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Abstract-
We describe Utile Coordination, an algorithm that al-

lows a multiagent system to learn where and how to co-
ordinate. The method starts with uncoordinated learn-
ers and maintains statistics on expected returns. Coordi-
nation dependencies are dynamically added if the statis-
tics indicate a statistically significant benefit. This re-
sults in a compact state representation because only nec-
essary coordination is modeled. We apply our method
within the framework of coordination graphs in which
value rules represent the coordination dependencies be-
tween the agents for a specific context. The algorithm is
first applied on a small illustrative problem, and next on
a large predator-prey problem in which two predators
have to capture a single prey.

1 Introduction

A multiagent system (MAS) consists of a group of
interacting autonomous agents [Stone and Veloso, 2000,
Vlassis, 2003]. Modeling a problem as a MAS can have
several benefits with respect to scalability, robustness and
reusability. Furthermore, some problems are inherently dis-
tributed and can only be tackled with multiple agents that
observe and act from different locations simultaneously.

This paper is concerned with fully cooperative MASs in
which multiple agents work on a common task and must
learn to optimize a global performance measure. Exam-
ples are a team of soccer playing robots or a team of robots
which together must build a house. One of the key prob-
lems in such systems is coordination: how to ensure that
the individual decisions of the agents result in jointly opti-
mal decisions for the group.

Reinforcement learning (RL) techniques have been suc-
cessfully applied in many single-agent domains to learn the
behavior of an agent [Sutton and Barto, 1998] . In principle,
we can treat a MAS as a ‘large’ single agent and apply the
same techniques by modeling all possible joint actions as
single actions. However, the action space scales exponen-
tially with the number of agents, rendering this approach
infeasible for all but the simplest problems. Alternatively,
we can let each agent learn its policy independently of the
other agents, but then the transition and reward models de-
pend on the policy of the other learning agents, which may
result in suboptimal or oscillatory behavior.

Recent work (e.g., [Guestrin et al., 2002a,
Kok and Vlassis, 2004]) addresses the intermediate case,
where the agents coordinate only some of their actions.

1Appeared in the Proceedings of the IEEE Symposium on Computa-
tional Intelligence and Games (CIG’05).

These ‘coordination dependencies’ are context-specific. It
depends on the state whether an agent can act independently
or has to coordinate with some of the other agents. This
results in large savings in the state-action representation
and as a consequence in the learning time. However, in that
work the coordination dependencies had to be specified in
advance.

This paper proposes a method to learn these dependen-
cies automatically. Our approach is to start with indepen-
dent learners and maintain statistics on expected returns
based on the action(s) of the other agents. If the statis-
tics indicate that it is beneficial to coordinate, a coordi-
nation dependency is added dynamically. This method is
inspired by ‘Utile Distinction’ methods from single-agent
RL [Chapman and Kaelbling, 1991, McCallum, 1997] that
augment the state space when this distinction helps the
agent predict reward. Hence, our method is called the Utile
Coordination algorithm.

As in [Guestrin et al., 2002b, Kok and Vlassis, 2004],
we use a coordination graph to represent the context-
specific coordination dependencies of the agents compactly.
Such a graph can be regarded as a sparse representation of
the complete state-action space and allows for factored RL
updates. Our method learns how to extend the initial co-
ordination graph and represent the necessary coordination
dependencies between the agents using derived statistical
measures.

The outline of this paper is as follows. In section 2 we
review the class of problems and solution methods that we
take into consideration. In section 3 we describe the con-
cept of a coordination graph which is used extensively in
the remainder of the paper as our representation framework.
In section 4 the specific contribution of this paper, the Utile
Coordination method, is explained. Experiments are pre-
sented in section 5.1 and section 5.2 which illustrate our
new method on respectively a small coordination problem
and a much larger predator-prey problem. In this popu-
lar multiagent problem a number of predators have to co-
ordinate their actions to capture a prey. We show that our
method outperforms the non-coordinated individual learn-
ers and learns a policy comparable to the method that learns
in the complete joint-action space. We conclude in section 6
with some general conclusions and future work.

