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DNA microarrays open up a broad new horizon for investigators interested in studying the genetic determinants of disease. The high
throughputnature of these arrays, where differential expression for thousands of genes can be measured simultaneously, creates an enormous
wealth of information, but also poses a challenge for data analysis because of the large multiple testing problem involved. The solution has
generally been to focus on optimizing false-discovery rates while sacri� cing power. The drawback of this approach is that more subtle
expression differences will be missed that might give investigators more insight into the genetic environment necessary for a disease
process to take hold. We introduce a new method for detecting differentially expressed genes based on a high-dimensional model selection
technique, Bayesian ANOVA for microarrays (BAM), which strikes a balance between false rejections and false nonrejections. The basis
of the new approach involves a weighted average of generalized ridge regression estimates that provides the bene� ts of using shrinkage
estimation combined with model averaging. A simple graphical tool based on the amount of shrinkage is developed to visualize the trade-off
between low false-discovery rates and � nding more genes. Simulations are used to illustrate BAM’s performance, and the method is applied
to a large database of colon cancer gene expression data. Our working hypothesis in the colon cancer analysis is that large differential
expressions may not be the only ones contributing to metastasis—in fact, moderate changes in expression of genes may be involved in
modifying the genetic environment to a suf� cient extent for metastasis to occur. A functional biological analysis of gene effects found by
BAM, but not other false-discovery-based approaches, lends support to this hypothesis.

KEY WORDS: Bayesian analysis of variance for microarrays; False discovery rate; False nondiscovery rate; Heteroscedasticity; Ridge
regression; Shrinkage; Variance stabilizing transform; Weighted regression

1. INTRODUCTION

DNA microarray technology allows researchers to measure
the expression levels of thousands of genes simultaneously
over different time points, different experimental conditions,
or different tissue samples. It is the relevant abundance of the
genetic product that provides surrogate information about the
relative abundance of the cell’s proteins. The differences in
protein abundance are what characterize genetic differences
between different samples. In the preparation of a DNA mi-
croarray sample, DNA or RNA molecules labeled with � uores-
cent dye are hybridizedwith a library of complementarystrands
� xed on a solid surface. There are two major branches of chip
technologies. Oligonucleotide arrays contain gene-speci� c se-
quences, called “probes,” about 20 bases long for each gene.
The resulting � uorescence intensity from the hybridization
process gives information about the abundance of the corre-
sponding sample mRNA (a precursor to the cell’s proteins).
The other type of array involves complementary DNA (cDNA),
which can be spotted on nylon � lters or glass slides. Complex
mRNA probes are reverse-transcribed to cDNA at two sites for
each gene and labeled with red control or green test � uorescent
dyes. The ratio of red/green intensities represents the amount of
RNA hybridizingat each site. (A good set of references for mi-
croarrays is Schena et al. 1998; Schena and Davis 1999; Brown
and Botstein 1999; Rao and Bond 2001.)

Although many analysis questions may be of interest, the
most commonly posed question asks for the detection of dif-
ferentially expressing genes between experimental states (e.g.,
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between control samples and treatment samples, or between
normal tissue samples and diseased tissue samples). Current
approaches involve Bayes and empirical Bayes mixture analy-
sis (Efron, Tibshirani, Storey, and Tusher 2001; Ibrahim, Chen,
and Gray 2002; Newton, Kendziorski, Richmond, Blattner, and
Tsui 2001), and multiple hypothesis testing approaches with
correctionsdesigned to control the expected false discovery rate
(FDR) using the methods of Benjamini and Hochberg (1995)
(see Tusher, Tibshirani, and Chu 2001; Storey 2002; Storey and
Tibshirani 2001). The FDR is de� ned as the false-positive rate
among all rejected (null) hypotheses; that is, the total number of
rejected hypotheseswhere the null is in fact true, divided by the
total number of rejected hypotheses. Benjamini and Hochberg
(1995) provided a sequential p-value method to control the ex-
pected FDR. (Note: what they called the FDR is what we re-
fer to as the expected FDR, a slight departure in terminology.)
Given a set of independent hypothesis tests and corresponding
p values, the method provides an estimate k, such that if one
rejects those hypotheses corresponding to P.1/;P.2/; : : : ; P.k/,
the k-ordered observed p values, then the FDR is on average
controlled under some prechosen ® level. For convenience, we
call this the BH method.

ANOVA-based models are anotherway to approach the prob-
lem. The � rst ANOVA methods were developed to account for
ancillary sources of variation when making estimates of rela-
tive expression for genes (see, e.g., Kerr, Martin, and Churchill
2000; Wol� nger et al. 2001). More recently, an ef� cient ap-
proach casting the differential detection problem as an ANOVA
model and testing individual model effects with FDR correc-
tions was developed by Thomas, Olson, Tapscott, and Zhao
(2001). With all of these FDR applications, the methods work
well by ensuring that an upper bound is met; however, a side
effect is often a high false nondiscovery rate (FNR). The FNR
is de� ned as the proportion of nonrejected (null) hypotheses
that are incorrect. Genovese and Wasserman (2002a) showed
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that the BH method cannot simultaneously optimize the ex-
pected FDR and the expected FNR, implying that the method
has low power. (Our simulations in Sec. 6 also con� rm this
behavior.) An oracle threshold value was described by Gen-
ovese and Wasserman (2002b) that improves on BH in the case
where p-value distributions are independent two-point mix-
tures. Storey (2002) also recognized that power for the BH ap-
proach could be improved. Typically, however, there is a price
to be paid in terms of increased computation and some subjec-
tiveness. Moreover, the largest relative power gains observed by
Storey (2002) will be realized only when large proportions of
genes are truly differentially expressed, a property that might
not hold in some disease problems, because the number of
genes differentially expressed compared with the full dimen-
sion are expected to be small.

1.1 Larger Models Versus False Discovery

Our approach to detecting gene expression changes uses a
Bayesian ANOVA for microarrays (BAM) technique that pro-
vides shrinkage estimates of gene effects derived from a form of
generalized ridge regression. This method adapts work by Ish-
waran and Rao (2000) for high-dimensionalmodel selection in
linear regression problems. A key feature of the BAM method
is that its output permits different model estimators to be de-
� ned, and each can be tailored to suit the various needs of the
user. For example, for analysts concerned with false discovery
rates, we show how to construct an estimator that goes after the
FDR. Also developedis a simple graphicalmethod based on the
amount of shrinkage that can be used to visualize the trade-off
between a low FDR and � nding more genes. This device can be
used to select ® (signi� cance level) cutoff values for model es-
timators. Selecting an appropriate ® value is critical to the per-
formance of any method used to detect differentially express-
ing genes. Simply relying on using preset ® values, particularly

Table 1. Results From the Gene Simulation Model (® D :05)

Detected TotalMiss FDR FNR Type I Type II

Zcut 481 675 :162 :063 :009 :597
FDRmix 416 702 :142 :067 :007 :643
Z-test 1106 792 :406 :039 :049 :343
BH 148 862 :034 :087 :001 :857

conventionalvalues used in traditional problems, can be a poor
strategy, because such values can sometimes be magnitudes off
from optimal ones. Our case study example of Section 7 illus-
trates how small ® can be in practice.

As a consequence of shrinkage and model averaging, the
BAM method strikes a nice balance between identifying large
numbers of genes and controlling the number of falsely identi-
� ed genes. This kind of property can be of great importance in
the search for a colon cancer metastatic signature, a topic that
we explore more in Section 7 as one illustration of our method.
Currently, very little is known about the genetic determinantsof
colon cancer metastasis, although it is generally agreed that a
genetic signature will be complex. In � tting in with this general
philosophy,we work under the hypothesis that genes with large
differential expressions may not be the only ones contributing
to metastasis—that in fact, more moderate changes in expres-
sion of some genes might be suf� cient to trigger the process.
Proving this hypothesis directly is dif� cult. A more reasonable
surrogate hypothesis conjectures that the genes that show more
moderate changes in expression provide a suitable milieu for
other metastatic events (accompanied by other genes showing
much larger expressiondifferences). This general principlemay
be at play in many diseases other than colon cancer, and so in-
creased power in detecting differentially expressed genes be-
comes more important, thus motivating a method like BAM.

To � x ideas about BAM, consider Table 1 and Figure 1,
which present results from a gene simulation model involv-
ing p D 10;000 genes (speci� c details are provided in Sec. 6).

Figure 1. p Values From a Gene Simulation Model Using p D 10;000 Genes With a Mean Group Separation of 1.5 for 10% of Genes and 0
for 90% of Genes. Each gene had �ve observations per group. The top plot are p values derived from the Zcut estimator, and the bottom plot are
p values derived from standard Z-tests.
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Figure 1 plots the histogram of the p values from our “Zcut”
method (Sec. 3.3) against the p values derived from individ-
ual Z-tests that use a pooled estimate for the standard error
(Sec. 5.1). Figure 1 shows the effect that shrinkage plays in
BAM; here it has the effect of pushing the p-value distribu-
tion for Zcut apart, helping to more clearly delineate expressive
genes. Differences in procedures can be carefully compared in
Table 1, which records the number of genes detected as differ-
entiallyexpressing, the FDR and FNR, and the type I and type II
error rates. The type I error rate is the proportion of genes re-
jected given that they are not differentiallyexpressing (the null),
whereas the type II error rate is the proportion of nonrejected
genes given that they are differentially expressing (the alterna-
tive). Values are tabulated at an ® D :05 value. Observe how
Zcut leads to a reduced FDR, while at the same time seeks to
maintain high power. Table 1 also records the results of the BH
method applied to the p values from the Z-tests. Also recorded
are the results from the “FDRmix” procedure (Sec. 4), a hybrid
BH procedure. Table 1 shows that both BH and FDRmix lead
to a smaller number of identi� ed genes than Zcut or Z-test. This
is because both procedures are trying to control the FDR which
typically results in fewer genes being found signi� cant. Here,
the BH method has the lowest FDR, slightly smaller than its
target ® D :05 value. Although FDRmix is far off from the ®

target value, it does reduce the FDR of Zcut while maintaining
power.

