we define the defect failure rate for a
defect (or superdefect) di with failure region Fi as

Eq. 1: 𝒅𝒇𝒓(𝒅𝒊) = |𝑭𝒊|
|𝑻𝑪|

The defect failure rate is thus the proportion of
operational inputs that trigger a certain defect (or superdefect)
𝑑𝑖 . Since failure regions as defined above are non-

overlapping, 𝑑𝑓𝑟(𝑑𝑖) is well-defined in that inputs are not
double-counted if they trigger multiple defects.

B. Risk From a Defect
Intuitively, the risk from a defect depends on two main

factors: the defect failure rate and the severity level of the
defect. Defects with high failure rates cause software to fail
frequently, so they should have high risk. On the other hand,
defects that are rarely triggered but cause catastrophic
failures when they are triggered should also have high risk.
The severity level of a defect depends on the nature of the
failures it causes. For example, a defect that causes cosmetic
errors in output is less severe than a defect that causes a
critical system to deadlock. Most bug tracking systems
provide predefined severity levels such as normal, major,
and blocker.

More formally, we define the risk of a defect 𝑑𝑖 ,
𝑅(𝑑𝑖), as the expected loss if 𝑑𝑖 remains in the released
software. Loss can be measured in different ways. For
example, we might assume that each field failure caused by
𝑑𝑖 results in a dollar loss ℒ(severity(𝑑𝑖)), which depends on
𝑑𝑖’s severity level. We then define the risk associated with
defect 𝑑𝑖 as:

Eq. 2: 𝑹(𝒅𝒊) = 𝓛(𝐬𝐞𝐯𝐞𝐫𝐢𝐭𝐲(𝒅𝒊)) ∙ 𝒅𝒇𝒓(𝒅𝒊)
The total risk from all defects in a program will thus be

Eq. 3: 𝑹𝒕𝒐𝒕 = ∑ 𝑹(𝒅𝒊)𝐢
The goal of our work is to reduce the total risk in the

program as much as possible while expending as little
developer effort as possible in reviewing test case outputs.

C. Cost-Sensitive Active learning
For some problems, it is very expensive and difficult to

obtain class labels [28]. An active learning algorithm
obtains labels from an “oracle”, such as a human user,
interactively and incrementally. At each step, the algorithm
selects examples that are predicted to most improve the
current model, if their labels were known. For example, a
common strategy is to pick examples the current model is
most uncertain about. Since (mostly) “useful” examples are
labeled, fewer labels should be needed to produce an
accurate model than for standard supervised learning.

We assume that for most software products, the cost of
an operational failure is more variable and potentially much
higher than either the cost of reviewing a test or the cost of
debugging a defect. Moreoever, debugging a given defect
may require examining multiple failing tests. Hence, when a

Figure 1. Illustration of operational distribution of inputs.
(a) shows success region and overlapping failure regions; (b)
shows success region and non-overlapping failure regions.

(a) (b)

failure is discovered during review of test outputs, it is often
reasonable to defer debugging until the relative risk posed by
different defects is clarified by reviewing additional tests.

Since examining test results is expensive, we use active
learning to efficiently guide exploration of the field test
corpus and to construct a risk mapping that relates observed
and unobserved failures to underlying defects. Our approach
is based on an existing active learning algorithm, called
hierarchical sampling for active learning (HSAL) [7]. This
algorithm, like many other active learning algorithms, tries to
minimize the number of labels needed while maximizing the
accuracy of the model, assuming that every label is equally
expensive to obtain. This assumption does not hold in our
case, where it can be significantly more expensive to
examine complex outputs than simple ones. Hence we
modified the HSAL algorithm to make it cost-sensitive, that
is, to minimize the sum of (non-uniform) costs of obtaining
labels.

III. THE CARIAL FRAMEWORK
The CARIAL framework is illustrated in Figure 2 and

consists of two phases. The goal of the first phase is to
estimate, as accurately as possible, the total risk due to
defects. To do this, CARIAL selects test cases for developers
to examine. This step uses active learning to try to balance
the cost of reviewing test case outputs against the potential
improvement in risk estimation. Developer feedback is used
to update defect failure rate estimates and severity
information. In the second phase, these are used to select test
cases that can be used to debug defects. These test cases are
chosen by the algorithm to maximize total risk reduction
while minimizing review costs. In the following, we describe
each phase of the framework in detail. We assume that
crashing tests are identified automatically and are processed
by developers prior to active learning. Hence the subsequent
discussion will assume that observed failures do not cause
crashes.

A. Phase I: Estimating Total Risk with Active Learning
To estimate the risk posed by a defect 𝑑𝑖, it is necessary,

according to Equation 2, to estimate its severity and its
failure rate. Estimating either quantity might seem to require
first identifying 𝑑𝑖 in program code, in order to determine
which failures it caused on the test corpus. This would put

the cart before the horse, so to speak, since the traditional
purpose of testing is to induce failures that reveal defects, so
that the latter can be identified and corrected. To address
this issue, one possibility is to randomly and uniformly
sample tests from the input corpus for developers to review,
and to construct approximations of the success and failure
regions based on their feedback. However, this is unlikely to
make efficient use of their time and effort, because simple
random sampling does not make use of what is already
known about different regions of the corpus, so a lot of time
could be spent reviewing tests that do not add any significant
information. For example, if severe failures are rare then
simple random sampling of tests may cause developers to
expend most of their effort on reviewing low risk tests.
Active learning, on the other hand, can make use of
information obtained from already sampled units, in order to
maximize the information gained through further sampling
while limiting the developer effort that is required. In
CARIAL, we exploit this idea.