2 Collaborative multiagent MDPs

In this section we discuss several multiagent RL meth-
ods using the collaborative multiagent MDP (CMMDP)
framework [Guestrin, 2003], which extends the single agent
Markov Decision Process (MDP) framework to multiple co-



operating agents. Formally, a CMMDP is defined as a tuple
〈n, S,A, T,R〉 where n is the number of agents, S is a fi-
nite set of world states, A = ×n

i=1
Ai are all possible joint

actions defined over the set of individual actions of agent i,
T : S ×A × S → [0, 1] is the Markovian2 transition func-
tion that describes the probability p(s′|s, a) that the system
will move from state s to s′ after performing the joint ac-
tion a ∈ A, and Ri : S × A → IR is the reward function
that returns the reward Ri(s, a) for agent i after the joint ac-
tion a is taken in state s. A policy is defined as a mapping
π : S → A. The objective is to find an optimal policy π∗

that maximizes the expected discounted future cumulative
reward, or expected return

Q∗(s, a) = max
π

Qπ(s, a)

= max
π

E

[

∞
∑

t=0

γtR(st, π(st))|π, s0 = s, a0 = a

]

(1)

for each state s. The expectation operator E[·] averages
over reward and stochastic transitions and γ ∈ [0, 1) is
the discount factor. Note that the agents try to maximize
global returns based on global expected reward R(s, a) =
∑n

i=1
Ri(s, a) which is the sum of all individual rewards.

This is in contrast with stochastic games [Shapley, 1953]
where each agent tries to maximize its own payoff. If this
framework is constrained such that each agent receives the
same reward, it corresponds exactly to the MMDP (multia-
gent MDP) framework of [Boutilier, 1996].

Fig. 1 depicts a small example problem of a collaborative
multiagent MDP (and MMDP) with two agents and seven
states. In each state every agent selects an individual action
from the action set A1 = A2 = {c, d, e}, and based on the
resulting joint action the agents move to a new state. The
next state (and the subsequent reward) depends on the joint
action only in state s0. When either of the agents chooses
action d, they move to s1, and after any of the possible joint
actions (indicated by (∗, ∗)) both agents receive a reward of
0.5 in state s4. For joint action (e, e) the agents will even-
tually receive a reward of 3, while for the remaining three
joint actions in s0, the agents will receive a large negative
reward of −15. It is difficult for the agents to learn to reach
the state s5 if they learn individually. We discuss this further
in section 5.1.

Reinforcement learning (RL) [Sutton and Barto, 1998]
can be applied to learn the optimal policy in MDPs. In this
paper we consider the case where the transition and reward
model are not available, but an agent observes the complete
state information. We focus on Q-learning, a well-known
learning method for this setting. Q-learning starts with an
initial estimate Q(s, a) of the expected discounted future re-
ward for each state-action pair. When an action a is taken
in state s, reward r is received and next state s′ is observed,

2The Markov property implies that the state at time t provides a com-
plete description of the history before time t.
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Figure 1: Simple coordination problem with seven states.
Only in state s0 does the joint action has an influence on the
next state. The digits on the right represent the given reward
to the agents in the corresponding state.

the corresponding Q-value is updated by

Q(s, a) := Q(s, a)+α[R(s, a)+γ max
a′

Q(s′, a′)−Q(s, a)]

(2)
where α ∈ (0, 1) is an appropriate learning rate. Q-learning
converges to the optimal Q-function Q∗(s, a) when all state-
action pairs are visited infinitely often by means of an ap-
propriate exploration strategy. One of the most common
strategies is ε−greedy exploration in which at every step
the greedy action a∗ = arg maxa Q(s, a) is selected with
probability 1 − ε and a (random) non-greedy action is se-
lected with probability ε. In the above description of RL
for MDPs, we assumed a tabular representation of the Q-
table in which all state-action pairs are explicitly enumer-
ated. Next, we will discuss three methods to apply RL to a
CMMDP, which has multiple agents and joint actions.

