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Abstract—In the context of field testing (operational testing) of 
software, we address the problem of balancing the potential 
reduction in failure risk that developers may achieve by 
reviewing captured test executions to identify failures (and by 
successfully debugging their causes) against the cost of 
reviewing the tests. To achieve a desirable balance, we propose 
a cost-sensitive active learning strategy. Our approach guides 
developers in selecting a sample of test executions to review 
and label, and it calls for them to profile execution dynamics 
and characterize the symptoms and relative severity levels of 
failures.  Profiles, labels, failure symptoms, and severity levels 
are used by the active learner to construct and refine a 
mapping between examined and unexamined tests, on one 
hand, and possible defects, on the other hand.  This mapping is 
used together with estimates of test review costs to guide the 
selection of additional tests. We evaluate our approach on 
three subject programs and show that it (1) produces 
reasonable predictions of risk reduction and (2) significantly 
improves severity-weighted reliability for each subject 
program, with relatively low developer effort. 

Keywords-Operational testing, reliability improvement, 
delivered reliability, active learning, risk reduction, cost-sensitive 
analysis 

I.  INTRODUCTION 
For a given software system or application, there are 

often substantial differences among potential test inputs in 
the costs associated with evaluating the input-output 
behavior they induce.  Evaluation of test results typically 
requires developers either to examine actual output manually 
or to determine expected output in advance so that it can be 
compared automatically to actual output.  In general, the cost 
of evaluating a test’s results increases with the size and 
complexity of the test input and of the output it generates.  
Among test inputs that induce software failures, there are 
often large differences in the benefits obtained, in terms of 
improved operational reliability, by finding and repairing the 
software defects they reveal.  This is because some defects 
are triggered more frequently in the field than others and 
because different defects cause failures of different severities. 

Few proposed software testing techniques (see Section 
VI) are guided explicitly by consideration of the differences 
in the costs and benefits associated with individual test 
inputs, perhaps because it is often difficult to predict them 
prior to testing.  However, testers do commonly favor small 
and relatively simple test cases [31][33], presumably to 
reduce the effort they must expend in constructing tests, 
checking the results, and debugging failures.  This practice 
runs the risk of missing defects triggered by more complex 
inputs from end users.  The difficulty of evaluating complex 
outputs helps explain why developers do not routinely 

capture inputs in the field [30] when it is feasible, in order to 
replay and check them or to reuse the inputs for regression 
testing.  It is typical for developers to rely mainly on users to 
discover and report field failures, though users often perform 
these tasks poorly [10]. 

In this paper, we propose a novel, proactive approach to 
improving software reliability in the context of field testing.  
It applies to software that has already been deployed, at least 
for beta testing, and that possibly has also been modified.  
The approach, which is called Cost-Aware Reliability 
Improvement with Active Learning (CARIAL), is intended to 
balance the costs of reviewing test output against 
improvements in severity-weighted operational reliability 
that are predicted to result from fixing the defects the tests 
may reveal.  CARIAL does this by interactively guiding 
developers, using a cost-sensitive active learning technique 
to investigate an incrementally-chosen sample of software 
executions, captured in the field, and to provide feedback to 
the learning algorithm.  The algorithm uses the feedback 
together with execution profiles to construct and refine a 
mapping between examined and unexamined test executions, 
on one hand, and possible defects, on the other hand. This 
mapping is used to empirically estimate the reduction in 
operational risk (defined as expected loss due to failures) 
that will result if a putative defect is revealed and debugged.  
Estimates of risk reduction and of test review costs are used 
to select further tests for developers to review.  The former 
estimates may also be used by developers to help decide 
whether the software is ready for general release. 

CARIAL does not require feedback from end users and it 
does not require developers to assign specific costs to inputs 
or to software failures.  It does require a means of roughly 
assessing the relative costs of reviewing test outputs, based 
on properties such as input and output size or complexity.  It 
also requires that a significant and representative sample of 
complete program inputs be captured in the field.  Finally, it 
requires that developers examine and label selected 
executions (PASS/FAIL), characterize failure symptoms, and 
assign levels of relative severity to the failures.  We argue 
that in many scenarios, these requirements are reasonable 
and well-justified by the potential benefits of our approach. 

Our work makes the following contributions: 
• We propose a novel adjunct to field testing, 

CARIAL, which balances the cost of test-output 
examination by developers against predicted 
improvements in severity-weighted reliability. 

• We developed a cost-sensitive active learning 
algorithm (CostHSAL) to predict, using execution 
profiles and developer feedback, the risk reduction 
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that will result from fixing an apparent defect, 
taking failure rate and severity levels into 
consideration.   

• We report on an empirical evaluation of CARIAL, 
involving three software projects.  The results 
indicate that CARIAL improves risk reduction, with 
relatively low developer effort. 

The remainder of the paper is organized as follows:  
Section II gives a brief introduction to the concepts and 
techniques used in this paper; Section III introduces the 
CARIAL framework; Section IV describes the CostHSAL 
algorithm in detail; Section V presents experimental results 
characterizing the effectiveness of the framework; Section 
VI summarizes related work; and Section VII concludes the 
paper and describes future work.  

II. BACKGROUND 
In this section, we introduce the concepts of field test 

corpus, failure regions, defect failure rates, and risk from a 
defect. We also briefly discuss cost-sensitive active learning, 
the machine learning technique we employ. 

