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Abstract

A logistic regression classification algorithm
is developed for problems in which the fea-
ture vectors may be missing data (features).
Single or multiple imputation for the miss-
ing data is avoided by performing analytic
integration with an estimated conditional
density function (conditioned on the non-
missing data). Conditional density func-
tions are estimated using a Gaussian mix-
ture model (GMM), with parameter estima-
tion performed using both expectation maxi-
mization (EM) and Variational Bayesian EM
(VB-EM). Using widely available real data,
we demonstrate the general advantage of the
VB-EM GMM estimation for handling in-
complete data, vis-à-vis the EM algorithm.
Moreover, it is demonstrated that the ap-
proach proposed here is generally superior to
standard imputation procedures.

1. Introduction

The incomplete-data problem, in which certain fea-
tures are missing from particular feature vectors, ex-
ists in a wide range of fields, including social sciences,
computer vision, biological systems, and remote sens-
ing, among others. For example, partial responses in
surveys are common in the social sciences, leading to
incomplete data sets with arbitrary patterns of miss-
ing data. In remote sensing applications, incomplete
data can result when only a subset of sensors (e.g.,
radar, infrared, acoustic) are deployed at certain re-
gions. Increasing focus in the future on using (and fus-
ing data from) multiple sensors or information sources
will make such incomplete-data problems increasingly
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common (see (Tsuda, Akaho & Asai, 2003; Lanckriet
et al., 2004)). This work assumes the data are either
missing completely at random (MCAR) or missing at
random (MAR), meaning that the missing data is in-
dependent of its value (see (Ghahramani & Jordan,
1994; Rässler, 2004) for more details).

Incomplete-data problems are often circumvented in
the initial stage of analysis—before specific algorithms
become involved—via imputation (i.e., by “complet-
ing” the missing data by filling in specific values).
Common imputation schemes include “completing”
missing data with zeros, the unconditional mean, or
the conditional mean (if one has an estimate for the
distribution of missing features given the observed fea-
tures, P (xmi

i |xoi

i )).

Semidefinite programming has been used to complete
kernel matrices that have a limited number of missing
elements (Graepel, 2002). The em algorithm (Tsuda,
Akaho & Asai, 2003) is applicable when both an in-
complete auxiliary kernel matrix and a complete pri-
mary kernel matrix exist, but not when the patterns of
missing data are completely arbitrary. Both of these
methods can be viewed as single imputation schemes,
since missing data are completed with single values
before standard classification algorithms are applied.
Since single imputation treats the missing data as fixed
known data, the uncertainty of the missing data is ig-
nored (Rässler, 2004).

The method of multiple imputation (Rubin, 1987),
which has flourished in the statistics community for
dealing with incomplete data, goes beyond these sin-
gle, deterministic completions. In multiple imputa-
tion, n > 1 samples are generated according to the
(estimated) distribution P (xmi

i |xoi

i ) for every missing
feature, and n imputed data sets are formed with the
missing data completed by these samples. Standard
complete-data analysis (e.g., learning and classifica-
tion) is then performed on each of these completed
data sets. The results of each imputed data set are
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then combined (e.g., averaged) to obtain a single set of
results. Theoretical work (Rubin, 1987) has shown the
proximity between an estimate’s uncertainty resulting
from a small number of imputations and an infinite
number of imputations. It should be noted that the
imputation (sampling) is performed only because the
desired posterior distribution of a parameter involves
an intractable integral.

The intractable integral is avoided in (Ibrahim, 1990)
by requiring the data to be discrete. This discrete as-
sumption allows missing data to be summed over, lead-
ing to a “weighted EM” algorithm from which max-
imum likelihood parameter estimates (e.g., classifier
weights) can be obtained. However, the method, de-
veloped for generalized linear models with incomplete
data, does not extend to the continuous case.