At one extreme, we can represent the system as one large
agent in which each joint action is modeled as a single ac-
tion, and then apply single agent Q-learning. In order to
apply such a joint action MDP (JAMDP) learner a central
controller represents the complete JAMDP Q-function and
informs each agent of its individual action, or all agents rep-
resent the complete Q-function separately, and execute their
own individual action3. This approach leads to the optimal
policy, but is infeasible for large problems since the joint
action space, which is exponential in the number of individ-
ual actions, becomes intractable both in terms of storage, as
well as in terms of exploration4. In the example of Fig. 1,
this approach stores a Q-value for each of the nine joint ac-
tions in state si.

At the other extreme, we have independent learners (IL)

3The problem of determining the joint (possible exploration) action can
be solved by assuming that all agents are using the same random number
generator and the same seed, and that these facts are common knowledge
among the agents [Vlassis, 2003].

4Note that function approximations techniques can also be used to deal
with large state-action spaces. However, they are more often applied to
large state spaces, instead of large action spaces because of the difficulty
of generalizing over different actions.



PSfrag replacements

A1

A2 A3

A4

Figure 2: An example coordination graph for a 4-agent
problem. Each node represents an edge, while the edges
define the coordination dependencies.

[Claus and Boutilier, 1998] who ignore the actions and re-
wards of the other agents and learn their policies indepen-
dently. This results in a large reduction in the state-action
representation. However, the standard convergence proof
for single agent Q-learning does not hold in this case, since
the transition model for each agent depends on the unknown
policy of the other learning agents. This can result in oscil-
latory behavior or convergence to a suboptimal policy. As
we will see in section 5.1, independent learners converge
to the suboptimal policy (d, d) for state s0 in the example
problem of Fig. 1, since the penalty for incorrect coordi-
nation has a large negative influence on the individual Q-
values for actions c and e.

The next section is devoted to an intermediate approach,
introduced in [Kok and Vlassis, 2004], in which the agents
only coordinate their actions in certain predefined states. In
section 4 we extend this method to learn the states in which
coordination is needed.

3 Coordination Graphs

In this section, we will describe context-specific coordi-
nation graphs (CGs) [Guestrin et al., 2002b] which can be
used to specify the coordination dependencies for subsets
of agents. In a CG each node represents an agent, while
an edge defines an action dependency between two agents.
For example, the graph in Fig. 2 shows a CG for a 4-agent
problem in which agent A3 and A4 have to coordinate, and
A1 has to coordinate with both A2 and A3. Since only con-
nected agents have to coordinate their actions, the global
coordination problem is decomposed into a number of local
problems. The dependencies between the agents are spec-
ified using value rules of the form 〈ρ; c : v〉, where c is
defined as the context (defined over possible state-action
combinations) and the payoff ρ(c) = v is a (local) con-
tribution to the global payoff. This is a much richer repre-
sentation than the IL or JAMDP variants, since it allows us
to represent all possible dependencies between the agents
in a context-specific manner. In ‘coordinated’ states, where
actions of the agents depend on each other, the rules are
based on joint actions, while for ‘uncoordinated’ states they
are based on the individual actions of an agent. In our run-
ning example of Fig. 1, value rules for all possible joint ac-
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Figure 3: Example representation of the Q components of
three agents for a transition from state s to state s′. In state s
agent 2 and 3 have to coordinate their actions, while in state
s′ agent 1 and 2 have to coordinate their actions.

tions, e.g., 〈ρ; s0 ∧ a1 = e ∧ a2 = e : v〉 are needed in
state s0, while value rules based on individual actions, e.g.,
〈ρ; s1 ∧ a1 = a : v〉, are a rich enough representation for all
other states. The rules in a CG can be regarded as a sparse
representation of the complete state-action space since they
are defined over subsets of all state and action variables.

In order to compute the joint action with maximum total
payoff, the agents first condition on the context and elim-
inate all rules that are inconsistent with the current state.
Then a variable elimination algorithm is applied in which
each agent first solves a local maximization problem (which
depends only on its neighbors in the graph) and then com-
municates the resulting conditional strategy to one of its
neighbors. After this, the communicating agent is elimi-
nated from the graph. This procedure continues until only
one agent remains, which then determines its contribution
to the optimal joint action based on the conditional strate-
gies of all agents. Thereafter, a pass in the reverse order
is performed in which all eliminated agents fix their strate-
gies based on the selected actions of their neighbors. Af-
ter completion of the algorithm, the selected joint action
corresponds to the optimal joint action that maximizes the
sum of the payoff of the applicable value rules for the cur-
rent state. Although the elimination order does not have
an effect on the outcome of the algorithm, it does have
an effect on the needed computation time. We refer to
[Guestrin et al., 2002b] for details.