A. Field Test Corpus, Failure Regions, Defect Failure Rate 
The operational input distribution of a software system is 

the probability distribution of its (complete) inputs in a 
particular environment [6].  For the purpose of estimating 
software reliability, it is not necessary to characterize the 
operational distribution analytically.  A random sample of 
suitable size adequately characterizes the distribution.  We 
assume that a large random sample or corpus of test 
inputs/executions is captured in the field, in a way that 
permits replay and review of executions [30].  This field test 
corpus will be sub-sampled by the active learner.   

In the field test corpus, there will typically be one success 
region and several failure regions.  The success region 
contains all inputs that induce passing executions.  Each 
failure region Fi contains the inputs that induce failures by 
triggering a particular defect di.  Let TC be the field test 
corpus.  Assuming there are k underlying defects, TC can be 
decomposed as follows: 

TC = S ∪ F1 ∪ F2 ∪ …∪ Fk 
Figure 1a illustrates a test corpus with a success region and 
several failure regions.  Note that the latter may overlap, 
since an input may trigger several defects and thus belong to 
several failure regions. In this case, we define new failure 
regions corresponding to each subset of defects that can be 
triggered by an input. This makes the failure regions non-
overlapping (Figure 1b), and some regions are associated 
with “superdefects” that are composed of simpler defects.  
With this modification, we define the defect failure rate for a 
defect (or superdefect) di with failure region Fi as 

Eq. 1: 𝒅𝒇𝒓(𝒅𝒊) =  |𝑭𝒊|
|𝑻𝑪|

 

The defect failure rate is thus the proportion of 
operational inputs that trigger a certain defect (or superdefect) 
𝑑𝑖 . Since failure regions as defined above are non-

overlapping, 𝑑𝑓𝑟(𝑑𝑖) is well-defined in that inputs are not 
double-counted if they trigger multiple defects. 

B. Risk  From a Defect 
Intuitively, the risk from a defect depends on two main 

factors: the defect failure rate and the severity level of the 
defect.  Defects with high failure rates cause software to fail 
frequently, so they should have high risk.  On the other hand, 
defects that are rarely triggered but cause catastrophic 
failures when they are triggered should also have high risk. 
The severity level of a defect depends on the nature of the 
failures it causes.  For example, a defect that causes cosmetic 
errors in output is less severe than a defect that causes a 
critical system to deadlock.  Most bug tracking systems 
provide predefined severity levels such as normal, major, 
and blocker.   

More formally, we define the risk of a defect 𝑑𝑖 , 
𝑅(𝑑𝑖), as the expected loss if 𝑑𝑖  remains in the released 
software. Loss can be measured in different ways. For 
example, we might assume that each field failure caused by 
𝑑𝑖 results in a dollar loss ℒ(severity(𝑑𝑖)), which depends on 
𝑑𝑖’s severity level.  We then define the risk associated with 
defect 𝑑𝑖 as: 

Eq. 2: 𝑹(𝒅𝒊) =  𝓛(𝐬𝐞𝐯𝐞𝐫𝐢𝐭𝐲(𝒅𝒊)) ∙ 𝒅𝒇𝒓(𝒅𝒊) 
The total risk from all defects in a program will thus be  

Eq. 3: 𝑹𝒕𝒐𝒕 = ∑ 𝑹(𝒅𝒊)𝐢  
The goal of our work is to reduce the total risk in the 

program as much as possible while expending as little 
developer effort as possible in reviewing test case outputs.   

C. Cost-Sensitive Active learning 
For some problems, it is very expensive and difficult to 

obtain class labels [28].  An active learning algorithm 
obtains labels from an “oracle”, such as a human user, 
interactively and incrementally. At each step, the algorithm 
selects examples that are predicted to most improve the 
current model, if their labels were known. For example, a 
common strategy is to pick examples the current model is 
most uncertain about. Since (mostly) “useful” examples are 
labeled, fewer labels should be needed to produce an 
accurate model than for standard supervised learning. 

We assume that for most software products, the cost of 
an operational failure is more variable and potentially much 
higher than either the cost of reviewing a test or the cost of 
debugging a defect.  Moreoever, debugging a given defect 
may require examining multiple failing tests.  Hence, when a 

Figure 1. Illustration of operational distribution of inputs.        
(a) shows success region and overlapping failure regions;    (b) 
shows success region and non-overlapping failure regions. 

(a) (b) 



failure is discovered during review of test outputs, it is often 
reasonable to defer debugging until the relative risk posed by 
different defects is clarified by reviewing additional tests. 

Since examining test results is expensive, we use active 
learning to efficiently guide exploration of the field test 
corpus and to construct a risk mapping that relates observed 
and unobserved failures to underlying defects. Our approach 
is based on an existing active learning algorithm, called 
hierarchical sampling for active learning (HSAL) [7]. This 
algorithm, like many other active learning algorithms, tries to 
minimize the number of labels needed while maximizing the 
accuracy of the model, assuming that every label is equally 
expensive to obtain. This assumption does not hold in our 
case, where it can be significantly more expensive to 
examine complex outputs than simple ones.  Hence we 
modified the HSAL algorithm to make it cost-sensitive, that 
is, to minimize the sum of (non-uniform) costs of obtaining 
labels. 

III. THE CARIAL FRAMEWORK 
The CARIAL framework is illustrated in Figure 2 and 

consists of two phases. The goal of the first phase is to 
estimate, as accurately as possible, the total risk due to 
defects. To do this, CARIAL selects test cases for developers 
to examine. This step uses active learning to try to balance 
the cost of reviewing test case outputs against the potential 
improvement in risk estimation. Developer feedback is used 
to update defect failure rate estimates and severity 
information. In the second phase, these are used to select test 
cases that can be used to debug defects. These test cases are 
chosen by the algorithm to maximize total risk reduction 
while minimizing review costs. In the following, we describe 
each phase of the framework in detail. We assume that 
crashing tests are identified automatically and are processed 
by developers prior to active learning.  Hence the subsequent 
discussion will assume that observed failures do not cause 
crashes. 

