
Tutorial on variational approximation methodsTommi S. JaakkolaMIT Arti�ial Intelligene Laboratory545 Tehnology SquareCambridge, MA 02139Otober 25, 2000AbstratWe provide an introdution to the theory and use of variationalmethods for inferene and estimation in the ontext of graphial mod-els. Variational methods beome useful as eÆient approximate meth-ods when the struture of the graph model no longer admits feasibleexat probabilisti alulations. The emphasis of this tutorial is on il-lustrating how inferene and estimation problems an be transformedinto variational form along with desribing the resulting approximationalgorithms and their properties insofar as these are urrently known.1 IntrodutionThe term variational methods refers to a large olletion of optimizationtehniques. The lassial ontext for these methods involves �nding theextremum of an integral depending on an unknown funtion and its deriva-tives. This lassial de�nition, however, and the aompanying alulusof variation no longer adequately haraterizes modern variational meth-ods. Modern variational approahes have beome indispensable tools invarious �elds suh as ontrol theory, optimization, statistis, eonomis, aswell as mahine learning. The �nite element method for solving di�eren-tial equations[44℄, for example, is inherently a variational approah as ismaximum entropy estimation[25℄.There are a number of qualitative features that are shared aross vari-ational formulations. The primary omponent is naturally an optimizationproblem. The problem of interest is either transformed into an optimizationproblem or diretly formulated as suh based on a priniple as in maximumentropy estimation (our emphasis in this tutorial is on transforming various1



inferene and estimation problems into variational problems). The quantityto be optimized is typially an unknown funtion whih, in simple ases, maybe redued to a vetor (funtion values at disrete points). The solution tovariational problems is often given in terms of �xed point equations thatapture neessary onditions for optimality (haraterizing loally optimalsolutions). These are analogous to setting the gradient to zero in ordinaryfuntion optimization. Mean �eld equations (e.g., [37℄) and Euler-Lagrangeequations are prime examples of these �xed point equations. A methodthat suessively enfores individual �xed point equations provides a om-mon way of �nding solutions to variational problems whenever a losed formsolution annot be found.In reent years, a number of variational approahes have been suess-fully used for inferene and estimation in large densely onneted graphialprobability models for whih exat probabilisti alulations are no longerfeasible (see, e.g., [23℄). Their suess derives primarily from two insights:�rst, probabilisti inferene problems lend themselves naturally to varia-tional formulations and, seond, the resulting variational optimization prob-lems admit prinipled approximate solutions. While there is nothing inher-ently approximate about variational formulations, as optimization problemsthey naturally failitate �nding approximate solutions. For example, anyextremum problem involving an unknown funtion an be solved approxi-mately by restriting the spae of admissible funtions (e.g., in terms of a�nite number of basis funtions). Analogous restritions (fatorization) anbe found in the ontext of probabilisti alulations.The primary goal of this tutorial is to illustrate how inferene and estima-tion problems an be transformed into variational form along with desribingthe resulting approximation algorithms and their properties insofar as theseare urrently known. This tutorial is not intended to be exhaustive butmerely to highlight the mathematial struture and properties of a numberof variational approahes for inferene and estimation alulations.The paper is organized as follows: we begin with a detailed handling oftwo examples of variational formulations emphasizing their general features.This is followed by a brief introdution to graphial models and a derivationof the variational mean �eld approximation in the ontext of graphial mod-els. We then derive strutured mean �eld approximation along with vari-ational fatorization methods losely related to large deviation tehniques.The last two setions onern with variational methods for maximum likeli-hood and Bayesian estimation. We end with a disussion of open problems.2



2 Examples of variational methodsMany variational methods have similar mathematial struture. We illus-trate this by building on two simple examples of variational methods. Thebasi insights derived from these variational methods arry over to mean�eld approximation. Spei�ally, we wish to larify the transformation ofthe problem of interest into a variational form and how the resulting varia-tional formulations admit approximate solutions.We start with a well-known variational formulation of a matrix inversionproblem in an estimation ontext and subsequently derive �nite elementmethods as a variational solution to Poisson di�erential equation.2.1 Matrix inversionMany estimation methods suh as linear regression and Gaussian proessmodels (e.g., [48℄) involve the need to invert large matries. For the purposeof illustration, we provide here a variational formulation of this problem.To �x ideas, suppose we are given a set of input vetors of fx1; : : : ;xng,xi 2 Rd, and orresponding salar output values fy1; : : : ; yng. We wish to�nd the best linear preditor of the form y = �Tx = Pdi=1 �ixi, where �is the vetor of parameters. For simpliity, we will assume that the �ttingriterion is least squares. The least squares optimal parameter setting �� isgiven by �� = C�1b, whereC = nXi=1 xixTi ; b = nXi=1 yixi (1)As the dimension d of the input vetors inreases, evaluating �� = C�1b anbeome burdensome. We formulate here a variational approah to omput-ing C�1b (see also [12℄).Variational problem starts with a transformation into an optimizationproblem. It is perhaps surprising that we an often start with a trivialtransformation. Suppose therefore that we knew the solution to the aboveproblem, i.e, we had already evaluated ��. We an then ertainly optimizeJ(�) = 12(�� � �)TC(�� � �) (2)with respet to � to �nd ��. The distane measure here is weighted withmatrix C so that deviations of � from �� ount more in diretions whereinput examples x vary onsiderably. While this is a variational formulationleading to ��, it is important to realize that we ouldn't yet evaluate J(�)3



without �rst omputing ��. To avoid this apparent onit, we proeed toexpand this trivial objetive funtion. We also make use of the fat that weknow the form of the solution �� = C�1b:J(�) = 12��TC�� � �TC�� + 12�TC� (3)= 12bTC�1b� �T b+ 12�TC� (4)In the resulting expression, the �rst term is a onstant as far as the param-eters � are onerned and we an drop it. Even without the onstant term,the minimum is attained at � = ��. The new objetive that we an atuallyevaluate without onsulting �� is given by~J(�) = ��T b+ 12�TC� (5)It is easy to verify that this is a onvex funtion of �. You may �nd it helpfulto interpret the �rst linear term as an energy and the seond quadrati termas a potential term playing a role analogous to the entropy in physis.We have now made some important progress. While we an obtain theoptimal solution �� by minimizing ~J(�), we an also �nd an approximatesolution; we simply perform a partial minimization of ~J(�). This an bedone, for example, by taking only a few onjugate gradient steps (taking dsuh steps would reover the exat solution��). The objetive funtion ~J(�)serves as a metri guiding the hoie of the approximate solution withoutthe need to evaluate �� for referene.The purpose of this initial exerise was to demonstrate two basi underly-ing ideas. First, we an transform the original problem into an optimizationproblem whose objetive an be evaluated without referene to the solutionbeing sought. While this transformation may require some reativity, weargue that in many ases it is quite natural. We will return to this pointlater on. The seond idea is to seek for an approximate solution using thevariational objetive to guide the seletion of simpler approximations.2.2 Finite element methodsMany problems in physis an be redued to solving di�erential equations.This inludes, for example, �nding the temperature distribution over a mate-rial or gauging material deformations. One of the simplest but neverthelessrepresentative problems is the following one dimensional Poisson di�erentialequation: �u00(x) = f(x); 8x 2 (a; b) (6)4



