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Abstract—Multicast is an approach that uses network and
server resources efficiently to distribute information to groups.
As networks evolve to become information-centric, users will in-
creasingly demand publish-subscribe based access to fine-grained
information, and multicast will need to evolve to (i) manage
an increasing number of groups, with a distinct group for
each piece of distributable content; (ii) support persistent group
membership, as group activity can vary over time, with intense
activity at some times, and infrequent (but still critical) activity
at others. These requirements raise scalability challenges that
are not met by today’s multicast techniques. In this paper,
we propose the MAD (Multicast with Adaptive Dual-state)
architecture to provide efficient multicast service at massive scale.
MAD can scalably support a vast number of multicast groups,
with varying activity over time, based on two key novel ideas:
(i) decouple group membership from forwarding information,
and (ii) apply an adaptive dual-state approach to optimize for
the different objectives of active and inactive groups. We focus on
the scalability characteristics of MAD and demonstrate through
analysis, simulation and implementation that the architecture
achieves high performance and efficiency.

I. INTRODUCTION

Multicast is an approach that uses network and server
resources efficiently to support multipoint communication.
Despite its clear performance benefit, multicast has not seen
wide deployment over the past two decades. Some of the past
barriers to widespread use have been the lack of support by
Internet service providers and (possibly as a consequence) a
lack of application demand for multicast.

Recently, however, multicast is seeing a resurgence. As the
Internet evolves to become information-centric, network ser-
vices increasingly demand scalable and efficient dissemination
of information from a multitude of distributed information
producers to large groups of interested information consumers.
These information-centric services are growing rapidly in use
and deployment. For example, IPTV services that use IP
multicast as the underlying distribution technology are being
deployed by multiple carriers. These services are gaining
rapid adoption, with the number of subscribers and revenues
growing rapidly [1]. Multiplayer online games (MMORPGs)
are reportedly seeing 30-100% annual subscription growth
[7]. Other common examples of deployed services that are
information-centric include: file sharing, software updates,
RSS dissemination, video conferencing, online markets, video-
on-demand, and grid computing. All these services require
the capability of large-scale information dissemination and
can therefore benefit significantly from the communication
efficiency of multicast delivery.
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Fig. 1. YouTube channel characteristics.
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Fig. 2. Publishing characteristics of RSS feeds

A. Requirements of Information-centric Network Services

Information-centric network services create not only new
opportunities but also significant new challenges for multicast.
These services exhibit several key characteristics:

Vast number of groups. Given the increasing amount of
electronic content and the need to ensure that only relevant
information is disseminated, multicast will need to manage an
increasing number of fine granularity groups, with a distinct
group for each piece of distributable content. For example,
eBay lists over ten million new items every day [18], each of
which can be a potential group. As a result, the number of
groups that the underlying multicast architecture can support
will need to significantly increase from what we typically see
with IP multicast in the underlay, or with overlay multicast.

Long-lived group membership. As the network evolves to
support models of information dissemination (such as pub-
lish/subscribe), membership is likely to be long-lived. Users
tend to subscribe but do not unsubscribe and continue to
be interested in receiving information sent infrequently by
publishers. As an example, we analyzed the average daily
changes in the subscription counts of 754 YouTube [26]
channels after they become inactive (i.e., stop appearing in
any popular channel list). Figure 1(a) shows that only 2.3% of
the channels experience a decrease in their subscription counts.
Long-lived membership can significantly increase the state that
has to be maintained in routers (that may have limited table
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space). Long-lived membership can also gradually increase the
group size over time, resulting in higher control overhead.

Wide range of activity level across groups. Group activity
tends to exhibit a skewed distribution. That is, most groups
generate relatively infrequent and/or small amount of data
traffic, yet a small fraction (e.g., 20%) of active groups account
for the vast majority (e.g., 80%) of data traffic. To illustrate
this 80-20 rule, we analyze the publishing activity of RSS
feeds using data from [15]. Figure 2(a) shows that only 5% of
the RSS feeds publish more than 100 updates/month, and the
median update rate is below 10 updates/month. Figure 2(b)
shows that the 10% most active RSS feeds contribute to
75% of the total feed updates. Note that the 80-20 rule
is also observed in many other network applications, e.g.,
subscription counts of RSS feeds [15], view counts of video
clips [8], incoming link counts of Web pages [9], and file
access frequencies of online streaming servers [11].

Dynamic activity level within a group. The activity level
within a group tends to vary over time. Some new groups
become active quickly, whereas other groups become dor-
mant after the peak. To illustrate such dynamic behavior, we
measure how long a channel stays in the top-100 popular
channel lists in YouTube. Figure 1(b) shows that 78% channels
disappear from the daily top-100 list in just 2 days after their
appearance. Similarly, 80% of the channels disappear from the
weekly top-100 list after 4–5 days.