In this paper we tackle the incomplete (continuous)
data problem for logistic regression classification in
a principled manner, avoiding explicit imputation.
When calculating the posterior distribution of a pa-
rameter, it is proper to integrate out missing data
(Duda, Hart & Stork, 2000):

P (yi|xoi

i ) =

∫
P (yi|xmi

i ,xoi

i )P (xmi

i |xoi

i ) dxmi

i . (1)

This is the aforementioned integral that is intractable
in general. However, in the case of logistic regression
(with yi the class label), this integral can be solved
analytically using two minor assumptions. The first
assumption is that P (xmi

i |xoi

i ) is a Gaussian mixture
model (GMM). This assumption is mild, since it is
well-known that a mixture of Gaussians can approxi-
mate any distribution. The second (highly accurate)
assumption is that the sigmoid function can be approx-
imated as the cumulative distribution function (cdf) of
a Gaussian. Since the integral in (1) can be solved ana-
lytically, the likelihood can be maximized in a manner
analogous to the complete-data case, to obtain classi-
fier weights. Once the weights are obtained, the classi-
fication algorithm can be applied to classify incomplete
testing data.

The key idea is that the integral can be computed ana-
lytically in the special case of logistic regression, which
allows us to avoid using data completion (imputation)
methods. Since the GMM plays an integral role in the
proposed algorithm, we show two different methods
to accurately perform this GMM density estimation
in the presence of missing data. The first method
uses the Expectation-Maximization (EM) algorithm
(Dempster, Laird & Rubin, 1977), while the second,
more robust method uses the Variational Bayesian EM
(VB-EM) algorithm (Beal & Ghahramani, 2003).

The remainder of the paper is organized as follows. In
Section 2 we derive the logistic regression algorithm
for incomplete data. In Section 3 we show the equa-
tions for the EM and VB-EM algorithms for estimating
GMMs from incomplete data. Experimental classifica-
tion results are shown in Section 4, before concluding
remarks are made in Section 5.

2. Logistic Regression for Incomplete

Data

Assume we have an incomplete labeled data set

Dl = {(xi, yi,mi) : xi ∈ R
d, xij missing ∀j ∈ mi}N

i=1

(2)
where xi is the i-th data point, labeled as yi ∈ {−1, 1};
the features in xi indexed by mi (i.e., xij , j ∈ mi) are
missing. Each xi has its own (possibly unique) set of
missing features, mi. One special case is when a subset
of data share common missing features, as with multi-
sensor data where the common missing features result
from a sensor that has not collected data.

In logistic regression, the probability of label yi given
xi is P (yi|xi) = σ(yiw

T xi), where σ(ν) = (1 +
exp(−ν))−1 and w constitutes a classifier. We par-
tition xi into its observed and missing parts, xi =
[xoi

i ;xmi

i ] where xoi

i = [xij , j ∈ oi]
T , xmi

i = [xij , j ∈
mi]

T , and oi = {1, · · · , d} \mi is the set of observed
features in xi. We apply the same partition to w to
obtain w = [woi

;wmi
], yielding

P (yi|xi) = σ(yi(w
T
oi
xoi

i + νi)) (3)

where νi = wT
mi

xmi

i . Because xmi

i (and hence νi) is
missing, (3) cannot be evaluated. Instead the needed
probability of yi given the observed features xoi

i can
be written as

P (yi|xoi

i ) =

∫
P (yi|xmi

i ,xoi

i )P (xmi

i |xoi

i ) dxmi

i

=

∫
σ(yi(w

T
oi
xoi

i + νi))P (νi|xoi

i ) dνi (4)

To perform the integration in (4), P (νi|xoi

i ) must be
known. We assume that P (xi) is a Gaussian mixture
model (GMM):

P (xi) =
K∑

k=1

πkN
([

xoi

i

xmi

i

]
;µk,Σk

)
(5)

where πk ≥ 0,
∑K

k=1 πk = 1, and

µk =

[
µoi

k

µmi

k

]
, Σk =

[
Σoioi

k Σmioi

k
T

Σmioi

k Σmimi

k

]
. (6)
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Because of the linear relation νi = wT
mi

xmi

i , P (νi|xoi

i )
is also a GMM,

P (νi|xoi

i ) =

K∑

k=1

δi
kG

(
νi − ζi

k

αi
k

)
, (7)

with the parameters

δi
k =

πkN (xoi

i ;µoi

k ,Σ
oioi

k )
∑K

`=1 π`N (xoi

i ;µoi

` ,Σ
oioi

` )
(8)

ζi
k = wT

mi
ξi

k (9)

αi
k =

√
wT

mi
Ωi

kwmi
(10)

ξi
k = µmi

k + Σmioi

k Σoioi

k
−1(xoi

i − µoi

k ) (11)

Ωi
k = Σmimi

k − Σmioi

k Σoioi

k
−1Σmioi

k
T (12)

where

G(νi) =
1√
2π

exp

(
−ν

2
i

2

)
(13)

is a standard univariate Gaussian density function
with zero mean and unit variance.