where u00(x) is the seond derivative of u(x) with respet to the salar ar-gument x and f(x) is the \soure". We assume that the solution u(x) (e.g.,deformation) satis�es homogeneous boundary onditions, u(a) = u(b) = 0.A number of tehniques exist for solving this problem. The best known isperhaps �nite element method (see, e.g., [44℄) that an be viewed as a vari-ational method. The assoiated variational problem possesses a number ofexemplary properties and is the reason for why we are introduing it here.As in the ontext of linear regression, we �rst transform the probleminto an optimization problem and subsequently searh for an approximatesolution. How do we �nd the optimization problem? Let u�(x) denote thedesired solution satisfying the appropriate boundary onditions. Sine thisfuntion is fored to be zero at the boundary points we have no degrees offreedom left for a onstant term in the funtion. An appropriate way toompare any estimate u(x) to the optimal solution u�(x) an be done interms of the L2 norm of its derivative:J(u) = 12 Z ba (u0(x)� u�0(x))2dx (7)This indeed serves as a valid distane measure. While minimizing this ob-jetive surely reovers u�(x), it is of no use to us unless we already knowthe solution. So, as before, we turn this objetive into a form that we anatually evaluate without referene to u�(x). We an do this by expand-ing the integrand, integrating by parts, and using the form of the solution�u�(x)00 = f(x):J(u) = 12 Z ba u�0(x)2dx� Z ba u0(x)u�0(x)dx+ 12 Z ba u0(x)2dx= onst.� ".bau0(x)u�(x)� Z ba u(x)u�00(x)dx# + 12 Z ba u0(x)2dx= onst.� "0 + Z ba u(x)f(x)dx# + 12 Z ba u0(x)2dx (8)where we have also used the fat that u�(x) must vanish at the boundarypoints. If we drop the �rst onstant term that depends only on the solutionu�, we have an objetive that an be readily evaluated for any u(x):~J(u) = � Z ba u(x)f(x)dx+ 12 Z ba u0(x)2dx (9)Similarly to our previous example, ~J(u) is onvex in u(x) (di�erential opera-tor is linear; any linear transformation of the argument of a onvex funtion5



preserves onvexity). The solution is, of ourse, unique sine minimizationof ~J(u) with respet to u(x) is equivalent to minimizing the original J(u).As a result, we have transformed the di�erential equation into an op-timization problem involving a funtion u(x) and its derivative u0(x). Thetransformation is exat in the sense that minimizing the objetive reov-ers the solution. The main bene�t of this variational formulation, however,omes from the need to �nd an approximate solution.To begin with, we must hoose the form of the approximate solution. Anatural hoie in this ontext is to �nd the best funtion in a linear subspaespanned by a set of basis funtions �1(x); : : : ; �k(x) (in �nite element meth-ods these basis funtions are derived from loal approximating funtionswithin eah disretization interval or element). In other words, we with to�nd the best solution of the form~u(x) = kXi=1 �i�i(x) (10)where the ranking of the solutions is based on the objetive ~J(u). Notethat the basis funtions must on�rm to the boundary onditions for oursolution attempt to be admissible. It suÆes now to substitute this formof the solution bak into the objetive funtion ~J(u) and minimize it withrespet to the free parameters, the linear oeÆients f�ig. If we omit thestraightforward algebra for larity, the resulting objetive looks like~J(~u) = �Xi �i "Z ba �i(x)f(x)dx#+ 12Xij �i�j "Z ba �0i(x)�0j(x)dx# (11)By de�ning bi = R ba �i(x)f(x)dx and Cij = R ba �0i(x)�0j(x)dx, for i; j =1; : : : ; k, we an rewrite this optimization problem in a matrix form:~J(�) = ��T b+ 12�TC� (12)whih is onveniently exatly the variational form of the matrix inversionproblem disussed earlier (this is, of ourse, not generally true for variationalmethods).The neessary (and in this ase also suÆient) onditions for optimalitywithin the spae of funtions we are onsidering are obtained by setting thepartial derivatives with respet to the parameters f�ig to zero. In this ase,the resulting �xed point equations are��� ~J(�) = �b+C� = 0 (13)6



implying, as before, that �� = C�1b. In the ontext of �nite element meth-ods, inverting C is typially somewhat easier sine the basis funtions �i(x)have by design only loal support. The inner produt matrix C is thereforeband-diagonal.We make here a few �nal observations onerning this example. First,to �nd an approximate solution within a variational approah, we must �rstspeify the form of the solution we are after. Seond, by substituting thedesired solution form bak into the objetive funtion, we obtain anothervariational problem, this time over the remaining free parameters. Finally,we note that �nding a losed form solution for the variational parameters israther atypial; variational problems often have to be solved iteratively.After a brief introdution to graphial models provided in the next se-tion, we will use the intuition derived from these two examples to guide ourderivation and understanding of mean �elds and beyond.3 A brief introdution to graphial modelsThe feasibility of working with probability models over a large number ofvariables depends on how dependent the variables are on eah other. Ina graphial model, the presene/absene of suh dependenies between thevariables are represented in terms of a graph. In the graphial representa-tion, the nodes V in the graph G orrespond to the variables in the prob-ability model and the edges E onneting the nodes signify dependenies.The power of suh graph representation arises from the rigorous onnetionbetween separation properties in the graph and independene statementspertaining to the underlying probability model.There are two main types of graph models, undireted and direted. Thedistintion arises from the type of edges used in the graphs and implies adi�erene in their independene semantis. The key problem in graphialrepresentation of probability models is to expliate the struture of anyprobability distribution onsistent with all the independene properties wean derive from the graph.Figure 1a) illustrates an undireted graph model [3, 46℄) also known as aMarkov random �eld or MRF for short. For undireted graph models the or-dinary graph separation of nodes is isomorphi to onditional independenestatements about the variables assoiated with the nodes. For example, thegraph in Figure 1a) states that the variables y1 and x2 are onditionallyindependent given x1.Independene properties read from the graph impose fatorization on-7
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x4Figure 1: a) An undireted graph model (a Boltzmann hain [40, 42℄). Wehave highlighted the �rst two liques of the undireted graph with dottedlines. b) A simple direted graph model. Here x1, x2, and x3 are marginallyindependent of eah other while x4 is dependent on the others. Knowingthe value of \e�et" x4 renders the \auses" x1, x2, and x3 dependent. Thissemantis annot be aptured with an undireted graph.straints on any probability distribution onsistent with the graph. In otherwords, the joint distribution must be expressed in terms of a produt of non-negative potential funtions 	(x), eah depending on a spei� subset ofvariables. The elebrated Hammersley-Cli�ord theorem (see, e.g., [3℄) spe-i�es the form of this fatorization: the joint distribution must expressible asa produt of potential funtion over liques in the graph G:P (x) = 1Z Y2C(G)	(x) (14)where C(G) is a olletion of liques1 in the graph and x = fxigi2 is theset of variables orresponding to the nodes in lique  (in our notation here is an index set of variables). Z is the normalization onstant or partitionfuntion and plays an important role.To exemplify these onepts we have indiated the �rst two liques inFigure 1a). Any joint distribution onsistent with the onditional indepen-dene properties we an derive from this hain-like struture must fatoraording to P (x) = 	1(x1; y1)	2(x1; x2) � � �. It is important to realizethat the probability distribution P (x) may fator muh more than this. Forexample, a distribution where all the variables are independent of eah other,expressible as a produt of potentials eah depending on a single variable,is also onsistent with the graph.The omputational ost of exat probabilisti inferene alulations inundireted graph models depends on the size of the liques. More preisely,1A lique here is a maximal set of mutually onneted nodes.8



the ost is exponential in the size of the largest lique of a triangulated2graph (e.g., [28℄). The liques of a triangulated graph an be arranged ina tree struture (the juntion tree) where omputations an be arried outeÆiently[29, 22℄. The graph in Figure 1 is triangulated and its liquesalready form a tree.3.1 Direted graphial modelsThe seond type of graph models, Bayesian networks, are based on diretedgraphs. In direted graphs, the edges signify asymmetri relations betweenthe variables, loosely speaking the edges follow ausal e�ets. Again, separa-tion properties in the graph, orrespond to independene statements aboutthe underlying probability model. The separation riterion (the d� sep-aration riterion [38℄) is a bit more involved but imposes a rather simplestruture on the joint probability distribution. We must be able to writethe joint distribution as a produt of onditional probabilities[38℄ of xi givenits parents pai (the variables with direted arrows into xi):P (x) = nYi=1P (xijxpai) (15)To ensure the joint distribution is well-de�ned, the direted graph mustbe ayli (there are no direted yles). Note that we don't need anynormalization onstant Z here { by design Z = 1.We an always interpret the probability model P (x) orresponding to adireted graph as an undireted model: we an set the potential funtionsequal to the onditional probabilities 	vi(xvi) = P (xijxpai), vi = i [ pai fori = 1; : : : ; n. In the orresponding undireted graph, eah set of nodes viis fully onneted. Suh transformation into an undireted graph, knownas moralization, hides some of the independene properties that were pre-viously expliit in the direted graph. Direted graph models are, however,regularly transformed into undireted models as part of exat probabilistialulations (see, e.g., [29℄).3.2 Additional struture in graphial modelsApproximate inferene methods rely on additional struture in the jointdistribution beyond what is already expliated by the graph. For example,2To triangulate the graph, we add edges so that any yle of four or more nodes has ahord. 9