Of course, one must be careful when directly comparingFDR
and FNR values (or, for that matter, type I and type II error
rates) for the different procedures at the same ® value, because
an ® target value means something different for each proce-
dure. Looking at the different rates individually will also not
tell us how the procedures perform overall. Thus, to be able
to compare procedures on a more equal basis, we have de-
� ned an overall measure of performance, “TotalMiss,” which
is also recorded in Table 1. This is the total number of false
rejections and false nonrejections, that is, the number of mis-
classi� ed genes for a procedure, which can be thought of as a
measure of total risk. In terms of the total risk, Table 1 shows
that Zcut is the clear winner here. A more detailed study of how
TotalMiss varies with ® is presented in Section 6. This kind of
analysis is important in assessing the robustness of a procedure.
Because ® values can vary considerablydepending on the data,
procedures that are robust are those that exhibit uniformly good
risk behavior.

1.2 Organization of the Article

The article is organized as follows. Section 2 presents an
overview of a stochastic variable selection algorithm that in-
volves shrinkage of ordinary least squares estimators. Section 3
introduces the BAM procedure, along with the Zcut estimator
and a shrinkage plot that can be used as a graphical device
for setting ® values. Theorems 1 and 2 in Section 3.4 discuss
the robustness and adaptiveness of the BAM method and pro-
vide explanations for the Zcut method (with proofs provided in
App. B). Section 4 introduces the FDRmix procedure. Section 5
discusses some more commonly known procedures. Section 6
studies the performance of BAM via simulations and compares
it in detail with the more standard methods of Section 5. Sec-
tion 7 discusses the colon cancer problem and presents a de-
tailed analysis of the data based on BAM. Section 8 concludes
with a discussion.

2. PARAMETRIC STOCHASTIC
VARIABLE SELECTION

Our approach is to recast the problemof � ndingdifferentially
expressing genes as a problem of determining which factors are
signi� cant in a Bayesian ANOVA model. This is what we call
the BAM method. Because one can always rewrite an ANOVA
model as a linear regression model, the task of � nding expres-
sive genes can be conceptualized as a variable selection prob-
lem. This connection allows us to adapt a technique discussed
by Ishwaran and Rao (2000) for selecting variables in high-
dimensional regression problems called parametric stochastic
variable selection (P-SVS). Section 3 outlines the details of the
BAM approach and how it relates to P-SVS. Here we give a
general description of the P-SVS procedure.

The P-SVS method is a hybrid version of the spike and slab
models � rst pioneered by Mitchell and Beauchamp (1988). It is
a Bayesian hierarchical approach for model selection in linear
regression models,

Yi D xT
i ¯0 C ²i ; i D 1; : : : ; n; (1)

where Yi is the response value, the ²i are iid normal.0; ¾ 2
0 /

measurement errors, and ¯0 D .¯1;0; : : : ; ¯p;0/T is the unknown
(true) p-dimensionalvector of coef� cients for the covariates xi .
To answer the question of which ¯j;0 are non-zero, the P-SVS
approach works by modeling (1) as a hierarchical model,

.Yi j¯; ¾ 2; xi/
ind» normal.xT

i ¯; ¾ 2/; i D 1; : : : ; n;

.¯j j°j ; ¿ 2
j /

ind» normal.0; °j ¿ 2
j /; j D 1; : : : ; p;

.°j j° ¤; ¸/
iid» .1 ¡ ¸/±° ¤ .¢/ C ¸±1.¢/;

.¿¡2
j ja1; a2/

iid» gamma.a1; a2/;

¸ » uniform[0; 1];
.¾ ¡2jb1; b2/ » gamma.b1; b2/:

(2)

A key feature of the model is the choice of the priors of ¿ 2
j and

°j which are calibrated so that the variance º2
j D °j ¿ 2

j for a

coef� cient ¯j has a bimodal distribution. A large value for º2
j

occurs when °j D 1 and ¿ 2
j is large and will induce large val-

ues for ¯j , thus identifyingthe covariate as potentially informa-
tive. Small º2

j values occur when °j D ° ¤ (chosen to be a small
value). In this case the value for ¯j will become near 0, signify-
ing that ¯j is unlikely to be informative. The value for ¸ in (2)
controls how likely that °j is 1 or ° ¤, and thus it controls how
many ¯j are non-zero and so the complexity of the model. Of
course, the choice of hyperparameters for priors are crucial to
the behavior of º2

j and hence P-SVS’s ability to properly select
variables. We use the values for hyperparameters ° ¤; a1; a2; b1

and b2 discussed by Ishwaran and Rao (2000). Note that these
values do not need to be tuned for each dataset and can be kept
� xed (see Ishwaran and Rao 2000 for details).

Let ° D .°1; : : : ; °p/T . This is a way of encoding models in
binary strings (if °j D 1, select ¯j ). One approach used in spike
and slab variable selection looks to the posterior behavior of °

to identify the “best model”; for example, by identifying the
° that occurs with highest posterior probability (George and
McCulloch 1993). However, as argued by Ishwaran and Rao
(2000), in very large variable selection problems we need to
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process information differently, because the information con-
tained in ° will be too coarse. (If p is very large, then a
high-frequencymodel may not even be found.) As was argued,
variables should be selected by considering the magnitude of
their posterior mean values. Motivation to use the posterior
mean to select variables stems from its interpretation as an
adaptive weighted average of generalized ridge estimates. Such
values are reliable, because they are produced by model aver-
aging in combination with shrinkage, two methods known to
improve model selection. One can easily see that the poste-
rior mean is a weighted ridge estimate. Let ¯ D .¯1; : : : ; ¯p/T .
From (2), the posterior mean can be written as

E.¯ jY / D
ZZ

¯¼.d¯jº2; ¾ 2;Y /¼.d° ;d¿ 2; d¸;d¾ 2jY /;

where º2 D .º2
1 ; : : : ; º2

p/T , ¿ 2 D .¿ 2
1 ; : : : ; ¿ 2

p/T , and Y D
.Y1; : : : ; Yn/T . Elementary calculations show that

.¯jº2; ¾ 2; Y / » normal.6¡1XT Y;¾ 26¡1/; (3)

where X is the n £ p design matrix, 6 D ¾ 20¡1 C XT X, and
0 is the p £ p diagonal matrix with diagonal values º2

j D °j ¿ 2
j .

Notice that the conditional posterior mean for ¯ is

E.¯jº2; ¾ 2; Y / D 6¡1XT Y D .¾ 20¡1 C XT X/¡1XT Y;

which is the ridge estimate from a generalized ridge regression
of Y on X with weights ¾ 20¡1 . Small values for diagonal el-
ements of 0 have the effect of shrinking coef� cients. Thus the
posterior mean for ¯ can now seen to be a weighted average of
ridge shrunken estimates where the adaptive weights are deter-
mined from the posteriors of °; ¿ 2 and ¸.

Remark 1. This shift from high-frequency models selected
by ° to models selected on the basis of individual performance
of variables was also discussed recently by Barbieri and Berger
(2002). These authors showed that the high-frequency model
can be suboptimal even in the simplest case when the design
matrix is orthogonal. Under orthogonality, the optimal pre-
dictive model is not the high-frequency model, but rather the
median probability model, de� ned as the model consisting of
variables whose overall posterior probability is greater than or
equal to 1/2.

3. BAYESIAN ANOVA FOR MICROARRAYS

The BAM method applies this powerful variable selection
device by recasting the microarray data problem in terms of
an ANOVA model, and hence as a linear regression model.
Here we consider the case in which we have 2 groups of
samples; extensions to allow for more groups are discussed
in Appendix A. For group l, let Yj;k;l denote the kth expres-
sion value, k D 1; : : : ; nj;l , for gene j D 1; : : : ; p. Group l D 1
corresponds to the control group, and l D 2 represents the
treatment group. For example, in the colon cancer study of
Section 7, the control group represents Duke’s B-survivor colon
tissue samples, whereas the treatment group are metastasized
colon cancer samples. Microarray data, as in our colon cancer
study, will often be collected from balanced experimental de-
signs with � xed group sizes nj;1 D N1 and nj;2 D N2. In such
settings, Y1;k;l; : : : ; Yp;k;l will typically represent the p gene ex-
pressions obtainedfrom a microarray chip for a speci� c individ-
ual k with a tissue type from group l (i.e., either an individual

k from the control group or an individual k from the treatment
group). However, because more complex experimental designs
are possible,we approach the problem more generally by allow-
ing for unbalanced data. The key question of general interest is
which genes are expressing differently over the two groups. Let
²j;k;l be iid normal.0; ¾ 2

0 / measurement errors. The problem
can be formulated as the ANOVA model,

Yj;k;l D µj;0 C ¹j;0I fl D 2g C ²j;k;l ,

j D 1; : : : ;p; k D 1; : : : ; nj;l ; l D 1; 2, (4)

where those genes that are expressing differentially correspond
to indices j where ¹j;0 6D 0. (If genes turn on, then ¹j;0 > 0;
otherwise, if they turn off, then ¹j;0 < 0.)