A. Phase I: Estimating Total Risk with Active Learning 
To estimate the risk posed by a defect 𝑑𝑖, it is necessary, 

according to Equation 2, to estimate its severity and its 
failure rate.  Estimating either quantity might seem to require 
first identifying 𝑑𝑖  in program code, in order to determine 
which failures it caused on the test corpus.  This would put 

the cart before the horse, so to speak, since the traditional 
purpose of testing is to induce failures that reveal defects, so 
that the latter can be identified and corrected.  To address 
this issue, one possibility is to randomly and uniformly 
sample tests from the input corpus for developers to review, 
and to construct approximations of the success and failure 
regions based on their feedback. However, this is unlikely to 
make efficient use of their time and effort, because simple 
random sampling does not make use of what is already 
known about different regions of the corpus, so a lot of time 
could be spent reviewing tests that do not add any significant 
information.  For example, if severe failures are rare then 
simple random sampling of tests may cause developers to 
expend most of their effort on reviewing low risk tests. 
Active learning, on the other hand, can make use of 
information obtained from already sampled units, in order to 
maximize the information gained through further sampling 
while limiting the developer effort that is required. In 
CARIAL, we exploit this idea. 

1) Learning algorithm in a nutshell 
The cost-sensitive active learning algorithm we use, 

CostHSAL, is described in detail in Section IV, but we 
outline the key ideas here. CostHSAL uses execution 
profiles collected from tests to construct a cluster-based 
model of failure regions and of the success region. The 
profiles may be any of the types used in software testing to 
characterize execution dynamics, including profiles of 
function coverage, statement coverage, branch coverage, 
data flow coverage, etc. Initially, unlabeled regions of the 
input corpus are identified by hierarchical cluster analysis 
applied to execution profiles alone. At each subsequent 
iteration, CostHSAL selects an unexamined test, based on 
the current model, for a developer to review.  The choice of 
test is based on the size and homogeneity of the current 
estimated failure and success regions and on the assessed 
costs of reviewing the tests they contain. After reviewing 
the output of a test, the developer labels the test as a success 
or a failure, and in the latter case he/she characterizes the 
failure’s severity and its externally observable symptoms 
(see below).  This is used to update estimates of failure rates 
and failure severity for defects. We assume there is a cost 
budget, which is the total cost a developer is willing to 
spend reviewing test outputs. The active learning iteration 

Figure 2. Framework of CARIAL. Phase I constructs a mapping from failures to hypothesized defects and uses it to estimate risk. Phase II 
selects test cases to debug the underlying defects. In each phase, the framework attempts to minimize the cost of reviewing test cases. 



stops either when this budget is exhausted or when the 
algorithm decides the clusters are sufficiently “pure”.  

In determining which captured field-tests developers 
should review, CostHSAL considers the costs of examining 
the output produced by individual tests.  These costs may be 
considerable, especially for software that produces large or 
complex outputs, because developers typically must examine 
outputs manually.  For example, if a program outputs graphs, 
developers are likely to spend more time evaluating dense 
graphs than they spend evaluating sparse ones.  We assume 
that the average cost of examining the output of a test grows 
proportionately with a measure of the size or complexity of 
the test.  We currently employ linear cost metrics, e.g., 

cost(ti) = 𝛼 ∙|output(ti)| 
cost(ti) = 𝛼 ∙complexity(output(ti)) 

where 𝛼 is a constant, |output(ti)| is the size of the output 
produced by test ti, and complexity(output(ti)) is a measure 
of the complexity of ti’s output. We do not currently 
consider debugging costs, because of the difficulty of 
predicting them. 

When CostHSAL terminates, test cases are grouped into 
an estimated success region 𝑆̂  and several estimated failure 
regions (clusters) 𝐹𝚤� . Failures with distinct symptoms are 
placed in different failure regions. Further, if one test case 
triggers a set of defects rather than a single one (see Section 
II.A), we assume that the symptoms will be determined by 
the whole set of defects, so that test cases triggering different 
sets of defects have different symptoms. Since each failure 
has one set of symptoms, the regions 𝐹𝚤�  will be non-
overlapping failure regions (NOFRs). We will discuss the 
consequences of the assumptions not holding in Section V.E. 
Note that our assumptions about test cases triggering 
multiple defects mean that such test cases will be allocated to 
their own groups, and we will see them as being caused by a 
new “superdefect” (composed of simpler defects). This will 
have its own severity level as determined by the developers. 
This is possibly suboptimal in that it would be better to 
associate those test cases somehow with the individual 
defects. However, it is not obvious how to do this, since at 
this stage we do not even know how many defects are 
present in the program, or where they are. 

2) Developer feedback 
CARIAL requires developers to provide two pieces of 

information about a failed test (in addition to labeling it as a 
failure): a severity level and a symptom profile. The severity 
level may be specified on an ordinal scale or by a number. 
The simplest scheme is to use a fixed set of levels like those 
used in bug tracking systems. Developers must also specify a 
loss function ℒ to map severity levels to numbers.  It is not 
necessary to assign an exact dollar cost to each failure. It 
suffices to roughly characterize the relative costs of different 
types of failures, e.g., to within an order of magnitude.  
CARIAL currently considers only the severity levels of 
failures actually observed by developers.  This may lead to 
inaccurate risk predictions if rare failures not triggered by the 

field test corpus lead to catastrophic losses. These could be 
addressed using long-tailed parametric models for the 
probability distribution of severity levels. 