We approximate the sigmoid function as the cdf of a
Gaussian (i.e., a probit function)

σ(ν) =

∫ ν

−∞
G

(
z

β

)
dz (14)

where β = π√
3
. Substituting (7) and (14) into (4), we

obtain

P (yi|xoi

i ) =

∫ ∫ yi(w
T
oi

x

oi
i

+νi)

−∞
G

(
z

β

)
dz

K∑

k=1

δi
kG

(
νi − ζi

k

αi
k

)
dνi

a
=

∫ ∫ yiw
T
oi

x

oi
i

−∞
G

(
z′ + yiνi

β

)
dz′

K∑

k=1

δi
kG

(
νi − ζi

k

αi
k

)
dνi

b
=

K∑

k=1

δi
k

∫ yiw
T
oi

x

oi
i

−∞

∫
G

(
z′ + yiνi

β

)

G

(
yiνi − yiζ

i
k

yiα
i
k

)
dνi dz

′

c
=

K∑

k=1

δi
k

∫ yiw
T
oi

x

oi
i

−∞
G

(
z′ + yiζ

i
k√

(yiα
i
k)2 + β2

)
dz′

d
=

K∑

k=1

δi
k

∫ yi(w
T
oi

x

oi
i

+ζi
k
)β√

(αi
k
)2+β2

−∞
G

(
z

β

)
dz

e
=

K∑

k=1

δi
k σ

(
yiβ(ζi

k + wT
oi
xoi

i )√
(αi

k)2 + β2

)
(15)

where equation a results from the change of variable
z′ = z − yiνi, equation b is due to exchanging the
order of integrals and summation, equation c results
because the convolution of two Gaussians is a Gaus-
sian, equation d results from the change of variable

z =
(z′+yiζ

i
k)β√

(αi
k
)2+β2

, and equation e is obtained by revert-

ing to sigmoid representation. Thus we have expressed
P (yi|xoi

i ) as a mixture of sigmoids. Substituting (9)
and (10) into (15), we obtain the probability of yi given
only the observed portion of xi:

P (yi|xoi

i ) =

K∑

k=1

δi
k σ


yiβ(wT

mi
ξi

k + wT
oi
xoi

i )√
wT

mi
Ωi

kwmi
+ β2


 . (16)

For the data set in (2), assuming the data points are
independent of each other, we have the log-likelihood
function

`(w) = lnP
(
{yi}N

i=1|{xoi

i }N
i=1

)

=

N∑

i=1

ln

K∑

k=1

δi
k σ


yiβ(wT

mi
ξi

k + wT
oi
xoi

i )√
wT

mi
Ωi

kwmi
+ β2


 .

(17)

Since the objective function (17) to be maximized is
not concave, the solution may be trapped in local max-
ima. A good initialization is important, so we initialize
w as follows. We “complete” the data set by replac-
ing the missing features xmi

i with the conditional mean

E(xmi

i |xoi

i ) =
∑K

k=1 δ
i
kξi

k, where δi
k and ξi

k are defined
in (8) and (11), respectively. This “completed” data
set is then submitted to the standard logistic regres-
sion to obtain w0, which is the maximizer of

N∑

i=1

lnσ

(
yiw

T
mi

K∑

k=1

δi
kξi

k + yiw
T
oi
xoi

i

)
.

We then use w0 as the initialization of w in maximiz-
ing (17) by gradient ascent.

We reiterate that with only two assumptions—that
P (xi) is a GMM and that the sigmoid function can
be approximated as the cdf of a Gaussian—all requi-
site integrals have been computed analytically. As a
result, the log-likelihood can be easily maximized to
find the logistic regression classifier w in the presence
of missing data. Thereafter, the class predictions of an
unlabeled testing data point with incomplete (missing)
features can also be computed trivially using (16).
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3. Estimating GMM from Incomplete

Data

3.1. Expectation Maximization (EM)

In (Ghahramani & Jordan, 1994), the algorithm for
estimating a GMM from incomplete data was given.
However, that derivation admittedly assumed equal
priors for the Gaussians. To conserve space, we shall
show only the update equations for the general case.