Observe that (4) has 2p parameters. Many of the µj;0 para-
meters will be non-zero, because they model the mean for the
control group .l D 1/ for a gene j . However, because our in-
terest is only in ¹j;0, the gene-treatment effect, it is convenient
to force µj;0 to be near 0 so that the effective dimension of the
problem is p. A useful strategy is to replace Yj;k;l by the cen-
tered value,

Yj;k;l ¡ SYj;1; (5)

where SYj;l D
Pnj;l

kD1 Yj;k;l=nj;l is the mean for gene j over
group l. This also reduces the correlation between the Bayesian
parameters µj and ¹j and greatly improves the calibration of
P-SVS. Section 3.2 explains this point in more detail.

Remark 2. Many extensions to (4) are possible. For exam-
ple, additional covariates can be included in the model, which
is useful in experiments where external data (e.g., clinical in-
formation of the individuals providing tissue samples) is col-
lected alongside gene expressions. Thus (4) can be extended to
the important class of analysis of covariance (ANCOVA) mod-
els. In another extension, genes may have different variability
in addition to different mean expression levels. In such cases,
(4) can be extended to allow for differing gene measurement
error variances ¾ 2

j . Often ¾ 2
j will be related to the mean gene

expression. In settings where this relationship is simple (e.g.,
where the variance might be linear in the mean), this behavior
is often handled by applying a variance-stabilizing transform.
Section 6.1 studies how well this approach works. On the other
hand, the relationshipbetween ¾ 2

j and the mean expression can
often be complex, as is the case for the colon cancer study of
Section 7. For such problems, a specialized method is devel-
oped.

Remark 3. The expressions Yj;k;l are typically the end prod-
ucts of some form of probe-level standardization across sam-
ples (i.e., chips). Standardization for the colon cancer data
involves standardizing chips to a gamma distribution with a
� xed shape parameter. Further gene-level preprocessing is done
as discussed in Section 3.1. With so much processing of the
data, it is natural to question the assumption of normality in (4).
In fact, Theorem 1 in Section 3.4 shows that this assumption is
not necessary because of the effect of a central limit theorem, as
long as ²j;k;l are independent with suitably behaved moments
and group sizes nj;l are relatively large. Some empirical evi-
dence of this effect is presented in Section 6 for Poisson data.
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3.1 Linear Regression and Data Preprocessing

To harness P-SVS in the BAM method, we need to rewrite
(4) as a linear regression model (1). This means that we need to
write (4) using a single index, i . This is accomplishedby string-
ing out observations (5) in order, starting with the observations
for gene j D 1, group l D 1, followed by values for gene j D 1,
group l D 2, followed by observations for gene j D 2, group
l D 1, and so on. Notationally, we also need to make the fol-
lowing adjustments for parameters. In place of ¯j we now use
coef� cients .µj ;¹j /. Hierarchical prior variances for .µj ;¹j /

are now denoted by .º2
2j¡1; º2

2j /. In a similar way, make nota-

tional changes to ° and ¿ 2 in (2).
The second step to using P-SVS requires a data preprocess-

ing step that rescales the observations by the square root of
the sample size divided by the mean squared error and by
transforming the design matrix so that its columns each sat-
isfy

P
i x2

i;j D n. In low to moderate correlation problems
(in the design matrix) this calibrates the conditional variance
.0¡1 C X0X=¾ 2/¡1 for ¯ in (3) to have diagonal elements
nearly 0 or 1. Variances of 0 correspond to nonsigni� cant vari-
ables, whereas variances of 1 correspond to informative co-
variates. Because the conditional variance of 1 represents a
good bound for the variance of a signi� cant variable, a standard
normal(0, 1) distribution can then be used to assess whether a
speci� c regression coef� cient, ¯j , should be considered infor-
mative and hence included in the model (see Ishwaran and Rao
2000 for further elaboration on this point).

Let O¾ 2
n denote the usual unbiased estimator for ¾ 2

0 from (4),

O¾ 2
n D 1

n ¡ 2p

X

j;k;l

.Yj;k;l ¡ SYj;1Ifl D 1g ¡ SYj;2I fl D 2g/2;

where n D
Pp

j D1 nj is the total number of observations and
nj D nj;1 C nj;2 is the total sample size for gene j . To calibrate
the data, replace the observations (5) with rescaled values,

eYj;k;l D .Yj;k;l ¡ SYj;1/ £
q

n= O¾ 2
n :

The effect of this scaling is to force ¾ 2 to be approximately
equal to n, and to rescale posterior mean values so they can be
directly compared with a limiting normal distribution. We also
rescale the columns of X to have second moments equal to 1.
Thus after preprocessing, we can write (4) as

eY D eXT Q̄0 C Q²;

where eY is the vector of the n strung-out eYj;k;l values, Q̄0 is
the new regression coef� cient under the scaling, Q² is the new
vector of measurement errors, and eX is the n £ .2p/ design
matrix. Here eX is de� ned so that its 2j ¡ 1 column consists of
0s everywhere except for the values

p
n=nj placed along the nj

rows corresponding to gene j , whereas column 2j consists of
0s everywhere except for values

p
n=nj;2 placed along the nj;2

rows corresponding to gene j for group l D 2.

3.2 Ridge Regression Estimates

Because of the simple nature of the design matrix eX, we
can explicitly work out the conditional distribution for ¯ . Ad-
justing to the new notation, a little bit of algebra using (3)
shows that

..µj ;¹j /T jv2
2j¡1; v2

2j ; ¾ 2; Y / » normal.. Oµj;n; O¹j;n/T ; b6¡1
j;n/;

where
Á Oµj;n

O¹j;n

!

D
nb6¡1

j;n

O¾n¾ 2

0

@
n

¡1=2
j

P
k;l.Yj;k;l ¡ SYj;1/

n
¡1=2
j;2

P
k.Yj;k;2 ¡ SYj;1/

1

A ; (6)

and

b6j;n D

Á
n=¾2 C 1=v2

2j¡1 n=¾2 £
p

nj;2=nj

n=¾ 2 £
p

nj;2=nj n=¾ 2 C 1=v2
2j

!

:

Recall that as a consequence of the preprocessing step, ¾ 2

should be approximately equal to n. Also, because µj;0 should
be nearly 0 due to the centering (5), we should expect v2

2j¡1 ¼ 0.
Thus

b6¡1
j;n ¼

Á
0 0

0 v2
2j =.v2

2j C 1/

!

:

This implies that the posterior correlation between µj and
¹j should be nearly 0. Thus the centering method (5) has
two important roles: (a) It reduces the dimension of the pa-
rameter space and (b) it reduces correlation between parame-
ters.

Now for genes that are expressing differently, we expect v2
2j

to be large, and thus the conditional mean for ¹j is approxi-
mately

O¹j;n ¼
p

nj;2

O¾n
.SYj;2 ¡ SYj;1/; (7)

and the conditional variance for ¹j should be approximately
v2

2j =.v2
2j C 1/ ¼ 1. Because the conditionalvariance represents

a lower bound for the posterior variance V .¹j jY /, this suggests
that the posterior mean E.¹j jY / should be compared with a
normal(0, 1) distribution to test whether ¹j is 0. However, The-
orem 1 of Section 3.4 shows that it is more appropriate to use
the theoretical limiting variance for O¹j;n as our lower bound,
here equal to nj =nj;1 . Thus E.¹j jY / should be compared with
a normal.0; nj =nj;1/ distribution to test whether ¹j;0 is non-
zero. This is the basis of the Zcut procedure.

Theorem 1 justi� es this strategy more rigorously, in the
meantime some evidence for this approach can be seen in Fig-
ure 2(a), which plots the posterior absolute means and posterior
variances from the earlier gene simulation model. (All compu-
tations were done using the P-SVS Gibbs sampling scheme out-
lined in Ishwaran and Rao 2000.) In this “shrinkageplot” a thin-
dashed horizontal line represents the lower variance bound of 1,
and the thick-dashed horizontal line represents the theoretical
variance nj =nj;1 D 2. Notice how large values for jE.¹j jY /j
have posterior variances near 1 that then jump up to the the-
oretical variance nj =nj;1 D 2 as jE.¹j jY /j becomes moder-
ate in size, � nally dropping down to 0 as jE.¹j jY /j becomes
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Figure 2. (a) Estimated Values for jE(¹j jY )j Versus var(¹j jY ) and (b) Absolute Mean Differences jSYj ;2 ¡ SYj;1 j Versus var(¹j jY ) From the Gene
Simulation Model of Figure 1. Circles indicate genes whose true means are ¹j;0 D 0; crosses, genes whose true means are ¹j ;0 6D 0.

small. Figure 2(b) shows that the genes with large posterior
variances are those with group mean differences of intermedi-
ate size. Thus the jump is seen because BAM is shrinking the
posterior means while in� ating the variance for these interme-
diate values, making it harder to reject the null ¹j;0 D 0. It is
clear that to better classify those genes with moderate values
for jE.¹j jY /j, we need to adjust the variance to equal nj =nj;1.
As illustration, consider the two vertical lines in Figure 2(a).
The thin-dashed line is the value for the 99.5th percentile from
a standard normal(0, 1) distribution, whereas the thick-dashed
line is the same percentile from a normal(0, 2) distribution.Ob-

serve how the adjustment to the variance helps avoid misclassi-
fying genes.

Remark 4. It is instructive to work out the posterior condi-
tional variance without using the centering method (5). Now
we expect Oµj;n to be non-zero and that v2

2j¡1 will be large. If

¹j;0 is non-zero, then v2
2j will be large, and hence

b6¡1
j;n ¼

Á
nj =nj;1 ¡

p
nj nj;2=nj;1

¡
p

nj nj;2=nj;1 nj =nj;1

!
:
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Note the resulting non-zero posterior correlation of ¡
p

nj;2=nj

between µj and ¹j .