1) Learning algorithm in a nutshell
The cost-sensitive active learning algorithm we use,

CostHSAL, is described in detail in Section IV, but we
outline the key ideas here. CostHSAL uses execution
profiles collected from tests to construct a cluster-based
model of failure regions and of the success region. The
profiles may be any of the types used in software testing to
characterize execution dynamics, including profiles of
function coverage, statement coverage, branch coverage,
data flow coverage, etc. Initially, unlabeled regions of the
input corpus are identified by hierarchical cluster analysis
applied to execution profiles alone. At each subsequent
iteration, CostHSAL selects an unexamined test, based on
the current model, for a developer to review. The choice of
test is based on the size and homogeneity of the current
estimated failure and success regions and on the assessed
costs of reviewing the tests they contain. After reviewing
the output of a test, the developer labels the test as a success
or a failure, and in the latter case he/she characterizes the
failure’s severity and its externally observable symptoms
(see below). This is used to update estimates of failure rates
and failure severity for defects. We assume there is a cost
budget, which is the total cost a developer is willing to
spend reviewing test outputs. The active learning iteration

Figure 2. Framework of CARIAL. Phase I constructs a mapping from failures to hypothesized defects and uses it to estimate risk. Phase II
selects test cases to debug the underlying defects. In each phase, the framework attempts to minimize the cost of reviewing test cases.

stops either when this budget is exhausted or when the
algorithm decides the clusters are sufficiently “pure”.

In determining which captured field-tests developers
should review, CostHSAL considers the costs of examining
the output produced by individual tests. These costs may be
considerable, especially for software that produces large or
complex outputs, because developers typically must examine
outputs manually. For example, if a program outputs graphs,
developers are likely to spend more time evaluating dense
graphs than they spend evaluating sparse ones. We assume
that the average cost of examining the output of a test grows
proportionately with a measure of the size or complexity of
the test. We currently employ linear cost metrics, e.g.,

cost(ti) = 𝛼 ∙|output(ti)|
cost(ti) = 𝛼 ∙complexity(output(ti))

where 𝛼 is a constant, |output(ti)| is the size of the output
produced by test ti, and complexity(output(ti)) is a measure
of the complexity of ti’s output. We do not currently
consider debugging costs, because of the difficulty of
predicting them.

When CostHSAL terminates, test cases are grouped into
an estimated success region 𝑆̂ and several estimated failure
regions (clusters) 𝐹𝚤� . Failures with distinct symptoms are
placed in different failure regions. Further, if one test case
triggers a set of defects rather than a single one (see Section
II.A), we assume that the symptoms will be determined by
the whole set of defects, so that test cases triggering different
sets of defects have different symptoms. Since each failure
has one set of symptoms, the regions 𝐹𝚤� will be non-
overlapping failure regions (NOFRs). We will discuss the
consequences of the assumptions not holding in Section V.E.
Note that our assumptions about test cases triggering
multiple defects mean that such test cases will be allocated to
their own groups, and we will see them as being caused by a
new “superdefect” (composed of simpler defects). This will
have its own severity level as determined by the developers.
This is possibly suboptimal in that it would be better to
associate those test cases somehow with the individual
defects. However, it is not obvious how to do this, since at
this stage we do not even know how many defects are
present in the program, or where they are.

2) Developer feedback
CARIAL requires developers to provide two pieces of

information about a failed test (in addition to labeling it as a
failure): a severity level and a symptom profile. The severity
level may be specified on an ordinal scale or by a number.
The simplest scheme is to use a fixed set of levels like those
used in bug tracking systems. Developers must also specify a
loss function ℒ to map severity levels to numbers. It is not
necessary to assign an exact dollar cost to each failure. It
suffices to roughly characterize the relative costs of different
types of failures, e.g., to within an order of magnitude.
CARIAL currently considers only the severity levels of
failures actually observed by developers. This may lead to
inaccurate risk predictions if rare failures not triggered by the

field test corpus lead to catastrophic losses. These could be
addressed using long-tailed parametric models for the
probability distribution of severity levels.

A symptom profile characterizes the symptoms of a
failure. Failed tests that have similar symptom profiles will
be assigned to the same failure region. Symptom profiles
can be provided by developers as attribute vectors or as
machine-checkable signatures. Symptom vectors can be
obtained from users with a well-designed user feedback
mechanism that allows them to quickly answer (e.g., with
mouse clicks) a set of pre-defined, application-specific
questions about a failure’s symptoms. For example, the
JavaPDG program dependence graph generator [20]
developed by our group provides such a mechanism, which
questions the user about erroneous graph elements. Since the
questions are predefined, it is easy to extract the feedback
into a feature vector.

Alternatively, symptom profiles can be provided using a
symptom signature, which is a machine-checkable property
or set of properties characterizing a set of related failures.
For example, we use ROME [26], an RSS reader, as a subject
program. The symptom of one particular defect can be
described as “<href> is a relative URL instead of an absolute
one”, which is an easily checkable property. Burger et al [4]
used similar ideas in the context of automatic debugging.
They inserted predicates into the code to detect symptoms of
a failure, such as “attribute name of object with id 13 has
value “UTC””.