the probability model orresponding to a fully onneted graph may fatorinto a produt of pairwise potential funtions depending only the variablesassoiated with eah undireted edge:P (x) = Ye2E	e(xe) (16)where E is the olletion of edges in the graph and we have absorbed thenormalization onstant into one of the potentials. Note that we an eas-ily ollet together the edge potentials into larger lique potentials. Mean�eld and other approximate inferene algorithms heavily exploit this typeof additional fatorization struture.The lique potentials or onditional probabilities may also possess usefuladditional parametri struture, other than fatorization disussed above.Suh parametri struture as in logisti regression models [31, 33℄, an beeither diretly exploited in approximate inferene algorithms or used to im-pose additional fatorization by breaking suh onditionals into produts ofsmaller ones. We will disuss variational methods for this purpose later inthe tutorial.4 Variational mean �eld methodWe are now ready to apply the intuition from the two examples of varationalmethods to a probabilisti inferene problem in graphial models. We startby de�ning the problem. Let G be the graph orresponding to a proba-bility distribution P (x) over n variables, x = fx1; : : : ; xng. Some of thesevariables are assumed observed or instantiated, xv = fxigi2v, while othersremain hidden or unobserved, xh = fxigi2h. Here xv is a shorthand for theinstantiation of values of the variables fxigi2v. The two sets of variables aredisjoint and x = fxv;xhg. We also assume, for notational simpliity, thateah variable xi takes values in the �nite set f0; : : : ; r � 1g. The infereneproblem here is two fold: a) to evaluate the marginal probability of theobserved data: logP (xv) = logXxh P (xv ;xh) (17)where the summation is over the possible instantiations of the hidden vari-ables xh, and 2) ompute the posterior probability P (xhjxv) = P (xv ;xh)=P (xv)over the hidden variables. These goals are naturally tied; we an evaluate theposterior if we already have P (xv). Exat omputation of P (xv), however,10



sales exponentially with the size of the largest lique in the indued (andtriangulated) subgraph of G over the hidden variables or nodes. We will ta-itly assume that this graph is too densely onneted for exat omputationto be pratial.Our �rst step here is to transform the problem into an optimizationproblem. We an do this in the following apparently silly way:J(Q) = logP (xv)�KL �Qxh kPxhjxv � (18)where the Kullbak-Leibler (KL) divergene is given byKL �Qxh kPxhjxv � =Xxh Q(xh) log Q(xh)P (xhjxv) (19)The KL-divergene is always positive and zero only if the variational distri-bution Q(xh) over the hidden variables equals the true posterior probabilityQ�(xh) = P (xhjxv). Thus by maximizing J(Q) with respet to Q we will al-ways reover the log-probability of data J(Q�) = logP (xv)�0. We onludethat our silly optimization problem indeed gives both the desired marginal,as the maximum value of J(Q), and the posterior Q�(xh).Note that the non-negativity of the KL-divergene also ensures us thatfor any variational distribution Q other than the posterior, we have a lowerbound on the desired log-marginal probabilitylogP (xv) = J(Q�) � J(Q) (20)Moreover, it an be readily shown that J(Q) is a onave (onvex down)funtion of the variational distribution Q (see, e.g., [6℄).It remains to show that this trivial transformation into an optimiza-tion problem is at all useful. It is not even lear that we an evaluate theobjetive funtion for any hoie of the variational distribution Q. To ex-pliate this issue, we will rewrite the posterior probability appearing in theKL-divergene in terms of the joint distribution P (xv ;xh)J(Q) = logP (xv)�Xxh Q(xh) log Q(xh)P (xhjxv) (21)= logP (xv)�Xxh Q(xh) log Q(xh)P (xv)P (xh;xv) (22)= �Xxh Q(xh) log Q(xh)P (xh;xv) (23)11



= �Xxh Q(xh) logQ(xh) +Xxh Q(xh) logP (xh;xv) (24)= H(Q) +EQf logP (xh;xv) g (25)where H(Q) is the entropy of the variational distribution and EQf�g rep-resents the expetation with respet to Q(xh) (the observed variables xvremain �xed to their instantiated values). Note that the variational distri-bution Q tries to balane two ompeting goals: assign values to the hiddenvariables xh that have high probability under P (xh;xv) (seond term) and atthe same time entertain a large number of distint assignments (the entropyterm).Now, feasibility of evaluating J(Q) depends on two types of struture.First, the graph struture (fatorization) of the original probability modelP (xh;xv) and, seond, any struture imposed on the variational distribu-tion Q(xh). We start by exploiting the struture in the original probabilitymodel: suppose, for simpliity, that P (xh;xv) fatorizes aross the edgesin the graph3 as in equation (16). In this ase, logP (xh;xv) in the aboveexpetation redues to a sum of simpler termsJ(Q) = H(Q) +EQf log Ye2E	(xe) g (26)= H(Q) +EQfXe2E log 	(xe) g (27)= H(Q) +Xe2E Xxe\hQ(xe\h) log 	(xe) (28)where Q(xe\h) is the variational marginal probability over the variables as-soiated with edge e insofar as they are hidden. Note that for notationallarity we have dropped here expliit referenes to hidden/observed vari-ables. The resulting objetive above seems simpler than what we startedfrom. However, we have merely transformed it and an still reover theexat solution if we maximize the objetive with respet to the variationaldistribution Q. Again, the bene�t arises from further onstraining the solu-tion or the variational distribution Q. This is the seond type of struturethat we need.In the ontext of �nite element methods (setion 2.2), the approximationwas in terms of a linear basis funtions. In ase of probability distributions,the appropriate simpli�ation omes from independene properties. The3Note that we may not be able to evaluate the partition funtion of suh a joint. Thevariational objetive J(Q) will therefore be a onstant away from the desired log-marginal.12



simplest family of variational distributions is one where all the hidden vari-ables fxigi2h are independent of eah other. More preisely, we assume that[37, 10, 7, 15, 41℄: Q(xh) =Yi2hQi(xi) (29)While this is a very simple lass of distributions, we still have jhj(r � 1)degrees of freedom for adjusting the variational marginals fQi(xi)gi2h.Surely we should now be able to evaluate J(Q)? Indeed, by the fat thatentropy is additive aross independent variables, we getJ(Q) = Xi2hH(Qi) +Xe2E Xxe\hQ(xe\h) log	(xe) (30)The evaluation of the �rst summation sales like O(jhjr) where jhj is thenumber of hidden variables and r is the number of distint values eahvariable an take. Analogously, evaluating the seond summation termsales like O(jEjr2) sine eah expetation over xe\h involves (at most)two variables and there are jEj edges. In our fully fatored distributionQ, the marginal probability over the variables assoiated with eah edgeare obtained simply by piking the right two omponents from the produtQi2hQi(xi). For more general distributions, obtaining suh marginals mayinvolve onsiderable e�ort. In partiular, this is true by assumption for theposterior distribution P (xhjxv).4.0.1 Updating the mean �eld distributionHaving sueeded in evaluating the objetive funtion for any (restrited)variable distribution Q, we still need to optimize the marginals. In theontext of �nite element methods, we ould easily solve for the optimallinear oeÆients. This is no longer true in our setting here and we haveto resort to iterative methods for maximizing the objetive funtion J(Q)within the lass of fatored variational distributions Equation (29). Sinethe marginals in Q(xh) = Qi2hQi(xi) an be adjusted independently, wean optimize J(Q) one marginal omponent at a time.We need a bit of notation. As before, let EQf�g stand for the expetationwith respet to the variational distributionQ. Similarly, let EQf�jxkg be theonditional expetation with respet to Q. Sine we will make frequent useof suh onditional expetations, we provide here a more expliit illustration:EQf logP (xh;xv) jxkg = Xfxigi2hnk 24 Yi2hnkQi(xi)35 logP (xh;xv) (31)13