3.3 The Zcut Procedure

Formally, what we call the Zcut procedure, or simply Zcut,
is the following method for identifyingparameters ¹j;0 that are
not 0 (and hence genes j that are expressing). Identify a gene j

as differentially expressing if

jE.¹j jY /j ¸ z®=2
p

nj =nj;1;

where z®=2 is the 100£ .1¡®=2/th percentile of a standard nor-
mal distribution. The value E.¹j jY / is obtained by averaging
Gibbs sampled draws for ¹j .

Remark 5. In practice, we need an appropriate way to select
an ® value for Zcut. A technique that we use in Section 7 is to
select ® on the basis of a shrinkage plot like that in Figure 2(a).
There we chose ® to coincide with the vertical quantile so that
most of the observationsto its right will have posteriorvariance,
var.¹j jY /, nearly equal to 1. This removes many intermediate
values that could in� ate the FDR.

3.4 Robustness and Adaptiveness

We now justify the Zcut technique by way of a central limit
theorem. This analysis justi� es the adjustment to the variance
used in Figure 2(a), identifying it with the asymptotic vari-
ance for the conditionalposteriormean. These results hold even
when measurement errors are not normally distributed, assum-
ing that appropriate moment conditionsare satis� ed. In the fol-
lowing theorem, carefully note the degeneracy of the limiting
distribution.This is a consequenceof the centering method (5).

Theorem 1. Assume that (4) represents the true model, where
²j;k;l are independent random variables such that E.²j;k;l/ D 0,
E.²2

j;k;l/ D ¾ 2
0 , and E.j²3

j;k;lj/, E.²4
j;k;l/ · C0 for some � xed

constant C0 < 1. If ¾ 2=n ! 1 and nj;1 ! 1 and nj;2 ! 1
for each j such that nj;2=nj;1 ! rj;0 < 1, then under the null
hypothesis ¹j;0 D 0, keeping .v2

2j¡1; v2
2j / � xed,

. Oµj;n; O¹j;n/T dÃ Zj 6¡1
j

¡p
rj;0;

p
1 C rj;0

¢T
; j D 1; : : : ; p;

where

6j D

Á
1 C 1=v2

2j¡1

p
rj;0=.1 C rj;0/

p
rj;0=.1 C rj;0/ 1 C 1=v2

2j

!

and Zj are independent normal(0, 1) random variables.

Most of the conditions of Theorem 1 are likely to hold in
practice. Relaxing the assumption that errors are normally dis-
tributed and iid is an especially helpful feature. The condition
that ¾ 2=n ! 1 is quite realistic and understandable because of
our rescaling method. We have found that it holds quite accu-
rately in many problems. For example, in the simulations pre-
sented in Figure 2(a), ¾ 2=n had a posterior mean of .96 with a
posterior standard deviationof .04. The value for rj;0 appearing
in the theorem represents the limiting ratio of the group sizes.
In our previoussimulation,rj;0 ¼ nj;2=nj;1 D 1. If the posterior
identi� es gene j as differentially expressing (i.e., v2

2j is large),
then Theorem 1 and an argument similar to (7) shows that O¹j;n

can be approximated in distribution by a normal.0; 1 C rj;0/, or

roughly a normal(0, 2), under the null. Notice how this matches
up with the adjusted variance used in our simulation. In gen-
eral, under the conditionsof Theorem 1, O¹¤

j;n :D O¹j;n

p
nj;1=nj

can be approximated by a standard normal distribution under
the null when v2

2j is large. If we integrate over the hyperpara-

meters, then we get ¹¤
j;n :D E.¹j jY /

p
nj;1=nj , which we can

think of as a “Bayes test statistic.” This is the rationale for the
Zcut rule de� ned in Section 3.3.

Theorem 1 shows that BAM is robust to underlying model
assumptions and provides an explanationfor the Zcut rule. Our
next result, Theorem 2, translates BAM’s ability to adaptively
shrink coef� cients into a statement about risk performance.
Shrinkage of coef� cients implies shrinkage of test statistics.
BAM’s adaptiveness allows it to shrink the Bayes test statistics
¹¤

j;n for coef� cients ¹j;0 D 0 while allowing ¹¤
j;n from coef� -

cients ¹j;0 6D 0 to have values similar to frequentist Z-tests,

Zj;n D
SYj;2 ¡ SYj;1

O¾n

p
1=nj;1 C 1=nj;2

: (8)

This has a direct impact on performance. Because both ¹¤
j;n

and Zj;n are compared with a normal(0, 1) in assessing signif-
icance, Zcut will produce p values that match up closely with
Z-tests for non-zero coef� cients, whereas p values from the 0
coef� cients will be much larger. Recall that we saw this p-value
effect in Figure 1. Figure 3 illustrates the effect in terms of test
statistics. This translates into power for Zcut and a low FDR.

Theorem 2 quanti� es this adaptiveness in terms of risk be-
havior. We de� ne some notation to explain this. Let Odj;® 2
f0;1g represent the classi� cation rule for some two-sided test at
a � xed ® level. A value Odj;® D 1 means that we reject the null
¹j;0 D 0; otherwise, if Odj;® D 0, then we accept the null. Let

Rj;® D Prf Odj;® D 1; ¹j;0 D 0g C Prf Odj;® D 0;¹j;0 6D 0g:

This is the expected risk for gene j . The total expected risk
for all genes is R.®/ D

Pp
jD1 Rj;® . The average R.®/=p is the

misclassi� cation rate. Write RB.®/ and RF .®/ for the total ex-
pected risk using O¹¤

j;n and Zj;n for some � xed ® value.

Theorem 2. Assume that (4) represents the true model where
²j;k;l are iid normal.0; ¾ 2

0 / variables. Suppose that ¾ 2 D n.
Then for each 0 < ± < 1=2 there exist values .v2

2j¡1; v2
2j / for

j D 1; : : : ; p such that RB .®/ < RF .®/ for each ® 2 [±; 1 ¡ ±].

Theorem 2 shows that over a wide range of ® values, with
suitably selected values of .v2

2j¡1; v2
2j

/, the expected total risk
for Zcut will be less than that for the classi� cation rule derived
from using Z-tests. The conditionsof the theorem are fairly rea-
sonable. The restriction to normally distributed errors is made
for convenience, because a central limit theorem as in Theo-
rem 1 should apply in practice. Section 6 provides several sim-
ulationsverifying Zcut’s better risk performance over the use of
Z-tests.

4. GENERATING THE NULL: FDRMIX

Values estimated from BAM can also be used in a hybrid BH
procedureas a method for controllingthe FDR. We call this new
model selection procedure FDRmix. Like the Zcut procedure,
FDRmix selects models based on posterior values for ¹j . In
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Figure 3. BAM Test Statistics ¹¤
j ;n Versus Zj;n From Simulations in Figure 1. Expressed genes are represented by crosses; nonexpressedgenes,

by circles. (Nonexpressed genes are the values mostly near 0 on the x-axis that have been shrunken by BAM.)

this approach, we use Tj D E.¹j jY /, the posterior mean value
for ¹j , as the test statistic in selecting models.

To implement FDRmix, we need to derive F0.dTj /, the con-
ditional density for Tj under the null hypothesis ¹j;0 D 0. Al-
though an exact derivation is infeasible, an accurate and simple
approximationfor F0 can be derived by considering O¹j;n, given
earlier in (6). Suppose that the null is true. Although the poste-
rior should identify gene j as having a mean of 0, there will still
be a positive posterior probability of a large º2

2j and a resulting
misclassi� cation. Equation (7) identi� es Tj under this scenario.
Suppose that the data are balancedwith � xed group sizes so that
nj;1 D N1 and nj;2 D N2. Then, under the null, conditioningon
the event Aj D fº2

2j is largeg,

.Tj jAj ;¹j;0 D 0/ ¼
p

N2

O¾n
.SYj;2 ¡ SYj;1/

¼ normal.0; .N1 C N2/=N1/:

On the other hand, if the posterior correctly identi� es that gene
j is not expressing (i.e., that Ac

j D fº2
2j ¼ 0g), then (6) suggests

that

.Tj jAc
j ;¹j;0 D 0/ ¼

p
N2

O¾n.1 C 1=v2
2j /

.SYj;2 ¡ SYj;1/

for some small value of v2
2j . Under the null, this also has a nor-

mal distribution with mean 0, but unlike in the previous case,
the theoretical variance here is not so clear.

These arguments suggest that we can approximate the null
distribution of Tj using the two-point normal mixture,

F0.dTj / ¼ .1 ¡ 50/Á.Tj jV1/ C 50Á.Tj jV2/;

where Á.¢jV / denotes a normal density with mean 0 and vari-
ance V . We anticipate that V2 D .N1 C N2/=N1 but the values
for V1 and 50 D PrfAj j¹j;0 D 0g are unknown. All of these

values, however, can be easily estimated by � tting a two-point
normal mixture to simulated data. Thus to estimate V1, V2, and
50, we simulate data from the model (4), where ¹j;0 D 0 for
all j D 1; : : : ; p. (Typically we would choose p to be some
large number; here we used 25,000.) Notice that this simula-
tion requires knowing only the sample sizes N1 and N2 and the
value for ¾ 2

0 , which can be estimated accurately from the origi-
nal data. We then run the BAM procedure on the simulated data
and � t a two-point mixture model to the averaged values for
¹j collected from the Gibbs output. The results from � tting the
mixture can now be used to derive p values, which are then an-
alyzed in the usual way by the BH method to determine which
hypotheses to reject. To compute the p values, suppose that T o

j

is the estimated value for E.¹j jY / from the original (nonsimu-
lated) data. Then its p value, Pj , can be approximated by

Pj D 2PrfjT o
j j < Tj j¹j;0 D 0g

¼ 2.1 ¡ 508.jT o
j j=

p
V2/ ¡ .1 ¡ 50/8.jT o

j j=
p

V1//;

where 8.¢/ denotes a standard normal cdf.