B. Phase II: Selecting Test Cases for Debugging Defects
At the end of the first phase, we have a set of failure

regions corresponding (ideally 1:1) to defects in the program.
In the second phase, we use these to select test cases from
programmers to use to debug these defects. Here, we assume
that developers may need to examine multiple tests that
trigger a given defect in order to successfully debug it. The
goal is to select test cases that (i) minimize cost to review
and (ii) maximize the reduction in risk, if the defects
associated with them can be debugged. In each iteration the
algorithm determines the failure region with the currently
maximal expected risk. From this region, we repeatedly
select test cases in increasing order of review cost. Once
developers have identified enough failing tests from the
maximal-risk region to permit the underlying defect(s) to be
successfully debugged, we move on to the next riskiest
region and repeat the process.

As an optimization in this phase, developers may reuse
previously labeled test cases from Phase I. These test cases
will have review-cost zero in this phase, since their output
has already been examined earlier.

IV. THE COST-SENSITIVE ACTIVE LEARNER: COSTHSAL
In Phase I of CARIAL, we use a cost-sensitive active

learning algorithm, CostHSAL. This algorithm is a modified
version of an algorithm presented in prior work, Hierarchical
Sampling for Active Learning (HSAL) [7].

HSAL has two very desirable properties for our problem.
First, many active learning algorithms apply to classification
problems for which the number of classes is known. In our
case, “classes” correspond to defects, so we have no idea
how many classes there are. Fortunately, HSAL can start
with only one class, and when the user provides a new class
label, it can update the number of classes. Second, HSAL
can allocate multiple regions for the same class. This can be
useful because different test cases, though they all share the
PASS/FAIL label, can have very different feature values. For
example, the ROME project uses different classes and
functions to parse different types of feeds, such as RSS 1.0,
RSS 2.0, and Atom 1.0. Test cases that involve different
types of feeds can have very dissimilar code-coverage
profiles, and HSAL can take this into account. However, the
basic HSAL algorithm does not incorporate non-uniform
costs for label acquisition. We next describe HSAL,
followed by our modifications to make it cost-sensitive.

A. The Basic HSAL Algorithm
HSAL is an active learning algorithm that exploits cluster

structure in data. It takes as input a hierarchical clustering of
the unlabeled dataset, which could be generated by any
chosen hierarchical clustering algorithm. At each step, the
algorithm maintains a pruning (cut) of the cluster tree which
is a partition of the data set. The goal of the algorithm is to
quickly (with little labeling effort) reach a pruning where the
constituent clusters are fairly pure in their class labels.

The pseudocode of the algorithm is shown in Algorithm
1. The initial pruning that HSAL starts with consists of just
the root, v1. In each iteration, the algorithm selects some
cluster from the current pruning (SelectCluster in the
Algorithm 1), then probabilistically traverses the subtree
below the chosen cluster and samples a currently unlabeled
leaf (SampleTestCase). It then queries the oracle to obtain

its PASS/FAIL label, and if the test fails, obtain its symptom
profile and severity level (QueryDeveloper in the
Algorithm 1); the symptom profile serves as its class label.
With this label, HSAL updates statistics that summarize the
frequency of different classes in each cluster. It uses these
summary statistics to identify clusters that are impure, i.e.,
composed of different classes. It then removes these clusters
from the current pruning and replaces them with their
children, which intuitively may be expected to be less impure.
This process results in an updated pruning. The algorithm
continues until the clusters in the current pruning are fairly
pure or until the user-defined cost budget is exhausted.

To select a cluster from the current pruning, HSAL
samples from a probability distribution where a cluster vi’s
likelihood of being chosen is proportional to 𝜔𝑖 (1 − 𝑝𝑖) ,
where 𝜔𝑖 = |𝑣i|/𝑁 is the fraction of all points allocated to vi
and 𝑝𝑖 is the proportion of all labeled points in vi having the
majority label in vi. The closer that 𝑝𝑖 is to 1, the more pure vi
is. This criterion makes it more likely for HSAL to pick large,
impure clusters. Then, to pick an individual point to query,
the algorithm traverses the subtree below the selected cluster.
Here, at each step, it picks a child with probability
proportional to the size of unlabeled data in the child. This
process is repeated until a leaf node is reached and returned.
This focuses HSAL’s labeling effort on parts of the space
that are still largely unexamined.

We illustrate the algorithm using the example cluster tree
in Figure 3 which might be the result of hierarchically
clustering a set of items. At the leaves of this tree we show
the fraction of examples with a certain label. Assume this is a
two-class problem. The leftmost leaf has 20% of all the data,
labeled with one class (colored white). The next leaf contains
30% of the data, all labeled with the other class (colored
grey), and so forth. Consider the cluster tree in Figure 3.
Initially, we have P = {v1}. Half the data in this node are
from one class and half from the other (seen by traversing
the subtrees below it), so after sampling some points and
determining their labels, v1 should be found to be impure, so
HSAL moves to pruning {v2, v3}. Depending on how the
labeled points are distributed in v2 and v3, one of them will be
judged to be more impure and (probabilistically) selected to

Algorithm 1: CostHSAL
Input: hierarchical clustering of test cases; batch size B; budget G
Output: Pruning (cut) of cluster tree annotated with labels