The complete-data likelihood function for xi is

P (xoi

i ,x
mi

i , γi = k|Θ)

= P (γi = k|Θ)P (xoi

i ,x
mi

i |γi = k,Θ)

= πk
1√

(2π)
d |Σk|

exp

(
−1

2

[
xoi

i − µoi

k

xmi

i − µmi

k

]T

×
[

Σ−1,oioi

k Σ−1,oimi

k

Σ−1,mioi

k Σ−1,mimi

k

] [
xoi

i − µoi

k

xmi

i − µmi

k

])
(18)

where γi = k denotes that xi is generated by the k-th
Gaussian of the GMM, and Θ = {π,µ,Σ}.
For the data points {xi}N

i=1, which are independent,
the update equations for a K-component GMM are

πk =
1

N

N∑

i=1

δi
k (19)

µk =

∑N
i=1 δ

i
k

[
xoi

i

ξ̂
i

k

]

∑N
i=1 δ

i
k

(20)

Σk =
1

∑N
i=1 δ

i
k

N∑

i=1

δi
k

{([
xoi

i

ξ̂
i

k

]
− µk

)

×
([

xoi

i

ξ̂
i

k

]
− µk

)T

+

[
0 0

0 Ω̂
i

k

]}
(21)

where parameters from the previous iteration are de-
noted with hats and

δi
k =

N
(
xoi

i ; µ̂oi

k , Σ̂
oioi

k

)
π̂k

∑K
`=1 N

(
xoi

i ; µ̂oi

` , Σ̂
oioi

`

)
π̂`

(22)

ξ̂
i

k = µ̂
mi

k + Σ̂
mioi

k Σ̂
oioi

k
−1 (xoi

i − µ̂
oi

k ) (23)

Ω̂
i

k = Σ̂
mimi

k − Σ̂
mioi

k Σ̂
oioi

k
−1Σ̂

mioi

k
T . (24)

3.2. Variational Bayesian EM

Variational methods provide a lower bound on the log
marginal likelihood. In our GMM problem with in-
complete data, xoi

i are the observed variables, Φ =
{xmi

i , γi} is the set of hidden variables, and Θ =
{π,µ,Σ} is the set of parameters. The log marginal
likelihood of xoi

i can be lower bounded by writing (Beal
& Ghahramani, 2003)

lnP (xoi

i ) = ln

∫
P (xoi

i ,Φ,Θ)dΦdΘ

= ln

∫
q(Φ,Θ)

P (xoi

i ,Φ,Θ)

q(Φ,Θ)
dΦdΘ

≥
∫
q(Φ,Θ) ln

P (xoi

i ,Φ,Θ)

q(Φ,Θ)
dΦdΘ (25)

=

∫
q(Φ)q(Θ) ln

P (xoi

i ,Φ,Θ)

q(Φ)q(Θ)
dΦdΘ(26)

where (25) follows from Jensen’s inequality, and (26)
is the result of making the factorized approximation
q(Φ,Θ) ≈ q(Φ)q(Θ). The variational Bayesian algo-
rithm maximizes (26) with respect to the distribu-
tions q(Φ) and q(Θ). Since these two distributions are
coupled, functional derivatives with respect to each
distribution are iteratively taken while the opposite
distribution is held fixed. The resulting Variational
Bayesian Expectation (VB-E) and Maximization (VB-
M) steps are respectively

q(Φ) ∝ exp

{∫
lnP (xoi

i ,Φ|Θ)q(Θ)dΘ

}
(27)

q(Θ) ∝ P (Θ) exp

{∫
lnP (xoi

i ,Φ|Θ)q(Φ)dΦ

}
.(28)

The algorithm for estimating a GMM from com-
plete data using the VB-EM algorithm has been done
previously (e.g., (Nasios & Bors, 2003)), but the
incomplete-data version has not. We have derived the
algorithm for this new case, dealing with incomplete
data. To conserve space, we shall give only the rele-
vant update equations, and other equations necessary
for their interpretation.

To establish notation, the complete-data likelihood
function for xi is given in (18).

