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Comment: Microarrays, Empirical Bayes
and the Two-Groups Model
Carl N. Morris

Abstract. Brad Efron’s paper has inspired a return to the ideas behind
Bayes, frequency and empirical Bayes. The latter preferably would not be
limited to exchangeable models for the data and hyperparameters. Parallels
are revealed between microarray analyses and profiling of hospitals, with ad-
vances suggesting more decision modeling for gene identification also. Then
good multilevel and empirical Bayes models for random effects should be
sought when regression toward the mean is anticipated.

Key words and phrases: Bayes, frequency, interval estimation, exchange-
able, general model, random effects.

1. FREQUENCY, BAYES, EMPIRICAL BAYES AND
A GENERAL MODEL

Brad Efron’s two-groups approach and the empirical
null (“null” refers to a distribution, not to a hypothe-
sis) extension of his local fdr addresses testing many
hypotheses simultaneously, with modeling enabled by
the repeated presence of many similar problems. He as-
sumes two-level models for random effects, developing
theory by drawing on and combining ideas from fre-
quency, Bayesian and empirical Bayesian perspectives.
The last half-century in statistics has seen exciting de-
velopments from many perspectives for simultaneous
estimation of random effects, but there has been little
explicit parallel work on the complementary problem
of hypothesis testing. That changes in Brad’s paper, es-
pecially for testing many hypotheses when exchange-
ability restrictions are plausible.

“Empirical Bayes” is in the paper’s title, said in Sec-
tion 3 to be a “bipolar” methodology that draws on
frequency and Bayes, but otherwise with a meaning
left for us to infer from the paper’s example datasets.
The examples all involve two-level models with infer-
ences about many unknown parameters, that is, about
the unknown random effects. Blending frequency and
Bayesian thinking in statistics will be appreciated es-
pecially by statisticians who engage both in theoreti-
cal and in applied research, and we know that many

Carl N. Morris is Professor, Department of Statistics,
Harvard University, Cambridge, Massachusetts 02138,
USA (e-mail: morris@stat.harvard.edu)

of statistics’ best and time-honored procedures per-
form well simultaneously from the frequency and the
Bayesian perspectives. Classifying statisticians as ei-
ther Bayesian or frequentist ignores the fact that these
terms have varying meanings to different statisticians,
and it encourages the view that statisticians must adopt
just one of these perspectives exclusively, which many
statisticians, myself included, do not do.

The frequency perspective requires comparing pro-
cedures on the basis of repeated sampling, but it can
be neutral about how procedures are constructed. The
Bayesian approach, after a model is completely spec-
ified, including the “prior” (“structural” or “mixing”
might be better adjectives) distribution, must use the
laws of probability to assess uncertainties about un-
knowns, given the observed data and the model. Valu-
ably even from the frequency perspective, Bayesian
reasoning can be used to suggest how to construct in-
ferences about population parameters and other unob-
servables, at least in ideal settings. That is illustrated
in Efron’s treatment of the fdr and the Fdr here. Such
modeling of likelihood functions at more than one
level, and of priors, becomes less subjective when one
has more data, especially with massive datasets like
those in the paper.

Scientists have been encountering ever more massive
datasets, especially since modern censoring technology
and computers have evolved to make collecting, orga-
nizing, visualizing and analyzing such databases pos-
sible. My early experience in the 1980s involving two-
level models for NASA’s satellite imagery data made it
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clear to me that science had reached a new point where
computers not only had enabled us to analyze large
datasets, they even made it possible to collect very
large datasets. The computer had become a horse that
could collect and analyze data as we directed, and sta-
tisticians were its jockeys. While the massive datasets
we see today can be overwhelming, Brad rightly recog-
nizes that they can be welcomed as opportunities to
build better models. That not only leads to more ac-
curate inferences for the given data, but better models
also advance knowledge and future scientific discover-
ies.

Brad’s use of “empirical Bayes” with the six datasets
of the paper is restricted to datasets he considers to
be exchangeable. That could signify his moving away
from a liberalizing view of empirical Bayes that we
once developed together. I doubt this, but the analyses
shown assume that the joint distribution of the data and
of the random effects are exchangeable. Our papers to-
gether in the 1970s moved empirical Bayes away from
that requirement, partly to provide a perspective from
which acceptable shrinkage generalizations of Stein’s
estimator might be developed. That was and is needed
especially when (nearly) unbiased estimates of the dif-
ferent random effects have different variances, perhaps
most often because of different sample sizes.