5. COMPARISON PROCEDURES

We tested BAM against several different model selection pro-
cedures, includingwhat we call “Bayes exch,” “Z-test,” “Bonf,”
and “BH.” Here we give brief descriptions of these methods.

Z-test. Here genes are identi� ed by the Z-test statistics de-
� ned earlier in (8). The Z-test procedure identi� es gene j as
expressing if jZj;nj ¸ z®=2.

Bonf. The Bonf procedure is a Bonferroni correction to
Z-test. Thus gene j is identi� ed as expressing if jZj;nj ¸
z®=.2p/.
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BH. We also applied the BH procedure. The p values used
were based on the test statistics Zj;n under a two-sided test.
Thus if Pj D 2 Prfnormal.0;1/ > jZj;njg, then gene j is con-
sidered expressing if Pj · P.k/, where P.k/ is the kth-ordered p

value, where k D maxfj : P.j / · j®=pg and ® > 0 is some pre-
chosen target FDR. Although the original BH procedure was
designed to control the expected FDR assuming independent
null hypotheses, Benajamini and Yekutieli (2001) showed that
the method applies under certain types of dependencies.Corol-
lary 3.3 of Benajamini and Yekutieli (2001) showed that the
method computed from dependent Z-tests such as Zj;n will
control the expected FDR if applied to those Zj;n for which
the null is true. Thus when many nulls are true, this should ap-
proximately control the expected FDR.

Bayes exch. We also implemented a simple Bayesian ex-
changeablemodel similar in nature to that of Gelman and Tuer-
linckx (2000). To model (4), we replace the data Yj;k;l with
suf� cient statistics SYj;2 ¡ SYj;1 . Conditional on O¾ 2

n this should
have a normal.¹j ; O¾ 2

n .1=nj;1 C 1=nj;2// distribution. Thus to
identify genes, we used the (empirical) hierarchical model

.SYj;2 ¡ SYj;1j¹j ; O¾ 2
n / » normal.¹j ; O¾ 2

n .1=nj;1 C 1=nj;2//;

.¹j j¿ 2
0 / » normal.0; ¿ 2

0 /;

.¿¡2
0 jt1; t2/ » gamma.t1; t2/;

where t1 D t2 D :0001 was selected to ensure a noninformative
prior for ¿ 2

0 . This extends the models considered by Gelman
and Tuerlinckx (2000) by allowing for a hyperprior on ¿ 2

0 .
Observe that given the data Y , the hyperparameter¿ 2

0 and the
estimate O¾ 2

n ,

.¹j jY; O¾ 2
n ; ¿ 2

0 / » normal.¿ 2
0 .SYj;2 ¡ SYj;1/=.S2

j;n C ¿ 2
0 /;

S2
j;n¿ 2

0 =.S2
j;n C ¿ 2

0 //;

where S2
j;n D O¾ 2

n .1=nj;1 C 1=nj;2/. Thus a reasonable proce-
dure identi� es gene j as expressing if

jSYj;2 ¡ SYj;1j ¸ z®=2Sj;n

q
1 C S2

j;n= O¿ 2
0 ; (9)

where O¿ 2
0 is some estimate for ¿ 2

0 . In all examples, we took O¿ 2
0 D

E.¿ 2
0 jY; O¾ 2

n /.

Remark 6. Notice that when O¿ 2
0 ! 1, the limit of the test

(9) corresponds to a standard Z-test. However, whenever O¿ 2
0 <

1, the Bayesian test (9) will always be more conservative (see
Gelman and Tuerlinckx 2000 for further discussion).

6. SIMULATIONS

To assess the procedures, we tested them on simulated data
from the ANOVA model (4). Means for genes were set to have a
group mean separation of ¹j;0 D 1:5 for 10% of parameters and
¹j;0 D 0 for 90% of parameters. This corresponds to a model
in which 10% of genes are expressing and represents a fairly
realistic scenario for microarray data. For convenience, we set
µj;0 D 0 for all j . Thus our gene simulation model was

Yj;k;l D ¹j;0I fl D 2g C ²j;k;l,

j D 1; : : : ;p; k D 1; : : : ; nj;l; l D 1; 2,

where ²j;k;l were taken to be iid normal.0; ¾ 2
0 / variables. For

the variance, we set ¾ 2
0 D 1. Group sizes were � xed at nj;1 D

nj;2 D 5, and the number of genes was � xed at p D 25;000.
(The simulation reported in Table 1 and Figure 1 used this same
con� guration, but with p D 10;000.)

All model estimators reported were based on a range of pre-
set ® levels. For Zcut, Bayes exch, Z-test, and Bonf, a preset
® value meant that the corresponding test was computed based
on the appropriate quantile for a standard normal; for example,
Z-test was computed using z®=2 as a cutoff, whereas Bonf used
z®=.2p/. For FDRmix and BH, the ® value used was the target
FDR. To be able to fairly compare the procedures under the
same ® values, we recorded the total number of misclassi� ed
observations, TotalMiss, discussed in Section 1. Also recorded
was the FDR, FNR, and the type I and type II error rates.

The results of the simulationsare reported in Table 2 and Fig-
ure 4. From these, we make the following general observations:

1. Z-test has the best total risk performance for small ® val-
ues, but its good risk behavior is only local. For example, once
® increases, the value for TotalMiss increases rapidly, and pro-
cedures like Zcut and FDRmix quickly have superior risk per-
formance. Furthermore, if ® becomes very small, then its To-
talMiss values also shoot up. Thus, trying to � nd the small
region of ® values where Z-test does well is a tricky propo-
sition. No theory exists to select this region, which makes
Z-test unreliable. Overall, Zcut and FDRmix have the best
total risk behavior. For small to moderate ® values, Zcut is
better, whereas for large ® FDRmix is better. BH has poorer
performance for small to moderate ®, approaching the same
performance as Zcut and FDRmix only for ® as large as .2. This
con� rms BH’s inability to simultaneously optimize the FDR
and FNR. Bayes exch tracks BH in terms of total risk over small
to moderately large ®.

2. FDRmix does not achieve target ® values, but does further
reduce the FDR for Zcut as designed.The FDR for BH is better,
but is generally smaller than its target value. When ® becomes
small, its FDR drops to 0 and it becomes too conservative.

3. Of all the procedures, Zcut has type II error rates closest
to those observed for Z-test.

Table 2. Gene Simulation Model p D 25;000 With 10%
of Genes Expressing

Detected TotalMiss FDR FNR Type I Type II

Zcut 1,286 1,700 :189 :061 :011 :583
822 1,824 :088 :072 :003 :700
281 2,231 :021 :090 0 :890

FDRmix 1,148 1,724 :162 :064 :008 :615
719 1,885 :072 :076 :002 :733

72 2,430 :014 :097 0 :972

Bayes exch 498 2,048 :046 :083 :001 :810
78 2,424 :013 :097 0 :969
3 2,497 0 :099 0 :999

Z-test 2,808 2,006 :412 :038 :051 :340
1,245 1,709 :182 :062 :010 :593

453 2,081 :038 :084 :001 :826

Bonf 18 2,482 0 :099 0 :993
10 2,490 0 :099 0 :996
2 2,498 0 :099 0 :999

BH 415 2,115 :036 :085 :001 :840
116 2,388 :017 :096 0 :954

11 2,489 0 :099 0 :996

NOTE: Estimators are based on ® levels of .05, .01, and .001.
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Figure 4. (a) Total Number of Misclassi�ed Observations From Gene Simulation Model p D 25;000. (b) Close-up View For Smaller ® Values.
(° —– Zcut, 4..... FDRmix, C - - - Bayes exch, £ – – Z-test, ¦ — — Bonf, 5 — - BH).

4. The worst procedure overall is Bonf, whose TotalMiss
plot is � at. Alternatives to Bonferroni corrections have been at-
tempted in the microarray literature (see, e.g., Callow,
Dudoit, Gong, Speed, and Rubin 2000). These often involve
nonparametricstepdown adjustments to raw p values using per-
mutation distributions of the test statistics. Modest power gains
have been seen, but coarseness of the permutation distributions
limits the usefulness of these approaches to situations in which
a large enough number of samples are available. To illustrate,
we applied the adjusted p-value method of Holm (1979) and
found that with ® equal to .05, .01, and .001, we picked up 18,
10, and 2 signi� cant genes. This performance mirrors that of
Bonf. Because step-down adjustment methods also attempt to
control familywise error rates, it is not surprising that we found
them to be quite conservative.

Remark 7. One referee made the interesting remark that al-
though Figure 4 shows that Z-test can be quite volatile near its

optimal ® value, it seems to suggest that Z-test nonethelessout-
performs Zcut for smaller ® values. Thus Z-test’s volatility may
not be a problem as long as one adopts the strategy of choos-
ing a small ® value. In fact, this can be a bad strategy, because
the TotalMiss values for Z-test can sometimes rise rapidly even
at near-0 values for ®. To illustrate this behavior, we reduced
the signal-to-noise ratio of the previous simulation by setting
¹j;0 D :5 for the 10% of genes that were expressing. All other
values of the simulation were kept the same. Figure 5(a) records
the TotalMiss values for Z-test and Zcut from the analysis. The
plot clearly shows that Zcut has superior risk performance over
Z-test even at near-0 ® values. Note also how the TotalMiss
values for Z-test increase rapidly due to over� tting, whereas
the risk performance for Zcut stabilizes. The better risk perfor-
mance of Zcut is because of its adaptive shrinkage ability as
predicted by Theorem 2. Figure 5(b) shows the extent to which
BAM is able to shrink test statistics compared with Z-test. It

Figure 5. (a) Total Number of Misclassi�ed Observations From Gene Simulation Model Used in Figure 4 but With Smaller Signal-to-Noise Ratio,
and (b) BAM Test Statistics Against Z-Tests Similar to Figure 3. (° —– Zcut, £ - - - Z-test).
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Figure 6. (a) Gene Mean Values SYj;l Versus Gene Sample Variances O¾ 2
j ;l (Left, Group l D 1; Right, Group l D 2) and (b) Group Mean Differences

SYj;2 ¡ SYj ;1 Versus Standard Errors (Left, Untransformed Data; Right, Computed From the Variance-StabilizedData). Expressing genes are identi�ed
by crosses; nonexpressing genes, by circles.

is instructive to compare this with Figure 3 to see how much
shrinkage is actually occurring.