where, e.g., h n k is the set of hidden nodes other than k. Note that theexpetation spei�ally does not depend on the variational marginal Qk(�)over xk; the result is, however, a funtion of the onditioning variable xk.To update the kth variational marginal, we view J(Q) as a funtion ofQk(�) while keeping the remaining marginals �xed. To emphasize this, wemay treat the entropy terms orresponding to remaining marginals as on-stants and appeal to the linearity of expetation EQf�g =Pxk Qk(xk)EQf�jxkgto getJ(Q) = onst. +H(Qk) +Xxk Qk(xk)EQf logP (xv;xh) jxk g (32)where the dependene of J(Q) on the marginal Qk(xk) is expliit. It is easyto verify via straightforward alulation that maximizing this objetive withrespet to the marginal Qk(xk) gives the standard Gibbs' distribution (f.[13℄): Qk(xk) 1Zk eEQflogP (xh;xv)jxkg (33)for xk 2 f0; : : : ; r�1g. Here Zk is the loal normalization onstant (partitionfuntion). Zk =Xxk eEQflogP (xh;xv)jxkg (34)These update equations, olletively for all k, are the mean �eld equations(f. [41℄). Suessive appliation of the updates orrespond to iterativelyenforing di�erent mean �eld equations. Note that sine eah update is ar-ried out in losed form, the updates monotonially inrease the objetivefuntion J(Q). We annot, however, neessarily �nd the best fatored vari-ational approximation. This rather unfortunate property follows from thefat that although J(Q) is onave in Q, it is not jointly onave in the newrestrited parameterization in terms of the marginals fQi(xi)gi2h. The or-der in whih the iterative updates are arried out as well as the initializationof the marginals a�et whih of the loally optimal solution we arrive at.Finally, let us briey expliate in more detail the feasibility of evaluatingthe onditional expetations in the updates. For this purpose, let P (xv;xh)fator aross the edges in the graph, i.e., P (xv ;xh) = Qe2E 	(xe), as before.Similarly to equation (30), we an writeEQflogP (xh;xv)jxkg = Xe2E Xxe\fhnkgxhnkQ(xe\fhnkg) log 	e(xe) (35)14



where e \ fh n kg is either an empty set or refers to a single hidden nodek0 6= k assoiated with edge e. Thus, Q(xe\fhnkg) is either one or the singlemarginal Qk0(xk0). Sine there an be only n edges that pertain to node k,the omplexity of evaluating the onditional expetation is at most O(nr2).4.1 Quality of variational approximationThe variational mean �eld approximation we have explained above is ar-guably rough. It uses a ompletely fatored distribution to approximatethe posterior distribution P (xhjxv) whih may possess strong dependeniesamong the hidden variables. We explore here briey the question of whenthis approximation is likely to be reasonable and when we an expet it tofail.There are in fat two measures of auray that we an use. One is thetightness of the lower bound on the marginal probability of observed datathat we set out to ompute in the �rst plae. In other words, we an take thedi�erene logP (xv)�J(Q) as a �gure of merit for the approximation. With-out any onstraints on the variational distribution Q, this di�erene wouldvanish but is unlikely to do so with the fatored mean �eld distribution. Theother measure we an use pertains to how losely the variational marginalsfQi(xi)g math the true posterior marginals P (xijxv). Sine maximizingJ(Q) with respet to Q is equivalent to minimizing the KL-divergene be-tween Q and the true posterior, it is reasonable to expet that the marginalsaspire to be lose as well. In the example below, however, we demonstratethat these two measures need not be strongly oupled.We start by disussing in broad terms when we an expet the varia-tional approximation to be aurate (f. [23, 18℄). Clearly, if in the poste-rior distribution the hidden variables are almost independent of eah other,the variational approximation should be nearly perfet (we ould, after all,losely represent the true posterior with a fatored variational distribution).When this (strong) independene assumption no longer holds, we an ex-pet either auray measure to degrade rapidly. Consider, for example, amixture of two or more almost idential fatored distributions. When theomponents beome more distint, the fatored variational distribution anonly represent one of the omponents, not the dependenies arising fromswithing between them.A partiularly important setting where almost fatored distributionsarise is a large densely onneted graph model where the (pairwise) ou-plings between the variables are relatively weak. The net e�et from a largenumber of fairly weak inuenes impinging on eah variable onverges, by15



the law of the large numbers, to a \mean e�et". As a result, the variablesbeome nearly independent of eah other. This averaging e�et underliessome of the suess of mean �eld methods in large physial systems.An important though rather undesirable property of the naive mean �eldapproximation is that it exhibits spontaneous symmetry breaking. This hap-pens when the optimal setting of the variational marginals is asymmetrieven when the variables play a symmetri role in the posterior distribu-tion. The symmetry breaking and more generally the seletion of one of theposterior modes aounts for sometimes poor orrespondene between thevariational and true posterior marginals. The example below is spei�allygeared towards larifying this issue.4.1.1 ExampleFor simpliity, we assume a joint distribution over two binary (0/1) variablesx1 and x2. Suppose, in addition, that both variables are hidden and thereare no observed variables xv. In the variational formalism developed earlier,the \marginal probability" that we are trying to ompute is in this asesimply the normalization onstant:logXxh P (x1; x2) = log Xx1;x2 P (x1; x2) = log 1 = 0 (36)While there's no reason to ompute this value approximately, the fat thatit's value does not depend on the properties of the joint distribution, permitsus to easily evaluate the auray of the lower bound J(Q) as a funtion ofontrolled hanges in the joint.We add struture to our representation of P (x1; x2) by introduing asingle parameter p that ontrols how dependent the two binary variablesare. The probability table an be found in Table 1. In partiular, theparameter p signi�es the probability mass assigned to two on�gurations(x1 = 1; x2 = 0) and (x1 = 0; x2 = 1) that are onsistent with the XORoperation. The remaining probability mass is divided equally among the left-over on�gurations. Note that at p = 0:5 the joint distribution is uniformand an be therefore aptured by the fatored variational distribution. Atp = 1, only the two XOR on�gurations have non-zero probability and anyfatored distribution fails to apture suh deterministi dependene betweenthe variables. By varying p from 0:5 to 1 we an study how the variationalapproximation degrades with stronger dependenies.To obtain J(Q), we an simply substitute the simple distributions into16



P (0; 0) = (1� p)=2 P (0; 1) = p=2P (1; 0) = p=2 P (1; 1) = (1� p)=2Table 1: Symmetri XOR-dominated joint distribution over binary variablesx1 and x2; the probability mass falling on the two XOR on�gurations isontrolled by parameter p.the more general formulas we derived earlier. This givesJ(Q) = H(Q1) +H(Q2) + 1Xx1;x2=0Q1(x1)Q2(x2) logP (x1; x2) (37)where the fatored variational distribution is Q(x1; x2) = Q1(x1)Q2(x2).Similarly, we an exploit the update equations (�xed point equations) de-rived earlier: Q1(x1)  1Z1 eEQflogP (x1;x2)jx1g (38)= 1Z1 eQ2(0) logP (x1;0)+Q2(1) logP (x1;1) (39)where the right hand side is evaluated for x1 = 0; 1 while the other marginalQ2(x2) is held �xed. The update rule for Q2(x2) is analogous. For anyp 2 [0:5; 1℄, we an obtain a mean �eld solution by iteratively employingthe above update rules. As disussed earlier, the solution may depend onthe initial onditions. Here the variational marginals were initialized withuniform distributions subjet to slight random perturbations.Now, traking the mean �eld solutions as a funtion of inreasing pdemonstrates spontaneous symmetry breaking. First, up to a ritial valuep�, the variational marginals remain �xed at Q1(x1 = 1) = Q2(x2 = 1) =0:5. These math the true marginals whih, by symmetry, are P (xi = 1) =0:5 regardless of the parameter value p. Beyond the ritial value p =p�, the mean �eld solution undergoes a symmetry breaking: the objetiveJ(Q) prefers a solution with unequal marginals Q1 and Q2. This symmetrybreaking arises entirely from the approximation as the true marginals remain�xed. As we an see in Figure 2a), this phase transition has an adverse e�eton the quality of the variational marginals: after p� the variational marginalssuddenly and rapidly diverge from 0:5. The e�et is less pronouned and to adegree opposite for the objetive funtion J(Q); indeed, after the symmetrybreaking, the rapid degradation of the lower bound slows down (see �gure2b)). This symmetry breaking was, after all, fored upon us to improve thelower bound J(Q). 17
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Figure 2: a) Q1(x1 = 1) resulting from symmetry breaking as a funtionof the parameter p. The dashed line represents the alternative solutionresulting from di�erent initialization. b) the lower bound J(Q) as a funtionof p.While this example is simple and arti�ial it nevertheless provides uswith some insight into larger problems as well. For example, note that theslope of the lower bound J(Q) is zero when the joint distribution deviatesfrom a fatored distribution (p lose to 0:5). Thus the naive mean �eldapproximation appears insensitive to the introdution of weak dependenies.With larger deviations, however, the auray is lost at an aelerating pae.The example also shows that it an be diÆult to guarantee that thevariational marginals fQi(xi)g reet the true marginals. Even though inour simple ase, it took fairly strong dependenies (large values of p) toindue the phase transition, more realisti problems with a large numberof variables and assoiated dependenies o�er onsiderably more ways ofinitiating suh symmetry breaking. This e�et is also not limited to sym-metries but persists more generally when the posterior involves a numberof ompeting modes; the variational marginals will typially reet only themarginals of one of the modes.The strutured variational approah [43℄ disussed in the next setion isless suseptible to these errors.5 Strutured variational approahWhile the simple variational mean �eld approah is omputationally attra-tive, it may not yield suÆiently aurate results. A natural approah toimproving over the simple mean �eld method is to ombine it with exatprobabilisti alulations [43, 19, 24, 2, 47℄ (for other extensions see [20, 4℄).In other words, we may be able to identify tratable substrutures suh as18