In seeking a firmer basis for modeling and inference
in empirical Bayes settings (Morris, 1983), I continued
back then to use that term. However, Herb Robbins,
who coined the term, made it clear to me then that
the version he had pioneered, built around exchange-
ability, asymptotics and nonparametric mixing (prior)
distributions, was how he wanted the term to be used.
Also about then, D. V. Lindley averred that “There
is no one less Bayesian than an empirical Bayesian,”
a comment that seemed mainly directed at Robbins’
approach. Some other statisticians then, and perhaps
still today, thought of empirical Bayes as restricted to
plugging hyperparameter estimates into Bayes rules.
So the term “empirical Bayes” meant different things
to different statisticians, and not always good things.

It also had become clear to me back then that dealing
with many inferences simultaneously had to be guided
by Bayesian reasoning. For example, Bayesian con-
structions show why interval estimates based on plug-
in methods can be much too narrow, especially when
the number (N , in the notation of Brad’s paper) of ran-
dom effects being estimated is small or moderate. So
I began to use the term empirical Bayes more spar-
ingly to describe my own work. In building on the

ideas behind my 1983 paper, and when trying to com-
bine frequency ideas with Bayes in hierarchical mod-
els, I sometimes have referred to a “general model for
statistics” for the desired frequency/Bayes unification.

The general model includes distributions for data
given parameters of interest, and for the hyperparame-
ters that govern the distribution of those parameters,
conceptually (but not always) specified for at least two
hierarchical levels. From the frequency perspective in
this general model, all possible distributions would be
considered for the hyperparameters, those being mix-
tures of atomic (Dirac) distributions. From the subjec-
tive Bayesian perspective, just one distribution (a prior
at the top level of the hierarchy) would be allowed in
a particular inferential problem. (This framework ex-
tends to nonparametric models by letting the parame-
ters and/or hyperparameters be infinite dimensional.)

This general model puts frequency and Bayesian
models at the endpoints of a continuum, with the mid-
dle span open for flexibly specifying restrictions on
distributions that could accommodate empirical Bayes
and other models. Decision theory extends to this gen-
eral model so that frequency (resampling) evaluations
would be done conditionally for the range of hyperpa-
rameters. Such resampling was carried out when eval-
uating the coverage probabilities of parametric empir-
ical Bayes interval estimates in Morris (1983) and in
much other work since then. In a University of Texas
dissertation, Joe Hill showed how this general frame-
work extended to ancillarity, information, and other
fundamental statistical ideas (Hill, 1986, 1990).

Aside from their different interpretations, the fre-
quency and Bayesian perspectives can be quite com-
plementary. The frequency paradigm is normative, but
not necessarily prescriptive. The fundamental theorem
of (frequency) decision theory, that is, the complete
class theorem, supports the Bayesian connection by
recognizing that the admissible procedures nearly coin-
cide with the class of extended Bayes rules. Statistical
procedures with good repeated sampling (frequency)
properties often can be anticipated by thinking about
Bayesian constructions.

A reminder of how Bayesian procedures can have
better frequency properties than those derived solely
by frequency reasoning is illustrated by a graph with
N = 15 in Christiansen and Morris (1997, Figure 1).
Poissonly distributed summary data like those seen at
heart transplant hospitals are fitted there via two-level
models. The graph there shows the coverage rates in
repeated sampling of nominal 95% intervals when the
transplant success rates are simultaneously estimated
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at the different hospitals. Six procedures are evaluated.
Two follow Bayesian constructions, one that uses the
BUGS program and default prior, and the other being
an accurate approximation of a hierarchical Bayes pro-
cedure based on a hyperparameter prior akin to Stein’s
superharmonic prior for Normal distributions. These
two Bayesianly motivated interval procedures cover or
nearly cover 95% of the time in repeated sampling sim-
ulations, as intended. The four frequency procedures
based on MLE, REML and on two GLM multilevel
techniques, have coverages in the range of 60% to 90%,
falling well below the claimed coverage rate of 95%.
Whether developed from Bayesian or frequency con-
siderations, good frequency procedures must provide
coverages in repeated sampling close to their claimed
values, but the four non-Bayesian procedures do not
meet that standard.

2. FDR, FDR AND EXCHANGEABILITY

Brad illustrates the use of Bayesian modeling and
probabilistic reasoning with his six large datasets to
produce approaches to hypothesis testing that would
be valid if prior information were available. Then he
shows how to estimate the needed prior, or mixing, dis-
tributions from repeated data.