P ← {root} [current pruning of tree]
 repeat until budged exhausted or P is pure

 for i = 1 to B
v ← SelectCluster(P)
tc ← SampleTestCase (v)
SymptomProfile, Severity ← QueryDeveloper(tc) [active
learning query; SymptomProfile and Severity are NULL if tc
triggers no failure]
Update label statistics of v according to SymptomProfile

end for
for all impure clusters vi in P
 P ← P \ {vi} ∪ {children(vi)}
end for

 end repeat
 For each cluster 𝑣𝑖 ϵ 𝑃, (1) assign all members the majority label,
(2) assign its severity as the average severity among all members
 return label-annotated pruning

Algorithm 2: SelectCluster
Input: Current pruning P of cluster tree
Output: Cluster to sample test case from

for each cluster vi in P
 𝜔𝑖 = |𝑣i|/𝑁 [N is the total number of test cases]
 𝑝𝑖 = proportion of majority label out of all labeled nodes in vi
end for
Sort clusters by 𝜔𝑗 (1− 𝑝𝑗) into non-increasing order
cmin ← ∞; vmin ← NULL
repeat
 Remove v from front of sorted cluster list
 c ← MeanSampleCost(v)
 if c < cmin then cmin ← c; vmin ← v
 else return vmin
end repeat

sample from. More labels will reveal that v2 is quite impure
and needs to be split. This continues until the label budget
runs out or a pure pruning is found.

B. CostHSAL
For our problem, we need to make HSAL cost-sensitive, so
that it takes into account the fact that different tests have
different review costs. This can be achieved by modifying
the two functions SelectCluster and SampleTestCase
to be sensitive to test review costs. The basic algorithm
remains the same as HSAL. The modified functions are
shown in Algorithms 2 and 4. These use an auxiliary
function, MeanSampleCost (Algorithm 3), which
estimates the average cost of unlabeled test cases in a cluster.
To modify SelectCluster, we would like to select not
just proportional to 𝜔𝑖 (1 − 𝑝𝑖) but also inversely
proportional to the mean sampling cost of the cluster, so that
clusters that are large and impure but also relatively
inexpensive to label are selected. An intuitive approach is
to select a cluster v with probability proportional to

𝜔𝑖 (1−𝑝𝑖)

MeanSampleCost(𝑣)
. However, since 𝜔𝑖 (1 − 𝑝𝑖) is a probability

and MeanSampleCost(v) is not, it is hard to put these two
metrics on the same scale. Hence we employ a heuristic
scheme based on sorting clusters by 𝜔𝑖 (1 − 𝑝𝑖) into non-
increasing order and then walking the sorted list until the
cost starts to increase. We then return the cluster with the
lowest cost found. To modify SampleTestCase, we use an
iterative procedure as in HSAL, except that in each iteration,
instead of selecting children just on the basis of the fraction
of unlabeled examples, we select a child c with probability
inversely proportional to MeanSampleCost(c), so that a
child with low mean sampling cost is more likely to be
selected.

V. EMPIRICAL EVALUATION
We perform an empirical evaluation to assess the

effectiveness of the CARIAL framework for balancing risk
reduction and test review costs. This study addresses two
main research questions:
 RQ-1: How accurate is the risk estimate that is

output by Phase I of CARIAL?

 RQ-2: How effective is the test case selection
scheme used by Phase II of CARIAL?

To answer these questions we evaluated CARIAL and two
other baselines on several subject programs.

A. Subject Programs
We used three open source projects in our evaluation:

JavaPDG [20], ROME [26] and Xerces2 [35], each of which
produces complex output. JavaPDG [20] is a software tool
developed by our research group to input a Java program and
output a System Dependence Graph [17], in which the
vertices represent program elements, such as declarations,
expressions or predicates, and the edges represent data and
control dependences. ROME [26] is an open source Java
library for parsing, generating, and publishing RSS and
Atom feeds. We constructed a driver program that uses the
ROME APIs to parse RSS and Atom feeds and output them
in XML. Xerces2 [35] is an open source Java XML parser.
We wrote a driver for Xerces2 that takes an XML file as
input, parses it, and then assembles the parsed elements into
a new XML file. The characteristics of the subject programs
are summarized in Table I.

Test Cases. We collected operational inputs for each of
the three projects. For JavaPDG, we used functions from the
Spring Framework [29] as inputs; altogether 1295 test cases
were collected. For the ROME and Xerces2 projects, we
reused test cases from Augustine et al’s work [1]: for ROME,
8,000 Atom and RSS files were downloaded from Google
Search results, using a custom web crawler; for Xerces2,
9,630 files were collected from the system directories of an
Ubuntu Linux 7.04 machine and from Google Search results.

Defects. We selected a sample of defects from the bug
database of each project. Nine defects were randomly
selected for JavaPDG, six for ROME, and eight for Xerces2.
For each of the defects, custom code instrumentation was
inserted to detect its failure conditions and report when they
were triggered. The JavaPDG defects caused 3.9% test cases

Algorithm 3: MeanSampleCost
Input: Cluster v from cluster tree
Output: Estimate of average cost to query node in v

if v is a labeled leaf then return ∞ [ensure these cannot be
selected]
if v is an unlabeled leaf then return cost(v) [cost functions
defined in III.1]
s ← 0
for a constant number of iterations k
 testcase ← SampleTestCase (v)
 s ← s + cost(testcase)
end for
return s/k

Algorithm 4: SampleTestCase
Input: Cluster v from cluster tree
Output: Test case from subtree below v

if v is a leaf node then return v [leaves are test cases]
else
 Select a child c of v with probability
 Pr(c) ∝ 1