We applied coordination graphs successfully in our
RoboCup simulation team by manually specifying both the
coordination dependencies and the associated payoffs us-
ing value rules [Kok et al., 2004]. This resulted in the
world champion title in the RoboCup-2003 soccer simula-
tion league, illustrating that such a representation can cap-
ture very complex and effective policies.

In [Kok and Vlassis, 2004] coordinated behavior is
learned using the concept of CGs and variations of Q-
learning. We will refer to this method as ‘Sparse Cooper-
ative Q-learning’. In that work a predefined set of value
rules is specified that captures the coordination dependen-



cies of the system. At each time step the global Q-value
equals the sum of the local Q-values of all n agents. The
local Q-value, Qi(s, a) of an agent i depends on the payoff
of the value rules in which agent i is involved and that is
consistent with the given state-action pair (s, a):

Qi(s, a) =
∑

j

ρi
j(s, a)

nj

, (3)

where each payoff is divided proportionally over the nj in-
volved agents. Such a representation of Qi(s, a) can be re-
garded as a linear expansion into a set of basis functions
ρi

j , each of them peaked on a specific state-action context
which may potentially involve many agents. In the sparse
cooperative Q-learning method, the ‘weights’ of these basis
functions (the values of the rules) are updated as follows:

ρj(s, a) := ρj(s, a)+α

nj
∑

i=1

[Ri(s, a)+γQi(s
′, a∗)−Qi(s, a)].

(4)
Note that each rule is updated based on their local contribu-
tion for the global optimal joint action. In order to compute
this joint action a∗ = arg maxa Q(s, a) that maximizes the
sum of the (local) payoffs for state s, the variable elimina-
tion algorithm is applied. From this, the agents can deter-
mine their contribution Qi(s

′, a∗) to the total payoff. A rule
is updated by adding the individual reward and individual
expected future reward of each agent involved in the rule,
similar to Eq. (2). Effectively, each agent learns to coordi-
nate with its neighbors, in a context-specific manner.

As an example, assume we have the following set of
value rules5:

〈ρ1 ; a1 ∧ s : v1〉
〈ρ2 ; a1 ∧ a2 ∧ s′ : v2〉
〈ρ3 ; a1 ∧ a2 ∧ s′ : v3〉
〈ρ4 ; a1 ∧ a2 ∧ s : v4〉
〈ρ5 ; a2 ∧ a3 ∧ s : v5〉
〈ρ6 ; a3 ∧ s′ : v6〉

Furthermore, assume that a = {a1, a2, a3} is the performed
joint action in state s and a∗ = {a1, a2, a3} is the optimal
joint action found with the variable elimination algorithm
in state s′. After conditioning on the context, the rules ρ1

and ρ5 apply in state s, whereas the rules ρ3 and ρ6 apply
in state s′. This is graphically depicted in Fig. 3. Next, we
use Eq. (4) to update the value rules ρ1 and ρ5 in state s as
follows:

ρ1(s, a) = v1 + α[R1(s, a) + γ
v3

2
− v1

1
]

ρ5(s, a) = v5 + α[R2(s, a) + γ
v3

2
− v5

2
+

R3(s, a) + γ
v6

1
− v5

2
].

Note that in order to update ρ5 we have used the (dis-
counted) Q-values of Q2(s

′, a∗) = v3/2 and Q3(s
′, a∗) =

5Action a1 corresponds to a1 = true and action a1 to a1 = false.

v6/1. Furthermore, the component Q2 in state s′ is based
on a coordinated action of agent A2 with agent A1 (rule ρ3),
whereas in state s agent A2 has to coordinate with agent A3

(rule ρ5).
In the above description, we assume that the coordina-

tion dependencies among the agents are specified before-
hand. In the next section we describe how these dependen-
cies can be learned automatically by starting with an initial
set of (individual) rules based on individual actions and dy-
namically adding rules for those states where coordination
is found to be necessary.