Probabilistic modeling leads directly to Efron’s lo-
cal fdr, which in turn leads to the Benjamini–Hochberg
Fdr procedure. Starting with the simplest “two-groups”
model, with density f0 under the null hypothesis H0
and f1 under the alternative hypothesis H1, the pa-
per moves through increasingly elaborate probability
models discovered in the process of modeling and ana-
lyzing exchangeable data and repeated problems. Ben-
jamini and Hochberg’s celebrated false discovery rate
statistic Fdr applies when all the H0 distributions have
a single theoretically determined density function f0,
and when the prior probability p0 of H0 is high (at
least 0.9). Then f1, the H1 density, is available via
estimating the marginal density, f (z) = p0 ∗ f0(z) +
p1 ∗ f1(z) and solving for f1(z). While f1 is not ac-
tually needed in exchangeable cases, it will be for a
nonexchangeable extension which I will review later.
Thus, a direct estimate of the posterior probability of
H0, given the data, only requires p0, f0 and f (z) in
this simplest case.

This approach is beguilingly simple, but its valid-
ity depends crucially on a restrictive exchangeability
assumption that can be missed. The marginal density
f (z) will be the same for all the zi observations only if
the same f1 distribution holds under H1 for all zi, i =

1, . . . ,N . This may hold for five of the six datasets in
the paper, but it does not for the school data, as dis-
cussed later.

As formula (2.7) shows, the local fdr is the posterior
probability of H0, that is,

fdr(z) = P(H0|Z = z) = p0 ∗ f0(z)

p0 ∗ f0(z) + p1 ∗ f1(z)
.

Starting with fdr(z) before introducing Fdr(z) seems
natural, but this particular history has developed op-
positely. Efron’s local fdr is immediately interpretable
in probabilistic or Bayesian terms because choosing
between hypotheses H0 and H1 means considering
P(H0|z), and also because fdr depends on the likeli-
hood ratio, and on the Neyman–Pearson statistic.

As Brad writes, the Benjamini–Hochberg Fdr statis-
tic (2.3) is the integral of fdr(z). Starting with fdr(Z) =
P(H0|Z) and assuming that one will choose H1 when-
ever Z ≤ z leads to

E
(
fdr(Z)|Z ≤ z

) = P(H0|Z ≤ z) = Fdr(z),

as shown in the paper, and this is

Fdr(z) = p0 ∗ F0(z)

p0 ∗ F0(z) + p1 ∗ F1(z)
.

Thus, Fdr(z) = P(H0|Z ≤ z) is the fraction of times
that H0 would be falsely rejected. The Benjamini–
Hochberg false discovery rate Fdr(z) is discovered
probabilistically as the average probability (the pre-
posterior probability in Bayesian terms) of accepting,
that is, discovering, H1 falsely.

The probability model that leads to the fdr and Fdr
statistics in repeated applications assumes exchange-
ability in two ways. First, p0 should not depend on i,
as Efron discusses in Section 2. Second, f0 and f1 must
be the same for all problems i = 1,2, . . . ,N . From the
two-level modeling perspective of the paper, f1(z) is a
mixture of densities for the (approximately) N ∗p1 val-
ues of μi that are distributed according to H1. Denoting
the random effects as μi for i = 1, . . . ,N , exchange-
ability permits the conditional densities f (zi |μi) for zi

to depend on i through μi only, and not otherwise to
depend on i.

Some two-level settings are modeled with “paired”
exchangeability among individuals [i.e., the collection
of pairs (zi,μi) are exchangeable], and that produces
exchangeability for the marginal distributions of zi.

This happens familiarly with N independent individ-
uals (in the paper, “individuals” are the N genes, and
the schools, etc.) if the joint distributions of (zi,μi) are
i.i.d. Robbins’ original introduction of empirical Bayes
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for Poisson models rested on paired exchangeability
because every individual Poisson distribution was as-
sumed in his paper to have the same exposure. The
James–Stein estimator arises as a parametric empirical
Bayes estimator, but only when paired exchangeabil-
ity holds, as when the sample means all have the same
variances.