MeanSampleCost(𝑐)
 [prefer low cost children]

 return SampleTestCase(c)

Figure 3. Example cluster tree

to fail, while the ROME and Xerces2 defects caused more
than 30% of their test cases to fail. In typical field testing
scenarios, it is unlikely that 30% or more of executions will
fail. Hence, we randomly discarded failing tests to reduce
the failure rates to 5.2% for ROME and to 5.4% for Xerces2.
We used a single-linkage based agglomerative clustering
algorithm [16] to compute the hierarchical clustering of test
case profiles and we manually inspected the resulting cluster
tree. For each of the projects, there were test cases that
triggered multiple defects, so there were overlaps in the
failure regions. We found 12, 13, and 14 non-overlapping
failure regions (as described in Section II.A and III.A) in the
JavaPDG, ROME and Xerces2 test sets, respectively. We
assigned high severity levels to defects with low failure rates
and assigned low severity levels to defects with high failure
rates. This was done to simulate a difficult scenario in
software testing in which the most important bugs manifest
very rarely, making it hard to identify and reduce operational
risk. For failure regions with multiple defects, we set the
severity level to be the highest among the underlying defects.

Execution Profiles. We used function coverage profiles
in our study, to characterize internal execution dynamics.
We used the Java Interactive Profiler [19] to record the
number of times each function was invoked during an
execution, and we added binary indicators to the profiles to
indicate which functions were executed at least once per run.

Symptom Profiles. We used JavaPDG’s built-in user
feedback mechanism to collect symptom profiles. For
ROME and Xerces2, we used symptom signatures as
symptom profiles. These were provided as text strings
describing a property of the output. For all three projects,
symptoms were distinct for non-overlapping failure regions.

B. Methodology
1) Cost Functions

As stated in Section III.A, we assume that the cost of
reviewing test output is linear in the size or complexity of the
output. For JavaPDG, we assumed that this cost is linear in
the number of edges of the system dependence graph
produced. For ROME and Xerces2, we assumed that this
cost is linear in the size, in bytes, of the XML output files.

2) Risk Estimation
In our study, we used the built-in importance levels of the

Bugzilla bug tracking system [5] as our severity levels.
There are six pre-defined importance levels, namely trivial,
minor, normal, major, critical and blocker. We represented
these levels by the numbers 1 to 6, respectively.

We defined the loss function ℒ for a defect of severity s
as

Eq. 4: ℒ(𝑠) = 𝑀 ∙ 2𝑠
where 𝑀 is a dollar multiplier. We used M = $1000 in this
work.

3) Study Parameters
One parameter of our study design is the cost budget for

risk estimation, denoted by B. In an actual application of
CARIAL, the parameter B is specified by developers in order
to control the effort they expend on risk estimation.
Obviously, B affects the accuracy of risk estimation.
Another parameter is the mean of the number X of failures,
caused by a particular defect 𝑑𝑖 , that developers need to
review in order to successfully debug 𝑑𝑖. We assume that the
number X is not fixed but varies around some typical number
of test cases. Thus we model X in our study as a Poisson
random variable with mean 𝜆.

4) Baseline Approaches
We compared CARIAL against two baseline approaches

to test selection: simple random sampling from the test
corpus and smallest-first sampling. Smallest-first sampling
always selects an unlabeled test case with lowest review cost.
It arguably mimics what developers often do in practice. For
a fair comparison, we adapted these baselines to also operate
in two phases, a risk estimation phase and a test case
selection phase.

In the risk estimation phase, random sampling and
smallest-first sampling were each used to choose a sample T
of tests for developers to review. Then, test cases in T with
the same symptom profiles were grouped into non-
overlapping failure regions just as with CARIAL. The risk
was estimated using Equation 2 with the same loss function
shown above.

In the test case selection step, we used the optimization
described for CARIAL in Section III.B, where test cases
labeled in Phase I are first used to debug defects. When they
were exhausted, random sampling or smallest first sampling
was used to continue selecting test cases to debug defects.

C. RQ-1: Accuracy of Risk Estimation
We define the Error of Risk Estimation as the absolute

difference between estimated total risk and the true total risk:

𝐸𝑅𝐸 = �𝑅𝑡𝑜𝑡� − 𝑅𝑡𝑜𝑡� = |�𝑅��𝑑𝚤� �
𝑖

−�𝑅�𝑑𝑗�|
𝑗

Since Phase I of CARIAL outputs non-overlapping failure
regions, each assumed to be associated with a defect, the first
term is computed by summing over all failure regions. To
compute the second term, we used our knowledge of the true
defects and which test case triggers which defect. We used

TABLE I. Summary of Subject Programs Used in The Empirical Evaluation.
“# Test Cases” refers to number of test cases; “%failures” refers to the fraction of failing test cases, “#Defects” refers to the number of true defects,
“#NOFRs” refers to Non-Overlapping Failure Regions and “Cost Function” refers to the assumed cost of reviewing test cases.

Program #Test Cases %failures #Defects #NOFRs Cost Function

JavaPDG 1295 3.9% 9 12 𝛼 ∙ #Edges

ROME 5425 5.2% 6 13 𝛼 ∙ Size of Output XML

Xerces2 4773 5.4% 8 14 𝛼 ∙ Size of Output XML

this to construct the true non-overlapping failure regions, and
summed over those to obtain the true total risk. To evaluate
the accuracy of risk estimation, in Figure 4 we plot ERE
against test review cost, as a proportion of the maximum
possible cost, for CARIAL, random sampling, and smallest
first sampling, for all three projects. The x-axis of the curve
represents percentage of total cost spent so far, so the
constant 𝛼 used in the cost function does not matter. The
results are shown in Figure 4.