hains or trees within the larger graph model and these substrutures ouldbe readily handled with exat methods. A viable approah would be to im-pose a mean �eld approximation between the substrutures while resortingto exat alulations within eah substruture.The �rst problem is to identify the substrutures. This is a non-trivialproblem for whih no serious automated solutions have been proposed (f.[19℄). We will therefore assume that there are m tratable substruturesidenti�ed by an expert or obtained via other means. Let the sets of nodesorresponding to these substrutures be h1; : : : ; hm; the substrutures areindued subgraphs over these sets. We assume also that the substruturesreate a disjoint partition of all the hidden variables: hi \ hj = ; for i 6= jand h = h1 [ : : : [ hm.The seond problem is to ensure that we indeed apply exat probabilistialulations within eah subgraph in the variational framework. This isahieved by not introduing any onstraints on the variational distributionQ within eah substruture. In other words, the variational distributionmust be omposed of unonstrained omponents fQk(xhk)gk=1;:::;m.Finally, we wish to impose a mean �eld approximation aross the sub-strutures. This is equivalent to requiring that the variational distributionQ fators aross the substrutures. Consequently, we assumeQ(xh) = mYk=1Qk(xhk) (40)without any additional onstraints.5.1 Update equationsThe update equations resulting from the strutured approximation are ex-atly analogously to simple mean �eld. The intuition here is that we analways interpret the strutured mean �eld method as a mean �eld approahover \mega variables" xhk . Thus eah variational marginal Qk(xhk) is up-dated aording toQk(xhk) 1Zhk eEQf logP (xv;xh) jxhk g (41)where the onditional expetation is de�ned and omputed analogously tomean �eld. Can these updates be arried out eÆiently? This dependson whether the joint distribution, P (xv;xh), orresponding to a graph G19



has tratable4 indued subgraphs over the sets hk. The following exampleillustrates this in more detail.Suppose the probability model P (xv ;xh) onsist of m oupled Markov(Boltzmann) hains as shown in Figure 3 (see [42, 11℄). In a mean �eld ap-proximation, the variables within and aross eah hain would be assumedto be independent of eah other. Sine eah Markov hain individually isperfetly tratable, we an improve the mean �eld approximation onsid-erably by deoupling only the variables aross the hains. Whenever thehains in the original probability model are only loosely oupled, we wouldexpet this strutured mean �eld approah to be quite aurate.
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t=0 t=1 t=2Figure 3: Coupled Boltzmann hains. The shaded smaller nodes denoteobserved variables.To develop this further, let xvk = fxv;k;0; : : : ; xv;k;T g be the observationsequene for the kth hain, and, olletively, xv = fxv1 ; : : : ;xvmg. Similarly,let xhk = fxk;0; : : : ; xk;T g, be the sequene of hidden states orrespondingto the kth Markov hain or substruture. If the hains were not oupled,the probability distribution governing the variables within eah hain wouldhave the following familiar formP (xhk ;xvk) = 1Zk TYt=1	hk(xk;t�1; xk;t)	vk(xk;t; xv;k;t) (42)where the potential 	hk(xk;t�1; xk;t) links the suessive hidden variables intime while 	vk(xk;t; xv;k;t) onnets the observation at time t, xv;k;t, to theorresponding hidden state variable, xk;t. For simpliity, we will refer to thistratable hain struture with a single potential funtion 	k(xvk ;xhk).4In general, we would have to onsider also the portion of the graph G onneting thesubstrutures. We assume here that the oupling between the substrutures is sparse.20



Now, the joint distribution over all the hains and observations, inludingthe ouplings between the hains, is given byP (xh;xv) = 1Z " mYk=1	k(xvk ;xhk)# " TYt=1 mYk=2�k�1;k(xk�1;t; xk;t)# (43)Here the �rst term represents independent hains and the seond produtterm quanti�es the ouplings between the state variables in neighboringhains.To demonstrate that the strutured mean �eld approah is tratable inthis ontext, it remains to evaluate the onditional expetationsEQflogP (xv ;xh)jxhkgin equation (41). In omputing these expetations, we an safely ignore allthe terms that do not depend on the onditioning variables xhk ; these termswill automatially vanish during normalization. For the kth hain, the onlyrelevant omponents of the joint distribution are the interations within thekth hain and the ouplings between it and the neighboring hains k�1 andk + 1. Thus, EQflogP (xv;xh)jxhkg= onst. + log	k(xvk ;xhk)+Xt EQk�1flog �k�1;k(xk�1;t; xk;t)g+Xt EQk+1flog �k;k+1(xk; xk+1;t)g (44)= onst. + log	k(xvk ;xhk) +Xt log ~�k(xt;k) (45)where the expetations EQk�1f�g and EQk+1f�g are taken with respet tothe variational marginals over the state variables in hains k � 1 and k + 1,respetively. In the last expression, we have olleted together the ontribu-tions from the neighboring hains into e�etive terms log ~�k(xt;k).As a result, the strutured mean �eld updates are given byQk(xhk) 1Zhk 	k(xvk ;xhk)�Yt ~�k(xt;k) (46)where the additional terms beyond the original hain interations provideindependent evidene to individual state variables xk;0; : : : ; xk;T . This doesnot hange the struture of the original distribution (~�k(xt;k) ould be simplyabsorbed into 	vk(xk;t; xv;k;t)). No signi�ant loss in tratability is thereforeinurred due to the inuene from the other hains in this strutured mean�eld approximation. 21



We emphasize that the interations within the substrutures, i.e., 	k(xvk ;xhk),remained una�eted by the updates. Thus the optimal variational marginalwithin eah substruture maintains the original strength of dependenies inaddition to the interation struture. The inuenes between the substru-tures are mediated by the e�etive potentials, ~�, whih, in ase of pairwiseouplings between the substrutures, appear as additional biases on the in-dividual variables. For a related disussion, see [47℄.6 Loal variational approahThe variational mean �eld approximation that we introdued in previoussetions relies on a suitable additional struture in the probability model.This additional struture was expressed in terms of additional fatoring ofthe joint distribution beyond what is ditated by the graph (e.g., pairwisepotential funtions). In the absene of suh fatorization, we may still �nduseful struture in the probability model. For example, the onditionalprobabilities in the direted graph model or the potential funtions in theundireted models may possess parametri struture that we an exploit inapproximate inferene alulations.As an example, onsider the noisy-OR probability model [38℄ over binary(0/1) variables, where the interations between the variables are de�ned interms of probabilisti generalizations of the OR funtion. The onditionalprobabilities in these direted graph models are given byP (xijxpai ; �i) = fxi 0� �i0 + Xj2pai �ijxj 1A (47)In other words, we pass a linear ombination of the parents, z = �0 +Pj2pai �ijxj through an appropriate transfer funtion fxi(z), where f0(z) =exp(�z) and f1(z) = 1�exp(�z). Note that f0(z)+f1(z) = 1 for any inputz as required. By setting �i0 = 0 and inreasing all �ij , we reover the ORfuntion in the limit: f1(z)! OR(fxjgj2pai).The loal onditional probabilities (or potentials) P (xijxpai) depend onjpaij + 1 variables. As the number of parents inreases, these potentialsannot be used eÆiently in the mean �eld approximation, at least notdiretly as stated above. The ost of dealing with suh omponent potentialswould be exponential in the number of variables they depend on, i.e., jpaij+1. We attempt here to exploit the parametri form of these onditionalprobabilities to impose additional fatorization. Ideally, we would like to22