A symptom profile characterizes the symptoms of a 
failure. Failed tests that have similar symptom profiles will 
be assigned to the same failure region.  Symptom profiles 
can be provided by developers as attribute vectors or as 
machine-checkable signatures. Symptom vectors can be 
obtained from users with a well-designed user feedback 
mechanism that allows them to quickly answer (e.g., with 
mouse clicks) a set of pre-defined, application-specific 
questions about a failure’s symptoms.  For example, the 
JavaPDG program dependence graph generator [20] 
developed by our group provides such a mechanism, which 
questions the user about erroneous graph elements.  Since the 
questions are predefined, it is easy to extract the feedback 
into a feature vector.   

Alternatively, symptom profiles can be provided using a 
symptom signature, which is a machine-checkable property 
or set of properties characterizing a set of related failures.  
For example, we use ROME [26], an RSS reader, as a subject 
program. The symptom of one particular defect can be 
described as “<href> is a relative URL instead of an absolute 
one”, which is an easily checkable property.  Burger et al [4] 
used similar ideas in the context of automatic debugging.  
They inserted predicates into the code to detect symptoms of 
a failure, such as “attribute name of object with id 13 has 
value “UTC””.  

B. Phase II: Selecting Test Cases for Debugging Defects 
At the end of the first phase, we have a set of failure 

regions corresponding (ideally 1:1) to defects in the program. 
In the second phase, we use these to select test cases from 
programmers to use to debug these defects. Here, we assume 
that developers may need to examine multiple tests that 
trigger a given defect in order to successfully debug it.  The 
goal is to select test cases that (i) minimize cost to review 
and (ii) maximize the reduction in risk, if the defects 
associated with them can be debugged. In each iteration the 
algorithm determines the failure region with the currently 
maximal expected risk. From this region, we repeatedly 
select test cases in increasing order of review cost. Once 
developers have identified enough failing tests from the 
maximal-risk region to permit the underlying defect(s) to be 
successfully debugged, we move on to the next riskiest 
region and repeat the process. 

As an optimization in this phase, developers may reuse 
previously labeled test cases from Phase I. These test cases 
will have review-cost zero in this phase, since their output 
has already been examined earlier. 

IV. THE COST-SENSITIVE ACTIVE LEARNER: COSTHSAL 
In Phase I of CARIAL, we use a cost-sensitive active 

learning algorithm, CostHSAL. This algorithm is a modified 
version of an algorithm presented in prior work, Hierarchical 
Sampling for Active Learning (HSAL) [7].  



HSAL has two very desirable properties for our problem. 
First, many active learning algorithms apply to classification 
problems for which the number of classes is known.  In our 
case, “classes” correspond to defects, so we have no idea 
how many classes there are. Fortunately, HSAL can start 
with only one class, and when the user provides a new class 
label, it can update the number of classes.  Second, HSAL 
can allocate multiple regions for the same class. This can be 
useful because different test cases, though they all share the 
PASS/FAIL label, can have very different feature values. For 
example, the ROME project uses different classes and 
functions to parse different types of feeds, such as RSS 1.0, 
RSS 2.0, and Atom 1.0.  Test cases that involve different 
types of feeds can have very dissimilar code-coverage 
profiles, and HSAL can take this into account. However, the 
basic HSAL algorithm does not incorporate non-uniform 
costs for label acquisition. We next describe HSAL, 
followed by our modifications to make it cost-sensitive. 

A. The Basic HSAL Algorithm 
HSAL is an active learning algorithm that exploits cluster 

structure in data.  It takes as input a hierarchical clustering of 
the unlabeled dataset, which could be generated by any 
chosen hierarchical clustering algorithm.  At each step, the 
algorithm maintains a pruning (cut) of the cluster tree which 
is a partition of the data set. The goal of the algorithm is to 
quickly (with little labeling effort) reach a pruning where the 
constituent clusters are fairly pure in their class labels.   

The pseudocode of the algorithm is shown in Algorithm 
1. The initial pruning that HSAL starts with consists of just 
the root, v1. In each iteration, the algorithm selects some 
cluster from the current pruning (SelectCluster in the 
Algorithm 1), then probabilistically traverses the subtree 
below the chosen cluster and samples a currently unlabeled 
leaf (SampleTestCase). It then queries the oracle to obtain  

its PASS/FAIL label, and if the test fails, obtain its symptom 
profile and severity level (QueryDeveloper in the 
Algorithm 1); the symptom profile serves as its class label. 
With this label, HSAL updates statistics that summarize the 
frequency of different classes in each cluster. It uses these 
summary statistics to identify clusters that are impure, i.e., 
composed of different classes. It then removes these clusters 
from the current pruning and replaces them with their 
children, which intuitively may be expected to be less impure. 
This process results in an updated pruning. The algorithm 
continues until the clusters in the current pruning are fairly 
pure or until the user-defined cost budget is exhausted.   

To select a cluster from the current pruning, HSAL 
samples from a probability distribution where a cluster vi’s 
likelihood of being chosen is proportional to 𝜔𝑖  (1 − 𝑝𝑖) , 
where 𝜔𝑖 =  |𝑣i|/𝑁 is the fraction of all points allocated to vi 
and 𝑝𝑖  is the proportion of all labeled points in vi having the 
majority label in vi. The closer that 𝑝𝑖  is to 1, the more pure vi 
is. This criterion makes it more likely for HSAL to pick large, 
impure clusters. Then, to pick an individual point to query, 
the algorithm traverses the subtree below the selected cluster. 
Here, at each step, it picks a child with probability 
proportional to the size of unlabeled data in the child.  This 
process is repeated until a leaf node is reached and returned. 
This focuses HSAL’s labeling effort on parts of the space 
that are still largely unexamined.  