To effectively support such information-centric network
services, we seek to design a multicast infrastructure that can
provide multicast services at massive scale (with a billion
users, hundreds of billions of groups, and long-lived group
membership), while being efficient across a range of group
sizes and diverse, time-varying activity levels. We want to
realize this goal using today’s commercial hardware.

B. MAD Approach and Contributions

In this paper, we describe Multicast with Adaptive Dual-
state (MAD), a novel architecture that can scalably support a
vast number of multicast groups with diverse, time-varying
activity, in an efficient and transparent manner on today’s
commercial hardware. MAD has the following key features.

1. MAD provides persistence in group membership by ex-
plicitly decoupling the membership state from the for-
warding state. MAD uses a distributed state management
approach to efficiently store group membership state at
very large scale. For each group, a small number of
routers form a membership tree (rooted at a core router)
to maintain the membership state.

2. MAD achieves both efficiency in data forwarding and
scalability in number of groups by treating active groups
and inactive groups differently to optimize for different
performance objectives. Specifically, messages to an active

group are handled using any existing multicast protocol
(for maximizing forwarding efficiency), whereas messages
to an inactive group are forwarded along the member-
ship tree (for minimizing state requirement and control
overhead). Our specific instantiation of MAD uses the
Core Based Tree (CBT) [2] (or a shared tree using PIM-
SM [14]) for active groups due to its known efficiency and

scalability. We refer to the CBT of an active group as the
dissemination tree, in contrast to the membership tree.

3. MAD provides transparency in the presence of dynamic
changes in group activity level. Since group activity can
drastically change over time, MAD provides seamless tran-
sition mechanisms to promote active groups from inactive
groups and vice versa without any end-system participa-
tion. Messages are forwarded along the dissemination tree
or the membership tree based on the activity level.

Our instantiation of MAD begins as an overlay multicast
service for easier deployability. However, MAD can directly
take advantage of alternative multicast or information dissem-
ination capabilities when they become available. For example,
messages sent to an active group can be handled by either
IP multicast or peer-to-peer protocols for better forwarding
efficiency. Messages sent to an inactive group are forwarded
along the membership tree. In doing so, stateless multicast
protocols like Xcast [4] can be used for eliminating redundant
overlay unicast messages (see §IV-A).

We demonstrate through analysis, simulation and implemen-
tation that MAD can support hundreds of billions of groups
with hardware that is representative of today’s commercial
platforms. At the same time, MAD achieves high performance
and efficiency, while exploiting the wide range of activity
likely to be seen across multicast groups.

II. RELATED WORK AND LIMITATIONS

Twenty years of networking research has produced many
efficient mechanisms for multicast communication (e.g., [2],
[4]–[6], [13], [14], [19], [23]). However, these current multi-
cast approaches implicitly couple group membership state (i.e.,
which end hosts are members of a group) with forwarding state
(i.e., how to reach those group members), and use a common
approach for multicast distribution for all groups – small or
large, active or inactive.

IP multicast-style approaches: IP multicast has focused on
efficient forwarding of information to a large active group of
recipients, with the goal of efficient lookup for forwarding. IP
multicast-style approaches (at the network layer [2], [14] or
at the application layer with “overlay multicast” [5], [6]) try
to keep a relatively small amount of state (limited number
of groups and the associated interfaces downstream with
recipients for the group). However, this state is maintained (as
soft state) at every router on the multicast tree of the group
for efficient forwarding. State maintenance is thus expensive
— it requires a large number of routers to store the state, and
involves considerable control overhead (periodic refresh and
pruning) to keep the state current and refreshed. This approach
is inappropriate for our problem because:

• First, IP multicast-style approaches are appropriate for
a relatively small number of groups. Building a cache
hierarchy with SRAM and DRAM in routers for keeping
state can partially relieve the memory requirements for
large numbers of groups. With an increasing number of
active groups, either the cache size has to be increased
to maintain forwarding performance, or cache misses will
degrade system performance [17]. Moreover, we would
like the environment to support a range of router sizes,
including small routers such as IP DSLAMs which may
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only be able to support a few thousand multicast groups. It
is important for the architecture to scale to large numbers
of groups even with such small routers in the network.

• Second, when groups are long-lived, but have little or
no activity over long periods of time, maintaining the
membership state in IP multicast-style approaches requires
a lot of control overhead (relative to the activity) to keep
it from being aged-out. If not, data sent out by sources to
a relatively inactive group will likely be lost, which we
believe is highly undesirable.

• Third, when ISPs choose to support non-active groups with
unicast (due to the limitation of the number of groups
in existing multicast schemes), converting groups from
multicast to unicast and vice versa requires additional
intervention - allocating a multicast group address and
initiating joins for those who are members of a group that
becomes active, and tearing down an existing multicast
group for a group that becomes inactive.

Multicast forwarding state reduction: There exist a wide
range of approaches to reducing multicast forwarding state.

