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tober 25, 2000Abstra
tWe provide an introdu
tion to the theory and use of variationalmethods for inferen
e and estimation in the 
ontext of graphi
al mod-els. Variational methods be
ome useful as eÆ
ient approximate meth-ods when the stru
ture of the graph model no longer admits feasibleexa
t probabilisti
 
al
ulations. The emphasis of this tutorial is on il-lustrating how inferen
e and estimation problems 
an be transformedinto variational form along with des
ribing the resulting approximationalgorithms and their properties insofar as these are 
urrently known.1 Introdu
tionThe term variational methods refers to a large 
olle
tion of optimizationte
hniques. The 
lassi
al 
ontext for these methods involves �nding theextremum of an integral depending on an unknown fun
tion and its deriva-tives. This 
lassi
al de�nition, however, and the a

ompanying 
al
ulusof variation no longer adequately 
hara
terizes modern variational meth-ods. Modern variational approa
hes have be
ome indispensable tools invarious �elds su
h as 
ontrol theory, optimization, statisti
s, e
onomi
s, aswell as ma
hine learning. The �nite element method for solving di�eren-tial equations[44℄, for example, is inherently a variational approa
h as ismaximum entropy estimation[25℄.There are a number of qualitative features that are shared a
ross vari-ational formulations. The primary 
omponent is naturally an optimizationproblem. The problem of interest is either transformed into an optimizationproblem or dire
tly formulated as su
h based on a prin
iple as in maximumentropy estimation (our emphasis in this tutorial is on transforming various1



inferen
e and estimation problems into variational problems). The quantityto be optimized is typi
ally an unknown fun
tion whi
h, in simple 
ases, maybe redu
ed to a ve
tor (fun
tion values at dis
rete points). The solution tovariational problems is often given in terms of �xed point equations that
apture ne
essary 
onditions for optimality (
hara
terizing lo
ally optimalsolutions). These are analogous to setting the gradient to zero in ordinaryfun
tion optimization. Mean �eld equations (e.g., [37℄) and Euler-Lagrangeequations are prime examples of these �xed point equations. A methodthat su

essively enfor
es individual �xed point equations provides a 
om-mon way of �nding solutions to variational problems whenever a 
losed formsolution 
annot be found.In re
ent years, a number of variational approa
hes have been su

ess-fully used for inferen
e and estimation in large densely 
onne
ted graphi
alprobability models for whi
h exa
t probabilisti
 
al
ulations are no longerfeasible (see, e.g., [23℄). Their su

ess derives primarily from two insights:�rst, probabilisti
 inferen
e problems lend themselves naturally to varia-tional formulations and, se
ond, the resulting variational optimization prob-lems admit prin
ipled approximate solutions. While there is nothing inher-ently approximate about variational formulations, as optimization problemsthey naturally fa
ilitate �nding approximate solutions. For example, anyextremum problem involving an unknown fun
tion 
an be solved approxi-mately by restri
ting the spa
e of admissible fun
tions (e.g., in terms of a�nite number of basis fun
tions). Analogous restri
tions (fa
torization) 
anbe found in the 
ontext of probabilisti
 
al
ulations.The primary goal of this tutorial is to illustrate how inferen
e and estima-tion problems 
an be transformed into variational form along with des
ribingthe resulting approximation algorithms and their properties insofar as theseare 
urrently known. This tutorial is not intended to be exhaustive butmerely to highlight the mathemati
al stru
ture and properties of a numberof variational approa
hes for inferen
e and estimation 
al
ulations.The paper is organized as follows: we begin with a detailed handling oftwo examples of variational formulations emphasizing their general features.This is followed by a brief introdu
tion to graphi
al models and a derivationof the variational mean �eld approximation in the 
ontext of graphi
al mod-els. We then derive stru
tured mean �eld approximation along with vari-ational fa
torization methods 
losely related to large deviation te
hniques.The last two se
tions 
on
ern with variational methods for maximum likeli-hood and Bayesian estimation. We end with a dis
ussion of open problems.2



2 Examples of variational methodsMany variational methods have similar mathemati
al stru
ture. We illus-trate this by building on two simple examples of variational methods. Thebasi
 insights derived from these variational methods 
arry over to mean�eld approximation. Spe
i�
ally, we wish to 
larify the transformation ofthe problem of interest into a variational form and how the resulting varia-tional formulations admit approximate solutions.We start with a well-known variational formulation of a matrix inversionproblem in an estimation 
ontext and subsequently derive �nite elementmethods as a variational solution to Poisson di�erential equation.2.1 Matrix inversionMany estimation methods su
h as linear regression and Gaussian pro
essmodels (e.g., [48℄) involve the need to invert large matri
es. For the purposeof illustration, we provide here a variational formulation of this problem.To �x ideas, suppose we are given a set of input ve
tors of fx1; : : : ;xng,xi 2 Rd, and 
orresponding s
alar output values fy1; : : : ; yng. We wish to�nd the best linear predi
tor of the form y = �Tx = Pdi=1 �ixi, where �is the ve
tor of parameters. For simpli
ity, we will assume that the �tting
riterion is least squares. The least squares optimal parameter setting �� isgiven by �� = C�1b, whereC = nXi=1 xixTi ; b = nXi=1 yixi (1)As the dimension d of the input ve
tors in
reases, evaluating �� = C�1b 
anbe
ome burdensome. We formulate here a variational approa
h to 
omput-ing C�1b (see also [12℄).Variational problem starts with a transformation into an optimizationproblem. It is perhaps surprising that we 
an often start with a trivialtransformation. Suppose therefore that we knew the solution to the aboveproblem, i.e, we had already evaluated ��. We 
an then 
ertainly optimizeJ(�) = 12(�� � �)TC(�� � �) (2)with respe
t to � to �nd ��. The distan
e measure here is weighted withmatrix C so that deviations of � from �� 
ount more in dire
tions whereinput examples x vary 
onsiderably. While this is a variational formulationleading to ��, it is important to realize that we 
ouldn't yet evaluate J(�)3



without �rst 
omputing ��. To avoid this apparent 
on
i
t, we pro
eed toexpand this trivial obje
tive fun
tion. We also make use of the fa
t that weknow the form of the solution �� = C�1b:J(�) = 12��TC�� � �TC�� + 12�TC� (3)= 12bTC�1b� �T b+ 12�TC� (4)In the resulting expression, the �rst term is a 
onstant as far as the param-eters � are 
on
erned and we 
an drop it. Even without the 
onstant term,the minimum is attained at � = ��. The new obje
tive that we 
an a
tuallyevaluate without 
onsulting �� is given by~J(�) = ��T b+ 12�TC� (5)It is easy to verify that this is a 
onvex fun
tion of �. You may �nd it helpfulto interpret the �rst linear term as an energy and the se
ond quadrati
 termas a potential term playing a role analogous to the entropy in physi
s.We have now made some important progress. While we 
an obtain theoptimal solution �� by minimizing ~J(�), we 
an also �nd an approximatesolution; we simply perform a partial minimization of ~J(�). This 
an bedone, for example, by taking only a few 
onjugate gradient steps (taking dsu
h steps would re
over the exa
t solution��). The obje
tive fun
tion ~J(�)serves as a metri
 guiding the 
hoi
e of the approximate solution withoutthe need to evaluate �� for referen
e.The purpose of this initial exer
ise was to demonstrate two basi
 underly-ing ideas. First, we 
an transform the original problem into an optimizationproblem whose obje
tive 
an be evaluated without referen
e to the solutionbeing sought. While this transformation may require some 
reativity, weargue that in many 
ases it is quite natural. We will return to this pointlater on. The se
ond idea is to seek for an approximate solution using thevariational obje
tive to guide the sele
tion of simpler approximations.2.2 Finite element methodsMany problems in physi
s 
an be redu
ed to solving di�erential equations.This in
ludes, for example, �nding the temperature distribution over a mate-rial or gauging material deformations. One of the simplest but neverthelessrepresentative problems is the following one dimensional Poisson di�erentialequation: �u00(x) = f(x); 8x 2 (a; b) (6)4



where u00(x) is the se
ond derivative of u(x) with respe
t to the s
alar ar-gument x and f(x) is the \sour
e". We assume that the solution u(x) (e.g.,deformation) satis�es homogeneous boundary 
onditions, u(a) = u(b) = 0.A number of te
hniques exist for solving this problem. The best known isperhaps �nite element method (see, e.g., [44℄) that 
an be viewed as a vari-ational method. The asso
iated variational problem possesses a number ofexemplary properties and is the reason for why we are introdu
ing it here.As in the 
ontext of linear regression, we �rst transform the probleminto an optimization problem and subsequently sear
h for an approximatesolution. How do we �nd the optimization problem? Let u�(x) denote thedesired solution satisfying the appropriate boundary 
onditions. Sin
e thisfun
tion is for
ed to be zero at the boundary points we have no degrees offreedom left for a 
onstant term in the fun
tion. An appropriate way to
ompare any estimate u(x) to the optimal solution u�(x) 
an be done interms of the L2 norm of its derivative:J(u) = 12 Z ba (u0(x)� u�0(x))2dx (7)This indeed serves as a valid distan
e measure. While minimizing this ob-je
tive surely re
overs u�(x), it is of no use to us unless we already knowthe solution. So, as before, we turn this obje
tive into a form that we 
ana
tually evaluate without referen
e to u�(x). We 
an do this by expand-ing the integrand, integrating by parts, and using the form of the solution�u�(x)00 = f(x):J(u) = 12 Z ba u�0(x)2dx� Z ba u0(x)u�0(x)dx+ 12 Z ba u0(x)2dx= 
onst.� ".bau0(x)u�(x)� Z ba u(x)u�00(x)dx# + 12 Z ba u0(x)2dx= 
onst.� "0 + Z ba u(x)f(x)dx# + 12 Z ba u0(x)2dx (8)where we have also used the fa
t that u�(x) must vanish at the boundarypoints. If we drop the �rst 
onstant term that depends only on the solutionu�, we have an obje
tive that 
an be readily evaluated for any u(x):~J(u) = � Z ba u(x)f(x)dx+ 12 Z ba u0(x)2dx (9)Similarly to our previous example, ~J(u) is 
onvex in u(x) (di�erential opera-tor is linear; any linear transformation of the argument of a 
onvex fun
tion5