6.1 Unequal Variances: Poisson Gene Simulation Model

Untransformed gene expression data often fail to satisfy the
assumptions of an equal variance model. An often-seen pattern
is that the variance for a gene expression is related to its mean
expression.Often the relationship is linear, but sometimes it can
be quite complex, such as in the case of colon cancer (Sec. 7).
To deal with these problems, it is generally recommended that
the data be transformed through a variance-stabilizing transfor-
mation (Speed 2000).

To study how well the methods perform under the scenario
in which variances are proportional to the mean, and also to see
how robust they are to the assumption of normality, we simu-
lated data from the Poisson model,

Yj;k;l D »j;k;l C ²j;k;l ,

j D 1; : : : ;p; k D 1; : : : ; nj;l; l D 1; 2,

where »j;k;l are independent Poisson.¹j;l/ variables indepen-
dent of ²j;k;l , the normal.0; ¾ 2

0 / measurement errors. We set

¾ 2
0 D :01 to a small value. This slightly smooths the data, al-

though at the same time the variance for a gene expression is
proportional to its mean [Fig. 6(a)]. For gene group sizes we
used nj;1 D 21 and nj;2 D 34, and we set the number of genes at
p D 60,000. These sample sizes were selected to match those of
the colon cancer dataset. We set 90% of the genes to have equal
means over both groups, so that for these genes ¹j;l D ¹j ,
where ¹j was drawn randomly from a uniform distribution on
(1, 3). For the remaining 10% of the genes (the expressors), we
sampled the group 1 means, ¹j;1 , independently from a uni-
form distribution on (4, 5), and then set the group 2 means ¹j;2

to this value, incrementing it by either C1 or ¡1 randomly with
equal probability. This corresponds to genes for the treatment
turning on or off.

The results of the Poisson simulation are reported in Fig-
ure 7, which plots the total number of misclassi� ed observa-
tions as ® is varied. Figure 7(a) is from the untransformed data,
whereas Figure 7(b) shows results from the data under a square-
root variance-stabilizingtransformation.We draw the following
conclusions:
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Figure 7. (a) Total Number of Misclassi�ed Observations From the Poisson Gene Simulation Model and (b) Total Number of Misclassi�ed
Observations From the Variance-stabilizedData. (° —– Zcut, 4...... FDRmix, C - - - Bayes Exch, £ – – Z-test, ¦ — — Bonf, 5 — - BH).

1. The variance-stabilizing transform reduces the size of
models across all estimators, with fewer genes being iden-
ti� ed as expressing. In all cases, the value for TotalMiss
increases under the transformation.

2. All estimators generally exhibit the same patterns of be-
havior as in the previous simulation.

The better performance of the methods on the untransformed
data can be explainedby Figure 6(b). The left side plots, for the
untransformed data, the group mean difference, SYj;2 ¡ SYj;1 , for
each gene versus the correspondingstandard error, . O¾ 2

j;1=nj;1 C
O¾ 2
j;2=nj;2/1=2, where

O¾ 2
j;l D 1

nj;l ¡ 1

nj;lX

kD1

.Yj;k;l ¡ SYj;l/
2

is the sample variance for gene j over group l. We see that even
though the standard error is not constant over the group mean
differences (compare this with the square-root–transformed
plot on the right side), its value still remains fairly constant, be-
coming elevated only for large group mean differences, where

it still remains relatively small in magnitude compared to the
mean effect. Thus, even though in the untransformed data
the gene sample variances are proportional to their means
[Fig. 6(a)], once the sample size is taken into account when
computing the standard error, the effect of unequal variances
gets washed out. It seems better to simply not transform the
data, because a side effect of this is that means are compressed,
leading to smaller models.

6.2 Dependence: Correlations Between Genes

Our simulations up to this point have assumed that genes are
independent, but in practice it is more realistic to expect gene
expressions to be correlated. A gene’s expression across differ-
ent samples can be safely assumed to be independent in experi-
mental designs in which for a � xed j , the values of Yj;k;l repre-
sent expressions measured over different tissue types, l, for dif-
ferent samples, k. Within a given sample k, however, different
genes can cluster into small groups—often as a manifestation
of gene proximities along biological pathways. This has been
termed “clumpy dependence”(Storey and Tibshirani 2001) and
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is the most likely scenario of dependence for these type of ex-
perimental designs. To study how the procedures perform under
this form of dependence, we simulated data according to the
model

Yj;k;l D ¹j;0I fl D 2g C ³mj ;k;l C ²j;k;l ,

j D 1; : : : ;p; k D 1; : : : ; nj;l; l D 1; 2,

where ²j;k;l are iid normal.0; ¾ 2
0 / measurement errors, inde-

pendent of ³mj ;k;l . We used the same dimensions and group
sizes as in our earlier set of simulations: p D 25;000 and
nj;1 D nj;2 D 5. Variables ³mj ;k;l were introduced to induce de-
pendence among genes into small “blocks.” Here mj D [j=B],
where B D 50 and [j=50] represents the � rst integer greater
than or equal to j=50. Thus, for each � xed k and l, there were
500 variables ³1;k;l; : : : ; ³500;k;l. These each induce a block of
B-dependent observations. For example, “block m” comprises
those Yj;k;l where [j=B] D m, which are dependent because
they share the common value ³m;k;l . Variables across different
values for k and l were assumed to be independent;that is, ³j;k;l

was independent of ³j;k0;l0 if k 6D k0 or l 6D l0 . This ensured that
a gene’s expression was independent across samples.

We set the � rst 2,500 (10%) of genes to have non-zero ¹j;0

coef� cients and the remaining 90% to have 0 coef� cients. This
ensured that blocks were composedentirely of expressinggenes
or entirely of nonexpressing genes. All ³mj ;k;l variables were
drawn from a normal.0; ´2

0/ distribution. We took ´2
0 D 19 and

¾ 2
0 D 1, which induced a correlation of ½0 D :95 between ob-

servations within the same block. So that the signal-to-noise
ratio was similar to that in our earlier simulation, we took
¹j;0 D 1:5=

p
1 ¡ ½0 for the expressing genes. Table 3 presents

the results in a style similar to that of Table 2 for direct compar-
ison. The values reported in Table 3 were obtainedby averaging
over 100 independent simulations. For brevity, only the results
for Zcut, FDRmix, Zcut, and BH are reported. The values for
TotalMiss and number of genes detected were rounded to the
nearest integer.

Comparing Table 3 with Table 2, we make the following ob-
servations:

1. The FDR procedures, FDRmix and BH, start to break
down as ® decreases. The number of detected genes drops
rapidly, and the FDR becomes essentially 0. FDR proce-
dures will have high variability in dependence scenarios

Table 3. Dependent Gene Simulation Model

Detected TotalMiss FDR FNR Type I Type II

Zcut 1,299 1,702 :191 :061 :011 :581
807 1,868 :109 :074 :004 :712
286 2,230 :029 :089 0 :889

FDRmix 1,146 1,738 :166 :065 :008 :618
686 1,939 :094 :077 :003 :751

33 2,467 0 :099 0 :987

Z-test 2,762 1,979 :404 :039 :049 :343
1,269 1,698 :184 :062 :010 :586

473 2,078 :055 :084 :001 :821

BH 403 2,129 :029 :086 :001 :845
66 2,435 0 :098 0 :974
4 2,496 0 :099 0 :999

NOTE: Estimators are based on ® levels of .05, .01, and .001.

and will be unreliable. Benajamini and Yekutieli (2001)
and Storey and Tibshirani (2001) have presented tech-
niques for correcting FDR methods under dependence.

2. On the other hand, Zcut and Z-test have performance
measurements similar to those given in Table 2. Overall,
clumpy dependence seems to have a minimal effect on
these. One explanation for this is that these procedures
classify genes based on test statistics that are affected by
dependence only through O¾ 2

n . As long as block sizes B

are relatively small compared with p (a likely scenario
with microarray data), the effect of dependence will be
marginal, because O¾ 2

n will be a robust estimator for the
variance, ¾ 2

0 C ´2
0 .

7. METASTATIC SIGNATURES FOR COLON CANCER

As a practical illustration of the BAM method, we now re-
turn to the issue of detection of a metastatic gene expression
signature for colon cancer. This problem is of signi� cant med-
ical importance. Colorectal cancer is the second-leading cause
of cancer mortality in the adult American population, account-
ing for 140,000 new cases and 60,000 deaths annually (Cohen,
Minsky, and Schilsky 1997). The current clinical classi� cation
of colon cancer is based on the anatomic extent of the disease at
the time of resection. It is known that this classi� cation scheme
is highly imperfect in re� ecting the actual underlyingmolecular
determinants of colon cancer behavior. For instance, upward of
20% of patients whose cancers metastasize to the liver are not
given life-saving adjuvant chemotherapy based on the current
clinical staging system. Thus there is an important need for the
identi� cation of a molecular signature that will identify tumors
that metastasize. In addition, this signature will no doubt sug-
gest new targets for the developmentof novel therapies.