We illustrate the algorithm using the example cluster tree 
in Figure 3 which might be the result of hierarchically 
clustering a set of items. At the leaves of this tree we show 
the fraction of examples with a certain label. Assume this is a 
two-class problem. The leftmost leaf has 20% of all the data, 
labeled with one class (colored white). The next leaf contains 
30% of the data, all labeled with the other class (colored 
grey), and so forth. Consider the cluster tree in Figure 3.  
Initially, we have P = {v1}.  Half the data in this node are 
from one class and half from the other (seen by traversing 
the subtrees below it), so after sampling some points and 
determining their labels, v1 should be found to be impure, so 
HSAL moves to pruning {v2, v3}. Depending on how the 
labeled points are distributed in v2 and v3, one of them will be 
judged to be more impure and (probabilistically) selected to 

Algorithm 1: CostHSAL 
Input: hierarchical clustering of test cases; batch size B; budget G 
Output: Pruning (cut) of cluster tree annotated with labels 
 
P ← {root} [current pruning of tree] 
 repeat until budged exhausted or P is pure 

 for i = 1 to B 
v  ← SelectCluster(P) 
tc  ← SampleTestCase (v) 
SymptomProfile, Severity ← QueryDeveloper(tc) [active 
learning query; SymptomProfile and Severity are NULL if tc 
triggers no failure] 
Update label statistics of v according to SymptomProfile 

end  for 
for all impure clusters vi in P 
    P ← P  \ {vi} ∪ {children(vi)} 
end for 

  end  repeat 
   For each cluster 𝑣𝑖  ϵ 𝑃, (1) assign all members the majority label, 
(2) assign its severity as the average severity among all members 
  return label-annotated pruning 

Algorithm 2: SelectCluster 
Input: Current pruning P of cluster tree 
Output: Cluster to sample test case from 
 
for each cluster vi in P 
   𝜔𝑖 =  |𝑣i|/𝑁      [N is the total number of test cases] 
   𝑝𝑖 = proportion of majority label out of all labeled nodes in vi 
end for 
Sort clusters by 𝜔𝑗  (1− 𝑝𝑗) into non-increasing order 
cmin ← ∞; vmin ← NULL 
repeat 
   Remove v from front of sorted cluster list 
   c ← MeanSampleCost(v) 
   if c < cmin then cmin ← c;  vmin ← v 
   else return vmin  
end repeat 



sample from. More labels will reveal that v2 is quite impure 
and needs to be split. This continues until the label budget 
runs out or a pure pruning is found. 

B. CostHSAL 
For our problem, we need to make HSAL cost-sensitive, so 
that it takes into account the fact that different tests have 
different review costs. This can be achieved by modifying 
the two functions SelectCluster and SampleTestCase 
to be sensitive to test review costs. The basic algorithm 
remains the same as HSAL. The modified functions are 
shown in Algorithms 2 and 4. These use an auxiliary 
function, MeanSampleCost (Algorithm 3), which 
estimates the average cost of unlabeled test cases in a cluster.  
To modify SelectCluster, we would like to select not 
just proportional to 𝜔𝑖  (1 − 𝑝𝑖)  but also inversely 
proportional to the mean sampling cost of the cluster, so that 
clusters that are large and impure but also relatively 
inexpensive to label are selected.  An intuitive approach is 
to select a cluster v with probability proportional to 

𝜔𝑖 (1−𝑝𝑖)

MeanSampleCost(𝑣)
.  However, since 𝜔𝑖  (1 − 𝑝𝑖) is a probability 

and MeanSampleCost(v) is not, it is hard to put these two 
metrics on the same scale.  Hence we employ a heuristic 
scheme based on sorting clusters by 𝜔𝑖  (1 − 𝑝𝑖) into non-
increasing order and then walking the sorted list until the 
cost starts to increase.  We then return the cluster with the 
lowest cost found. To modify SampleTestCase, we use an 
iterative procedure as in HSAL, except that in each iteration, 
instead of selecting children just on the basis of the fraction 
of unlabeled examples, we select a child c with probability 
inversely proportional to MeanSampleCost(c), so that a 
child with low mean sampling cost is more likely to be 
selected.  

V. EMPIRICAL EVALUATION 
We perform an empirical evaluation to assess the 

effectiveness of the CARIAL framework for balancing risk 
reduction and test review costs.  This study addresses two 
main research questions: 
 RQ-1: How accurate is the risk estimate that is 

output by Phase I of CARIAL? 

 RQ-2: How effective is the test case selection 
scheme used by Phase II of CARIAL? 

To answer these questions we evaluated CARIAL and two 
other baselines on several subject programs. 

A. Subject Programs 
We used three open source projects in our evaluation: 

JavaPDG [20], ROME [26] and Xerces2 [35], each of which 
produces complex output.  JavaPDG [20] is a software tool 
developed by our research group to input a Java program and 
output a System Dependence Graph [17], in which the 
vertices represent program elements, such as declarations, 
expressions or predicates, and the edges represent data and 
control dependences.  ROME [26] is an open source Java 
library for parsing, generating, and publishing RSS and 
Atom feeds.  We constructed a driver program that uses the 
ROME APIs to parse RSS and Atom feeds and output them 
in XML.  Xerces2 [35] is an open source Java XML parser.  
We wrote a driver for Xerces2 that takes an XML file as 
input, parses it, and then assembles the parsed elements into 
a new XML file.  The characteristics of the subject programs 
are summarized in Table I. 