preserves 
onvexity). The solution is, of 
ourse, unique sin
e minimizationof ~J(u) with respe
t to u(x) is equivalent to minimizing the original J(u).As a result, we have transformed the di�erential equation into an op-timization problem involving a fun
tion u(x) and its derivative u0(x). Thetransformation is exa
t in the sense that minimizing the obje
tive re
ov-ers the solution. The main bene�t of this variational formulation, however,
omes from the need to �nd an approximate solution.To begin with, we must 
hoose the form of the approximate solution. Anatural 
hoi
e in this 
ontext is to �nd the best fun
tion in a linear subspa
espanned by a set of basis fun
tions �1(x); : : : ; �k(x) (in �nite element meth-ods these basis fun
tions are derived from lo
al approximating fun
tionswithin ea
h dis
retization interval or element). In other words, we with to�nd the best solution of the form~u(x) = kXi=1 �i�i(x) (10)where the ranking of the solutions is based on the obje
tive ~J(u). Notethat the basis fun
tions must 
on�rm to the boundary 
onditions for oursolution attempt to be admissible. It suÆ
es now to substitute this formof the solution ba
k into the obje
tive fun
tion ~J(u) and minimize it withrespe
t to the free parameters, the linear 
oeÆ
ients f�ig. If we omit thestraightforward algebra for 
larity, the resulting obje
tive looks like~J(~u) = �Xi �i "Z ba �i(x)f(x)dx#+ 12Xij �i�j "Z ba �0i(x)�0j(x)dx# (11)By de�ning bi = R ba �i(x)f(x)dx and Cij = R ba �0i(x)�0j(x)dx, for i; j =1; : : : ; k, we 
an rewrite this optimization problem in a matrix form:~J(�) = ��T b+ 12�TC� (12)whi
h is 
onveniently exa
tly the variational form of the matrix inversionproblem dis
ussed earlier (this is, of 
ourse, not generally true for variationalmethods).The ne
essary (and in this 
ase also suÆ
ient) 
onditions for optimalitywithin the spa
e of fun
tions we are 
onsidering are obtained by setting thepartial derivatives with respe
t to the parameters f�ig to zero. In this 
ase,the resulting �xed point equations are��� ~J(�) = �b+C� = 0 (13)6



implying, as before, that �� = C�1b. In the 
ontext of �nite element meth-ods, inverting C is typi
ally somewhat easier sin
e the basis fun
tions �i(x)have by design only lo
al support. The inner produ
t matrix C is thereforeband-diagonal.We make here a few �nal observations 
on
erning this example. First,to �nd an approximate solution within a variational approa
h, we must �rstspe
ify the form of the solution we are after. Se
ond, by substituting thedesired solution form ba
k into the obje
tive fun
tion, we obtain anothervariational problem, this time over the remaining free parameters. Finally,we note that �nding a 
losed form solution for the variational parameters israther atypi
al; variational problems often have to be solved iteratively.After a brief introdu
tion to graphi
al models provided in the next se
-tion, we will use the intuition derived from these two examples to guide ourderivation and understanding of mean �elds and beyond.3 A brief introdu
tion to graphi
al modelsThe feasibility of working with probability models over a large number ofvariables depends on how dependent the variables are on ea
h other. Ina graphi
al model, the presen
e/absen
e of su
h dependen
ies between thevariables are represented in terms of a graph. In the graphi
al representa-tion, the nodes V in the graph G 
orrespond to the variables in the prob-ability model and the edges E 
onne
ting the nodes signify dependen
ies.The power of su
h graph representation arises from the rigorous 
onne
tionbetween separation properties in the graph and independen
e statementspertaining to the underlying probability model.There are two main types of graph models, undire
ted and dire
ted. Thedistin
tion arises from the type of edges used in the graphs and implies adi�eren
e in their independen
e semanti
s. The key problem in graphi
alrepresentation of probability models is to expli
ate the stru
ture of anyprobability distribution 
onsistent with all the independen
e properties we
an derive from the graph.Figure 1a) illustrates an undire
ted graph model [3, 46℄) also known as aMarkov random �eld or MRF for short. For undire
ted graph models the or-dinary graph separation of nodes is isomorphi
 to 
onditional independen
estatements about the variables asso
iated with the nodes. For example, thegraph in Figure 1a) states that the variables y1 and x2 are 
onditionallyindependent given x1.Independen
e properties read from the graph impose fa
torization 
on-7



a) . . .x1 x2

y1 y2 . . .
c1

c2

b) x2x1 x3

x4Figure 1: a) An undire
ted graph model (a Boltzmann 
hain [40, 42℄). Wehave highlighted the �rst two 
liques of the undire
ted graph with dottedlines. b) A simple dire
ted graph model. Here x1, x2, and x3 are marginallyindependent of ea
h other while x4 is dependent on the others. Knowingthe value of \e�e
t" x4 renders the \
auses" x1, x2, and x3 dependent. Thissemanti
s 
annot be 
aptured with an undire
ted graph.straints on any probability distribution 
onsistent with the graph. In otherwords, the joint distribution must be expressed in terms of a produ
t of non-negative potential fun
tions 	
(x
), ea
h depending on a spe
i�
 subset ofvariables. The 
elebrated Hammersley-Cli�ord theorem (see, e.g., [3℄) spe
-i�es the form of this fa
torization: the joint distribution must expressible asa produ
t of potential fun
tion over 
liques in the graph G:P (x) = 1Z Y
2C(G)	
(x
) (14)where C(G) is a 
olle
tion of 
liques1 in the graph and x
 = fxigi2
 is theset of variables 
orresponding to the nodes in 
lique 
 (in our notation here
 is an index set of variables). Z is the normalization 
onstant or partitionfun
tion and plays an important role.To exemplify these 
on
epts we have indi
ated the �rst two 
liques inFigure 1a). Any joint distribution 
onsistent with the 
onditional indepen-den
e properties we 
an derive from this 
hain-like stru
ture must fa
tora

ording to P (x) = 	
1(x1; y1)	
2(x1; x2) � � �. It is important to realizethat the probability distribution P (x) may fa
tor mu
h more than this. Forexample, a distribution where all the variables are independent of ea
h other,expressible as a produ
t of potentials ea
h depending on a single variable,is also 
onsistent with the graph.The 
omputational 
ost of exa
t probabilisti
 inferen
e 
al
ulations inundire
ted graph models depends on the size of the 
liques. More pre
isely,1A 
lique here is a maximal set of mutually 
onne
ted nodes.8



the 
ost is exponential in the size of the largest 
lique of a triangulated2graph (e.g., [28℄). The 
liques of a triangulated graph 
an be arranged ina tree stru
ture (the jun
tion tree) where 
omputations 
an be 
arried outeÆ
iently[29, 22℄. The graph in Figure 1 is triangulated and its 
liquesalready form a tree.3.1 Dire
ted graphi
al modelsThe se
ond type of graph models, Bayesian networks, are based on dire
tedgraphs. In dire
ted graphs, the edges signify asymmetri
 relations betweenthe variables, loosely speaking the edges follow 
ausal e�e
ts. Again, separa-tion properties in the graph, 
orrespond to independen
e statements aboutthe underlying probability model. The separation 
riterion (the d� sep-aration 
riterion [38℄) is a bit more involved but imposes a rather simplestru
ture on the joint probability distribution. We must be able to writethe joint distribution as a produ
t of 
onditional probabilities[38℄ of xi givenits parents pai (the variables with dire
ted arrows into xi):P (x) = nYi=1P (xijxpai) (15)To ensure the joint distribution is well-de�ned, the dire
ted graph mustbe a
y
li
 (there are no dire
ted 
y
les). Note that we don't need anynormalization 
onstant Z here { by design Z = 1.We 
an always interpret the probability model P (x) 
orresponding to adire
ted graph as an undire
ted model: we 
an set the potential fun
tionsequal to the 
onditional probabilities 	vi(xvi) = P (xijxpai), vi = i [ pai fori = 1; : : : ; n. In the 
orresponding undire
ted graph, ea
h set of nodes viis fully 
onne
ted. Su
h transformation into an undire
ted graph, knownas moralization, hides some of the independen
e properties that were pre-viously expli
it in the dire
ted graph. Dire
ted graph models are, however,regularly transformed into undire
ted models as part of exa
t probabilisti

al
ulations (see, e.g., [29℄).3.2 Additional stru
ture in graphi
al modelsApproximate inferen
e methods rely on additional stru
ture in the jointdistribution beyond what is already expli
ated by the graph. For example,2To triangulate the graph, we add edges so that any 
y
le of four or more nodes has a
hord. 9