Pruning routers with multicast forwarding state. RE-
UNITE [23] and [12] propose to keep multicast forwarding
state only at “branching” routers, while non-branching routers
use unicast routing to forward traffic and keep the multicast
control table in the control plane. However, the number of
branching routers can grow as the size of group increases in
above schemes, increasing the multicast state. Also, multicast
forwarding tables are stored by soft state, which entails high
control overhead for groups with little data activity.

Aggregating multicast forwarding state. Aggregated Multicast
[13] aggregates multiple base multicast groups into a single
tree to achieve better scalability (at the expense of sending
irrelevant content to a subset of the members). Such aggre-
gation is complementary to our approach of separating the
multicast state between forwarding and membership states.
If desired, MAD can apply aggregation to further reduce
multicast forwarding state.

Making multicast stateless. Stateless approaches eliminate the
need for routers to maintain multicast forwarding state by
storing such state in packet headers instead. For example,
Explicit Multicast (Xcast) [4] encodes the list of destination
nodes into every packet. Free Riding Multicast (FRM) [19]
reduces routing state by caching all source-based tree edges
of a group at the sources and embeds a Bloom filter (that
encodes all the tree edges) into the message itself. These
stateless approaches do not effectively meet the needs of large
multicast groups, because they can result in excessively large
packet headers. They can also reduce forwarding efficiency,
because they require routers to parse the header of every packet
at every hop to extract the forwarding state.

P2P content dissemination: P2P solutions have also been
developed for large-scale information dissemination (e.g., Bit-
Torrent [3]). Such solutions can achieve high forwarding
efficiency in disseminating popular content. However, they are
less effective in a publish-subscribe environment where the
information sent by the publisher is infrequent but still critical,
and has to reach all the subscribers in a timely manner. In such

an environment, it would be difficult for a user to quickly find
enough peers that can share such content. This would be of
particular concern when peers have limited up-link bandwidth
or are unreliable. Thus, peer-to-peer content dissemination
does not fully meet our goal of disseminating information to a
vast number of groups with persistent membership and diverse,
dynamic activity levels.

Points of departure: Our design of MAD seeks improve-
ments over these traditional approaches. In contrast to IP
multicast-style approaches, we wish to minimize the amount
of control overhead associated with keeping state up over a
long time, especially when groups are inactive. However, for
active groups, we wish to take advantage of the structures that
IP multicast designs have adopted. Thus, MAD seeks the best

of both worlds — forwarding efficiently (a la IP multicast)
when information is frequently generated, while also enabling
the membership of a group to scale to large numbers where
the membership may be long-lived.

III. MAD OVERVIEW

MAD environment: Publish-subscribe multicast services that
MAD is targeting must support user profile management,
authentication and fine-grained access control, etc. In this
paper, to focus on the routing aspect of the problem (which
is challenging in itself), we explicitly decouple user manage-
ment from the multicast service. The MAD multicast service
overlay consists of logical overlay routers, which reside on
(or are owned by a provider of) the physical overlay routers.
User management functionality is concentrated in the external
subscription manager, which maintains subscriptions for all
users connecting at a given MAD site, and initiates or cancels
group subscriptions with corresponding logical overlay routers
on behalf of the end users. Thus, every logical overlay
router serves a single aggregated local subscriber representing
all users assigned to it by the subscription manager. From
the perspective of a MAD overlay router, no knowledge of
end users is required and the only entities an overlay router
communicates with are other MAD overlay routers and its
single aggregated local subscriber.

MAD example: To illustrate the key ideas behind MAD,
we consider an example in Figure 3(a), which shows a set
of routers that are part of a traditional IP multicast tree. This
example is for a single multicast group, with a set of 5 users
subscribed to the group. With IP multicast-style approaches
(e.g., PIM-SM [14], CBT [2]), every intermediate router on
the path from the root (A) to the first-hop routers that users
are connected to has to maintain state for this group. In this
example, there are 11 routers that have to maintain state.

MAD’s membership tree (MT) protocol significantly re-
duces state by limiting the number of routers that have to
keep multicast group state. As shown in Figure 3(b), the
membership tree consists of only four nodes: A, B, C and
E. The membership tree itself is shown in Figure 3(c). The
core (i.e., root) of the membership tree is selected to be A,
based on the hash of the group ID. To limit its depth, the
membership tree is constructed on top of a base tree rooted at
the core. A base tree is a balanced k-ary tree that comprises all
logical overlay routers. For each node, MAD defines a single
base tree with this node as its root (see §IV-A). All groups
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that take this node as the core then use this base tree as the
basis to construct their membership trees.

The membership tree is constructed as follows. When a
subscriber wants to join a group, it issues a join message,
which gets forwarded towards the core along the base tree
rooted at the core until it reaches the first node already on
the membership tree. An en route logical overlay router joins
the membership tree whenever the subtree rooted at this node
in the base tree has at least a minimum number (2 in this
example) of first-hop routers with attached subscribers.