A happy consequence of pairwise exchangeability
is that Bayesian procedures often can conveniently be
expressed explicitly in terms of the marginal (uncon-
ditional) distribution of the data (zi), and that mar-
ginal can be estimated directly from the observed zi ,
as Efron has done in several settings. This gives an
asymptotically consistent estimate of a Bayes proce-
dure, and the statistician then can avoid directly es-
timating the mixing distribution g(·) that governs the
random effects, μi . Relatively simple expressions then
may emerge, such as the procedures of Robbins, of
Stein, and of Benjamini–Hochberg. As Efron notes, the
independence assumption is not crucial, but exchange-
ability is. The Fdr and fdr statistics in the exchange-
able setting of Efron’s Section 2 should work well
with pairwise exchangeability when N is large, but ex-
changeability can be restrictive and may depend heav-
ily on prior knowledge. Seemingly, exchangeability is
widely considered to hold for microarray, proteomics,
BRCA and spectroscopy data. It cannot be valid for the
school data because school enrollments, that is, sample
sizes ni vary. Nearly all theory presented in this paper
is based on such exchangeability, barring the discus-
sion of nonexchangeable choices for p0 in Section 2.
Is “empirical Bayes” in this paper meant to be limited
to exchangeable (or pairwise exchangeable) settings?

3. MULTIPLE HYPOTHESIS TESTING—LOOKING
FOR LARGE RANDOM EFFECTS

Here is an extension of Efron’s approach that may
be especially useful for identifying large random ef-
fects μi . First consider and fix any single value of i,
1 ≤ i ≤ N , with z = zi having been observed, and as-
sume that the “theoretical null” N(0,1) distribution
holds for zi under H0, that is, when the random ef-
fect μ = μi = 0. Assume p0, f0 and f1 all are known
for this value i, as in Section 2, and that g(·) is known.
Then f1(z), the marginal distribution of z under H1, is
determined by integrating the conditional distribution
of z given μ, for example, z ∼ N(μ,1) having density
φ(z − μ), over the distribution g(μ) that governs the
H1 distribution of μ. (Exchangeability does not matter

when all these distributions are known.) Then when H1
holds, the density of μ given z is

h(μ|z) = φ(z − μ) ∗ g(μ)/f1(z).

With fdr(z) = P(μ = 0|z), and writing δ(μ) as the
Dirac delta function (μ = 0 with probability 1 when
H0 is true), the density of μ given z is expressible as a
mixture of Efron’s fdr(z) according to

p(μ|z) = fdr(z) ∗ δ(μ) + (
1 − fdr(z)

) ∗ h(μ|z).
If all these distributions and values were known, one
could “test” H0 :μ = 0 (or μ ≤ 0?) versus H1 :μ > 0
by using fdr(z) as the probability of H0. However, one
well might prefer only to identify genes “far from H0,”
that is, only select values of μ > k that exceed a scien-
tifically substantial magnitude k > 0, and with a sub-
stantial probability. One then would use p(μ|z) in the
formula above to calculate P(μ ≥ k|z).

Numerical illustrations are easy to do, and here is
one based on the assumptions in Section 5 of the paper,
with N = 3000, p0 = 0.9, and Normal distributions
with zi ∼ N(μi,1) and g(μi) being the N(2.5,0.5)

density. Then values of z ≥ 3.5 occur in 2.1% of the
genes, so z ≥ 3.5 identifies about 63 of the 3000 genes.
If we were to choose k = 2.8, then P(μ > 2.8|z) =
0.506 at the threshold value z = 3.5, and the condi-
tional probability that μ > 2.8 rises as z increases. Re-
searchers who wish to identify about 63 genes (2.1%)
would calculate P(μi > 2.8|zi) for every one of the 63
selected genes, all those that have at least a 50% chance
of μ > k = 2.8, and (by averaging) that overall about
60% of the 63 selected cases have μi > 2.8. The 60%
statement is analogous to Benjamini–Hochberg’s cal-
culation, calculated here by averaging the 63 selected
posterior probabilities. If a smaller value k = 2.0 were
chosen, then selected genes at that threshold, still with
z ≥ 3.5, would have at least a 90% chance (90% if
z = 3.5 exactly) that μ > 2.0, and one would know that
about 95%, or 60 of the 63 selected cases, would have
μ > 2.0. Of course, if k = 0, as in the paper, then fdr(z)
and F(z) would indicate that about 98% (61 or 62) of
the 63 selected cases with z ≥ 3.5 would have μ > 0.