4 Utile Coordination

Previous work using coordination graphs assumes a known
CG topology. In this section we describe our method to
learn the coordination dependencies among the agents au-
tomatically. Our approach builds on the ideas of Chapman
& Kaelbling’s [Chapman and Kaelbling, 1991] and McCal-
lum’s [McCallum, 1997] adaptive resolution RL methods
for the single agent case. These methods construct a par-
titioning of an agent’s state space based on finding so-called
‘Utile Distinctions’ [McCallum, 1997] in the state represen-
tation. These are detected through statistics of the expected
returns maintained for hypothesized distinctions. For ev-
ery state, this method stores the future discounted reward
received after leaving this state and relates it to an incom-
ing transition (the previous state). When a state is Marko-
vian with respect to return, the return values on all incoming
transitions should be similar. However, if the statistics in-
dicate that the returns are significantly different, the state is
split to help the agent predict the future reward better. This
approach allows a single agent to build an appropriate rep-
resentation of the state space.

In our Utile Coordination algorithm, we take a similar
approach. The main difference is that, instead of keeping
statistics on the expected return based on incoming transi-
tions, we keep statistics based on the performed actions of
the other agents. The general idea is as follows. The algo-
rithm starts with independent uncoordinated learners6, but
over time learns, based on acquired statistics, where the in-
dependent learners need to coordinate. If the statistics in-
dicate there is a benefit in coordinating the actions of in-
dependent agents in a particular state, that state becomes a
coordinated state. In the CG framework, this means new
coordinated value rules are added to the coordinated graph.

Statistics of the expected return are maintained to de-
termine the possible benefit of coordination for each state.
That is, in each state s where coordination between two (or
more) agents in a set I is considered, a sample of the ‘com-
bined return’, Q̂I(s, aI), is maintained after a joint action
a is performed. The combined return is an approximation
of the expected return that can be obtained by the involved
agents in I and equals the sum of their received individual
reward and their individual contribution Qi(s

′, a∗) to the

6Note that it is also possible to start with an initial CG incorporating
coordination dependencies that are based on prior domain-specific knowl-
edge.



maximal global Q-value of the next state as in Eq. (4):

Q̂I(s, aI) =
∑

i∈I

Q̂i(s, a) =
∑

i∈I

[Ri(s, a) + γQi(s
′, a∗)].

(5)
These samples are stored with the performed action aI .

For each of these joint actions, the expected combined re-
turn can be estimated by computing the mean, Q̄I(s, aI),
of the last M samples7. These statistics are never used
to change the agent’s state-action values, but are stored to
perform a statistical test at the end of an m-length trial
to measure whether the largest expected combined return
for a state s, maxaI

Q̄I(s, aI) (with variance σ2

max
), differs

significantly from the expected combined return Q̄I(s, a
∗
I)

(with variance σ2

∗). The latter is the return obtained when
performing the greedy joint action a∗

I in the state s (and thus
corresponds to the actually learned policy). This greedy
joint action can be found using the variable elimination al-
gorithm. Note that initially, when all states are uncoordi-
nated, a∗

I corresponds to the vector of individually greedy
actions: a∗

i = arg maxai
Qi(s, ai).

We use the t-test [Stevens, 1990] as the statistical test to
compare the two values:

t =
maxaI

Q̄I(s, aI) − Q̄I(s, a
∗
I)√

[(2/M)((M − 1)σ2
max

+ (M − 1)σ2
∗)/(2M − 2)]

(6)
with (2M − 2) degrees of freedom. From this value the
level of significance, p, is computed indicating the proba-
bility of rejecting the null hypothesis (the two groups are
equal) when it is true.8

An additional statistical effect size measure d determines
whether the observed difference is not only statistically sig-
nificant, but also sufficiently large. In this paper d is similar
to standard effect size measures [Stevens, 1990], and it re-
lates the difference in means to the observed maximum and
minimum reward available in the task:

d =
maxaI

Q̄I(s, aI) − Q̄I(s, a
∗
I)

rmax − rmin

. (7)