the probability model 
orresponding to a fully 
onne
ted graph may fa
torinto a produ
t of pairwise potential fun
tions depending only the variablesasso
iated with ea
h undire
ted edge:P (x) = Ye2E	e(xe) (16)where E is the 
olle
tion of edges in the graph and we have absorbed thenormalization 
onstant into one of the potentials. Note that we 
an eas-ily 
olle
t together the edge potentials into larger 
lique potentials. Mean�eld and other approximate inferen
e algorithms heavily exploit this typeof additional fa
torization stru
ture.The 
lique potentials or 
onditional probabilities may also possess usefuladditional parametri
 stru
ture, other than fa
torization dis
ussed above.Su
h parametri
 stru
ture as in logisti
 regression models [31, 33℄, 
an beeither dire
tly exploited in approximate inferen
e algorithms or used to im-pose additional fa
torization by breaking su
h 
onditionals into produ
ts ofsmaller ones. We will dis
uss variational methods for this purpose later inthe tutorial.4 Variational mean �eld methodWe are now ready to apply the intuition from the two examples of varationalmethods to a probabilisti
 inferen
e problem in graphi
al models. We startby de�ning the problem. Let G be the graph 
orresponding to a proba-bility distribution P (x) over n variables, x = fx1; : : : ; xng. Some of thesevariables are assumed observed or instantiated, xv = fxigi2v, while othersremain hidden or unobserved, xh = fxigi2h. Here xv is a shorthand for theinstantiation of values of the variables fxigi2v. The two sets of variables aredisjoint and x = fxv;xhg. We also assume, for notational simpli
ity, thatea
h variable xi takes values in the �nite set f0; : : : ; r � 1g. The inferen
eproblem here is two fold: a) to evaluate the marginal probability of theobserved data: logP (xv) = logXxh P (xv ;xh) (17)where the summation is over the possible instantiations of the hidden vari-ables xh, and 2) 
ompute the posterior probability P (xhjxv) = P (xv ;xh)=P (xv)over the hidden variables. These goals are naturally tied; we 
an evaluate theposterior if we already have P (xv). Exa
t 
omputation of P (xv), however,10



s
ales exponentially with the size of the largest 
lique in the indu
ed (andtriangulated) subgraph of G over the hidden variables or nodes. We will ta
-itly assume that this graph is too densely 
onne
ted for exa
t 
omputationto be pra
ti
al.Our �rst step here is to transform the problem into an optimizationproblem. We 
an do this in the following apparently silly way:J(Q) = logP (xv)�KL �Qxh kPxhjxv � (18)where the Kullba
k-Leibler (KL) divergen
e is given byKL �Qxh kPxhjxv � =Xxh Q(xh) log Q(xh)P (xhjxv) (19)The KL-divergen
e is always positive and zero only if the variational distri-bution Q(xh) over the hidden variables equals the true posterior probabilityQ�(xh) = P (xhjxv). Thus by maximizing J(Q) with respe
t to Q we will al-ways re
over the log-probability of data J(Q�) = logP (xv)�0. We 
on
ludethat our silly optimization problem indeed gives both the desired marginal,as the maximum value of J(Q), and the posterior Q�(xh).Note that the non-negativity of the KL-divergen
e also ensures us thatfor any variational distribution Q other than the posterior, we have a lowerbound on the desired log-marginal probabilitylogP (xv) = J(Q�) � J(Q) (20)Moreover, it 
an be readily shown that J(Q) is a 
on
ave (
onvex down)fun
tion of the variational distribution Q (see, e.g., [6℄).It remains to show that this trivial transformation into an optimiza-tion problem is at all useful. It is not even 
lear that we 
an evaluate theobje
tive fun
tion for any 
hoi
e of the variational distribution Q. To ex-pli
ate this issue, we will rewrite the posterior probability appearing in theKL-divergen
e in terms of the joint distribution P (xv ;xh)J(Q) = logP (xv)�Xxh Q(xh) log Q(xh)P (xhjxv) (21)= logP (xv)�Xxh Q(xh) log Q(xh)P (xv)P (xh;xv) (22)= �Xxh Q(xh) log Q(xh)P (xh;xv) (23)11



= �Xxh Q(xh) logQ(xh) +Xxh Q(xh) logP (xh;xv) (24)= H(Q) +EQf logP (xh;xv) g (25)where H(Q) is the entropy of the variational distribution and EQf�g rep-resents the expe
tation with respe
t to Q(xh) (the observed variables xvremain �xed to their instantiated values). Note that the variational distri-bution Q tries to balan
e two 
ompeting goals: assign values to the hiddenvariables xh that have high probability under P (xh;xv) (se
ond term) and atthe same time entertain a large number of distin
t assignments (the entropyterm).Now, feasibility of evaluating J(Q) depends on two types of stru
ture.First, the graph stru
ture (fa
torization) of the original probability modelP (xh;xv) and, se
ond, any stru
ture imposed on the variational distribu-tion Q(xh). We start by exploiting the stru
ture in the original probabilitymodel: suppose, for simpli
ity, that P (xh;xv) fa
torizes a
ross the edgesin the graph3 as in equation (16). In this 
ase, logP (xh;xv) in the aboveexpe
tation redu
es to a sum of simpler termsJ(Q) = H(Q) +EQf log Ye2E	(xe) g (26)= H(Q) +EQfXe2E log 	(xe) g (27)= H(Q) +Xe2E Xxe\hQ(xe\h) log 	(xe) (28)where Q(xe\h) is the variational marginal probability over the variables as-so
iated with edge e insofar as they are hidden. Note that for notational
larity we have dropped here expli
it referen
es to hidden/observed vari-ables. The resulting obje
tive above seems simpler than what we startedfrom. However, we have merely transformed it and 
an still re
over theexa
t solution if we maximize the obje
tive with respe
t to the variationaldistribution Q. Again, the bene�t arises from further 
onstraining the solu-tion or the variational distribution Q. This is the se
ond type of stru
turethat we need.In the 
ontext of �nite element methods (se
tion 2.2), the approximationwas in terms of a linear basis fun
tions. In 
ase of probability distributions,the appropriate simpli�
ation 
omes from independen
e properties. The3Note that we may not be able to evaluate the partition fun
tion of su
h a joint. Thevariational obje
tive J(Q) will therefore be a 
onstant away from the desired log-marginal.12



simplest family of variational distributions is one where all the hidden vari-ables fxigi2h are independent of ea
h other. More pre
isely, we assume that[37, 10, 7, 15, 41℄: Q(xh) =Yi2hQi(xi) (29)While this is a very simple 
lass of distributions, we still have jhj(r � 1)degrees of freedom for adjusting the variational marginals fQi(xi)gi2h.Surely we should now be able to evaluate J(Q)? Indeed, by the fa
t thatentropy is additive a
ross independent variables, we getJ(Q) = Xi2hH(Qi) +Xe2E Xxe\hQ(xe\h) log	(xe) (30)The evaluation of the �rst summation s
ales like O(jhjr) where jhj is thenumber of hidden variables and r is the number of distin
t values ea
hvariable 
an take. Analogously, evaluating the se
ond summation terms
ales like O(jEjr2) sin
e ea
h expe
tation over xe\h involves (at most)two variables and there are jEj edges. In our fully fa
tored distributionQ, the marginal probability over the variables asso
iated with ea
h edgeare obtained simply by pi
king the right two 
omponents from the produ
tQi2hQi(xi). For more general distributions, obtaining su
h marginals mayinvolve 
onsiderable e�ort. In parti
ular, this is true by assumption for theposterior distribution P (xhjxv).4.0.1 Updating the mean �eld distributionHaving su

eeded in evaluating the obje
tive fun
tion for any (restri
ted)variable distribution Q, we still need to optimize the marginals. In the
ontext of �nite element methods, we 
ould easily solve for the optimallinear 
oeÆ
ients. This is no longer true in our setting here and we haveto resort to iterative methods for maximizing the obje
tive fun
tion J(Q)within the 
lass of fa
tored variational distributions Equation (29). Sin
ethe marginals in Q(xh) = Qi2hQi(xi) 
an be adjusted independently, we
an optimize J(Q) one marginal 
omponent at a time.We need a bit of notation. As before, let EQf�g stand for the expe
tationwith respe
t to the variational distributionQ. Similarly, let EQf�jxkg be the
onditional expe
tation with respe
t to Q. Sin
e we will make frequent useof su
h 
onditional expe
tations, we provide here a more expli
it illustration:EQf logP (xh;xv) jxkg = Xfxigi2hnk 24 Yi2hnkQi(xi)35 logP (xh;xv) (31)13



where, e.g., h n k is the set of hidden nodes other than k. Note that theexpe
tation spe
i�
ally does not depend on the variational marginal Qk(�)over xk; the result is, however, a fun
tion of the 
onditioning variable xk.To update the kth variational marginal, we view J(Q) as a fun
tion ofQk(�) while keeping the remaining marginals �xed. To emphasize this, wemay treat the entropy terms 
orresponding to remaining marginals as 
on-stants and appeal to the linearity of expe
tation EQf�g =Pxk Qk(xk)EQf�jxkgto getJ(Q) = 
onst. +H(Qk) +Xxk Qk(xk)EQf logP (xv;xh) jxk g (32)where the dependen
e of J(Q) on the marginal Qk(xk) is expli
it. It is easyto verify via straightforward 
al
ulation that maximizing this obje
tive withrespe
t to the marginal Qk(xk) gives the standard Gibbs' distribution (
f.[13℄): Qk(xk) 1Zk eEQflogP (xh;xv)jxkg (33)for xk 2 f0; : : : ; r�1g. Here Zk is the lo
al normalization 
onstant (partitionfun
tion). Zk =Xxk eEQflogP (xh;xv)jxkg (34)These update equations, 
olle
tively for all k, are the mean �eld equations(
f. [41℄). Su