Each node on the membership tree keeps the following state:
(i) mtChild – children of this node in the base tree that belong
to the MT (encoded as a bit-vector), and (ii) mtFHs – a list
of first-hop (FH) routers with attached subscribers that are
downstream of this node in the base tree.

In our example, when the first subscriber S1 (attached to M)
joins, its join message is propagated to the core A and the core
adds M to its mtFHs. Subsequently, when another subscriber
S2 (attached to O) joins, A sees that the subtree rooted at C

in the base tree now has at least 2 FH routers with subscribers
(i.e., M and O). So A informs C to create membership state.
C then updates its mtFHs to include M and O. Meanwhile, A

sets a bit in its mtChild to indicate subscribers downstream of
child C. After subscribers S3 (attached to J) and S4 (attached to
K) join, routers B and E create membership state, respectively.
Finally, after subscriber S5 (attached to I) joins, only 4 routers
(A, B, C, and E) maintain membership state. Their final state
is shown in Figure 3(d).

Thus, even this limited topology shows that we have fewer
(only 4) routers maintaining membership state compared to IP
multicast-style approaches that have more (11) such routers.

On the other hand, IP multicast-style approaches have better
forwarding efficiency. Specifically, messages delivered to a
group can be forwarded either using the IP multicast tree in
Figure 3(a) or along the membership tree in Figure 3(c). The
former is clearly more efficient than the latter. To maximize
overall efficiency, MAD uses IP multicast-style dissemination
tree to deliver messages for active groups, and membership
tree based forwarding to deliver messages for inactive groups.
MAD also provides seamless transition mechanisms to switch
between dissemination tree and membership tree as the level
of group activity varies over time. Although we have chosen
to classify a group as being active based on the “absolute”
activity level of individual groups, MAD may choose to
classify groups as being active based on the relative activity
level of groups, so that the top k% of the groups are classified
as being active (to be resilient in the presence of particular
groups unnecessarily generating traffic in an attempt to receive
better forwarding efficiency).

IV. MAD PROTOCOL DESIGN

The MAD protocol is designed to be modular. It consists
of five components: (i) the membership tree sub-protocol,
(ii) the dissemination tree sub-protocol, (iii) state transition
mechanisms, (iv) failure recovery, and (v) mechanisms for
operating across domain boundaries.

Preliminaries: We first introduce some notations before
presenting the details of MAD protocols. The MAD multicast
service overlay consists of L logical overlay routers; assume
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Fig. 3. Examples of MAD trees

L = 2b is a power of two. Each logical overlay router is
uniquely identified by a b-bit router ID (ranging from 0 to
L− 1). We use FH(s) to denote the first-hop router that a
subscriber s is connected to.

Each multicast group g is identified by a unique 128-bit
group ID gid(g). Each group g maintains a membership tree
MT (g) to record its set of members. If g is active, it also
maintains a separate dissemination tree DT (g). MT (g) and
DT (g) share a common core (i.e., root) logical overlay router
core(g). To balance the load and reduce traffic concentration,
we apply a hash function H(·) to map the 128-bit group ID
to a random core ID, i.e., core(g) = H(gid(g)). A benefit
of this hash-based scheme is that it obviates the need for a
separate resolution procedure for mapping group IDs to core
IDs, which can become expensive with hundreds of billions of
groups. Finally, for each logical overlay router ℓ, MAD defines
a virtual base tree BT (ℓ) rooted at ℓ that includes all L logical
overlay routers. BT (ℓ) is the basis for constructing MT (g) for
every group g with core(g) = ℓ.

A. Membership Tree Sub-protocol

Given a multicast group g, MAD’s membership tree con-
struction protocol is designed to ensure that (i) the membership
tree MT (g) only comprises a small number of on-tree nodes
that maintain group state (so that the total state requirement
is reduced), and (ii) MT (g) stays largely unmodified when
there are changes in network performance or overlay unicast
routes (so that the control overhead is minimized). To achieve
these two design goals, we first statically construct a base tree
BT (ℓ) for every logical overlay router ℓ, which is a balanced
k-ary tree (with each internal node having k children) that is
rooted at ℓ and includes all L logical overlay routers. We then
construct MT (g) from BT (core(g)) by including only those
logical overlay routers that have a sufficient number (Smin) of
downstream first-hop routers with attached subscribers to g.

Abstractly, this is like the formation of a static structure
with overlay peer-to-peer networks, such as with Chord [24].
The primary difference here is the maintenance of a static k-
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Fig. 4. Base tree BT (0). BT (ℓ) is constructed from BT (0) by XORing ℓ
with each logical router ID in BT (0).

ary tree that enables rapid computation of a node’s parent and
children, and avoids maintaining state for the base tree.