If there is a statistically significant difference (p < P )
with sufficient effect size (d > D), there is a significant
benefit of coordinating the agents’ actions in this state: ap-
parently the current CG leads to significantly lower returns
than the possible returns when the actions are coordinated.
This can occur in the situation where one specific joint ac-
tion will produce a high return but all other joint actions
will get a substantially lower return (see the example at the
end of section 2). Since the agents select their actions indi-
vidually they will only occasionally gather the high return.
However, when the stored statistics (based on joint actions)
are compared with the current policy, this produces a sta-
tistical difference indicating that it is beneficial to change

7In our experiments, we used M = 10.
8Other statistical tests that compare two groups are possible. In par-

ticular, nonparametric tests may be used, because assumptions of normal-
ity and homogeneity of variance may be violated. However, the t-test is
fairly robust to such violations when group sizes are equal (as in our case)
[Stevens, 1990].

this state into a coordinated state. In our CG framework,
the value rules based on individual actions are replaced by
value rules based on joint actions for this particular state.
The value of each new rule ρ(s, aI) is initialized with the
learned value Q̄I(s, aI).

As coordination rules are added, the samples of
Q̂I(s, aI) may correspond to joint actions of two agents that
now coordinate in a particular state, such that now coordi-
nation between three or more agents can be learned. Alter-
natively, 3D, 4D, etc., tables can be constructed for three or
more independent learners to test for coordination benefits
when coordination between only 2 agents is not beneficial.
In any case, the statistical test always looks at only two es-
timates of expected combined return: maxaI

Q̄I(s, aI) and
Q̄I(s, a

∗
I).

In very large state-action spaces, memory and compu-
tation limitations will make it infeasible to maintain these
statistics for each state. In fact, those are the most inter-
esting cases, because there learning sparse coordination is
most useful, as opposed to the full coordination done by
JAMDP learners. It then makes sense to use a heuristic ‘ini-
tial filter’ which detects potential states where coordination
might be beneficial. The full statistics on combined returns
are then only maintained for the potential interesting states
detected by the initial filter. In this way, large savings in
computation and memory can be obtained while still being
able to learn the required coordination. One useful heuristic
for filtering may be to compare Qi(s, a) to the mode of the
last M samples of Q̂i(s, a) stored in a small histogram. If
they are sufficiently different, this indicates multi-modality
of expected returns for this agent i, which may mean a po-
tentially dependence on other agents’ actions. In this paper,
the emphasis is on showing the validity of the Utile Coor-
dination algorithm and its learning efficiency compared to
independent learners and JAMDP learners. Therefore, in
the experiments reported below no heuristic initial filter is
used and statistics are stored for every state.

5 Experiments

In this section, we apply the Utile Coordination algorithm
to two problems: the example of section 2 and to the much
larger predator-prey domain.

5.1 Small Coordination problem

In this section, we apply our algorithm to the simple intu-
itive problem depicted in Fig. 1 and compare it to the two
Q-learning methods mentioned in section 2, the JAMDP
learners and the Independent Learners (ILs). The latter
only keep Q-values for their individual actions and therefore
42 (= 2 · 7 · 3) Q-values are stored in total. The JAMDP
learners model the joint action for every state resulting in
63 (= 7 · 32) Q-values. Just as with the ILs, our Utile Co-
ordination approach starts with value rules based on indi-
vidual actions; but it checks, after m = 1000 steps, for
every state whether the action of the other agent should be
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Figure 4: Running average of total cumulative reward of the previous 1500 time steps (including exploration) for the
different Q-learners in the problem from section 2. Results are averaged over 30 runs.

incorporated. We use an ε-greedy exploration step9 of 0.3,
a learning rate α = 0.25, and a discount factor γ = 0.9. For
the parameters in our Utile Coordination approach we use a
significance level P = 0.05 and an effect size D = 0.01.