The gene expression data that we consider come from the
Ireland Cancer Center at Case Western Reserve University. The
Center has collected a large database of gene arrays on liver
metastasized colon cancers (METS), modi� ed Duke’s B1 and
B2 survivors (B survivors), as expressed by the Astler–Coller–
Duke’s staging system (Cohen et al. 1997), and normal colon
tissue samples. The B survivors represent an intermediate stage
of tumor development, with metastasis to the liver seen as the
disease worsens. As of February 2002, a total of 76 samples
were available for analysis, made up of 34 METS, 21 B sur-
vivors, and 21 normals. The gene arrays used in compiling the
database were EOS Biotechnology 59K-on-one chips, which
are custom-designed Affymetrix derivations that use a smaller
subset of 8 more-sensitive probes for each gene than do the
originalAffy chips, which use 20 probes per gene. This is based
on a proprietary algorithm developed at EOS Biotechnology.
The obvious advantage of such a system is the ability to assay
many more genes on each chip. In fact, yields of up to 60,000
pieces of genetic information can be processed on each chip.
Although some of this information might be duplicate or over-
lapping in nature, we treat all of the genes as independent,real-
izing that there is still an open debate as to the total number of
actual genes in the human genome (see, e.g., Ewing and Green
2000; Crollius et al. 2000).

Our analysis was based on the data for the liver METS and
B-survivor tissue samples. (We excluded the normal tissue sam-
ples, because our interest is understandingcancer evolvingfrom
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Figure 8. (a) Gene Mean Values SYj ;l Versus Gene Standard Deviations O¾j;l From the Colon Cancer Data. Only mean values less than 30 are
plotted, to help zoom-in the plot. (b) Group mean differences SYj;2 ¡ SYj;1 versus standard errors. The left side was computed from untransformed
data; the right side, from the log-transformed data. For the untransformed data, only mean differences less than 5 in absolute value are plotted, to
help zoom-in the plot. (c) Genes found to be signi�cant using Zcut with ® D :0005. Crosses represent genes detected from untransformed data;
circles, genes detected from log-transformed data.
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the intermediate B-survivor stage.) Using the earlier notation,
group sizes were nj;1 D 21 for B survivors (the control group)
and nj;2 D 34 for the liver METS (the treatment group). In total,
there were nj D 55 samples for each of p D 59;341 probe sets.
Figure 8 plots different summary values for the data. Consider
Figure 8(a), which plots the mean for a speci� c gene against its
standard deviationto identify any potentialmean–variance rela-
tionship.The � gure reveals a pattern that at � rst glance appears
to be linear. However, careful inspection shows that although
standard deviations are generally increasing with the mean ex-
pression for a gene, a broad strip of values where standard devi-
ations are essentially constant can also be seen. Thus the pattern
here is one of overdispersed variances.

This raises the question of how to handle the unequal vari-
ances. One approach might be to try different transformations
in the hope of stabilizing the variance. Consider the right side
of Figure 8(b), which is the result of the log-transformation
log.Yj;k;l C 1 C 1/, where 1 D jminfYj;k;lgj. (We added the
constant 1 C 1 to ensure that gene expressions were strictly
larger than 1, so that logs for small values were not unduly in-
� ated.) As we can see, the transformation has helped stabilize
the standard error when compared with the mean differences
between the two tissue groups. As discussed in Section 6.1, the
stability of the standard error is the key criterion for assessing
validity of inference based on an equal variance model. How-
ever, as also discussed, the gain in stabilizing standard errors
by a transformation can sometimes be offset by the manner in
which mean values are nonlinearly transformed. Evidence that
this is happening for these data is given in Figure 8(c), which
plots the genes detected by Zcut on both the untransformed and
log-transformed data using the two-group ANOVA model of
Section 3 (Zcut based on an ® D :0005 cutoff criteria). What
we see is that the log-transform appears to be encouragingZcut
to pick genes with very small mean differences, and thus the ef-
fect of the transform is to overly enhance the signal-to-noise
ratio for these genes. Such problems with the log-transform

have been noticed elsewhere; for example, Rocke and Durbin
(2001) and Durbin, Hardin, Hawkins, and Rocke (2002) argued
against the use of log-transforms in the analysis of gene expres-
sion data.

Nonetheless, some form of variance stabilization is needed
here, because the left side of Figure 8(b) reveals that the stan-
dard errors for the untransformed data are quite variable, cer-
tainly more than what we saw in the Poisson simulations of
Section 6.1. Global transformations to the data were unsuc-
cessful (we tried transformations other than the log and found
them equally undesirable), and thus we relied on the classical
method of weighted regression to deal with heteroscedasticity.
In this approach,we grouped genes into C D 2 clusters depend-
ing on whether the standard error for a gene was less than or
greater than the 99th percentile for standard errors. This allows
us to treat the small group of genes with very high variabil-
ity differently from the remaining genes. For each group, we
then rescaled gene expressions Yj;k;l by dividing by the square
root of the group mean squared error (the unbiased estimator
for the variance). We then applied our methods as usual to the
newly rescaled data. This method can be applied for any num-
ber of clusters C, although we generally recommend that as
little transformation as possible be done to the data when trying
to reduce variability. (See App. A for technical details.)

Figure 9 gives the shrinkage plot of the posterior absolute
means and posterior variances for ¹j from the Gibbs output
using the weighted regression approach. Once again a thin-
dashed horizontal line represents a variance of 1, whereas the
thick-dashed horizontal line represents the asymptotic value
nj =nj;1 D 55=21. The two vertical lines in the � gure repre-
sent the 100 £ .1 ¡ ®=2/th percentile from the appropriate nor-
mal distributions for ® D :0005. The thin-dashed line is the
uncorrected normal(0, 1) distribution,whereas the thick-dashed
line is from the adjusted normal.0; nj =nj;1/ distribution. The
value for ® D :0005, which we used for the cutoff value in the
analysis, was chosen here by eyeballing Figure 9 and picking

Figure 9. Estimated Values for jE(¹j jY)j Versus var(¹j jY) Using Weighted Regression. Only values for jE(¹j jY)j less than 10 are plotted, to
help zoom-in the plot.
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Figure 10. Genes Found to be Signi�cant Using Zcut With ® D :0005. Crosses represent genes detected from original data; circles, genes
detected using the weighted regression approach. The group mean differences and standard errors plotted are computed from the original data
similar to Figure 8(c). Only mean differences less than 5 in absolute value are plotted, to help zoom-in the plot.

the vertical line that makes almost all observations to its right
have posteriorvariance of roughly1. This removes intermediate
values that could in� ate the FDR. We used the same technique
to select the value of ® D :0005 in Figure 8(c).

Figure 10 plots the genes identi� ed by Zcut from the original
data and for the new data formed by the weighted regression
approach. Observe how the weighting allows Zcut to pick up
moderate to high expression genes, as we desire, while allow-
ing genes with small expressions but high standard errors to be
dropped off. Zcut is also able to pick up genes with smaller
expressions that have small standard errors, but it does not pick
up very small mean expressionvalues, as observed with the log-
transform. Thus the new Zcut is more � exible, but there is still a
large overlap in detected genes, as we would wish. Of the 3,743
genes identi� ed by Zcut over the weighted data, 2,864 (76.5%)
were also identi� ed over the original data. Table 4 records the
number of genes detected by each method for the weighted data
(® value of .0005).

Interestingly, all of the genes picked by BH are contained in
the list of genes picked by Zcut. These are clearly the genes
showing large differential expression between B survivors and
METS. It is most informative to look at the list of nonoverlap-
ping genes between these two methods. There were 783 genes
in this nonoverlappingset. This number was reduced to 779 af-
ter genes indicatingpotential liver or spleen contaminationwere
removed.After this, two qualitycontrol analyses were run inde-
pendently (since some samples were prepared in San Francisco
and others in Cleveland) to assess differences in samples. Genes
showing marked differences in sites were excluded, as were

Table 4. Number of Colon Cancer Genes Detected Using the Weighted
Regression Approach

Zcut FDRmix Bayes exch Z-test Bonf BH

3,743 3,334 3,433 4,576 1,369 2,960

genes showing high variability between tumors on the same pa-
tient.

In the end, there were 476 genes in this nonoverlapping
set. Of these, 193 were stripped away from further analy-
sis, because they were expressed sequence tags (ESTs). This
left 283 genes, from which EOS probe sets were mapped to
Affymetrix U133A and U133B human gene chips. Once this
conversion was done, the information was entered into Gene-
Spring, a program used to extract functional information about
genes printed on Affymetrix chips. The remaining genes were
then categorized into different functional groups. The � ndings
were quite interesting. Table 5 provides a breakdown of group-
ings arranged in decreasing biological speci� city that represent
important functional pathway steps identi� ed in the metasta-
tic process. These include genes that are transcription factors
and genes involved in DNA binding, cell adhesion, and various
signaling, cell communication, and cascade pathways. In fact,
some of the cascade pathways have been identi� ed as poten-
tial sources of possible gene–gene interactions due to dimeriza-
tions produced during a particular step in a cascade (Cohen et
al. 1997).