For the GMM, we choose conjugate-exponential pri-
ors for tractability (Nasios & Bors, 2003); that is, we
choose a Dirichlet distribution on the mixing coeffi-
cients (π), normal distributions on the means (µk),
and Wishart distributions on the precisions (inverse
covariances, Σ−1

k ). The prior distribution of the GMM
parameters is therefore

P (π,µ,Σ) = D (π)

K∏

k=1

N (µk)W
(
Σ−1

k

)
(29)
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where

D (π) = Z−1
π

K∏

k=1

π
λ0

k−1
k (30)

N (µk|Σk) = Z−1
µ

k
exp

{
−1

2

(
µk − m0

k

)T

× β
0,−1
k Σ−1

k

(
µk − m0

k

)}
(31)

W
(
Σ−1

k

)
= Z−1

Σk

∣∣Σ−1
k

∣∣(α0
k−d−1)/2

× exp

{
−1

2
tr
(
S0,−1

k Σ−1
k

)}
(32)

with normalization constants

Zπ =

∏K
k=1 Γ

(
λ0

k

)

Γ
(∑K

k=1 λ
0
k

) (33)

Zµ
k

= (2π)
d/2 |β0

kΣk|1/2 (34)

ZΣk
= 2α0

kd/2πd(d−1)/4|S0
k|α

0
k/2

d∏

j=1

Γ

(
α0

k + 1 − j

2

)
.

(35)
In (30)–(35), λ0

k, m0
k, β0

k, α0
k, and S0

k are parameters
of the priors, and Γ is the gamma function.

The update formulas of the incomplete-data GMM
posterior parameters are

λnew
k = λ0

k +
N∑

i=1

δ̃i
k (36)

mnew
k =

β
0,−1
k m0

k +
∑N

i=1 δ̃
i
kx̃

k
i

β
0,−1
k +

∑N
i=1 δ̃

i
k

(37)

β
new,−1
k = β

0,−1
k +

N∑

i=1

δ̃i
k (38)

αnew
k = α0

k +

N∑

i=1

δ̃i
k (39)

Snew,−1
k = S0,−1

k +

N∑

i=1

δ̃i
kS̃

i
k + β

0,−1
k m0

km
0
k

T

+

N∑

i=1

δ̃i
kx̃

k
i x̃

k
i

T −
(
β

0,−1
k +

N∑

i=1

δ̃i
k

)
xk

i x
k
i

T (40)

where

xk
i =

β
0,−1
k m0

k +
∑N

i=1 δ̃
i
kx̃

k
i

β
0,−1
k +

∑N
i=1 δ̃

i
k

(41)

x̃k
i =

[
xoi

i

m
mi|oi

k

]
(42)

S̃i
k =

[
0 0

0 S
mi|oi

k

]
(43)

δ̃i
k =

AkN
(
xoi

i ;moi

k , α
−1
k S−1,oioi

k

)

∑K
`=1A`N

(
xoi

i ;moi

` , α
−1
` S−1,oioi

`

) (44)

m
mi|oi

k = mmi

k +S−1,mioi

k S−1,oioi

k
−1 (xoi

i − moi

k ) (45)

S
mi|oi

k = α−1
k

(
S−1,mimi

k

−S−1,mioi

k S−1,oioi

k
−1S−1,mioi

k
T
)

(46)

Ak = exp

(
ψ (λk) − ψ

(
K∑

k=1

λk

)

+
1

2

d∑

j=1

ψ

(
αk + 1 − j

2

)
+

1

2
d ln 2

−1

2
lnαk − tr (βkId)

)
(47)

and where ψ is the digamma function.

4. Results

The main goal of this work is to develop a principled
means of extending the logistic regression classifier for
the case of missing data. Since the GMM density esti-
mation plays a major role in the algorithm, an auxil-
iary goal was to compare the performance of the VB-
EM and EM algorithms in estimating the GMM. To
accomplish this secondary goal we created a 2-D toy
data set, defined by a mixture of four Gaussians. We
randomly removed 40% of the features, and then built
GMMs using the VB-EM and EM algorithms. For
each number of samples used to train the GMM, fifty
trials were run. Each trial consisted of different data
generated from the true GMM and different patterns
of missing features.

An approximation to the Kullback-Leibler (KL) di-
vergence between two Gaussian mixture models can
be computed analytically using the unscented trans-
form (Goldberger, Greenspan & Gordon, 2003). The
smaller the KL divergence, the closer the estimated
distribution is to the true distribution. The difference
between the VB-EM and EM algorithms is most pro-
nounced when a small amount of data is available to
build the GMMs, in which case the VB-EM GMM is
superior (see Figure 1).