Test Cases.  We collected operational inputs for each of 
the three projects.  For JavaPDG, we used functions from the 
Spring Framework [29] as inputs; altogether 1295 test cases 
were collected.  For the ROME and Xerces2 projects, we 
reused test cases from Augustine et al’s work [1]: for ROME, 
8,000 Atom and RSS files were downloaded from Google 
Search results, using a custom web crawler; for Xerces2, 
9,630 files were collected from the system directories of an 
Ubuntu Linux 7.04 machine and from Google Search results. 

Defects. We selected a sample of defects from the bug 
database of each project. Nine defects were randomly 
selected for JavaPDG, six for ROME, and eight for Xerces2.  
For each of the defects, custom code instrumentation was 
inserted to detect its failure conditions and report when they 
were triggered.  The JavaPDG defects caused 3.9% test cases 

Algorithm 3: MeanSampleCost 
Input: Cluster v from cluster tree 
Output: Estimate of average cost to query node in v 
 
if v is a labeled leaf then return ∞  [ensure these cannot be 
selected] 
if v is an unlabeled leaf then return cost(v) [cost functions 
defined in III.1] 
s ← 0 
for a constant number of iterations k 
     testcase  ← SampleTestCase (v) 
     s ← s + cost(testcase) 
end for 
return  s/k 

Algorithm 4: SampleTestCase 
Input: Cluster v from cluster tree 
Output: Test case from subtree below v 
 

if v is a leaf node then return v [leaves are test cases] 
else 
   Select a child c of v with probability  
       Pr(c) ∝  1

MeanSampleCost(𝑐)
  [prefer low cost children] 

    return SampleTestCase(c) 

Figure 3. Example cluster tree 



to fail, while the ROME and Xerces2 defects caused more 
than 30% of their test cases to fail.  In typical field testing 
scenarios, it is unlikely that 30% or more of executions will 
fail.  Hence, we randomly discarded failing tests to reduce 
the failure rates to 5.2% for ROME and to 5.4% for Xerces2. 
We used a single-linkage based agglomerative clustering 
algorithm [16] to compute the hierarchical clustering of test 
case profiles and we manually inspected the resulting cluster 
tree. For each of the projects, there were test cases that 
triggered multiple defects, so there were overlaps in the 
failure regions.  We found 12, 13, and 14 non-overlapping 
failure regions (as described in Section II.A and III.A) in the 
JavaPDG, ROME and Xerces2 test sets, respectively.  We 
assigned high severity levels to defects with low failure rates 
and assigned low severity levels to defects with high failure 
rates.  This was done to simulate a difficult scenario in 
software testing in which the most important bugs manifest 
very rarely, making it hard to identify and reduce operational 
risk.  For failure regions with multiple defects, we set the 
severity level to be the highest among the underlying defects. 

Execution Profiles.  We used function coverage profiles 
in our study, to characterize internal execution dynamics.  
We used the Java Interactive Profiler [19] to record the 
number of times each function was invoked during an 
execution, and we added binary indicators to the profiles to 
indicate which functions were executed at least once per run.  

Symptom Profiles.  We used JavaPDG’s built-in user 
feedback mechanism to collect symptom profiles.  For 
ROME and Xerces2, we used symptom signatures as 
symptom profiles.  These were provided as text strings 
describing a property of the output.  For all three projects, 
symptoms were distinct for non-overlapping failure regions. 

B. Methodology 
1) Cost Functions 

As stated in Section III.A, we assume that the cost of 
reviewing test output is linear in the size or complexity of the 
output.  For JavaPDG, we assumed that this cost is linear in 
the number of edges of the system dependence graph 
produced.  For ROME and Xerces2, we assumed that this 
cost is linear in the size, in bytes, of the XML output files.   

2) Risk Estimation 
In our study, we used the built-in importance levels of the 

Bugzilla bug tracking system [5] as our severity levels.  
There are six pre-defined importance levels, namely trivial, 
minor, normal, major, critical and blocker.  We represented 
these levels by the numbers 1 to 6, respectively. 

We defined the loss function ℒ for a defect of severity s 
as  

Eq. 4: ℒ(𝑠) = 𝑀 ∙ 2𝑠 
where 𝑀 is a dollar multiplier. We used M = $1000 in this 
work.  

3) Study Parameters 
One parameter of our study design is the cost budget for 

risk estimation, denoted by B.  In an actual application of 
CARIAL, the parameter B is specified by developers in order 
to control the effort they expend on risk estimation.  
Obviously, B affects the accuracy of risk estimation.  
Another parameter is the mean of the number X of failures, 
caused by a particular defect 𝑑𝑖 , that developers need to 
review in order to successfully debug 𝑑𝑖. We assume that the 
number X is not fixed but varies around some typical number 
of test cases. Thus we model X in our study as a Poisson 
random variable with mean 𝜆.     

4) Baseline Approaches 
We compared CARIAL against two baseline approaches 

to test selection: simple random sampling from the test 
corpus and smallest-first sampling. Smallest-first sampling 
always selects an unlabeled test case with lowest review cost.  
It arguably mimics what developers often do in practice. For 
a fair comparison, we adapted these baselines to also operate 
in two phases, a risk estimation phase and a test case 
selection phase. 