essive appli
ation of the updates 
orrespond to iterativelyenfor
ing di�erent mean �eld equations. Note that sin
e ea
h update is 
ar-ried out in 
losed form, the updates monotoni
ally in
rease the obje
tivefun
tion J(Q). We 
annot, however, ne
essarily �nd the best fa
tored vari-ational approximation. This rather unfortunate property follows from thefa
t that although J(Q) is 
on
ave in Q, it is not jointly 
on
ave in the newrestri
ted parameterization in terms of the marginals fQi(xi)gi2h. The or-der in whi
h the iterative updates are 
arried out as well as the initializationof the marginals a�e
t whi
h of the lo
ally optimal solution we arrive at.Finally, let us brie
y expli
ate in more detail the feasibility of evaluatingthe 
onditional expe
tations in the updates. For this purpose, let P (xv;xh)fa
tor a
ross the edges in the graph, i.e., P (xv ;xh) = Qe2E 	(xe), as before.Similarly to equation (30), we 
an writeEQflogP (xh;xv)jxkg = Xe2E Xxe\fhnkgxhnkQ(xe\fhnkg) log 	e(xe) (35)14



where e \ fh n kg is either an empty set or refers to a single hidden nodek0 6= k asso
iated with edge e. Thus, Q(xe\fhnkg) is either one or the singlemarginal Qk0(xk0). Sin
e there 
an be only n edges that pertain to node k,the 
omplexity of evaluating the 
onditional expe
tation is at most O(nr2).4.1 Quality of variational approximationThe variational mean �eld approximation we have explained above is ar-guably rough. It uses a 
ompletely fa
tored distribution to approximatethe posterior distribution P (xhjxv) whi
h may possess strong dependen
iesamong the hidden variables. We explore here brie
y the question of whenthis approximation is likely to be reasonable and when we 
an expe
t it tofail.There are in fa
t two measures of a

ura
y that we 
an use. One is thetightness of the lower bound on the marginal probability of observed datathat we set out to 
ompute in the �rst pla
e. In other words, we 
an take thedi�eren
e logP (xv)�J(Q) as a �gure of merit for the approximation. With-out any 
onstraints on the variational distribution Q, this di�eren
e wouldvanish but is unlikely to do so with the fa
tored mean �eld distribution. Theother measure we 
an use pertains to how 
losely the variational marginalsfQi(xi)g mat
h the true posterior marginals P (xijxv). Sin
e maximizingJ(Q) with respe
t to Q is equivalent to minimizing the KL-divergen
e be-tween Q and the true posterior, it is reasonable to expe
t that the marginalsaspire to be 
lose as well. In the example below, however, we demonstratethat these two measures need not be strongly 
oupled.We start by dis
ussing in broad terms when we 
an expe
t the varia-tional approximation to be a

urate (
f. [23, 18℄). Clearly, if in the poste-rior distribution the hidden variables are almost independent of ea
h other,the variational approximation should be nearly perfe
t (we 
ould, after all,
losely represent the true posterior with a fa
tored variational distribution).When this (strong) independen
e assumption no longer holds, we 
an ex-pe
t either a

ura
y measure to degrade rapidly. Consider, for example, amixture of two or more almost identi
al fa
tored distributions. When the
omponents be
ome more distin
t, the fa
tored variational distribution 
anonly represent one of the 
omponents, not the dependen
ies arising fromswit
hing between them.A parti
ularly important setting where almost fa
tored distributionsarise is a large densely 
onne
ted graph model where the (pairwise) 
ou-plings between the variables are relatively weak. The net e�e
t from a largenumber of fairly weak in
uen
es impinging on ea
h variable 
onverges, by15



the law of the large numbers, to a \mean e�e
t". As a result, the variablesbe
ome nearly independent of ea
h other. This averaging e�e
t underliessome of the su

ess of mean �eld methods in large physi
al systems.An important though rather undesirable property of the naive mean �eldapproximation is that it exhibits spontaneous symmetry breaking. This hap-pens when the optimal setting of the variational marginals is asymmetri
even when the variables play a symmetri
 role in the posterior distribu-tion. The symmetry breaking and more generally the sele
tion of one of theposterior modes a

ounts for sometimes poor 
orresponden
e between thevariational and true posterior marginals. The example below is spe
i�
allygeared towards 
larifying this issue.4.1.1 ExampleFor simpli
ity, we assume a joint distribution over two binary (0/1) variablesx1 and x2. Suppose, in addition, that both variables are hidden and thereare no observed variables xv. In the variational formalism developed earlier,the \marginal probability" that we are trying to 
ompute is in this 
asesimply the normalization 
onstant:logXxh P (x1; x2) = log Xx1;x2 P (x1; x2) = log 1 = 0 (36)While there's no reason to 
ompute this value approximately, the fa
t thatit's value does not depend on the properties of the joint distribution, permitsus to easily evaluate the a

ura
y of the lower bound J(Q) as a fun
tion of
ontrolled 
hanges in the joint.We add stru
ture to our representation of P (x1; x2) by introdu
ing asingle parameter p that 
ontrols how dependent the two binary variablesare. The probability table 
an be found in Table 1. In parti
ular, theparameter p signi�es the probability mass assigned to two 
on�gurations(x1 = 1; x2 = 0) and (x1 = 0; x2 = 1) that are 
onsistent with the XORoperation. The remaining probability mass is divided equally among the left-over 
on�gurations. Note that at p = 0:5 the joint distribution is uniformand 
an be therefore 
aptured by the fa
tored variational distribution. Atp = 1, only the two XOR 
on�gurations have non-zero probability and anyfa
tored distribution fails to 
apture su
h deterministi
 dependen
e betweenthe variables. By varying p from 0:5 to 1 we 
an study how the variationalapproximation degrades with stronger dependen
ies.To obtain J(Q), we 
an simply substitute the simple distributions into16



P (0; 0) = (1� p)=2 P (0; 1) = p=2P (1; 0) = p=2 P (1; 1) = (1� p)=2Table 1: Symmetri
 XOR-dominated joint distribution over binary variablesx1 and x2; the probability mass falling on the two XOR 
on�gurations is
ontrolled by parameter p.the more general formulas we derived earlier. This givesJ(Q) = H(Q1) +H(Q2) + 1Xx1;x2=0Q1(x1)Q2(x2) logP (x1; x2) (37)where the fa
tored variational distribution is Q(x1; x2) = Q1(x1)Q2(x2).Similarly, we 
an exploit the update equations (�xed point equations) de-rived earlier: Q1(x1)  1Z1 eEQflogP (x1;x2)jx1g (38)= 1Z1 eQ2(0) logP (x1;0)+Q2(1) logP (x1;1) (39)where the right hand side is evaluated for x1 = 0; 1 while the other marginalQ2(x2) is held �xed. The update rule for Q2(x2) is analogous. For anyp 2 [0:5; 1℄, we 
an obtain a mean �eld solution by iteratively employingthe above update rules. As dis
ussed earlier, the solution may depend onthe initial 
onditions. Here the variational marginals were initialized withuniform distributions subje
t to slight random perturbations.Now, tra
king the mean �eld solutions as a fun
tion of in
reasing pdemonstrates spontaneous symmetry breaking. First, up to a 
riti
al valuep�, the variational marginals remain �xed at Q1(x1 = 1) = Q2(x2 = 1) =0:5. These mat
h the true marginals whi
h, by symmetry, are P (xi = 1) =0:5 regardless of the parameter value p. Beyond the 
riti
al value p =p�, the mean �eld solution undergoes a symmetry breaking: the obje
tiveJ(Q) prefers a solution with unequal marginals Q1 and Q2. This symmetrybreaking arises entirely from the approximation as the true marginals remain�xed. As we 
an see in Figure 2a), this phase transition has an adverse e�e
ton the quality of the variational marginals: after p� the variational marginalssuddenly and rapidly diverge from 0:5. The e�e
t is less pronoun
ed and to adegree opposite for the obje
tive fun
tion J(Q); indeed, after the symmetrybreaking, the rapid degradation of the lower bound slows down (see �gure2b)). This symmetry breaking was, after all, for
ed upon us to improve thelower bound J(Q). 17
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Figure 2: a) Q1(x1 = 1) resulting from symmetry breaking as a fun
tionof the parameter p. The dashed line represents the alternative solutionresulting from di�erent initialization. b) the lower bound J(Q) as a fun
tionof p.While this example is simple and arti�
ial it nevertheless provides uswith some insight into larger problems as well. For example, note that theslope of the lower bound J(Q) is zero when the joint distribution deviatesfrom a fa
tored distribution (p 
lose to 0:5). Thus the naive mean �eldapproximation appears insensitive to the introdu
tion of weak dependen
ies.With larger deviations, however, the a

ura
y is lost at an a

elerating pa
e.The example also shows that it 
an be diÆ
ult to guarantee that thevariational marginals fQi(xi)g re
e
t the true marginals. Even though inour simple 
ase, it took fairly strong dependen
ies (large values of p) toindu
e the phase transition, more realisti
 problems with a large numberof variables and asso
iated dependen
ies o�er 
onsiderably more ways ofinitiating su
h symmetry breaking. This e�e
t is also not limited to sym-metries but persists more generally when the posterior involves a numberof 
ompeting modes; the variational marginals will typi
ally re
e
t only themarginals of one of the modes.The stru
tured variational approa
h [43℄ dis
ussed in the next se
tion isless sus
eptible to these errors.5 Stru
tured variational approa
hWhile the simple variational mean �eld approa
h is 
omputationally attra
-tive, it may not yield suÆ
iently a

urate results. A natural approa
h toimproving over the simple mean �eld method is to 
ombine it with exa
tprobabilisti
 