Fig. 4 shows the running average of the cumulative
reward (including exploration) for the three different Q-
learning approaches. The independent learners do not con-
verge to the optimal policy since the actions resulting in a
low reward have a large negative impact on the Q-values
corresponding to the individual actions of the optimal joint
action. The JAMDP learners do not have this problem, since
they model each joint action and quickly learn to converge
to the optimal policy. Since our Utile Coordination ap-
proach starts with individual value rules, the learning curve
resembles that of the independent learners in the beginning.
However, after the third trial (3000 time steps), appropriate
coordination is added for state s0 in all 30 runs, and there-
after the system converges to the optimal policy. Fig. 4 also
shows that simulation runs that start with the learned co-
ordination dependencies found with the Utile Coordination
approach produce identical results as the JAMDP learners.
Although the learned representation of the Utile Coordina-
tion approach uses a sparser representation, both methods
quickly converge to the optimal policy.

5.2 Predator-prey problem

In this section, we apply our Utile Coordination algorithm
to the predator-prey problem. We concentrate on a problem
where two predators have to coordinate their actions in or-
der to capture a prey in a 10 × 10 toroidal grid. Each agent
can either move to one of its adjacent cells or remain on its
current position. In total this yields 242, 550 (joint) state-
action pairs. All agents are initialized at random positions at
the beginning of an episode. An episode ends when the prey

9Note that for fair comparison of the results, independent learners ex-
plore jointly in all experiments. That is, with probability ε both agents
select a random action, which is more conservative than each agent inde-
pendently choosing a random action with probability ε.

predator

prey

Figure 5: Graphical representation of a 10×10 grid with two
agents and one prey. This situation shows a possible capture
position for two predators. The prey is only captured when
one of the two agents moves to the prey position and the
other remains on its current position.

is captured. This occurs when both predators are located in
cells adjacent to the prey and only one of the two agents
moves to the location of the prey and the other remains on
its current position. Fig. 5 shows an example grid in which
the predators will capture the prey when either the preda-
tor north of the prey, or the prey east of the prey will move
to the prey position and the other predator will remain on
its current position. A predator is penalized and placed on a
random position on the field when it moves to the prey posi-
tion without coordinating with the other predator, or moves
to the same cell as the other predator. The predators thus
have to coordinate their actions in all states in which they
are close to each other or when they are close to the prey.
In all other states, the agents can act individually. The prey
behavior is fixed: it remains on its current position with a
probability of 0.2 and otherwise moves moves to one of its
free adjacent cells with uniform probability.

Just as with the small coordination problem, we will
apply our method and compare it with the two other Q-
learning approaches. Each predator i receives an (individ-
ual) reward Ri = 37.5 when it helps to capture the prey,



a reward of −25.0 when it moves to the prey without sup-
port, a reward of −10 when it collides with another preda-
tor, and a reward of −0.5 in all other situations to moti-
vate the predators to capture the prey as quickly as possi-
ble. We use an ε-greedy exploration step of 0.3, a learning
rate α = 0.25, and a discount factor γ = 0.9. Again, we
use a significance level P = 0.05 and and an effect size
D = 0.01 for the Utile Coordination approach. Statistical
tests to determine coordination are performed after every
m = 20, 000 episodes.

Fig. 6 shows the capture times for the learned policy
during the first 400, 000 episodes for the different meth-
ods (running average of the capture times of the last 300
episodes is shown) and includes the exploration steps taken
by the agents. The results are averaged over 10 runs. The
IL approach does not converge to a stable policy but keeps
oscillating; the Q-values for the individual actions for cap-
turing the prey are decreased substantially when an action
is performed that results in an illegal movement to the prey.
The JAMDP learners model these dependencies explicitly
in every state which results in convergence to the optimal
policy. Our Utile Coordination approach initially does not
take these dependencies into account and follows the curve
of the independent learners. However, after the end of the
first trial (episode 20, 000), the agents add coordinated value
rules for the states in which the gathered statistics indicate
that coordination is beneficial, and immediately the capture
times decrease as is visible in Fig. 6. Thereafter, the average
capture times keep decreasing slowly as more fine-grained
coordination dependencies are added and the agents learn in
the updated coordination graph structure. At the end, while
new value rules are added, the found policy is similar to the
policy found by the JAMDP Learners.