From these results, we first observe that simple random
sampling is a poor risk estimator as a function of labeling
effort. Further note that, while we show one result for
random sampling, there is likely to be wide variation
between different runs for this baseline. Second, in some
cases, smallest-first sampling is a good risk estimator. This
may happen, for example, when most of the test cases are
hand-written and produce simple outputs. However, this is
not always the case, as shown by the result for JavaPDG.
Further, it is important to note that since smallest-first and
random sampling do not inherently estimate risk or use it to
guide their choices, it may be difficult to tell during
execution how accurately the risk is being estimated and how
much value we are receiving for our labeling effort. Finally,
we observe that CARIAL is generally a good risk
estimator—it is usually able to quickly construct an accurate
model of the failure regions and estimate the total risk, using
less than 20% of the maximum cost.

D. RQ-2: Effectiveness of Test Case Selection
To evaluate effectiveness of test case selection, in Figure

5 we plot the true total risk against cost as more test cases are
reviewed. In these graphs, we restrict the x-axis (the review
cost in this phase) to 20% of the total cost. As described in
Subsection B.3 above, the performance of test case selection
is affected by two parameters: the review cost budget B of
Phase I, as a fraction of the total possible cost, and the mean
𝜆 of the Poisson distribution that determines how many test
cases a developer might need to see in order to debug a
defect. We do not include the cost of the actual debugging in
these results. First, it is difficult to predict, and second, it
seems plausible that it will be similar for each of our
methods, so that the relative differences are primarily
governed by the costs of reviewing test case outputs. We
plot the curves using different combinations of values of B
and 𝜆. For B, we choose three values, 0.05, 0.10, 0.15. This

reflects our belief that developers may not be willing to
spend much effort on risk estimation by itself, since it does
not lead to immediate risk reduction. For 𝜆, we chose two
values, 3 and 10, to show how the three approaches behave
when the defects are “easy” to debug and “hard” to debug.
Due to space constraints, we show only the six curves for the
JavaPDG project in Figure 5. The behavior of the other
programs is similar.

From these results we first observe that CARIAL is
generally effective at selecting test cases that quickly reduce
the total risk. Note the large vertical drop at the very
beginning of the curves is a result of the optimization where
the test cases labeled in Phase I are being used first to find
defects. These test cases have zero cost in Phase II. These
drops are more significant for CARIAL than for the baseline
techniques, indicating that the test cases used for risk
estimation are also very good at characterizing the
underlying defects.

Effect of 𝝀. Comparing Figures 5a and 5b, we observe
the CARIAL framework is less likely than the baseline
techniques to be affected by high values of 𝜆 . This is
because CARIAL produces a partitioning of test cases with
relatively good accuracy; therefore multiple test cases
triggering a defect can often be retrieved from the
corresponding failure region. The baseline approaches lack
such a partitioning, and so are more affected. For example,
when B is 0.10, the black curve representing smallest-first
sampling and the red curve representing random sampling
are “lifted” quite a bit when 𝜆 increases to 10; on the other
hand, the red curve representing CARIAL stays roughly
stable for both 𝜆 values.

Effect of B. For any 𝜆, comparing the graphs for
different B shows that if more effort is spent during risk
estimation, it pays off significantly in Phase II for CARIAL.
This is because with a larger budget, CostHSAL can better
predict the success and failure regions, and thus find a more
precise risk estimate. The baselines are relatively unaffected
by changes in B, as might be expected since they are not
guided by risk estimates in any way when selecting test cases.

E. Threats to Validity
The cost function and the loss function used in the

evaluation might be unrealistic or omit some important
factors. In future work we will investigate alternative
models for the cost of testing and for loss due to software

Figure 4. RQ-1: ERE against Cost Curves. Red-CARIAL; Green-Random Sampling; Black- Smallest First Sampling.

failures. Moreover, although the defects we collected in all
three projects exhibit distinct failure symptoms, there are
cases in which a defect triggers failures with different
symptoms or two defects trigger failures with the same
symptoms. Such defects will be considered in future studies.

VI. RELATED WORK

A. Cost-Sensitive analysis in software testing and reliability
The cost of testing and of software failures have been

considered in previous research on reliability estimation and
test resource allocation. Pham et al [23] proposed a cost
model together with a reliability growth model. The cost
model, which is linear, incorporates the cost of testing, fault
removal and fault risks. Gokhale et al [13] consider the
problem of maximizing reliability with given amount of
testing effort. Huang et al [18] assume that a reliability
objective is given, and aim to achieve an optimal allocation
of testing effort to software modules. The costs addressed in
[13] and [18] are associated with software modules and
software development process. By contrast, our approach
considers test case review costs and the failure costs (risk)
associated with estimated failure regions. Brown et al [3]
seek to balance the cost of testing and the cost of defects by
determining an optimal number of software test cases. In
contrast to our work, the cost of testing is assumed to be
linear in the number of test cases, and severity is not
considered when estimating the cost of a defect.