al
ulations [43, 19, 24, 2, 47℄ (for other extensions see [20, 4℄).In other words, we may be able to identify tra
table substru
tures su
h as18




hains or trees within the larger graph model and these substru
tures 
ouldbe readily handled with exa
t methods. A viable approa
h would be to im-pose a mean �eld approximation between the substru
tures while resortingto exa
t 
al
ulations within ea
h substru
ture.The �rst problem is to identify the substru
tures. This is a non-trivialproblem for whi
h no serious automated solutions have been proposed (
f.[19℄). We will therefore assume that there are m tra
table substru
turesidenti�ed by an expert or obtained via other means. Let the sets of nodes
orresponding to these substru
tures be h1; : : : ; hm; the substru
tures areindu
ed subgraphs over these sets. We assume also that the substru
tures
reate a disjoint partition of all the hidden variables: hi \ hj = ; for i 6= jand h = h1 [ : : : [ hm.The se
ond problem is to ensure that we indeed apply exa
t probabilisti

al
ulations within ea
h subgraph in the variational framework. This isa
hieved by not introdu
ing any 
onstraints on the variational distributionQ within ea
h substru
ture. In other words, the variational distributionmust be 
omposed of un
onstrained 
omponents fQk(xhk)gk=1;:::;m.Finally, we wish to impose a mean �eld approximation a
ross the sub-stru
tures. This is equivalent to requiring that the variational distributionQ fa
tors a
ross the substru
tures. Consequently, we assumeQ(xh) = mYk=1Qk(xhk) (40)without any additional 
onstraints.5.1 Update equationsThe update equations resulting from the stru
tured approximation are ex-a
tly analogously to simple mean �eld. The intuition here is that we 
analways interpret the stru
tured mean �eld method as a mean �eld approa
hover \mega variables" xhk . Thus ea
h variational marginal Qk(xhk) is up-dated a

ording toQk(xhk) 1Zhk eEQf logP (xv;xh) jxhk g (41)where the 
onditional expe
tation is de�ned and 
omputed analogously tomean �eld. Can these updates be 
arried out eÆ
iently? This dependson whether the joint distribution, P (xv;xh), 
orresponding to a graph G19



has tra
table4 indu
ed subgraphs over the sets hk. The following exampleillustrates this in more detail.Suppose the probability model P (xv ;xh) 
onsist of m 
oupled Markov(Boltzmann) 
hains as shown in Figure 3 (see [42, 11℄). In a mean �eld ap-proximation, the variables within and a
ross ea
h 
hain would be assumedto be independent of ea
h other. Sin
e ea
h Markov 
hain individually isperfe
tly tra
table, we 
an improve the mean �eld approximation 
onsid-erably by de
oupling only the variables a
ross the 
hains. Whenever the
hains in the original probability model are only loosely 
oupled, we wouldexpe
t this stru
tured mean �eld approa
h to be quite a

urate.
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t=0 t=1 t=2Figure 3: Coupled Boltzmann 
hains. The shaded smaller nodes denoteobserved variables.To develop this further, let xvk = fxv;k;0; : : : ; xv;k;T g be the observationsequen
e for the kth 
hain, and, 
olle
tively, xv = fxv1 ; : : : ;xvmg. Similarly,let xhk = fxk;0; : : : ; xk;T g, be the sequen
e of hidden states 
orrespondingto the kth Markov 
hain or substru
ture. If the 
hains were not 
oupled,the probability distribution governing the variables within ea
h 
hain wouldhave the following familiar formP (xhk ;xvk) = 1Zk TYt=1	hk(xk;t�1; xk;t)	vk(xk;t; xv;k;t) (42)where the potential 	hk(xk;t�1; xk;t) links the su

essive hidden variables intime while 	vk(xk;t; xv;k;t) 
onne
ts the observation at time t, xv;k;t, to the
orresponding hidden state variable, xk;t. For simpli
ity, we will refer to thistra
table 
hain stru
ture with a single potential fun
tion 	k(xvk ;xhk).4In general, we would have to 
onsider also the portion of the graph G 
onne
ting thesubstru
tures. We assume here that the 
oupling between the substru
tures is sparse.20



Now, the joint distribution over all the 
hains and observations, in
ludingthe 
ouplings between the 
hains, is given byP (xh;xv) = 1Z " mYk=1	k(xvk ;xhk)# " TYt=1 mYk=2�k�1;k(xk�1;t; xk;t)# (43)Here the �rst term represents independent 
hains and the se
ond produ
tterm quanti�es the 
ouplings between the state variables in neighboring
hains.To demonstrate that the stru
tured mean �eld approa
h is tra
table inthis 
ontext, it remains to evaluate the 
onditional expe
tationsEQflogP (xv ;xh)jxhkgin equation (41). In 
omputing these expe
tations, we 
an safely ignore allthe terms that do not depend on the 
onditioning variables xhk ; these termswill automati
ally vanish during normalization. For the kth 
hain, the onlyrelevant 
omponents of the joint distribution are the intera
tions within thekth 
hain and the 
ouplings between it and the neighboring 
hains k�1 andk + 1. Thus, EQflogP (xv;xh)jxhkg= 
onst. + log	k(xvk ;xhk)+Xt EQk�1flog �k�1;k(xk�1;t; xk;t)g+Xt EQk+1flog �k;k+1(xk; xk+1;t)g (44)= 
onst. + log	k(xvk ;xhk) +Xt log ~�k(xt;k) (45)where the expe
tations EQk�1f�g and EQk+1f�g are taken with respe
t tothe variational marginals over the state variables in 
hains k � 1 and k + 1,respe
tively. In the last expression, we have 
olle
ted together the 
ontribu-tions from the neighboring 
hains into e�e
tive terms log ~�k(xt;k).As a result, the stru
tured mean �eld updates are given byQk(xhk) 1Zhk 	k(xvk ;xhk)�Yt ~�k(xt;k) (46)where the additional terms beyond the original 
hain intera
tions provideindependent eviden
e to individual state variables xk;0; : : : ; xk;T . This doesnot 
hange the stru
ture of the original distribution (~�k(xt;k) 
ould be simplyabsorbed into 	vk(xk;t; xv;k;t)). No signi�
ant loss in tra
tability is thereforein
urred due to the in
uen
e from the other 
hains in this stru
tured mean�eld approximation. 21



We emphasize that the intera
tions within the substru
tures, i.e., 	k(xvk ;xhk),remained una�e
ted by the updates. Thus the optimal variational marginalwithin ea
h substru
ture maintains the original strength of dependen
ies inaddition to the intera
tion stru
ture. The in
uen
es between the substru
-tures are mediated by the e�e
tive potentials, ~�, whi
h, in 
ase of pairwise
ouplings between the substru
tures, appear as additional biases on the in-dividual variables. For a related dis
ussion, see [47℄.6 Lo
al variational approa
hThe variational mean �eld approximation that we introdu
ed in previousse
tions relies on a suitable additional stru
ture in the probability model.This additional stru
ture was expressed in terms of additional fa
toring ofthe joint distribution beyond what is di
tated by the graph (e.g., pairwisepotential fun
tions). In the absen
e of su
h fa
torization, we may still �nduseful stru
ture in the probability model. For example, the 
onditionalprobabilities in the dire
ted graph model or the potential fun
tions in theundire
ted models may possess parametri
 stru
ture that we 
an exploit inapproximate inferen
e 
al
ulations.As an example, 
onsider the noisy-OR probability model [38℄ over binary(0/1) variables, where the intera
tions between the variables are de�ned interms of probabilisti
 generalizations of the OR fun
tion. The 
onditionalprobabilities in these dire
ted graph models are given byP (xijxpai ; �i) = fxi 0� �i0 + Xj2pai �ijxj 1A (47)In other words, we pass a linear 
ombination of the parents, z = �0 +Pj2pai �ijxj through an appropriate transfer fun
tion fxi(z), where f0(z) =exp(�z) and f1(z) = 1�exp(�z). Note that f0(z)+f1(z) = 1 for any inputz as required. By setting �i0 = 0 and in
reasing all �ij , we re
over the ORfun
tion in the limit: f1(z)! OR(fxjgj2pai).The lo
al 
onditional probabilities (or potentials) P (xijxpai) depend onjpaij + 1 variables. As the number of parents in
reases, these potentials
annot be used eÆ
iently in the mean �eld approximation, at least notdire
tly as stated above. The 
ost of dealing with su
h 
omponent potentialswould be exponential in the number of variables they depend on, i.e., jpaij+1. We attempt here to exploit the parametri
 form of these 
onditionalprobabilities to impose additional fa
torization. Ideally, we would like to22