Base tree construction: At each logical overlay router ℓ, we
construct a balanced k-ary base tree BT (ℓ) as follows.

• We first construct BT (0) by sequentially placing logical
overlay routers 0, · · · ,L− 1 onto a regular k-ary tree (as
shown in Figure 4).

• We then construct BT (ℓ) from BT (0) by substituting each
logical overlay router r in BT (0) with logical overlay
router r′ = ℓ⊕ r, where ⊕ is bitwise exclusive or (XOR).
For example, the root of BT (ℓ) is ℓ⊕0 = ℓ, and the set of
depth-1 nodes in BT (ℓ) are ℓ⊕1, ℓ⊕2, . . . , ℓ⊕ k.

With the above BT (ℓ), for any logical overlay router r, we
can compute its parent and children in BT (ℓ) as a function of
ℓ without requiring any node to maintain any state for BT (ℓ).
Specifically, we have (i) the parent of r in BT (0) is ⌈r/k⌉−1,
and (ii) the children of r in BT (0) are rk+1,rk+2, · · · ,rk+k.
To obtain r’s parent and children in BT (ℓ), we just need to
first compute the parent and children of r′ = ℓ⊕ r in BT (0)
and then XOR ℓ with the resulting router IDs.

Membership tree state: Each logical overlay router r on
MT (g) keeps the following membership tree state for group g.
(i) r.g.mtChild: a k-bit bit-vector, with one bit for each child
of r in BT (core(g)). The bit is set to 1 when that child is
also on MT (g). (ii) r.g.mtFHs: a list of first-hop routers (with
attached subscribers) that are downstream of r in the base tree
BT (core(g)). Our membership tree construction ensures that
for any first-hop router FH(s) (with an attached subscriber s),
FH(s) appears in exactly one node on MT (g), which is the
first node that belongs to MT (g) and lies on the leaf-to-root
path from FH(s) to core(g) in BT (core(g)).

Joining a membership tree: Messages of type MtJoinMsg

are sent by subscribers to join a membership tree. When a
subscriber s wants to join group g, it sends a MtJoinMsg to
its first-hop logical overlay router FH(s). FH(s) determines
the core for the group as a hash of the group ID gid(g), and
then forwards the MtJoinMsg towards core(g) along the base
tree BT (core(g)) (with FH(s) in the message header).

Meanwhile, the decision on node creation is made in a
top-down fashion. Unlike protocols like CBT [2] or PIM-
SM [14], when a logical overlay router r not yet on MT (g)
receives a MtJoinMsg for group g, r does not instantiate any
state right away. Instead, r simply forwards the MtJoinMsg

towards core(g) along BT (core(g)). Eventually, this message
will reach a node that is already on MT (g), denoted by p. Note
that it is possible to have core(g) = p. Suppose the MtJoinMsg

received by p comes from p’s child n in BT (core(g)). Upon
receiving this MtJoinMsg, p first adds FH(s) to its first-
hop router list p.g.mtFHs. p then checks to see if it has

accumulated Smin first-hop routers (with attached subscribers)
from child n. If so, p sends a MtNodeCreateMsg to inform
n to create membership tree state for group g. The MtN-

odeCreateMsg also includes the list of Smin first-hop routers
that are downstream of n in BT (core(g)). After n creates the
membership tree state, p then removes these Smin first-hop
routers from p.g.mtFHs, and sets the bit corresponding to n

in the bit-vector p.g.mtChild to 1, indicating that n is now
on MT (g). Note that n may find that all these Smin first-hop
routers are downstream of one of its k children in BT (core(g)).
In this case, n would further inform this child to create state for
g and those first-hop routers by sending a MtNodeCreateMsg.

Leaving a membership tree: Messages of type MtLeaveMsg

are used to leave a membership tree. The first-hop router
FH(s) for a subscriber s sends a MtLeaveMsg towards core(g)
along the base tree BT (core(g)) until it reaches the first node
n that is on MT (g). Upon receiving this MtLeaveMsg, n first
removes FH(s) from n.g.mtFHs. n then checks if n.g.mtChild

is empty and n.g.mtFHs contains fewer than Smin first-hop
routers. If so, n determines that it should no longer stay as
a node on MT (g). n then sends a MtNodeDeleteMsg to its
parent in MT (g) with the list of first-hop routers in n.g.mtFHs

(which will be maintained by this parent henceforth) before n

purges the state associated with group g. Note that the parent
of n may also decide to delete itself from MT (g) and sends
a MtNodeDeleteMsg to his own parent (i.e., the grand-parent
of n in MT (g)).

Membership tree based forwarding: The membership tree
can be combined with overlay unicast to deliver both control
and data messages as follows.