The area under a receiver operating characteristic
(ROC) curve is given by the Wilcoxon statistic (Han-
ley & McNeil, 1982)

A = (MN)−1
M∑

m=1

N∑

n=1

1xm>yn
(48)
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Figure 1. Approximate KL divergence between a toy
(known) GMM and the estimated GMMs using VB-EM
and EM.

where x1, . . . , xM are the classifier decisions of data
belonging to class 1, y1, . . . , yN are the classifier deci-
sions of data belonging to class -1, and 1 is an indicator
function.

To examine our main goal, the proposed missing-
data logistic regression algorithm was applied to the
Ionosphere and Wisconsin Diagnostic Breast
Cancer (WDBC) data sets (from the UCI Machine
Learning Repository). The Ionosphere data set has
351 data points and 34 features, while the WDBC
data set has 569 data points and 30 features. Experi-
mental results are shown in Figures 2 and 3 in terms
of the area under the ROC curves, computed from
(48). To allow one to observe the performance of the
methods as a function of data set size, the GMMs are
trained using only training (labeled) data. Since the
GMMs do not require labels, in practice all available
data (labeled and unlabeled) can be used to build the
GMMs.

Each point on every curve in Figure 2 is an average
over ten trials. Every trial consists of a random par-
tition of training and testing data, and a random pat-
tern of missing features, the amounts of which are de-
termined by the given parameters. Because both the
training sets as well as the patterns of missing features
in every trial are unique, performance can vary widely
between trials. The relative differences between two
methods over all trials vary less. That is, the methods
have a consistent relative difference in performance,
even though the absolute difference in performance
may vary widely from trial to trial. Therefore we re-
port in Table 1 the standard deviation of the differ-
ence between the proposed method using VB-EM for

the GMM and each of the other methods considered.
In the table (abbreviated to conserve space), positive
differences indicate that the proposed method using
VB-EM performed better.

Supplementary results in Figure 3 were obtained by
following the same experimental setup as that used
for the results in Figure 2.

From Figure 2, it can be observed that the proposed
method using VB-EM for the GMM estimation con-
sistently performed better than the same method us-
ing EM for the GMM estimation. In particular, this
difference was most significant when a small number
of data points were available to train the GMM (cf.
Figure 1 also). We also observed that both of these
versions of the proposed method were superior to the
three single imputation schemes considered. For the
proposed method using VB-EM, having fewer training
data points with a higher fraction of features present
appears to be more important (in terms of perfor-
mance) than having more training data points with a
lower fraction of features present (e.g., when the frac-
tion of training data points is 0.2, 0.3, and 0.6 in Fig-
ures 2(a), 2(b), and 2(c), respectively, the training set
has the same total number of present features).

The incomplete-data problem, and in particular our
proposed approach using GMMs, raises several inter-
esting questions. For instance, the number of data
points required to accurately estimate the GMM will
increase as the square of the feature dimension be-
cause the covariance matrix is modeled. In contrast,
the number of parameters in the standard logistic re-
gression is equal to the feature dimension. Despite
this ostensibly increased data set size requirement, our
proposed algorithm using the VB-EM GMM still per-
forms better than single imputation schemes when the
number of training data points is small. For example
in Figure 2, when the fraction of training data points
is 0.1 (corresponding to only 35 training data points,
each of which have 34 features), our proposed algo-
rithm still outperforms the single imputation methods.
This result suggests that the benefits of our algorithm
outweigh the added parameter estimation burden.

Another question the incomplete-data problem raises
is whether ignoring data with missing features is better
than using an incomplete-data method (either our pro-
posed method or even a simple imputation scheme). It
is of course displeasing to discard data (information),
but can doing so improve performance? There is a
major problem with simply ignoring data with missing
features. It is true that ignoring data with missing fea-
tures in the training stage will eliminate incomplete-
data training issues. However, in the testing stage,
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Figure 2. Experimental results on the Ionosphere data set. The proposed methods use the new logistic regression method
(no imputation), with the requisite GMMs trained using the VB-EM or EM algorithm. The other three methods complete
the missing data via imputation using the conditional mean (obtained via the VB-EM or EM GMMs) or the unconditional
mean. The results are for the cases when (a) 25%, (b) 50%, and (c) 75% of the features are missing.