get P (xijxpai) � Yj2pai	ij(xi; xj) (48)sin
e in the produ
t form the parents of xi are de
oupled. Sele
tive use ofsu
h fa
torization transformations may render the remaining (approximate)joint distribution tra
table [16℄. Alternatively, we may exploit the resultingfa
torization as a part of mean �eld or stru
tured mean �eld approximation.It remains to show how su
h fa
torization 
an be a
hieved. We will intro-du
e a 
lass of variational methods that are 
losely related to large deviationmethods for this purpose (for a dire
t appli
ation of large deviation theorytowards approximate inferen
e see [26, 27℄). The approximate fa
torizationis provided in terms of upper or lower bounds rather than un
ontrolled ap-proximations. We start with an example from large deviation theory (see,e.g., [5℄).6.1 Large deviation exampleSuppose we wish to derive a standard large deviation result for a sum ofn independent and identi
ally distributed binary (0/1) variables x1; : : : ; xn.The tails of the distribution governing the sum vanish exponentially fast.We wish to 
apture the probability that the sum deviates from its expe
tedvalue np0 by more than n� for arbitrary � > 0. Here p0 is the generativeprobability for the event that xi = 1 for any i. Consider the followingone-sided probability:P  nXi=1 xi � n(p0 + �)! = Ep0 ( step nXi=1 xi � n(p0 + �)!) (49)where where the expe
tation is taken with respe
t to the produ
t distribu-tion over x1; : : : ; xn and step ( z ) = 1 for z � 0 and zero otherwise. The stepfun
tion inside the expe
tation 
aptures the appropriate event. We 
an alsointerpret the step fun
tion as a transfer fun
tion f1(z) = step ( ( ) z) analo-gously to the noisy-OR model dis
ussed above. The above large-deviationprobability 
an be therefore viewed as a marginal probability (marginalizedover the parents) of a binary variable.Even in this simple 
ase, however, we are unable to obtain a 
losed formexpression for this expe
tation. On the other hand, evaluating the expe
tedvalue of any fa
tored approximation Qi	(xi � (p0 + �)) with respe
t to theprodu
t distribution 
ould be done eÆ
iently on a term by term basis (as23



a produ
t of expe
tations with respe
t to individual binary variables). Toturn the original expe
tation into su
h fa
tored form, we will make use ofthe following variational transformation of the step fun
tion:step ( z ) = min��0 exp(�z ) (50)where � serves as a variational parameter. To understand this transforma-tion note that when z < 0, in
reasing � de
reases exp(�z) sin
e the expo-nent is negative. Letting �!1, results in exp(�z)! 0, as desired. On theother hand, when z � 0, exp(�z) is minimized by setting � = 0. This givesexp(0 � z) = 1. Note that the optimal setting of the variational parameter isa fun
tion of z. For this fun
tion ��(z), step ( z ) = exp(��(z) z ).The above transformation is exa
t and therefore not yet useful to us.Similarly to other variational methods, however, we 
an obtain a 
ontrolledapproximation by restri
ting the 
hoi
e of the variational parameters. Herewe require that the 
hoi
e of the variational parameter as a fun
tion of z,i.e., �(z), must be a 
onstant: �(z) = �̂ for all values of z. This gives asimple upper bound on the step fun
tion[5℄step ( z ) � exp( �̂ z ); 8z (51)The usefulness of this bound is immediate in the large deviation 
ontext:step nXi=1 xi � n(p0 + �)! � exp �̂[ nXi=1 xi � n(p0 + �)℄! (52)= nYi=1 exp � �̂[xi � (p0 + �)℄ � (53)= exp(�n�̂(p0 + �)) nYi=1 exp( �̂xi) (54)Sin
e the variables xi are independent we 
an evaluate the expe
tation ofthe right hand side with respe
t to the produ
t distribution on a term byterm basis. Moreover, all su
h expe
tations are identi
al sin
e x1; : : : ; xnare identi
ally distributed. This givesP  nXi=1 xi � n(p0 + �)! � exp(�n�̂(p0 + �)) hEp0 exp( �̂xi)in(55)= exp(�n�̂(p0 + �)) hp0 exp(�̂) + 1� p0in (56)where the last expression 
omes from taking the expe
tation with respe
tto a Bernoulli distribution P (xi = 1) = p0. We 
an improve this result by24



utilizing the degree of freedom that we have in 
hoosing �̂. The optimal
hoi
e for �̂ is found by minimizing the resulting bound:logP  nXi=1 xi � n(p0 + �)!� min�̂�0 ��n�̂(p0 + �) + n log hp0 exp(�̂) + 1� p0i� (57)= �n �max�̂�0 ��̂(p0 + �)� log hp0 exp(�̂) + 1� p0i� (58)where in the last expression we pulled the negative sign from within theminimization, turning it into a maximization. The term obtained throughthe maximization is pre
isely the large deviation rate fun
tion (see, e.g., [5℄).Basi
 information theoreti
 bounds (spe
i�
ally, Cherno� bounds) resultfrom su
h simple fa
torization transformations.6.2 Representation theoremTo exploit su
h fa
torization transformations more generally in probabilisti
inferen
e 
al
ulations, we would need to �nd the appropriate variationaltransformation for any given situation. Do su
h transformations even existfor any given family of 
onditional probabilities? Perhaps surprisingly, thisquestion 
an be answered aÆrmatively: the fa
torization transformationalways exists. The following theorem makes this more pre
iseTheorem 1 Let P (xijxpai) be a 
onditional probability model over xi tak-ing values in a �nite set. We assume further that the number of possibleinstantiations of the parents xpai is �nite. Let � be a variational parametertaking values in a �nite or �nitely dimensional set F . Then there existsnon-negative pairwise potentials	j(xi; xj j�); 	j(xi; xj j�) 8j 2 pai (59)su
h thatP (xijxpai) = max�2F Yj2pai	(xi; xj j�) = min�2F Yj2pai	(xi; xj j�) (60)for all (xi;xpai).We emphasize that this is merely an existen
e proof and does not meanthat we 
an �nd any useful transformations, those that lead to eÆ
ient anda

urate approximate inferen
e. Finding a suitable transformation for anyspe
i�
 family of 
onditional probabilities (apart from the log-
on
ave 
lassof generalized linear models dis
ussed below) remains an open problem.25



6.3 Example: log-
on
ave modelsUseful variational transformations of 
onditional probabilities leading to ad-ditional fa
torization 
an be found systemati
ally for a log-
on
ave 
lass ofgeneralized linear models[16, 21, 17℄. This family of 
onditional probabilitiesin
ludes, e.g., noisy-OR and logisti
 regression models. More pre
isely, it is
hara
terized by 
onditional probabilities of the formP (xijxpai ; �i) = fxi 0� �i0 + Xj2pai �ijxj 1A (61)where the transfer fun
tion fxi(�) is log-
on
ave: log fxi(z) is a 
on
avefun
tion of its argument z for all values of xi. We will exploit both the
on
avity property and the linear predi
tive stru
ture.We start by noting that the produ
t de
omposition in Equation (48) isequivalent to an additive de
omposition on the log-s
ale. In other words,to a
hieve P (xijxpai ; �i) � Qj2pai 	ij(xi; xj), it suÆ
es to �nd the followingadditive approximation in our 
ontextlog fxi 0� �i0 + Xj2pai �ijxj 1A � Xj2pai  ij(xi; xj) (62)(simply 
hoose  ij(xi; xj) = log	ij(xi; xj) to preserve equality). Now, sin
ethe argument of log fxi(�) here already has the desired additive stru
ture,we merely need to �nd a linear approximation to log fxi(�). The fa
t thatlog fxi(z) is also 
on
ave guarantees that we 
an �nd a linear upper boundapproximation via �rst order Taylor expansion. Figure 4 illustrates this forthe log-logisti
 fun
tion. For example, expanding log f1(z) around any pointz0 giveslog f1(z) � �log f1(z)�z jz=z0 (z � z0) + log f1(z0) (63)= �log f1(z)�z jz=z0 z � ��log f1(z)�z jz=z0 z0 � log f1(z0)� (64)= �1z � F1(�1) (65)where �1 = � log f1(z)=�z. For 
on
ave (
onvex) di�erentiable fun
tions,the o�set in the bra
kets or F1(�1) 
an indeed be expressed in terms ofthe gradient �1 5. Note here that varying the point of expansion, z0, is5Note, for example, that for stri
tly 
on
ave di�erentiable fun
tions, the gradient is amonotoni
ally de
reasing fun
tion and therefore invertible. Any point z0 in our example
an be expressed as a fun
tion of the gradient �1 evaluated at z0.26



equivalent to varying �1 in the gradient spa
e. We may therefore take �1as the variational parameter without expli
itly referring to z0. This simpleexplanation 
aptures a more general duality property of 
on
ave (
onvex)fun
tions[39℄: any 
on
ave fun
tion su
h as log f1(z) has a 
onjugate or dualfun
tion F1(z), also 
on
ave, su
h thatlog f1(z) = min�1 f�1z � F1(�1)g (66)where �1 takes values in the domain of F1(�). The duality 
omes from thefa
t that F1(�1) as a 
on
ave fun
tion 
an be similarly expressed in termsof log f1(z) (the 
onjugate of the 
onjugate fun
tion is the fun
tion itself).Finally, substituting our linear upper bound from Equation (65) for thelog-
onditional probability (separately for ea
h xi) giveslog fxi 0� �i0 + Xj2pai �ijxj 1A � �xi 0� �i0 + Xj2pai �ijxj 1A� Fxi(�xi) (67)The additive expansion follows from identifying  (xi; xj) = �xi�ijxj andabsorbing the remaining terms into one of su
h potentials. This is a varia-tional transformation and 
omes with an adjustable parameter(s) �xi that
an be used to optimize the approximation in the appropriate 
ontext, justas in the large deviation example. Table 2 expli
ates su
h transformationsfor typi
al members of the log-
on
ave family.Name log f(z) Conjugate fun
tion F (�) Domain for �Noisy-OR log(1� exp(�z)) (1 + �) log(1 + �)� � log � [0;1℄Logisti
 � log(1 + exp(�z)) �� log �� (1� �) log(1� �) [0; 1℄Table 2: Upper bound variational transformations for noisy-OR and logisti
fun
tions.7 Parameter estimation with variational methodsWe explain here how the variational lower bound on the marginal likelihooddis
ussed earlier 
an be used for maximum likelihood (ML) parameter esti-mation. This variational approa
h leads to the standard EM-algorithm [8℄with another maximization step taking the pla
e of the original E-step. Thevariational approa
h remains appli
able, however, even when the E-step inthe EM-algorithm 
an no longer be 
omputed exa
tly and guarantees mono-toni
ally in
reasing sequen
e of lower bounds on the log-likelihood.27
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0Figure 4: A 
on
ave fun
tion (log of the logisti
 fun
tion) and its linear(variational) upper bound.To �x ideas, let D = fx1v; : : : ;xTv g be a set of i.i.d observations. Weassume for notational simpli
ity that the set of observed variables is thesame throughout the observations. In other words, we 
an use the samedivision between observed and hidden variables x = fxv ;xhg for all datapoints. Our goal is to maximize the log-likelihood of the data D:J(�) = TXt=1 logP (xtvj�) (68)where � denotes the adjustable parameters in the joint distributionP (xv;xhj�).We assume that the parameter estimation problem 
an be 
arried out ef-�
iently when the observations are 
omplete. To transform the above log-likelihood obje
tive J(�) into a form that involves only 
omplete data, weintrodu
e a separate variational transformation for ea
h of the log-marginalprobabilities in the above sum. This givesJ(�) � TXt=1 "Xxh Qt(xh) logP (xtv;xhj�) +H(Qt)# (69)= TXt=1 J(Qt;xtv ; �) = J(Q1; : : : ; QT ; �) (70)Re
all that maximizing ea
h J(Qt;xtv ; �) with respe
t to Qt re
overs the
orresponding log-marginal likelihood or logP (xtvj�). Thus by maximizingJ(Q1; : : : ; QT ; �) with respe
t to all the variational distributionsQ1; : : : ; QT ,we re
over the ML obje
tive J(�)maxQ1;:::;QT J(Q1; : : : ; QT ; �) = J(�) (71)28