• When a node wishes to multicast a message M to group
g, it first forwards M to core(g) through overlay unicast.
This allows us to implement critical functionality such
as per group access control, authentication, authorization,
accounting and traffic monitoring at the core. Existing
protocols such as Scribe [6] take a similar approach.

• After receiving M, core(g) first forwards M to any child
in BT (core(g)) that belongs to MT (g) (according to
bit-vector core(g).g.mtChild) through overlay unicast. In
addition, core(g) forwards M to all first-hop routers in
core(g).g.mtFHs. Note that core(g) itself may appear in
core(g).g.mtFHs when it has attached subscribers. In this
case, core(g) also forwards M to its subscription manager
through underlay unicast, which then forwards M to the
appropriate subscribers that it manages.

• After a child n receives M, it repeats the same procedure
above to forward M to its first-hop routers, children and
subscription manager (if any).

Avoiding redundant overlay unicast messages: In MAD,
overlay unicast is used by each node to forward messages to
its children and its list of first-hop routers. To avoid repeated
forwarding of a message to the next hop overlay router if this
next hop is shared among several overlay unicast routes, MAD
supports the option to trade processing overhead for better
bandwidth efficiency by packing these “redundant” messages
into one message with a variable-length header to specify all
the recipients (as in Xcast [4]). Note that if Xcast is available
in the underlay, it can directly replace overlay unicast in MAD
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to further improve forwarding efficiency.

B. Dissemination Tree Sub-protocol

MAD uses a separate dissemination tree for each active
group to achieve better forwarding efficiency. The dissem-
ination tree can be maintained using any existing multicast
protocol. Our current instantiation of MAD uses the standard
Core Based Tree (CBT) [2] protocol for constructing the dis-
semination tree. For convenience, the dissemination tree and
the membership tree share a common core. Since the overlay
topology is under our control, we enforce the constraint that
each overlay router has no more than 31 neighbors. We use
a hash table indexed by the 128-bit group ID to store all the
dissemination tree state for different groups. The current group
status (e.g., whether it is active or inactive) is decided by the
group’s core in the membership tree.

C. Mode Transition

A major challenge in the design of MAD is how to
ensure the smooth transition between membership tree based
forwarding (i.e., the inactive mode) and dissemination tree
based forwarding (i.e., the active mode). In particular, it is
essential to avoid disruption of the multicast data delivery
service during mode transition.

Our basic strategy for achieving smooth mode transition is
to require every group in the system to always maintain the
membership tree even when the group is considered active and
the dissemination tree has been constructed. Having an always
up-to-date membership tree ensures that during the transition
period we can use membership tree based forwarding to deliver
messages reliably to all the group members, with very little
additional control overhead.

When a group transitions from being active to inactive,
the transition is achieved simply by not forwarding on the
dissemination tree and “tearing it down”. The key however
is to have an efficient transition from inactive to active mode
while ensuring no data is lost. Every new group g initially
stays in the inactive mode. As group activity becomes high
enough, core(g) may decide to improve forwarding efficiency
by creating a separate dissemination tree DT (g). We first
deliver data messages over both MT (g) and DT (g) during
the transition (i.e., in transient mode) and stop delivering data
to a subtree of MT (g) only after the root of the subtree is
certain that all existing group members in the subtree are able
to receive data from the dissemination tree.

While we have worked through the details of mode tran-
sition in the prototype implementation we have evaluated in
this paper, we elide the details here due to limited space.

D. Failure Recovery

MAD handles failures through replication, in a manner sim-
ilar to other overlay based approaches [6], [20]. We exploit the
advantage of being able to establish connectivity in the overlay
dynamically, in response to a failure. The main concern we
address here is the careful management of state specific to
MAD. Specifically, for each physical overlay router in our
system, we designate a set of physical overlay routers as its
shadow routers. To minimize replicated state, we only store
state related to leaf nodes of the membership tree. Once the
membership tree is repaired, it can perform normal multicast

data delivery. For each logical overlay router ℓ owned by a
physical overlay router p, the shadow routers of p only need
to replicate the user subscription state (i.e., mtFHs) for all
enrolled groups. The replicated state is saved in the stable
storage (e.g., hard disk drive) of all the shadow routers of p.
There is a keep-alive message exchange between a physical
overlay router p and its shadow routers p′ for fast failure
detection and recovery. For each logical overlay router ℓ that
is previously owned by p, p′ needs to recover the role of ℓ
in every group that ℓ is involved in. Each child ℓ of p may
discover p′ through a directory service lookup that maintains
an up-to-date list of shadow routers. Such a directory service
may also be implemented in a distributed manner using DHTs.

Leaf: ℓ may be a leaf node in the membership tree MT (g)
for group g. To take over such a role, p′ sends MtJoinMsg

towards the core of group g along base tree BT (g). We save
bandwidth by aggregating multiple MtJoinMsg with the same
core into a single message with a list of group IDs.