Table 5. Grouping of Genes Found by Zcut and Not by BH by
Biological Function

Functional group Number of genes

Transcription factor 3
DNA binding 1
Cell adhesion 3
G-protein signaling 2
STAT cascade 3
TGF receptor ligand 2
Growth factor receptor ligand 1
Oncogene 2
Intracellular signaling 4
Signal transduction 6
Cell communication 15
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8. DISCUSSION

We have shown how to cast the problem of searching
for differentially expressed genes in microarrays as a high-
dimensional subset selection problem using BAM, a powerful
new Bayesian model selection technique. Although we consid-
ered the BAM method in detail in the context of the two-way
ANOVA model, the method permits extensions to more than
two groups. Extensions to ANCOVA models are also possible
for use in study designs where gene expressions are measured
under various experimental conditions.An important feature of
BAM is that it can be used differently depending on the user’s
needs. For example, Zcut, a model estimator computed from
posterior means, amounts to a weighted combination of ridge
regression estimators and strikes a balance between low FDR
values and higher power. Should the FDR be of greater im-
portance, we have provided a novel technique for estimating
the distribution of gene effects under the null hypothesis using
a two-component mixture model, leading to the FDRmix pro-
cedure. The shrinkage effect of BAM provides the power gains
seen for our model estimators. BAM adaptively shrinks test sta-
tistics for intermediate- and small-sized effects, whereas larger
effects yield test statistics similar to Z-test. This is the reason
why even though more gene effects are detected as signi� cant
using the new approach than, say, BH, a source of conservatism
is built in, minimizing the potential of too many falsely rejected
null hypotheses.

The signi� cance of the increased power was evident in our
attempt to determine a metastatic genetic signature of colon
cancer, known to be a very complex disease process. Zcut de-
tected more than 700 signi� cant genes than BH did. Many of
these genes in fact turned out to be potentially implicated in
the metastasis of B-survivor solid tumors from the colon to
the liver. It is interesting that no currently known genes with
obvious involvement in colon cancer metastasis were part of
our nonoverlapping list. The implications of this work become
more clear; by omitting potentially important genes at the level
of initial � ltering, further derived discriminant rules based on
these � ltered subsets of genes may end up leaving out valuable
information.

The colon cancer example also illustrates the dif� culties in
� nding global variance-stabilizingtransformations for the data.
Complex nonlinear relationships between variances and means
can result in an adverse affect on the mean when such trans-
formations are applied. This was further illustrated via Poisson
simulations. As an alternative, we provided a weighted regres-
sion approach. This approach is not limited to the BAM tech-
nique and can be used with standard methods as well.

Another issue that can affect inference in these problems are
outliers. Ideally, datasets should be trimmed appropriately be-
fore analysis, but this is not always an attractive alternative for
the practitioner. We have not studied the effects of outliers, be-
cause it is beyond the scope of this article. A careful study of
their effects is needed. Clearly, some additional robusti� cation
of the methods would be required, but this is something that we
plan to report on in future work.

APPENDIX A: EXTENSIONS

A.1 More Than Two Groups

Model (4) can be easily extended to the case in which we have more
than two groups. For de� niteness, we outline the case for three groups.

As before, assume that group l D 1 is the control group. Groups l D 2
and l D 3 represent two distinct treatments. If Yj;k;l are the expres-
sions, then testing for a gene-treatment effect can be formulated using
the ANOVA model,

Yj;k;l D µj C ¹j;2I fl D 2g C ¹j;3I fl D 3g C ²j;k;l,

j D 1; : : : ; p; k D 1; : : : ; nj;l ; l D 1; 2; 3,

where ²j;k;l are iid normal.0;¾ 2/. Testing whether genes differ in
groups 2 and 3 from the control corresponds to testing whether ¹j;2
and ¹j;3 differ from 0. As before, many of the µj parameters will be
non-zero; thus we reduce the dimension of the parameter space from
3p to 2p by centering the responses. Applying the appropriate rescal-
ing as part of the preprocessing of the data, we replace Yj;k;l with

eYj;k;l D .Yj;k;l ¡ SYj;1/ £
q

n= O¾ 2
n ;

where

O¾ 2
n D 1

n ¡ 3p

X

j;k;l

.Yj;k;l ¡ SYj;1I fl D 1g ¡ SYj;2Ifl D 2g

¡ SYj;3Ifl D 3g/2

and SYj;l is the mean for gene j over group l.

A.2 Differing Measurement Errors: Heteroscedasticity

The ANOVA model (4) can also be extended to handle differ-
ing measurement error variances ¾ 2

j for j D 1; : : : ; p. Suppose that
genes can be bunched into C clusters based on their variances. Let
ij 2 f1; : : : ;Cg indicate the variance cluster gene j belongs to. Now
modify (4) by replacing ²j;k;l with variables, say Q²j;k;l , where Q²j;k;l

are independent with a normal.0; ¾ 2
ij

/ distribution. To handle het-

eroscedastic variances, we apply weighted regression by reweighting
observations by the inverse of their standard deviation. Thus (4) can
now be written as

¾
¡1=2
ij

Yj;k;l D µ¤
j C ¹¤

j I fl D 2g C ²j;k;l ,

j D 1; : : : ; p; k D 1; : : : ; nj;l ; l D 1;2,

where µ¤
j D ¾

¡1=2
ij

µj and ¹¤
j D ¾

¡1=2
ij

¹j denote our new parameters.

The C distinct variances ¾ 2
1 ; : : : ; ¾ 2

C are unknown, but they can be esti-
mated accurately when p is large, and thus we can accurately approx-

imate ¾
¡1=2
ij

Yj;k;l . Hence, if O¾ 2
c is our estimator for ¾ 2

c (we use the

usual unbiased estimator), then we simply replace the data Yj;k;l with

rescaled data O¾ ¡1=2
ij

Yj;k;l and apply the various methods as before.

APPENDIX B: PROOFS

Proof of Theorem 1

With a little bit of rearrangement in (6), we can write

. Oµj;n; O¹j;n/T D Mj;n
p

nj;2.SYj;2 ¡ SYj;1/; where

Mj;n D
nb6¡1

j;n

O¾n¾ 2

±q
nj;2=nj ;1

²T
: (B.1)

Because the third moment of ²j;k;l is bounded, we can apply the Li-
apounov central limit theorem (Chow and Teicher 1978, chap. 9.1) to
each of the group averages SYj;l . Use the facts that the averages are in-
dependent and that

p
nj;2=nj;1 ! p

rj;0 to deduce that under the null,
p

nj;2.SYj;2 ¡ SYj;1/
dÃ normal.0; ¾ 2

0 .1C rj;0//. Meanwhile, a little al-
gebra shows that

O¾ 2
n D 1

n ¡ 2p

X

j;k;l

²2
j;k;l ¡ 1

n ¡ 2p

X

j;l

nj;l N"2
j;l;
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where N"j;l D
Pnj;l

kD1 ²j;k;l=nj;l . A bounded fourth moment implies

that the � rst term on the right converges in probability to ¾ 2
0 , while

for the second term, a second moment ensures that N"2
j;l

p! 0 for each j

and l. Hence it follows that O¾ 2
n

p! ¾ 2
0 . Therefore, because ¾ 2=n ! 1,

it follows that

Mj;n
p! ¾ ¡1

0 6¡1
j

±q
rj;0=.1 C rj;0/;1

²T
:

Putting the pieces together and appealing to Slutsky’s theorem gives
the desired result. Note that the degeneracy of the limit poses no prob-
lem by applying the Cramér–Wold device.

Proof of Theorem 2

Let I0 D fj : ¹j;0 D 0g denote the indices for the 0 coef� cients.
De� ne p0 to be the cardinality of I0 . Because errors are assumed to

be normally distributed, (8) implies that Zj;n
DD Zj Cn , where Cn D

¾0= O¾n and Zj are independent normal.¹j;0=S0;n; 1/ variables where
S0;n D ¾0

p
1=nj;1 C 1=nj;2. It follows that

RF .®/ D
X

j2I0

PrfjZj;nj ¸ z®=2g C
X

j2Ic
0

PrfjZj;nj < z®=2g

D p0Prfjnormal.0; 1/j ¸ C¡1
n z®=2g C

X

j 2I c
0

PrfjZj j < C¡1
n z®=2g:

Recall that . Oµj;n; O¹j;n/T can be written as (B.1). It can be shown that
(remember ¾ 2 D n)

O¾nMj;n ! .0; v2
2j =.1 C v2

2j //T ; as v2
2j¡1 ! 0:

Because O¹¤
j;n D O¹j;n

p
nj;1=nj , we use (B.1) and the de� nition of

Zj;n to deduce that for each 0 < »j < 1, we can � nd a v2
2j¡1 and

v2
2j such that O¹¤

j;n D Zj;n»j . In particular, this means that for each

0 < ±1 < 1 and 0 < ±2 < 1, we can � nd .v2
2j¡1; v2

2j / such that

O¹¤
j;n D Zj;n±1 for j 2 I0 and O¹¤

j;n D Zj;n±2 for j 2 I c
0 . Therefore,

RF .®/ ¡ RB .®/

D p0.Prfjnormal.0; 1/j ¸ C¡1
n z®=2g

¡Prfjnormal.0;1/j ¸ ±
¡1
1 C¡1

n z®=2g/

C
X

j2I c
0

.PrfjZj j < C¡1
n z®=2g ¡ PrfjZj j < ±¡1

2 C¡1
n z®=2g/:

Both sums on the right side are continuous functions of ®, and each has
a minimum and maximum over ® 2 [±; 1¡ ±]. In particular, the second
sum can be made arbitrarilyclose to 0 uniformly over ® 2 [±; 1 ¡ ±] by
choosing ±2 close to 1, whereas the � rst sum remains positive and uni-
formly bounded away from 0 over ® 2 [±; 1 ¡ ±]. Thus, for a suitable
±2, RF .®/ ¡ RB .®/ > 0 for each ® 2 [±; 1 ¡ ±].

[Received July 2002. Revised December 2002.]
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