Tsoukalas et al [32] presented estimators and confidence
bound formulas for expected failure cost per execution.
Gutjahr [14] generalized input-domain based reliability

measure proposed previously by introducing expected failure
cost, also called risk, as a measure of software reliability.
Weyuker [34] refined an approach to load testing proposed
by a previous work, which is based on a characterization of
the operational distribution of a system’s workload, to
consider the cost of failures. In contrast to CARIAL, each of
these approaches lacks of a concrete method for identifying
and characterizing risk regions in conjunction with testing.

Cost has also been addressed in regression testing
research. Leung et al [21] proposed a cost model to compare
the cost and benefits of selective regression testing strategies
against the traditional retest-all strategy. Malishevsky et al
[22] present models to compare cost-benefit tradeoffs of test
case selection, reduction, and prioritization. Rosenblum et al
[27] proposed a model to predict cost-effectiveness for
selective regression testing with use of coverage information.
In these papers, unlike in our work, cost is assumed to be
uniform among test cases, and severity levels are not
considered. Elbaum et al’s work [9] takes differences in test
cost and fault severities into consideration in test case
prioritization, and it orders test cases according to unit-of-
fault-severity-detected-per-test-cost-unit. Their work is
similar to ours in that it considers the tradeoff between test
costs and failure costs; however, theirs does not deal with the
problem of estimating such costs.

B. Test case partitioning
A partitioning of test cases can be used to estimate

reliability, identify failures, or reduce the size of the test set.
Podgurski et al [25] proposed the use of stratified sampling,
based on cluster analysis, for estimating software reliability.

Figure 5. RQ-2: The Cost-Against-Risk-Reduction Curves for JavaPDG with different B and λ. Red-CARIAL;
Green- Random Sampling; Black- Smallest First Sampling

(a) 𝜆 = 3, B = {0.05, 0.10, 0.15}

(b) 𝜆 = 10, B = {0.05, 0.10, 0.15}

Dickinson et al [8] applied cluster analysis to discover
failures induced by a large set of test cases. Bowring et al [2]
proposed to use active learning to classify program behavior
as passing or failing. Podgurski et al [24] proposed
automated support for grouping similar failure reports from
users, in order to reduce the number of executions developers
need to review. Later work by Francis et al [11] proposed a
tree-based approach to refine the failure groups. Unlike our
research, the aforementioned research does not consider
differences in the review costs of individual tests or defect
severity. Moreover, [24] and [11] group only failures, while
in our work, we classify a mixture of passing and failing test
cases, and the status of the test cases is unknown before
manual examination of the test outputs. This is a much
harder problem, especially because the proportion of failures
may be very small.

VII. CONCLUSIONS
We have presented an approach to improving software

reliability through explicitly estimating and reducing the risk
in a program due to different defects. We do this through
active learning. This also allows us to minimize test case
review costs at the same time. An empirical evaluation
indicated that our approach estimates and reduces risk
effectively and at a relatively low cost compared to two
baseline techniques.

Many interesting directions remain to be investigated.
We plan to investigate alternative cost and loss functions and
symptom profiles. Other kinds of costs, such as fault
localization costs or test case execution times, could be
considered for minimization. Finally, the risk mapping
returned by Phase I of CARIAL warrants further study.
Currently we are using this just to select test cases. However,
it may be useful in other ways, such as for identifying input
regions to explore through test case creation.

REFERENCES
[1] V. Augustine, “Exploiting User Feedback to Facilitate Observation-

based Testing,” Ph.D. Dissertation, EECS, CWRU, 2009.
[2] J. F. Bowring, J. M. Rehg, and M. J. Harrold, “Active learning for

automatic classification of software behavior,” In Proc. of ISSTA, Jul,
2004, pages 195–205.

[3] D. B. Brown, S. Maghsoodloo, and W. H. Deason, “A cost model for
determining the optimal number of software test cases,” IEEE
Transactions on Software Engineering vol. 15(2), 1989, pp. 218–221.

[4] M. Burger, A. Zeller. “Minimizing Reproduction of Software
Failures ”, In Proc. of ISSTA, Toronto, Canada, Jul., 2011.

[5] Bugzilla. http://www.bugzilla.org/
[6] B. Cukic. and F. B. Bastani, “On reducing the sensitivity of software

reliability to variations in the operational profile,” In Proc. of ISSTA,
1996, pp. 45-54.

[7] S. Dasgupta and D. Hsu. “Hierarchical sampling for active learning,”
In Proc. of the 25th ICML, 2008, pp. 208–215.

[8] W. Dickinson, D. Leon, and A. Podgurski, “Finding failures by
cluster analysis of execution profiles,” In Proc. of 23rd ICSE, Toronto,
May 2001, pp. 339-348.

[9] S. Elbaum, A. Malishevsky, and G. Rothermel, “Incorporating
varying test costs and fault severities into test case prioritization,” In
In Proc. of ICSE, pages 329–338, May 2001.

[10] M. R. Fine, “Beta Testing for Better Software,” Wiley, 2002.

[11] P. Francis, D. Leon, M. Minch, A. Podgurski, “Tree-Based Methods
for Classifying Software Failures,” In Proc. of the 15th ISSRE, Nov.,
2004, pp.451-462,

[12] P. G. Frankl, R. G. Hamlet and B. Littlewood, “Evaluating Testing
Methods by Delivered Reliability”, Transaction on Software
Engineering, Vol. 24, August, 1998. pages 586-601.

[13] S. Gokhale. “Cost–constrained reliability maximization of software
systems”. In Proc. of Annual Reliability and Maintainability
Symposium, Los Angeles, CA, January 2004, pages 195-200.