Now, to take advantage of the variational formulation, we do not maxi-mize J(�) dire
tly but instead maximize the variational obje
tive J(Q1; : : : ; QT ; �)in two alternating maximization steps[34℄. In the �rst step, we maximizethe variational obje
tive with respe
t to the distributions Q1; : : : ; QT whilekeeping the parameters � �xed. If no 
onstraints are imposed on the varia-tional distributions, we obtain Q�t (xh) = P (xhjxtv; �) for all t and the max-imum value of the variational obje
tive equals J(�). In the se
ond step,the variational distributions Q1; : : : ; QT remain �xed and we maximize thevariational obje
tive with respe
t to the parameters � alone.This two step max-max algorithm leads to a monotoni
ally in
reasinglog-likelihood of data. To see this, let's denote ea
h maximization step bysu

essively priming the 
orresponding parameters. We obtain the following
hain of inequalitiesJ(�) = J(Q01; : : : ; Q0T ; �) � J(Q01; : : : ; Q0T ; �0)� J(Q001 ; : : : ; Q00T ; �0) = J(�0) (72)Thus J(�) � J(�0), where the inequality is stri
t whenever either of the lasttwo maximization steps 
ould improve the variational obje
tive J(Q1; : : : ; QT ; �).If not, we have rea
hed a lo
al optimum.The algorithm presented above is in fa
t pre
isely the standard EM-algorithm. The E-step of the EM-algorithm 
orresponds to the �rst maxi-mization step with respe
t to the variational distributions Q1; : : : ; QT . In-deed, this maximization step results in setting the variational distributionsequal to the posterior probabilities over the hidden variables. Evaluation ofthe variational obje
tive in Equation (69) with Qt(xh) = P (xhjxtv ; �) givesthe expe
ted 
omplete log-likelihood of the data as in the E-step. The ad-ditional entropy terms in the variational obje
tive are kept �xed during these
ond maximization step and are therefore in
onsequential. See also [34℄.Unlike the EM-algorithm, however, the variational formulation remainsappli
able even when we 
an no longer handle the posterior probabilitiesP (xhjxtv; �). Indeed, we 
an restri
t the variational distributionsQ1; : : : ; QTto be within, for example, a 
lass of 
ompletely fa
tored (mean �eld) dis-tributions. The �rst maximization step will be therefore 
arried out in
om-pletely, only within the restri
ted 
lass. However, we 
an still guarantee amonotoni
ally in
reasing lower bound J(Q1; : : : ; QT ; �) on the log-likelihoodJ(�) [10, 41℄. Whether this guarantee suÆ
es in pra
ti
e depends on thea

ura
y of the (stru
tured) mean �eld approximation.29



8 Variational Bayesian methodsParameter estimation within the Bayesian framework redu
es to an inferen
eproblem, that of evaluating the posterior probability over the parametersgiven the observed data. One 
ould therefore suspe
t that the variationalframework we have developed earlier for approximate inferen
e 
ould beused in this 
ontext as well. While this is indeed the 
ase, there are a 
ou-ple of additional diÆ
ulties. First, the parameters (ex
luding the modelstru
ture) are typi
ally 
ontinuous rather than dis
rete making it harder torepresent the posterior probabilities. Se
ond, ea
h parameter setting needsto be evaluated a
ross all the observed data, not merely in the 
ontext of asingle observation. In 
omputing the distribution over the parameters, thedata points 
annot be treated individually but rather as a set. Moreover,in the 
ontext of in
omplete observations, it no longer suÆ
es to infer theposterior probabilities over the hidden variables independently for ea
h ob-servation; the posteriors are 
ontingent on a spe
i�
 parameter setting andwe must 
onsider all su
h settings. In
omplete observations are thereforequite diÆ
ult to handle exa
tly within the Bayesian framework.We start with the simpler setting where ea
h observation is assumed tobe 
omplete, i.e., we have a value assignment for all the variables in theprobability model. For a moment, we will drop the subindex v denoting theset of visible variables. The goal here is to evaluate the posterior probabilityover the parameters given the observed i.i.d. data:P (�jD) = 1P (D) P (Dj�)P (�) = 1P (D) " TYt=1 P (xtj�)#P (�) (73)where P (�) is the prior probability over the parameters and P (D) is themarginal data likelihood:P (D) = Z " TYt=1 P (xtj�)#P (�)d� (74)Our ability to evaluate P (D) determines whether the estimation problem istra
table. Computing P (D) is the type of inferen
e problem that we havealready solved variationally. The relevant joint distribution is now P (D; �) =P (Dj�)P (�), whi
h fa
tors a
ross the data points. Ea
h 
omponent P (xtj�)of this joint, must itself fa
tor into smaller 
omponents for their produ
t toremain tra
table. When the observations are 
omplete, this is indeed the
ase. If we assume, in addition, that we have distin
t parameters asso
iatedwith di�erent fa
tors, that su
h parameters are a priori independent of ea
h30



other, and that the prior distributions are 
onjugate to the 
orrespondinglikelihoods, we 
an typi
ally evaluate the marginal data likelihood in 
losedform (as in [14℄). However, parameter independen
e and 
onjugate form forthe priors may not re
e
t our prior knowledge. Other prior distributions andasso
iated independen
e assumptions may ne
essitate approximate methodsfor evaluating the posteriors.The typi
al approximate 
omputations involve sampling methods [35℄.While these are important and useful in various aspe
ts of Bayesian 
al
u-lations, we will not dis
uss them here. A number of ex
ellent sour
es areavailable [36℄. Our fo
us here is an alternative and to a degree 
omplemen-tary approa
h based on variational methods.Formally, the appli
ation of the variational approa
h to a Bayesian pa-rameter estimation problem is straightforward: we introdu
e a variationaldistribution Q(�) over the parameters and evaluate a lower bound J(Q) onthe log-marginal likelihood of the data (
f. [30℄):logP (D) � H(Q�) + Z Q(�) logP (Dj�)d� (75)= H(Q�) + Z Q(�) logP (�)d� +Xt Z Q(�) logP (xtj�)d� (76)Without imposing any 
onstraints on Q, however, we re
over logP (D) bymaximizing the lower bound J(Q) with respe
t to the variational distribu-tion. Moreover, at the maximum Q�(�) = P (�jD), as desired.Additional fa
torization present in P (xtj�) further simpli�es the ne
es-sary expe
tations with respe
t to the variational distribution Q. For exam-ple, P (xj�) may fa
tor a

ording to a dire
ted graph, permitting us to writeit as P (xj�) = Qi P (xijxpai ; �i), where ea
h 
onditional probability dependson a distin
t set of parameters �i. Now, so long as the prior distribution P (�)fa
tors a
ross the parameters asso
iated with the 
onditional probabilities,so does the posterior. We may therefore assume without loss of generalitythat Q(�) = QiQi(�i). The variational lower bound redu
es in this 
ase tologP (D) � Xi �H(Qi) + Z Qi(�i) logP (�i)d�i+Xt Z Qi(�i) logP (xtijxtpai ; �i) d�i# (77)Of 
ourse, we 
an still re
over the true marginal likelihood and the trueposterior by maximizing this with respe
t to all the variational distributionsQi(�i). In many 
ases, however, even the 
omponent posteriors P (�ijD)31