Table 1. Abbreviated summary of variance (error bars) for Figure 2 results. Values in the table are the mean ± one
standard deviation of the following difference: the area under the ROC curve of each listed method subtracted from the
area under the ROC curve of the proposed method using VB-EM for the GMM. A(VB) and A(EM) are the proposed
methods using the VB-EM and EM GMMs, respectively; A(µC

V ), A(µC

E), and A(µU ) complete the missing data via
imputation using the conditional mean (obtained via the VB-EM or EM GMMs) or the unconditional mean, respectively.

Percentage Fraction of
of Missing Data Used
Features to Train A(VB) – A(EM) A(VB) – A(µC

V ) A(VB) – A(µC

E) A(VB) – A(µU)

25 0.1 0.3881 ± 0.1504 0.0735 ± 0.0667 0.4056 ± 0.1706 0.0082 ± 0.1493
25 0.3 0.0826 ± 0.0447 0.1172 ± 0.0591 0.2103 ± 0.0521 0.1720 ± 0.0991
25 0.7 0.0141 ± 0.0448 0.0041 ± 0.0171 0.0206 ± 0.0459 0.0045 ± 0.0400
25 0.9 −0.0058 ± 0.0863 0.0126 ± 0.0167 0.0085 ± 0.0878 0.0394 ± 0.0708
50 0.1 0.1000 ± 0.0772 0.0711 ± 0.0279 0.1555 ± 0.1031 0.0750 ± 0.1302
50 0.3 0.0419 ± 0.0494 0.1284 ± 0.0736 0.1616 ± 0.1369 0.1840 ± 0.0925
50 0.7 0.0183 ± 0.0401 0.0109 ± 0.0121 0.0263 ± 0.0445 0.0421 ± 0.0368
50 0.9 0.0218 ± 0.1149 0.0053 ± 0.0089 0.0218 ± 0.1104 0.0530 ± 0.0948
75 0.1 −0.0352 ± 0.1718 0.0865 ± 0.0621 0.0467 ± 0.1647 0.0623 ± 0.1814
75 0.3 0.0410 ± 0.0532 0.0890 ± 0.0533 0.1584 ± 0.0734 0.1441 ± 0.0982
75 0.7 0.0041 ± 0.0319 0.0105 ± 0.0103 0.0076 ± 0.0336 0.0136 ± 0.0348
75 0.9 −0.0031 ± 0.0610 −0.0023 ± 0.0241 0.0012 ± 0.0751 0.0496 ± 0.0543

one cannot simply ignore a data point to be classified
because it is missing some features. One would still be
forced to resort to ad hoc procedures such as filling in
zeros or the unconditional mean for the missing fea-
tures of such incomplete testing data. In contrast, our
proposed method is completely principled, and does
not rely on any ad hoc methods in either the training
or testing stage.

5. Conclusion

Our main contribution has been the derivation of
a missing-data logistic regression classification algo-
rithm. By making two mild assumptions, the algo-
rithm solves the incomplete-data problem in a princi-

pled manner, avoiding imputation heuristics. Exper-
imental results have shown the proposed classifier to
be superior to commonly used single-imputation meth-
ods. The proposed algorithm has also been successful
even when a high percentage of features are missing.
Moreover, despite the additional parameters to be es-
timated, the proposed algorithm has been successful
when the training set size is small. The update equa-
tions for building a GMM with incomplete data via the
EM and VB-EM algorithms have also been given. The
extension of the VB-EM GMM algorithm to the case
of incomplete data is also a new contribution. Experi-
mental evidence has shown that the VB-EM algorithm
is markedly superior in terms of density estimation
when data is scarce.
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Figure 3. Experimental results on the WDBC data set. Refer to Figure 2 caption for legend details. The results are for
the cases when (a) 25%, (b) 50%, and (c) 75% of the features are missing.

Future work will examine the possibility that a classi-
fier constructed from incomplete data can outperform
a classifier constructed from complete data. If features
that decrease or confuse class separation are missing,
this hypothesis may be true. This view also suggests
potential links to feature selection. Additional work
will also investigate the use of Dirichlet processes to
address choosing the number of components for the
GMM.
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