On-tree node: ℓ may be an internal node of either a mem-
bership tree or a dissemination tree. MAD takes advantage of
on-tree nodes in both MT and DT sending heartbeat messages
down the tree. Upon failure detection, the child repairs the
tree by sending a join message (i.e., either MtJoinMsg or
DtJoinMsg) to its parent.

Core: ℓ may be the core for a group. After a failure, p′ starts
receiving join messages from children of ℓ in group g. p′ infers
the mode information from the received DtJoinMsg.

It is important to note that MAD only involves system-wide
keep-alive messages (between each physical overlay router
and its shadow routers) as opposed to per-group keep-alive
messages. So the control overhead due to keep-alive messages
is independent of the number of multicast groups. In contrast,
IP multicast style protocols like CBT require per-group keep-
alive messages to retain forwarding state. Our evaluation in
§V suggests that such per-group control overhead can become
quite expensive when there are a large number (e.g., billions)
of groups and a large number of them are inactive.

E. MAD across Administrative Domains

MAD groups a set of routers in the same region or network
domain (e.g., university network, corporate network, and AS)
to form a “MAD domain”. MAD domains serve two goals:
(i) enable MAD to operate across multiple administrative
domains, and (ii) handle heterogeneity and load imbalance by
promoting autonomous decisions in local networks. For more
information, please read our detailed version [10].

V. SCALING OF MAD TREES

In this section, we conduct extensive simulations on realistic
network topologies to examine the state requirement of MAD
trees and the tradeoff between state reduction and forwarding
cost. To gain more insights into the scaling of MAD trees, we
also analytically derive the state requirement.

In our model, rather than the number of subscribers, the
number of distinct subscription managers that are involved in
a group (essentially the number of FH routers) reflects the
scaling of the system. Thus, our results examine the scaling
based on the number of FH routers in the group or system.
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Fig. 5. Scaling of MAD trees on topology pow-16k.

A. Simulation Evaluation

Simulator: To evaluate MAD, we developed a simulator
(with 6,000 lines of C/C++ code) that achieves scalability by
avoiding the simulation of packet-level events.

Topologies: Our simulator constructs overlay network topolo-
gies as follows: (i) generate an underlay network topology
that comprises 16,000 routers in all; (ii) use shortest hop-
count routing to obtain the underlay distance (i.e., hop count)
between each pair of routers; and (iii) construct the overlay
network topology as the union of m edge-disjoint Minimum
Spanning Trees (MSTs) for the logical full-mesh (i.e., clique)
over the 16,000 routers. The underlay topology we consider
is either a power-law topology (pow-16k), or a transit-stub
topology with stub (access) nodes and transit nodes (ts-16k).

Simulation setup: We randomly form 100 multicast groups
each with a fixed group size. We then vary this fixed multicast
group size with respect to the number of first-hop routers. For
each group, we compute the required state, forwarding cost,
and control overhead of CBT and MT as follows.

• We compute the total tree state stored by all on-tree
nodes. For CBT , an on-tree node stores a 128-bit group
ID and a 32-bit bit-vector dtChild (which specifies all
interfaces with members downstream). For MT , an on-
tree node stores a 128-bit group ID, a 16-bit bit-vector
mtChild (which indicates whether each child in the base
tree belongs to MT ), and a list of first-hop overlay routers
in the subtree rooted at this node (mtFHs).

• The forwarding cost for a message is measured by the total
number of underlay hops that the message traverses.

• The control overhead is measured by the total number of
keep-alive (i.e., hello) messages sent by the group in a
second. We use the default keep-alive message interval of
60 seconds in CBT [2], i.e., each node in a CBT sends a
keep-alive message to its parent once every 60 seconds.

Finally, to compute the state requirement, forwarding cost
and control overhead of the MAD protocol, we assume that
10% groups are active, and that they contribute to 75% of the
data traffic. These fractions are chosen based on the publishing
behavior of RSS feeds as shown in Figure 2.

Simulation results: Figure 5 compares the state requirement,
forwarding cost, and control overhead for pow-16k, where
every data point is the average over 100 random groups (of
the same size). The results for ts-16k are quantitatively similar
and are omitted in the interest of brevity. Figure 5(a) compares
the total tree state required by CBT , MT , and MAD. By
combining MT with CBT , MAD achieves nearly an order of
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Fig. 6. Max # of groups that 216 routers (each with 3GB MEM) can hold.

magnitude state reduction over CBT . Figure 5(b) shows the
forwarding cost of CBT , MT , and MAD. The total forwarding
cost for MAD is very close to CBT (both in delay and number
of hops traversed) and significantly outperforms MT as the size
of the group increases. Figure 5(c) shows the control overhead
of CBT and MAD (measured by the number of keep-alive
messages per second from each group). MAD achieves an
order of magnitude reduction in control overhead over CBT ,
because 90% groups are inactive and only have to maintain
the MT , which requires no per-group keep-alive messages.