In the risk estimation phase, random sampling and 
smallest-first sampling were each used to choose a sample T 
of tests for developers to review. Then, test cases in T with 
the same symptom profiles were grouped into non-
overlapping failure regions just as with CARIAL. The risk 
was estimated using Equation 2 with the same loss function 
shown above. 

In the test case selection step, we used the optimization 
described for CARIAL in Section III.B, where test cases 
labeled in Phase I are first used to debug defects. When they 
were exhausted, random sampling or smallest first sampling 
was used to continue selecting test cases to debug defects. 

C. RQ-1: Accuracy of Risk Estimation 
We define the Error of Risk Estimation as the absolute 

difference between estimated total risk and the true total risk: 

𝐸𝑅𝐸 = �𝑅𝑡𝑜𝑡� − 𝑅𝑡𝑜𝑡� = |�𝑅��𝑑𝚤� �
𝑖

−�𝑅�𝑑𝑗�|
𝑗

 

Since Phase I of CARIAL outputs non-overlapping failure 
regions, each assumed to be associated with a defect, the first 
term is computed by summing over all failure regions. To 
compute the second term, we used our knowledge of the true 
defects and which test case triggers which defect. We used 

TABLE I.  Summary of Subject Programs Used in The Empirical Evaluation. 
“# Test Cases” refers to number of test cases; “%failures” refers to the fraction of failing test cases, “#Defects” refers to the number of true defects, 
“#NOFRs” refers to  Non-Overlapping Failure Regions and  “Cost Function” refers to the assumed cost of reviewing test cases. 

Program #Test Cases %failures #Defects #NOFRs Cost Function 

JavaPDG 1295 3.9% 9 12 𝛼 ∙ #Edges 

ROME 5425 5.2% 6 13 𝛼 ∙ Size of Output XML 

Xerces2 4773 5.4% 8 14 𝛼 ∙ Size of Output XML 



this to construct the true non-overlapping failure regions, and 
summed over those to obtain the true total risk. To evaluate 
the accuracy of risk estimation, in Figure 4 we plot ERE 
against test review cost, as a proportion of the maximum 
possible cost, for CARIAL, random sampling, and smallest 
first sampling, for all three projects.  The x-axis of the curve 
represents percentage of total cost spent so far, so the 
constant 𝛼  used in the cost function does not matter. The 
results are shown in Figure 4.   

From these results, we first observe that simple random 
sampling is a poor risk estimator as a function of labeling 
effort. Further note that, while we show one result for 
random sampling, there is likely to be wide variation 
between different runs for this baseline.  Second, in some 
cases, smallest-first sampling is a good risk estimator. This 
may happen, for example, when most of the test cases are 
hand-written and produce simple outputs. However, this is 
not always the case, as shown by the result for JavaPDG. 
Further, it is important to note that since smallest-first and 
random sampling do not inherently estimate risk or use it to 
guide their choices, it may be difficult to tell during 
execution how accurately the risk is being estimated and how 
much value we are receiving for our labeling effort.  Finally, 
we observe that CARIAL is generally a good risk 
estimator—it is usually able to quickly construct an accurate 
model of the failure regions and estimate the total risk, using 
less than 20% of the maximum cost.  

D. RQ-2: Effectiveness of Test Case Selection 
To evaluate effectiveness of test case selection, in Figure 

5 we plot the true total risk against cost as more test cases are 
reviewed. In these graphs, we restrict the x-axis (the review 
cost in this phase) to 20% of the total cost. As described in 
Subsection B.3 above, the performance of test case selection 
is affected by two parameters: the review cost budget B of 
Phase I, as a fraction of the total possible cost, and the mean 
𝜆 of the Poisson distribution that determines how many test 
cases a developer might need to see in order to debug a 
defect. We do not include the cost of the actual debugging in 
these results. First, it is difficult to predict, and second, it 
seems plausible that it will be similar for each of our 
methods, so that the relative differences are primarily 
governed by the costs of reviewing test case outputs.  We 
plot the curves using different combinations of values of B 
and 𝜆.  For B, we choose three values, 0.05, 0.10, 0.15.  This 

reflects our belief that developers may not be willing to 
spend much effort on risk estimation by itself, since it does 
not lead to immediate risk reduction.  For 𝜆, we chose two 
values, 3 and 10, to show how the three approaches behave 
when the defects are “easy” to debug and “hard” to debug. 
Due to space constraints, we show only the six curves for the 
JavaPDG project in Figure 5. The behavior of the other 
programs is similar. 

From these results we first observe that CARIAL is 
generally effective at selecting test cases that quickly reduce 
the total risk. Note the large vertical drop at the very 
beginning of the curves is a result of the optimization where 
the test cases labeled in Phase I are being used first to find 
defects. These test cases have zero cost in Phase II. These 
drops are more significant for CARIAL than for the baseline 
techniques, indicating that the test cases used for risk 
estimation are also very good at characterizing the 
underlying defects. 

Effect of 𝝀.  Comparing Figures 5a and 5b, we observe 
the CARIAL framework is less likely than the baseline 
techniques to be affected by high values of 𝜆 .  This is 
because CARIAL produces a partitioning of test cases with 
relatively good accuracy; therefore multiple test cases 
triggering a defect can often be retrieved from the 
corresponding failure region. The baseline approaches lack 
such a partitioning, and so are more affected. For example, 
when B is 0.10, the black curve representing smallest-first 
sampling and the red curve representing random sampling 
are “lifted” quite a bit when 𝜆 increases to 10; on the other 
hand, the red curve representing CARIAL stays roughly 
stable for both 𝜆 values. 

