1. Research one application of AI from slide 23 of lecture 1 or from other applications you know about and write a high level summary about methods used to solve it. Cite any papers or articles you used to research the application. (10 points)

2. There are known classes of problems that are intractable for computers, and others that are undecidable. Does this mean AI is impossible? (5 points)

3. Support or refute with arguments: “Computers cannot be intelligent because they only do what their programmers tell them.” (5 points)

4. Develop a PEAS description for the tasks: (i) Ping-pong playing agent, (ii) Mathematician’s theorem-proving assistant. (10 points)

5. Consider a discrete fully observable world with S states. How many distinct simple reflex agents, each with A actions, can be written for such a world? Two agents are distinct if there exists some world state where they take different actions. (10 points)

6. Describe a state space in which iterative deepening is much worse than depth first search. (10 points)

7. Prove that uniform cost search is optimal, i.e. it always finds the lowest cost solution if a solution exists. (10 points)

8. Prove that every consistent heuristic is also admissible. (10 points)

9. Gradient ascent search is prone to local optima just like hill climbing. Describe how you might adapt simulated annealing to gradient ascent search to reduce this problem. (15 points)

10. Derive a condition on the class of functions f for which the Newton-Raphson method guarantees improvement at each step, i.e., each iteration of Newton-Raphson strictly decreases the function value. (15 points)