get P (xijxpai) � Yj2pai	ij(xi; xj) (48)sine in the produt form the parents of xi are deoupled. Seletive use ofsuh fatorization transformations may render the remaining (approximate)joint distribution tratable [16℄. Alternatively, we may exploit the resultingfatorization as a part of mean �eld or strutured mean �eld approximation.It remains to show how suh fatorization an be ahieved. We will intro-due a lass of variational methods that are losely related to large deviationmethods for this purpose (for a diret appliation of large deviation theorytowards approximate inferene see [26, 27℄). The approximate fatorizationis provided in terms of upper or lower bounds rather than unontrolled ap-proximations. We start with an example from large deviation theory (see,e.g., [5℄).6.1 Large deviation exampleSuppose we wish to derive a standard large deviation result for a sum ofn independent and identially distributed binary (0/1) variables x1; : : : ; xn.The tails of the distribution governing the sum vanish exponentially fast.We wish to apture the probability that the sum deviates from its expetedvalue np0 by more than n� for arbitrary � > 0. Here p0 is the generativeprobability for the event that xi = 1 for any i. Consider the followingone-sided probability:P  nXi=1 xi � n(p0 + �)! = Ep0 ( step nXi=1 xi � n(p0 + �)!) (49)where where the expetation is taken with respet to the produt distribu-tion over x1; : : : ; xn and step ( z ) = 1 for z � 0 and zero otherwise. The stepfuntion inside the expetation aptures the appropriate event. We an alsointerpret the step funtion as a transfer funtion f1(z) = step ( ( ) z) analo-gously to the noisy-OR model disussed above. The above large-deviationprobability an be therefore viewed as a marginal probability (marginalizedover the parents) of a binary variable.Even in this simple ase, however, we are unable to obtain a losed formexpression for this expetation. On the other hand, evaluating the expetedvalue of any fatored approximation Qi	(xi � (p0 + �)) with respet to theprodut distribution ould be done eÆiently on a term by term basis (as23



a produt of expetations with respet to individual binary variables). Toturn the original expetation into suh fatored form, we will make use ofthe following variational transformation of the step funtion:step ( z ) = min��0 exp(�z ) (50)where � serves as a variational parameter. To understand this transforma-tion note that when z < 0, inreasing � dereases exp(�z) sine the expo-nent is negative. Letting �!1, results in exp(�z)! 0, as desired. On theother hand, when z � 0, exp(�z) is minimized by setting � = 0. This givesexp(0 � z) = 1. Note that the optimal setting of the variational parameter isa funtion of z. For this funtion ��(z), step ( z ) = exp(��(z) z ).The above transformation is exat and therefore not yet useful to us.Similarly to other variational methods, however, we an obtain a ontrolledapproximation by restriting the hoie of the variational parameters. Herewe require that the hoie of the variational parameter as a funtion of z,i.e., �(z), must be a onstant: �(z) = �̂ for all values of z. This gives asimple upper bound on the step funtion[5℄step ( z ) � exp( �̂ z ); 8z (51)The usefulness of this bound is immediate in the large deviation ontext:step nXi=1 xi � n(p0 + �)! � exp �̂[ nXi=1 xi � n(p0 + �)℄! (52)= nYi=1 exp � �̂[xi � (p0 + �)℄ � (53)= exp(�n�̂(p0 + �)) nYi=1 exp( �̂xi) (54)Sine the variables xi are independent we an evaluate the expetation ofthe right hand side with respet to the produt distribution on a term byterm basis. Moreover, all suh expetations are idential sine x1; : : : ; xnare identially distributed. This givesP  nXi=1 xi � n(p0 + �)! � exp(�n�̂(p0 + �)) hEp0 exp( �̂xi)in(55)= exp(�n�̂(p0 + �)) hp0 exp(�̂) + 1� p0in (56)where the last expression omes from taking the expetation with respetto a Bernoulli distribution P (xi = 1) = p0. We an improve this result by24



utilizing the degree of freedom that we have in hoosing �̂. The optimalhoie for �̂ is found by minimizing the resulting bound:logP  nXi=1 xi � n(p0 + �)!� min�̂�0 ��n�̂(p0 + �) + n log hp0 exp(�̂) + 1� p0i� (57)= �n �max�̂�0 ��̂(p0 + �)� log hp0 exp(�̂) + 1� p0i� (58)where in the last expression we pulled the negative sign from within theminimization, turning it into a maximization. The term obtained throughthe maximization is preisely the large deviation rate funtion (see, e.g., [5℄).Basi information theoreti bounds (spei�ally, Cherno� bounds) resultfrom suh simple fatorization transformations.6.2 Representation theoremTo exploit suh fatorization transformations more generally in probabilistiinferene alulations, we would need to �nd the appropriate variationaltransformation for any given situation. Do suh transformations even existfor any given family of onditional probabilities? Perhaps surprisingly, thisquestion an be answered aÆrmatively: the fatorization transformationalways exists. The following theorem makes this more preiseTheorem 1 Let P (xijxpai) be a onditional probability model over xi tak-ing values in a �nite set. We assume further that the number of possibleinstantiations of the parents xpai is �nite. Let � be a variational parametertaking values in a �nite or �nitely dimensional set F . Then there existsnon-negative pairwise potentials	j(xi; xj j�); 	j(xi; xj j�) 8j 2 pai (59)suh thatP (xijxpai) = max�2F Yj2pai	(xi; xj j�) = min�2F Yj2pai	(xi; xj j�) (60)for all (xi;xpai).We emphasize that this is merely an existene proof and does not meanthat we an �nd any useful transformations, those that lead to eÆient andaurate approximate inferene. Finding a suitable transformation for anyspei� family of onditional probabilities (apart from the log-onave lassof generalized linear models disussed below) remains an open problem.25



6.3 Example: log-onave modelsUseful variational transformations of onditional probabilities leading to ad-ditional fatorization an be found systematially for a log-onave lass ofgeneralized linear models[16, 21, 17℄. This family of onditional probabilitiesinludes, e.g., noisy-OR and logisti regression models. More preisely, it isharaterized by onditional probabilities of the formP (xijxpai ; �i) = fxi 0� �i0 + Xj2pai �ijxj 1A (61)where the transfer funtion fxi(�) is log-onave: log fxi(z) is a onavefuntion of its argument z for all values of xi. We will exploit both theonavity property and the linear preditive struture.We start by noting that the produt deomposition in Equation (48) isequivalent to an additive deomposition on the log-sale. In other words,to ahieve P (xijxpai ; �i) � Qj2pai 	ij(xi; xj), it suÆes to �nd the followingadditive approximation in our ontextlog fxi 0� �i0 + Xj2pai �ijxj 1A � Xj2pai  ij(xi; xj) (62)(simply hoose  ij(xi; xj) = log	ij(xi; xj) to preserve equality). Now, sinethe argument of log fxi(�) here already has the desired additive struture,we merely need to �nd a linear approximation to log fxi(�). The fat thatlog fxi(z) is also onave guarantees that we an �nd a linear upper boundapproximation via �rst order Taylor expansion. Figure 4 illustrates this forthe log-logisti funtion. For example, expanding log f1(z) around any pointz0 giveslog f1(z) � �log f1(z)�z jz=z0 (z � z0) + log f1(z0) (63)= �log f1(z)�z jz=z0 z � ��log f1(z)�z jz=z0 z0 � log f1(z0)� (64)= �1z � F1(�1) (65)where �1 = � log f1(z)=�z. For onave (onvex) di�erentiable funtions,the o�set in the brakets or F1(�1) an indeed be expressed in terms ofthe gradient �1 5. Note here that varying the point of expansion, z0, is5Note, for example, that for stritly onave di�erentiable funtions, the gradient is amonotonially dereasing funtion and therefore invertible. Any point z0 in our examplean be expressed as a funtion of the gradient �1 evaluated at z0.26