Effect of B. For any 𝜆,  comparing the graphs for 
different B shows that if more effort is spent during risk 
estimation, it pays off significantly in Phase II for CARIAL. 
This is because with a larger budget, CostHSAL can better 
predict the success and failure regions, and thus find a more 
precise risk estimate. The baselines are relatively unaffected 
by changes in B, as might be expected since they are not 
guided by risk estimates in any way when selecting test cases.   

E. Threats to Validity 
The cost function and the loss function used in the 

evaluation might be unrealistic or omit some important 
factors.  In future work we will investigate alternative 
models for the cost of testing and for loss due to software 

Figure 4. RQ-1: ERE against Cost Curves.  Red-CARIAL; Green-Random Sampling; Black- Smallest First Sampling. 



failures.  Moreover, although the defects we collected in all 
three projects exhibit distinct failure symptoms, there are 
cases in which a defect triggers failures with different 
symptoms or two defects trigger failures with the same 
symptoms.  Such defects will be considered in future studies. 

VI. RELATED WORK 

A. Cost-Sensitive analysis in software testing and reliability 
The cost of testing and of software failures have been 

considered in previous research on reliability estimation and 
test resource allocation.  Pham et al [23] proposed a cost 
model together with a reliability growth model. The cost 
model, which is linear, incorporates the cost of testing, fault 
removal and fault risks.  Gokhale et al [13] consider the 
problem of maximizing reliability with given amount of 
testing effort.  Huang et al [18] assume that a reliability 
objective is given, and aim to achieve an optimal allocation 
of testing effort to software modules.  The costs addressed in 
[13] and [18] are associated with software modules and 
software development process.  By contrast, our approach 
considers test case review costs and the failure costs (risk) 
associated with estimated failure regions.  Brown et al [3] 
seek to balance the cost of testing and the cost of defects by 
determining an optimal number of software test cases.  In 
contrast to our work, the cost of testing is assumed to be 
linear in the number of test cases, and severity is not 
considered when estimating the cost of a defect. 

Tsoukalas et al [32] presented estimators and confidence 
bound formulas for expected failure cost per execution.  
Gutjahr [14] generalized input-domain based reliability 

measure proposed previously by introducing expected failure 
cost, also called risk, as a measure of software reliability.  
Weyuker [34] refined an approach to load testing proposed 
by a previous work, which is based on a characterization of 
the operational distribution of a system’s workload, to 
consider the cost of failures.  In contrast to CARIAL, each of 
these approaches lacks of a concrete method for identifying 
and characterizing risk regions in conjunction with testing. 

Cost has also been addressed in regression testing 
research.  Leung et al [21] proposed a cost model to compare 
the cost and benefits of selective regression testing strategies 
against the traditional retest-all strategy.  Malishevsky et al 
[22] present models to compare cost-benefit tradeoffs of test 
case selection, reduction, and prioritization.  Rosenblum et al 
[27] proposed a model to predict cost-effectiveness for 
selective regression testing with use of coverage information.  
In these papers, unlike in our work, cost is assumed to be 
uniform among test cases, and severity levels are not 
considered.  Elbaum et al’s work [9] takes differences in test 
cost and fault severities into consideration in test case 
prioritization, and it orders test cases according to unit-of-
fault-severity-detected-per-test-cost-unit.  Their work is 
similar to ours in that it considers the tradeoff between test 
costs and failure costs; however, theirs does not deal with the 
problem of estimating such costs. 

B. Test case partitioning 
A partitioning of test cases can be used to estimate 

reliability, identify failures, or reduce the size of the test set.  
Podgurski et al [25] proposed the use of stratified sampling, 
based on cluster analysis, for estimating software reliability.  

Figure 5. RQ-2: The Cost-Against-Risk-Reduction Curves for JavaPDG with different B and λ. Red-CARIAL; 
Green- Random Sampling; Black- Smallest First Sampling 

 

(a) 𝜆 = 3, B = {0.05, 0.10, 0.15} 

(b) 𝜆 = 10, B = {0.05, 0.10, 0.15} 



Dickinson et al [8] applied cluster analysis to discover 
failures induced by a large set of test cases.  Bowring et al [2] 
proposed to use active learning to classify program behavior 
as passing or failing.  Podgurski et al [24] proposed 
automated support for grouping similar failure reports from 
users, in order to reduce the number of executions developers 
need to review.  Later work by Francis et al [11] proposed a 
tree-based approach to refine the failure groups.  Unlike our 
research, the aforementioned research does not consider 
differences in the review costs of individual tests or defect 
severity.  Moreover, [24] and [11] group only failures, while 
in our work, we classify a mixture of passing and failing test 
cases, and the status of the test cases is unknown before 
manual examination of the test outputs.  This is a much 
harder problem, especially because the proportion of failures 
may be very small. 

VII. CONCLUSIONS 
We have presented an approach to improving software 

reliability through explicitly estimating and reducing the risk 
in a program due to different defects. We do this through 
active learning. This also allows us to minimize test case 
review costs at the same time.  An empirical evaluation 
indicated that our approach estimates and reduces risk 
effectively and at a relatively low cost compared to two 
baseline techniques. 

Many interesting directions remain to be investigated. 
We plan to investigate alternative cost and loss functions and 
symptom profiles. Other kinds of costs, such as fault 
localization costs or test case execution times, could be 
considered for minimization. Finally, the risk mapping 
returned by Phase I of CARIAL warrants further study. 
Currently we are using this just to select test cases. However, 
it may be useful in other ways, such as for identifying input 
regions to explore through test case creation.  
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