Table 1 shows the final capture times and the number
of Q-values needed to represent the state-action space for
each method. For the Utile Coordination approach on av-
erage 457.90 (±53.4) out of 9702 states were found to
be statistically significant and added as coordinated states.
This is in contrast with the 1, 248 manually specified states
in [Kok and Vlassis, 2004], where coordinated rules were
added for all states in which the predators where within two
cells of each other or both within two cells of the prey. This
difference is caused by the fact that for many states where
a collision is possible and the agents have to coordinate
their actions, the agents are able to learn how to avoid the
collision independently and no specific coordination rule is
needed.

When the learned coordination dependencies of the Utile
Coordination approach are used to learn the policy of the
agents, the learning curve is similar to that of the JAMDP
learners. However, the latter needs a larger representation to
store the Q-values. In this experiment, this does not result
in a negative influence on the learning curve because of the
relative small joint action-size. However, for lager problems
with more agents (and more agents dependencies), this will
be more severe.

Both the Utile Coordination approach and the approach
based on the learned rules converge to a slightly higher cap-

ture time than that of the JAMDP Learners, indicating that
coordinating in some states, not statistically significant for
the Utile Coordination approach, has a very small positive
influence on the final result.

6 Conclusion and future work

This paper introduced the Utile Coordination algorithm,
which starts with independent, non-coordinating agents and
learns automatically where and how to coordinate. The
method is based on maintaining statistics on expected re-
turns for hypothesized coordinated states, and a statistical
test that determines whether the expected return increases
when actions are explicitly coordinated, compared to when
they are not. We implemented this method within the frame-
work of coordination graphs, because of its attractive prop-
erties of representing compactly and efficiently the agents’
state-action space, values, RL updates, and context-specific
coordination dependencies. In this context, the method can
be understood as testing, for a given CG, the standard CG
assumption that the overall return Q(s, a) is simply the sum
of the individual components Qi(s, a). If this assumption is
violated, the algorithm adds appropriate value rules to make
the resulting CG adhere to the assumption.

There are many avenues for future work. As described
before, maintaining the complete statistics for all states is
not computationally feasible for large CMMDPs. Heuristic
initial filters should be investigated in detail, such that the
Utile Coordination algorithm can be applied to such large
problems. In particular, tasks with many interacting agents
should be investigated, as these are the tasks where the prob-
lem of maintaining full statistics is most obvious, and where
at the same time the advantage of Utile Coordination over
JAMDP learners, in terms of space and learning time, will
be more pronounced.

Heuristic initial filters are not the only way to deal with
large state spaces. An equally important, orthogonal pos-
sibility is a variation of the Utile Coordination algorithm
based on more sophisticated, e.g., factorial or relational,
state representations. This should combine well with coor-
dination graphs, because they were explicitly designed for
such state representations. An individual agent would then
be able to represent only its own individual view of the en-
vironment state. Furthermore, it could for instance learn
to coordinate with another agent ‘when the other agent is
near’, rather than having to represent explicitly all environ-
ment states when it is near the other agent and learn to co-
ordinate separately for all those states.

Finally, we note that it should be possible to use the same
statistical tests to allow pruning of coordination rules if they
turn out to be of little use. Also, a user may inject some co-
ordination rules into the algorithm based on a priori knowl-
edge, and the system can subsequently learn additional rules
or prune superfluous user-inserted rules. In this way, a priori
knowledge and learning can be combined fruitfully.
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Figure 6: Running average of the capture times (over the last 300 episodes) for the learned policy of the four different
methods during the first 400, 000 episodes. Results are averaged over 10 runs. Note that the learning curve of the JAMDP
and the curve based on the learned representation (bottom curve) overlap and are almost similar.

Table 1: Average capture time after learning (averaged over the last 1,000 episodes) and the number of state-action pairs
for the different methods.

Method avg. time #Q-values
Independent learners 68.77 97,020
JAMDP Learners 29.71 242,550
Utile Coordination 30.57 105,868
Sparse Cooperative (using learned rules) 30.93 105,868
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