equivalent to varying �1 in the gradient spae. We may therefore take �1as the variational parameter without expliitly referring to z0. This simpleexplanation aptures a more general duality property of onave (onvex)funtions[39℄: any onave funtion suh as log f1(z) has a onjugate or dualfuntion F1(z), also onave, suh thatlog f1(z) = min�1 f�1z � F1(�1)g (66)where �1 takes values in the domain of F1(�). The duality omes from thefat that F1(�1) as a onave funtion an be similarly expressed in termsof log f1(z) (the onjugate of the onjugate funtion is the funtion itself).Finally, substituting our linear upper bound from Equation (65) for thelog-onditional probability (separately for eah xi) giveslog fxi 0� �i0 + Xj2pai �ijxj 1A � �xi 0� �i0 + Xj2pai �ijxj 1A� Fxi(�xi) (67)The additive expansion follows from identifying  (xi; xj) = �xi�ijxj andabsorbing the remaining terms into one of suh potentials. This is a varia-tional transformation and omes with an adjustable parameter(s) �xi thatan be used to optimize the approximation in the appropriate ontext, justas in the large deviation example. Table 2 expliates suh transformationsfor typial members of the log-onave family.Name log f(z) Conjugate funtion F (�) Domain for �Noisy-OR log(1� exp(�z)) (1 + �) log(1 + �)� � log � [0;1℄Logisti � log(1 + exp(�z)) �� log �� (1� �) log(1� �) [0; 1℄Table 2: Upper bound variational transformations for noisy-OR and logistifuntions.7 Parameter estimation with variational methodsWe explain here how the variational lower bound on the marginal likelihooddisussed earlier an be used for maximum likelihood (ML) parameter esti-mation. This variational approah leads to the standard EM-algorithm [8℄with another maximization step taking the plae of the original E-step. Thevariational approah remains appliable, however, even when the E-step inthe EM-algorithm an no longer be omputed exatly and guarantees mono-tonially inreasing sequene of lower bounds on the log-likelihood.27
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Now, to take advantage of the variational formulation, we do not maxi-mize J(�) diretly but instead maximize the variational objetive J(Q1; : : : ; QT ; �)in two alternating maximization steps[34℄. In the �rst step, we maximizethe variational objetive with respet to the distributions Q1; : : : ; QT whilekeeping the parameters � �xed. If no onstraints are imposed on the varia-tional distributions, we obtain Q�t (xh) = P (xhjxtv; �) for all t and the max-imum value of the variational objetive equals J(�). In the seond step,the variational distributions Q1; : : : ; QT remain �xed and we maximize thevariational objetive with respet to the parameters � alone.This two step max-max algorithm leads to a monotonially inreasinglog-likelihood of data. To see this, let's denote eah maximization step bysuessively priming the orresponding parameters. We obtain the followinghain of inequalitiesJ(�) = J(Q01; : : : ; Q0T ; �) � J(Q01; : : : ; Q0T ; �0)� J(Q001 ; : : : ; Q00T ; �0) = J(�0) (72)Thus J(�) � J(�0), where the inequality is strit whenever either of the lasttwo maximization steps ould improve the variational objetive J(Q1; : : : ; QT ; �).If not, we have reahed a loal optimum.The algorithm presented above is in fat preisely the standard EM-algorithm. The E-step of the EM-algorithm orresponds to the �rst maxi-mization step with respet to the variational distributions Q1; : : : ; QT . In-deed, this maximization step results in setting the variational distributionsequal to the posterior probabilities over the hidden variables. Evaluation ofthe variational objetive in Equation (69) with Qt(xh) = P (xhjxtv ; �) givesthe expeted omplete log-likelihood of the data as in the E-step. The ad-ditional entropy terms in the variational objetive are kept �xed during theseond maximization step and are therefore inonsequential. See also [34℄.Unlike the EM-algorithm, however, the variational formulation remainsappliable even when we an no longer handle the posterior probabilitiesP (xhjxtv; �). Indeed, we an restrit the variational distributionsQ1; : : : ; QTto be within, for example, a lass of ompletely fatored (mean �eld) dis-tributions. The �rst maximization step will be therefore arried out inom-pletely, only within the restrited lass. However, we an still guarantee amonotonially inreasing lower bound J(Q1; : : : ; QT ; �) on the log-likelihoodJ(�) [10, 41℄. Whether this guarantee suÆes in pratie depends on theauray of the (strutured) mean �eld approximation.29



8 Variational Bayesian methodsParameter estimation within the Bayesian framework redues to an infereneproblem, that of evaluating the posterior probability over the parametersgiven the observed data. One ould therefore suspet that the variationalframework we have developed earlier for approximate inferene ould beused in this ontext as well. While this is indeed the ase, there are a ou-ple of additional diÆulties. First, the parameters (exluding the modelstruture) are typially ontinuous rather than disrete making it harder torepresent the posterior probabilities. Seond, eah parameter setting needsto be evaluated aross all the observed data, not merely in the ontext of asingle observation. In omputing the distribution over the parameters, thedata points annot be treated individually but rather as a set. Moreover,in the ontext of inomplete observations, it no longer suÆes to infer theposterior probabilities over the hidden variables independently for eah ob-servation; the posteriors are ontingent on a spei� parameter setting andwe must onsider all suh settings. Inomplete observations are thereforequite diÆult to handle exatly within the Bayesian framework.We start with the simpler setting where eah observation is assumed tobe omplete, i.e., we have a value assignment for all the variables in theprobability model. For a moment, we will drop the subindex v denoting theset of visible variables. The goal here is to evaluate the posterior probabilityover the parameters given the observed i.i.d. data:P (�jD) = 1P (D) P (Dj�)P (�) = 1P (D) " TYt=1 P (xtj�)#P (�) (73)where P (�) is the prior probability over the parameters and P (D) is themarginal data likelihood:P (D) = Z " TYt=1 P (xtj�)#P (�)d� (74)Our ability to evaluate P (D) determines whether the estimation problem istratable. Computing P (D) is the type of inferene problem that we havealready solved variationally. The relevant joint distribution is now P (D; �) =P (Dj�)P (�), whih fators aross the data points. Eah omponent P (xtj�)of this joint, must itself fator into smaller omponents for their produt toremain tratable. When the observations are omplete, this is indeed thease. If we assume, in addition, that we have distint parameters assoiatedwith di�erent fators, that suh parameters are a priori independent of eah30



other, and that the prior distributions are onjugate to the orrespondinglikelihoods, we an typially evaluate the marginal data likelihood in losedform (as in [14℄). However, parameter independene and onjugate form forthe priors may not reet our prior knowledge. Other prior distributions andassoiated independene assumptions may neessitate approximate methodsfor evaluating the posteriors.The typial approximate omputations involve sampling methods [35℄.While these are important and useful in various aspets of Bayesian alu-lations, we will not disuss them here. A number of exellent soures areavailable [36℄. Our fous here is an alternative and to a degree omplemen-tary approah based on variational methods.Formally, the appliation of the variational approah to a Bayesian pa-rameter estimation problem is straightforward: we introdue a variationaldistribution Q(�) over the parameters and evaluate a lower bound J(Q) onthe log-marginal likelihood of the data (f. [30℄):logP (D) � H(Q�) + Z Q(�) logP (Dj�)d� (75)= H(Q�) + Z Q(�) logP (�)d� +Xt Z Q(�) logP (xtj�)d� (76)Without imposing any onstraints on Q, however, we reover logP (D) bymaximizing the lower bound J(Q) with respet to the variational distribu-tion. Moreover, at the maximum Q�(�) = P (�jD), as desired.Additional fatorization present in P (xtj�) further simpli�es the nees-sary expetations with respet to the variational distribution Q. For exam-ple, P (xj�) may fator aording to a direted graph, permitting us to writeit as P (xj�) = Qi P (xijxpai ; �i), where eah onditional probability dependson a distint set of parameters �i. Now, so long as the prior distribution P (�)fators aross the parameters assoiated with the onditional probabilities,so does the posterior. We may therefore assume without loss of generalitythat Q(�) = QiQi(�i). The variational lower bound redues in this ase tologP (D) � Xi �H(Qi) + Z Qi(�i) logP (�i)d�i+Xt Z Qi(�i) logP (xtijxtpai ; �i) d�i# (77)Of ourse, we an still reover the true marginal likelihood and the trueposterior by maximizing this with respet to all the variational distributionsQi(�i). In many ases, however, even the omponent posteriors P (�ijD)31