The preceding assumes a one-tailed test, as does
Fdr, and so we have used k > 0 (if large positive val-
ues of μ are wanted), but two-tailed probabilities also
are easy to evaluate. A table of the N = 3000 genes
could list genes, sorted by their values of P(μ > k|z),
using p(μ|z). With exchangeability, the ordering is
that of zi . Researchers could review these values of
P(μ > k|z), keeping as many genes as desired, and
stop when this probability becomes too low, or when
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enough candidates have been accepted. There is noth-
ing special about keeping 2.1% and changing the cutoff
for z would alter that percentage. Experience gained
with different values of k after a variety of analyses
with various data sets eventually might help identify
the scientifically most useful values.

Of course g(μ) and the other constants are not gen-
erally known. That is the point of Efron’s paper, but g

can be estimated by a variety of methods, frequentist,
Bayesian and empirical Bayesian, and perhaps quite
accurately with large N . The paper shows some nifty
ways to estimate f1 in exchangeable settings. Then one
could use the estimated f1 to estimate g(μ), perhaps by
deconvolution methods. While estimating these mix-
ing distributions g(·) becomes more difficult in nonex-
changeable cases when the zi have different condi-
tional distributions given μi , the literature provides a
variety of ways to do that, most easily in parametric
settings.

The proposal just described would test interval
null hypotheses instead of single points by calculat-
ing P(H1) given the data, also by using the data to
learn about various constants and distributions, for
example, about p0, g(·), etc. Doing this in conjunc-
tion with choosing a k > 0 has been recommended
in medical profiling by Burgess, Christiansen, Micha-
lak and Morris (2000) for profiling hospital perfor-
mances. Standard practice for medical profiling most
commonly is based on testing different hypotheses
like H0 :μi = 0 independently, using standard methods
like those widely taught in beginning statistics courses.
That forfeits the possibility of developing more infor-
mation via multilevel modeling. Once multilevel mod-
els have been fitted, it is natural to consider alternative
hypotheses like H1 :μ > k where k > 0 is chosen to
set standards (k) for unacceptable (or laudatory) depar-
tures from average outcomes of medical procedures.
The analogous proposal is made here, which can be ex-
tended to accommodate a spike at 0 with p0 > 0 within
H0 = (−k, k) if required. That extension is not needed
with medical profiling data, where it is unlikely that
any sizeable fraction p0 of hospitals would have pre-
cisely the same underlying rates of surgical outcomes,
but the paper’s applications make it clear that positive
probability for a null point within H0 is appropriate in
a variety of problems.

In exchangeable cases, ranking according to
p-values will not depend on the choice of k. With
medical outcome data for hospitals, the number of
treated patients always will vary substantially, pro-
ducing nonexchangeability. Then shrinkages toward a

common mean will be greater for small hospitals than
for large ones, and the resulting rankings will depend
not only on zi , but also on ni and on k.

4. NONEXCHANGEABILITY, THE SCHOOL DATA
AND THE ONE-GROUP MODEL

The school data of Figure 1(b) are not exchangeable
because the sample sizes ni (actually there are two dif-
ferent sample sizes for each school, one for each de-
mographic group) surely vary across the N = 3748
schools. Equal sample sizes might lead to exchange-
ability, but that rarely happens except with designed
experiments, as the microarray experiments must be.
Together (e.g., in Efron and Morris, 1975), Brad and
I once used toxoplasmosis summaries for N = 36 re-
gions to illustrate generalizations of Stein’s estimator
that were needed to account for different sample sizes
in different regions. Those toxoplasmosis data, the hos-
pital profiling data, and the school data in this paper
all might be similarly modeled. The school data cal-
culations suggest shrinkages should vary, but average
about 40%. A sharp null with p0 much in excess of 0
seems implausible for toxoplasmosis, for hospital data,
and for the school data, and so Efron introduces the
case p0 = 0 as his “one group model.” One would
then expect that Var(zi) is proportional to ni . That
would cause longer-tailed distributions for the {zi} val-
ues than Normality allows, and schools with more stu-
dents would tend to be the outliers. Figure 1(b) re-
veals evidence of such long tails, corresponding to non-
exchangeability.

5. INTERVAL ESTIMATION

Efron’s Section 7, about interval estimation, shows
in a simulation with exchangeable data that the FCR
intervals are too wide. That happens because the FCR
does not adjust its slope to be less than 1.0 when a gen-
tler slope closer to 0.5 would track regression toward
the mean (RTTM) of the 1000 random effects better.
Interval estimates recentered according to this slope
improvement can be shorter and still cover at the same
rate as FCR does. Morris (1983) provides a basis for
evaluating interval coverages via repeated sampling.
Figure 1 in that 1983 paper (data for N = 18 baseball
players from some early Efron–Morris papers) illus-
trates how intervals centered on shrunken estimates are
much more accurate. The graph there makes the same
point that Efron does in Figure 8. However, Brad’s Sec-
tion 7 conclusion avers that Bayesian intervals can-
not be trusted. That does not square with my experi-
ence because I have found Bayesian reasoning to be
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essential to understanding how to construct interval es-
timates that have good frequency properties.