[14] W. J. Gutjahr. “Optimal test distributions for software failure cost
estimation,” Software Engineering, IEEE TSE on 1995, pp. 219-28.

[15] R. A. Haertel, K. D. Seppi, E. K. Ringger, and J. L. Carroll. “Return
on investment for active learning,” In Proc. of the NIPS Workshop on
Cost-Sensitive Learning, 2008.

[16] hclust (hierarchical clustering package used in R):
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/hclust.html

[17] S. Horwitz, T. Reps and D. Binkley, “Interprocedural Slicing Using
Dependence Graph,” ACM Trans. Program. Lang. Syst. 12, 1, Jan,
1990, pages 26-60.

[18] C.Y. Huang, J.H. Lo, S.Y. Kuo, M.R. Lyu, “Optimal allocation of
testing-resource considering cost, reliability, and testing-effort”, In
Proc. of the10th IEEE Pacific Rim International Sympsium on
Dependable Computing, 2004, vol. 3-5, 2004, pages. 103 – 112.

[19] Java Interactive Profiler. http://jiprof.sourceforge.net/.
[20] JavaPDG Project. http://selserver.case.edu:8080/javapdg/index.htm
[21] H. K. N. Leung, L. White, “A Cost Model to Compare Regression

Test Strategies, ” In Proc. of ICSM., pages 290–300, Nov. 1990.
[22] A. G. Malishevsky, G. Rothermel, and S. Elbaum, “Modeling the

Cost-Benefits Tradeoffs for Regression Testing Techniques,” In Proc.
of ICSM, Montreal, Quebec, Canada, Oct. 2002, pages 230-240.

[23] H. Pham, X. Zhang, “NHPP software reliability and cost models with
testing coverage, ” in European Journal of Operational Research, vol.
145, no. 2, pages. 443–454, Mar.2003.

[24] A. Podgurski, D. Leon, P. Francis, M. Minch, J. Sun, B. Wang and W.
Masri, “Automated support for classifying software failure reports,”
in Proceedings of 25th ICSE, Portland, OR, May 2003.

[25] A. Podgurski, W. Masri, W., Y. McCleese, F. G. Wolff, and C. Yang,
“Estimation of software reliability by stratified sampling,” in ACM
Transactions on Software Engineering and Methodology 8, 9 (July,
1999), pages 263-283.

[26] ROME Project. http://java.net/projects/rome/
[27] D. S. Rosenblum, E. J. Weyuker, “Using Coverage Information to

Predict the Cost-Effectiveness of Regression Testing Strategies, ” in
IEEE Trasaction on Software ngineering, Vol. 23, No. 3, Mar. 1997,
pages 146-156.

[28] B. Settles. “Active learning literature survey,”Technical Report 1648,
University of Wisconsin- Madison. 2009.

[29] Spring. Spring Framework 3.0.2.RELEASE,
www.springframework.org.

[30] J. Steven, P. Chandra, B. Fleck, A. Podgurski, “jRapture: A
Capture/Replay tool for observation-based testing,” SIGSOFT Softw.
Eng. Notes, vol. 25, 2000, pages. 158-167.

[31] J. Tian and J. Palma, “Test workload measurement and reliability
analysis for large commercial software systems,” Annals of Software
Engineering 4 (1997), pages 201-222.

[32] M. Z. Tsoukalas, J. W. Duran, S. C. Ntafos. “On some reliability
estimation problems in random and partition testing,” Software
Engineering, IEEE Transactions on 1993, 19(7), pp. 687-97.

[33] E. J. Weyuker, “On Testing Non-Testable Programs, ” in The
Computer Journal (1982) 25 (4), pp. 465-470

[34] E. J. Weyuker, “Using failure cost information for testing and
reliability assessment,” ACM TOSEM 1996; 5(2): 87-98.

[35] Xerces2 Project. http://xerces.apache.org/xerces2-j/

http://www.bugzilla.org/�
http://dl.acm.org/citation.cfm?id=1033850&CFID=47002481&CFTOKEN=34943756�
http://dl.acm.org/citation.cfm?id=1033850&CFID=47002481&CFTOKEN=34943756�
http://dl.acm.org/citation.cfm?id=1033850&CFID=47002481&CFTOKEN=34943756�
http://jiprof.sourceforge.net/�
http://selserver.case.edu:8080/javapdg/index.htm�
http://www.springframework.org/�
http://xerces.apache.org/xerces2-j/�

	I. Introduction
	II. Background
	A. Field Test Corpus, Failure Regions, Defect Failure Rate
	B. Risk From a Defect
	C. Cost-Sensitive Active learning

	III. The CARIAL Framework
	A. Phase I: Estimating Total Risk with Active Learning
	1) Learning algorithm in a nutshell
	2) Developer feedback

	B. Phase II: Selecting Test Cases for Debugging Defects

	IV. The Cost-Sensitive Active Learner: CostHSAL
	A. The Basic HSAL Algorithm
	CostHSAL

	V. Empirical Evaluation
	A. Subject Programs
	B. Methodology
	1) Cost Functions
	2) Risk Estimation
	3) Study Parameters
	4) Baseline Approaches

	C. RQ-1: Accuracy of Risk Estimation
	D. RQ-2: Effectiveness of Test Case Selection
	E. Threats to Validity

	Related Work
	A. Cost-Sensitive analysis in software testing and reliability
	B. Test case partitioning

	VII. Conclusions
	References