annot be evaluated in losed form. This is, for example, the ase withlogisti regression models, whereP (xi = 1jxtpai ; �i) = f10� �i0 + Xj2pai �ijxj 1A (78)and f1(z) = (1 + e�z)�1 is the logisti funtion. In this ase we an stillapply the variational formalism by onstraining the variational posteriorsfQi(�i)g to have simpler parametri forms suh as multivariate Gaussiandistributions. The variational lower bound J(Q) an be evaluated in losedform if we ombine this restrition with additional approximations of thefollowing expetationsZ Qi(�i) logP (xtijxtpai ; �i) d�i= � Z Qi(�i) log�1 + e�(2xti�1)(�i0+Pj2pai �ijxj)� d�i (79)whih an be eÆiently lower bounded by taking the expetation inside thelogarithm (� log(�) is a onvex funtion); see [41℄ and the referenes thereinfor a re�ned lower bound. We may also impose additional fatorizationof the logisti funtion (as alluded to earlier in this tutorial) or resort totransformations that are more spei�ally tailored to the logisti funtion[19,18℄.Bayesian estimation of parameters and hyper-parameters may also some-times prelude exat omputations. The prior distribution over the param-eters P (�i) in this ase is a marginal over some hyper-parameters �i:P (�i) = Z P (�ij�i)P (�i)d�i (80)and we wish to infer a posterior probability over both the parameters andhyper-parameters P (�i; �ijD). Whenever the marginal P (�i) annot beevaluated in losed form, we may still rely on the variational approahprovided that we restrit ourselves to fatored variational distributions:Q(�i; �i) = Q(�i)Q(�i) (see [9℄). Our earlier assessment of the aurayof the variational mean �eld approah applies to this ase as well. We anexpet this approah to be aurate whenever the parameters �i and thehyper-parameters �i are only loosely oupled. However, as disussed earlier,it may be dangerous to use the resulting produt of variational marginalsQ(�i)Q(�i) as a proxy for the true posterior P (�i; �ijD), partiularly if thetrue posterior ontains multiple modes.32



8.1 Inomplete asesThe situation beomes substantially more omplex when there are inom-plete ases in the data set. We start by making a few simplifying assump-tions. First, we assume a �xed division between hidden and observed vari-ables, x = fxv;xhg, for all data points. We also refrain from disussing a)joint distributions P (xv ;xhj�) whose omponents are not in the exponentialfamily as well as non-onjugate prior distributions. These aspets were dis-ussed in the previous setion and in the referenes therein. Finally, we willassume that for any �xed setting of the parameters �, the posterior proba-bilities over the hidden variables P (xhjxtv; �) an be omputed in a feasiblemanner (f. [18, 1℄).Now, when the observed ases in the dataset are not omplete, the likeli-hood term pertaining to the parameters still fators aross the observationsP (Dj�) = TYt=1P (xtvj�) (81)but the omponents P (xtv j�) = Pxth P (xtv;xthj�) may lak any further fa-torization6. The fat that we are fore to infer both the posterior over thehidden on�gurations of variables and the parameters is a serious impedi-ment. Even worse, the posteriors over the hidden variables orrespondingto eah observation depend on the spei� setting of the parameters � (i.e.,P (xthjxtv; �)). We an, however, still apply the variational framework so longas we expliitly remove suh diret dependenies between the parametersand the hidden on�gurations. Put another way, we impose the followingfatored struture on the variational distribution[30, 19, 18, 1, 9℄:Q(x1h; : : : ;xTh ; �) = Q1(xth) � � �QT (xTh )Q(�) (82)The lower bound on the marginal data likelihood orresponding to thisvariational distribution an be obtained fairly easily. Sine in the variationaldistribution the hidden variable on�gurations and the parameters are inde-pendent, we an introdue the variational lower bounds in two stages, �rstfor the parameters and then for eah of the marginals logP (xtv j�). In otherwords,logP (D) � H(Q�) + Z Q(�) logP (�)d� +Xt Z Q(�) logP (xtvj�)d�6Note that the hidden variables may a�et only part of the model and therefore themarginal probabilities of eah observation may still possess useful fatorization [18℄.33



� H(Q�) + Z Q(�) logP (�)d�+Xt 264H(Qt) +Xxth Z Qt(xth)Q(�) logP (xtv;xthj�)d�375 (83)The �rst lower bound omes from Equation (76) and the seond as in mean�eld. We emphasize that by maximizing the resulting lower bound withrespet to the variational distributions, we an no longer hope to reoverthe true marginal likelihood. This is beause the true posterior over boththe parameters and the hidden on�gurations annot be represented withinour restrited lass of variational distributions.To make use of the lower bound, we optimize it with respet to thevariational distributions. This an be done by suessively maximizing thebound with respet to one of the variational marginals while keeping allother marginals �xed. With only minor modi�ations, we an borrow theupdate equations from our earlier derivations (see setion 4.0.1). First, we�x Q(�) and update all Qt(xth) aording toQt(xth) 1Zt eE�flogP (xtv;xthj�)g (84)for all xth and t = 1; : : : ; T . The expetation is taken with respet to theurrent (�xed) estimate Q(�). Note that the exponent in this update ruleis a funtion of xth only. Moreover, sine we have removed the parametersas ommon orrelates between the hidden variable on�gurations, the vari-ational distributions fQt(xth)g an be updated independent of eah other.In the seond iterative step, we update the variational parameter distri-bution while keeping fQt(xth)g �xed:Q(�) 1Z e logP (�)+PtExthflogP (xtv ;xthj�)g (85)where the expetations in the exponent are taken with respet to eahQt(xth). Although we annot �nd the true posterior distribution over the pa-rameters (exept in speial ases), these updates nevertheless monotoniallyinrease the lower bound on the marginal data likelihood.We make here a few �nal observations about the auray of the vari-ational Bayesian approah. First, the true posterior over the parametersin this ase will almost surely ontain multiple modes. These modes arisefrom di�erent possible on�gurations of the hidden variables orresponding34



to eah observation. The fatored nature of our posterior approximationmakes the previous analysis about the auray of variational mean �eldappliable. We suspet therefore that the variational posterior Q(�) is likelyto reet only one of the posterior modes. The identity of the seleted modedepends on the initialization of the variational distributions, the order inwhih the updates are arried out, as well as possible di�erenes in theposterior weight of the modes.9 DisussionThe fous of this tutorial has been on the formulation of variational methodsfor inferene and estimation problems in graphial models along with theassoiated algorithms. Although the topis overed are diverse, this tutorialremains in many respets omplementary to [23℄.We have dispensed with disussing a number of variational approahesto inferene and estimation. For example, mean �eld approximation and itshigher order extensions an be viewed as reursive propagation algorithms[21,19℄. We may also go beyond the simple disjoint fatorization assumption inthe ontext of strutured mean �eld approah and use, for example, diretedgraphial models as variational approximating distributions[2, 47℄ (see also[45℄). Variational approximations an also be used for inferene in mixedgraphial models ontaining both ontinuous and disrete variables[32℄. Interms of Bayesian estimation, variational methods lend themselves natu-rally to on-line approximation algorithms[18, 1℄ and remain appliable tostrutured Bayesian priors[9℄, whih was briey mentioned in the text.Although we have treated variational methods in this tutorial as stand-alone approximation tehniques, they an be naturally ombined with otherapproximation tehniques suh as sampling methods. In [17℄ upper/lowerbounds are used in a rejetion sampling setting while [9℄ uses variationaldistributions as proposal distributions in the ontext of an importane sam-pling method. A number of other ombinations and extensions are possibleas well.One of the main open problems in the use of variational approxima-tion methods is haraterizing their auray. We would like to obtain per-formane guarantees for spei� lasses of graphial models (upper/lowerbounds that an be obtained from several variational formulations providesuh guarantees only for spei� instantiations of the inferene problem andwould not serve as a priori guarantees). Another open problem onernsfousing the inferene alulations within the overall variational approah.35
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