annot be evaluated in 
losed form. This is, for example, the 
ase withlogisti
 regression models, whereP (xi = 1jxtpai ; �i) = f10� �i0 + Xj2pai �ijxj 1A (78)and f1(z) = (1 + e�z)�1 is the logisti
 fun
tion. In this 
ase we 
an stillapply the variational formalism by 
onstraining the variational posteriorsfQi(�i)g to have simpler parametri
 forms su
h as multivariate Gaussiandistributions. The variational lower bound J(Q) 
an be evaluated in 
losedform if we 
ombine this restri
tion with additional approximations of thefollowing expe
tationsZ Qi(�i) logP (xtijxtpai ; �i) d�i= � Z Qi(�i) log�1 + e�(2xti�1)(�i0+Pj2pai �ijxj)� d�i (79)whi
h 
an be eÆ
iently lower bounded by taking the expe
tation inside thelogarithm (� log(�) is a 
onvex fun
tion); see [41℄ and the referen
es thereinfor a re�ned lower bound. We may also impose additional fa
torizationof the logisti
 fun
tion (as alluded to earlier in this tutorial) or resort totransformations that are more spe
i�
ally tailored to the logisti
 fun
tion[19,18℄.Bayesian estimation of parameters and hyper-parameters may also some-times pre
lude exa
t 
omputations. The prior distribution over the param-eters P (�i) in this 
ase is a marginal over some hyper-parameters �i:P (�i) = Z P (�ij�i)P (�i)d�i (80)and we wish to infer a posterior probability over both the parameters andhyper-parameters P (�i; �ijD). Whenever the marginal P (�i) 
annot beevaluated in 
losed form, we may still rely on the variational approa
hprovided that we restri
t ourselves to fa
tored variational distributions:Q(�i; �i) = Q(�i)Q(�i) (see [9℄). Our earlier assessment of the a

ura
yof the variational mean �eld approa
h applies to this 
ase as well. We 
anexpe
t this approa
h to be a

urate whenever the parameters �i and thehyper-parameters �i are only loosely 
oupled. However, as dis
ussed earlier,it may be dangerous to use the resulting produ
t of variational marginalsQ(�i)Q(�i) as a proxy for the true posterior P (�i; �ijD), parti
ularly if thetrue posterior 
ontains multiple modes.32



8.1 In
omplete 
asesThe situation be
omes substantially more 
omplex when there are in
om-plete 
ases in the data set. We start by making a few simplifying assump-tions. First, we assume a �xed division between hidden and observed vari-ables, x = fxv;xhg, for all data points. We also refrain from dis
ussing a)joint distributions P (xv ;xhj�) whose 
omponents are not in the exponentialfamily as well as non-
onjugate prior distributions. These aspe
ts were dis-
ussed in the previous se
tion and in the referen
es therein. Finally, we willassume that for any �xed setting of the parameters �, the posterior proba-bilities over the hidden variables P (xhjxtv; �) 
an be 
omputed in a feasiblemanner (
f. [18, 1℄).Now, when the observed 
ases in the dataset are not 
omplete, the likeli-hood term pertaining to the parameters still fa
tors a
ross the observationsP (Dj�) = TYt=1P (xtvj�) (81)but the 
omponents P (xtv j�) = Pxth P (xtv;xthj�) may la
k any further fa
-torization6. The fa
t that we are for
e to infer both the posterior over thehidden 
on�gurations of variables and the parameters is a serious impedi-ment. Even worse, the posteriors over the hidden variables 
orrespondingto ea
h observation depend on the spe
i�
 setting of the parameters � (i.e.,P (xthjxtv; �)). We 
an, however, still apply the variational framework so longas we expli
itly remove su
h dire
t dependen
ies between the parametersand the hidden 
on�gurations. Put another way, we impose the followingfa
tored stru
ture on the variational distribution[30, 19, 18, 1, 9℄:Q(x1h; : : : ;xTh ; �) = Q1(xth) � � �QT (xTh )Q(�) (82)The lower bound on the marginal data likelihood 
orresponding to thisvariational distribution 
an be obtained fairly easily. Sin
e in the variationaldistribution the hidden variable 
on�gurations and the parameters are inde-pendent, we 
an introdu
e the variational lower bounds in two stages, �rstfor the parameters and then for ea
h of the marginals logP (xtv j�). In otherwords,logP (D) � H(Q�) + Z Q(�) logP (�)d� +Xt Z Q(�) logP (xtvj�)d�6Note that the hidden variables may a�e
t only part of the model and therefore themarginal probabilities of ea
h observation may still possess useful fa
torization [18℄.33



� H(Q�) + Z Q(�) logP (�)d�+Xt 264H(Qt) +Xxth Z Qt(xth)Q(�) logP (xtv;xthj�)d�375 (83)The �rst lower bound 
omes from Equation (76) and the se
ond as in mean�eld. We emphasize that by maximizing the resulting lower bound withrespe
t to the variational distributions, we 
an no longer hope to re
overthe true marginal likelihood. This is be
ause the true posterior over boththe parameters and the hidden 
on�gurations 
annot be represented withinour restri
ted 
lass of variational distributions.To make use of the lower bound, we optimize it with respe
t to thevariational distributions. This 
an be done by su

essively maximizing thebound with respe
t to one of the variational marginals while keeping allother marginals �xed. With only minor modi�
ations, we 
an borrow theupdate equations from our earlier derivations (see se
tion 4.0.1). First, we�x Q(�) and update all Qt(xth) a

ording toQt(xth) 1Zt eE�flogP (xtv;xthj�)g (84)for all xth and t = 1; : : : ; T . The expe
tation is taken with respe
t to the
urrent (�xed) estimate Q(�). Note that the exponent in this update ruleis a fun
tion of xth only. Moreover, sin
e we have removed the parametersas 
ommon 
orrelates between the hidden variable 
on�gurations, the vari-ational distributions fQt(xth)g 
an be updated independent of ea
h other.In the se
ond iterative step, we update the variational parameter distri-bution while keeping fQt(xth)g �xed:Q(�) 1Z e logP (�)+PtExthflogP (xtv ;xthj�)g (85)where the expe
tations in the exponent are taken with respe
t to ea
hQt(xth). Although we 
annot �nd the true posterior distribution over the pa-rameters (ex
ept in spe
ial 
ases), these updates nevertheless monotoni
allyin
rease the lower bound on the marginal data likelihood.We make here a few �nal observations about the a

ura
y of the vari-ational Bayesian approa
h. First, the true posterior over the parametersin this 
ase will almost surely 
ontain multiple modes. These modes arisefrom di�erent possible 
on�gurations of the hidden variables 
orresponding34



to ea
h observation. The fa
tored nature of our posterior approximationmakes the previous analysis about the a

ura
y of variational mean �eldappli
able. We suspe
t therefore that the variational posterior Q(�) is likelyto re
e
t only one of the posterior modes. The identity of the sele
ted modedepends on the initialization of the variational distributions, the order inwhi
h the updates are 
arried out, as well as possible di�eren
es in theposterior weight of the modes.9 Dis
ussionThe fo
us of this tutorial has been on the formulation of variational methodsfor inferen
e and estimation problems in graphi
al models along with theasso
iated algorithms. Although the topi
s 
overed are diverse, this tutorialremains in many respe
ts 
omplementary to [23℄.We have dispensed with dis
ussing a number of variational approa
hesto inferen
e and estimation. For example, mean �eld approximation and itshigher order extensions 
an be viewed as re
ursive propagation algorithms[21,19℄. We may also go beyond the simple disjoint fa
torization assumption inthe 
ontext of stru
tured mean �eld approa
h and use, for example, dire
tedgraphi
al models as variational approximating distributions[2, 47℄ (see also[45℄). Variational approximations 
an also be used for inferen
e in mixedgraphi
al models 
ontaining both 
ontinuous and dis
rete variables[32℄. Interms of Bayesian estimation, variational methods lend themselves natu-rally to on-line approximation algorithms[18, 1℄ and remain appli
able tostru
tured Bayesian priors[9℄, whi
h was brie
y mentioned in the text.Although we have treated variational methods in this tutorial as stand-alone approximation te
hniques, they 
an be naturally 
ombined with otherapproximation te
hniques su
h as sampling methods. In [17℄ upper/lowerbounds are used in a reje
tion sampling setting while [9℄ uses variationaldistributions as proposal distributions in the 
ontext of an importan
e sam-pling method. A number of other 
ombinations and extensions are possibleas well.One of the main open problems in the use of variational approxima-tion methods is 
hara
terizing their a

ura
y. We would like to obtain per-forman
e guarantees for spe
i�
 
lasses of graphi
al models (upper/lowerbounds that 
an be obtained from several variational formulations providesu
h guarantees only for spe
i�
 instantiations of the inferen
e problem andwould not serve as a priori guarantees). Another open problem 
on
ernsfo
using the inferen
e 
al
ulations within the overall variational approa
h.35



This is parti
ularly important in the 
ontext of de
ision making.Finally, we note that the graph stru
ture of the relevant probabilitymodel is typi
ally not �xed a priori in many estimation/inferen
e problems.This leaves us the option of either using a simple graph model with exa
tinferen
e algorithms or adopting more expressive models but with the 
ostof having to employ approximate inferen
e methods. There has been littlework in 
hara
terizing the 
onditions under whi
h one approa
h is preferableto the other. Is the error from the simpler model 
lass greater or less thanthe error resulting from approximate inferen
e?Referen
es[1℄ Hagai Attias. Inferring parameters and stru
ture of latent variablemodels by variational bayes. In Pro
eedings of the Fifteenth AnnualConferen
e on Un
ertainty in Arti�
ial Intelligen
e (UAI{99), pages21{30, San Fran
is
o, CA, 1999. Morgan Kaufmann Publishers.[2℄ D. Barber and W. Wiegerin
k. Tra
table variational stru
tures for ap-proximating graphi
al models. In M. S. Kearns, S. A. Solla, and D. A.Cohn, editors, Advan
es in Neural Information Pro
essing Systems, vol-ume 11. The MIT Press, 1999.[3℄ J. Besag. Spatial intera
tion and the statisti
al analysis of latti
e sys-tems. Journal of the Royal Statististi
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