With 1000 observations it makes sense to estimate
the distribution g(μ) without assuming Normality, and
instead to use exchangeability as a basis for estimating
the marginal distribution of the {zi}. The same can be
done with Bayesian methods, even with a nonparamet-
ric specification for g, although less easily. With un-
equal sample sizes, or when N is not large, a Bayesian
approach may be more successful, as with the heart
transplant data of Christiansen and Morris (1997).
A key to knowing that Bayesianly constructed confi-
dence intervals will meet frequency resampling crite-
ria requires identifying and using frequency-friendly
noninformative distributions for the hyperparameters.
This has been done in a variety of specific parametric
settings, including for some common generalized lin-
ear models. Bayesian reasoning also shows us how to
account for added variability in settings where the hy-
perparameters and shrinkage constants have been es-
timated. Such intervals must bow outward in Efron’s
Figure 8 when moving away from the center, and this
is seen more dramatically when N = 18 in Figure 1
of Morris (1983). Efron’s Figure 8 shows no bowing,
but that would be too small to see with such large
sample sizes. More discussion is needed as to whether
Bayesian reasoning really has failed in the Section 7
setting, and about what an empirical Bayes approach
really can offer, beyond suggesting Bayesian methods
designed to withstand frequency verifications.

6. MODELING AND RTTM

Two-level modeling can reveal by how much random
effects will regress (shrink) toward the mean (RTTM).
The modeling task is to estimate the mean to shrink
toward, and determine how much shrinkage. A term I
always liked that Brad used when we wrote together is
“ensemble information.” RTTM means individual esti-
mates will regress toward the ensemble estimates.

The paper focuses on rectangular X as an N -by-n
data matrix. When X is rectangular, it is especially
valuable to analyze the distribution of the rows and
columns of X, calculating correlations as Brad does
among the rows (genes) and/or among the columns
(arrays) to improve estimates of f0, f1 and p0, and
thereby to keep modeling assumptions at a minimum.

Of course X need not be rectangular, nor should it
automatically be so considered, because different rows
sometimes may contain different amounts of data. The
school data would follow such a nonrectangular shape

if each row were to include separate entries for each
student (as the BRCA and the HIV data do, but always
with the same sample sizes). In this case, the school
data have been forced into a rectangular Procrustean
bed by using summarized data zi , and that has obscured
their nonexchangeability.

Sometimes it pays to take advantage of situations
when N is large, but without appealing to asymptot-
ics. In the context of the paper, that might be done by
increasing the number of parameters and fitting richer
models as N increases. This is parametric model-
building, but it is an alternative to nonparametric mod-
eling. The paper does some of this to investigate corre-
lations, but the same could be done to assess whether
exchangeable models are adequate.

A model for microarray data considered by Hongkai
Ji and Wing Wong (Ji and Wong, 2005), concerns deal-
ing with the (nuisance) standard deviations σi that are
estimated in the denominator of each t-statistic, like
those considered in Sections 4 and 5 in Efron’s paper.
The sample standard deviations si (each based on just
a few degrees of freedom, as with the BRCA and HIV
data) easily can produce randomly small sample stan-
dard deviations to estimate σi , and hence produce large
t-values that falsely indicate which genes are express-
ing themselves importantly. A way out of this is to con-
sider the N problems to be exchangeable with respect
to the random effects μi and also the σi . That justi-
fies shrinkage methods (based on chi-squared distribu-
tions). Ji shows that shrinking the sample standard de-
viations si toward their common mean, and using these
empirical Bayes shrunken estimates in place of si in
the t-statistics, greatly improves the rate of false gene
discoveries.

7. CONCLUSION

Brad Efron’s paper introduces many ideas for an-
alyzing massive datasets. It encourages a frequency-
Bayes unification and empirical Bayes modeling. The
paper identifies modeling and inference opportunities
that arise with massive datasets in exchangeable set-
tings. Much remains to do to understand the exchange-
able case for parametric and nonparametric models
alike, and there is much to do to recognize when nonex-
changeable models are required, and how to fit them.
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