Figure 6 shows the maximum number of groups that an
overlay with 216 overlay routers (each with 3GB memory) can
hold. MAD can easily support hundreds of billions of groups
on today’s commercial hardware platform. For example, with
a group size of 16, MAD supports 913 billion groups for pow-

16k, and 750 billion groups for ts-16k, yielding a factor of 7–9
improvement over CBT . Note that such improvement is close
to optimal, because in our simulation 10% groups are active
and maintain both MT and CBT . The state reduction is thus
bounded by stateCBT

0.1×stateCBT+stateMT ≤ 10.

B. Formal Analysis of State Requirement

Consider an overlay with L logical overlay routers. Given
a multicast group g that has F randomly selected first-hop
routers to which subscribers are connected, below we analyt-
ically derive the expected state requirement for both CBT (g)
and MT (g) with respect to F .

Membership tree state requirement: Since all the base trees
constructed in §IV-A are isomorphic, without loss of gener-
ality we can assume that core(g) = 0. Therefore, MT (g) is
constructed based on the base tree BT (0), which is illustrated
in Figure 4.

For any logical overlay router i, let Ni be the number of
nodes that are in the subtree of BT (0) rooted at i (including
node i itself); and let random variable Xi denote the number of
first-hop routers with subscribers that are in the same subtree.
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Fig. 7. Analytical results on the scaling of MAD trees.

Assuming that the F first-hop routers with attached subscribers
are selected uniformly at random from all L logical overlay
routers, then Xi has a hypergeometric distribution: Pr(Xi = n)=
(F

n)(
L−F
Ni−n)

(M
Ni
)

. The mean µi and variance σ2
i of Xi are given by

µi = Ni
F
L

and σ2
i = Ni(L−Ni)

L−1
F
L

L−F
L

.

In order for logical overlay router i to become a member of
MT (g), we need to have Xi ≥ Smin. The probability for this to
occur is bounded by Chebyshev’s Inequality:

Pr(Xi ≥ Smin) ≤
[

σi

max(σi,Smin−µi)

]2 △
= PMT

i

where µi and σ2
i are the mean and variance of Xi (see above).

The expected number of nodes on MT (g) is thus bounded

by ∑L−1
i=0 PMT

i . Each node n on MT (g) stores a 128-bit group
ID (as the key for the forwarding table), a 16-bit field mtChild,
and a list of 16-bit first-hop router IDs (mtFHs). Since each
16-bit first-hop router ID is stored only once, the total amount
of state devoted to mtFHs is 16× F bits. So the expected
number of bits for the entire membership tree state is:

stateMT ≤ 16×F +(128 + 16)×∑L−1
i=0 PMT

i

Dissemination tree state requirement: For simplicity, we
only consider the state requirement of CBT (g) in the special
case where all the unicast routes destined to core(g) together
form a balanced k-ary tree isomorphic to BT (0). This is likely
to underestimate the state requirement of CBT in the more
general case where the unicast routes do not have such a
regular underlying structure. However, our results clearly show
that even in this special case, MT and MAD achieve much
better state efficiency than CBT .

In the special case we consider, let Ni and Xi denote the
same as in the analysis for MT (g) (see above). A logical
overlay router i becomes an on-tree node of CBT (g) whenever
Xi > 0. The probability for this to occur is given by

PCBT
i

△
= 1−Pr(Xi = 0) = 1−

(F
0)(

L−F
Ni−0)

( L
Ni
)

= 1−
(L−F

Ni
)

( L
Ni
)

The expected number of nodes on CBT (g) is ∑L−1
i=0 PCBT

i .
Each node n on CBT (g) stores a 128-bit group ID (as the key
for the forwarding table) plus a 32-bit bit-vector n.g.dtChild.
So the expected number of bits for the dissemination tree is:

stateCBT = (128 + 32)×∑L−1
i=0 PCBT

i

Numerical results: We numerically compute the state re-
quirement for MT and CBT (with k = 16) for different sizes
of the group and the overlay network. As shown in Figure 7,
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Fig. 8. Efficiency of MAD

MAD achieves an order of magnitude state reduction over
CBT . Moreover, depending on the group size, MAD can easily
support hundreds of billions of groups on today’s commercial
hardware. These results are consistent with our simulation
results on more realistic topologies (i.e., Figure 5 and Figure 6)
and demonstrate MAD’s ability to reduce group state by
decoupling membership and dissemination.

VI. EVALUATION OF IMPLEMENTATION

We implemented the MAD protocol on top of FreePastry

1.4.4 [21]. Below we evaluate the state efficiency, forwarding
efficiency, and mode transition cost of our MAD prototype.

Experimental setup: We conducted experiments on the
Emulab testbed [25]. Our experiments involve 105 Emulab
nodes that range from systems with an Intel Pentium III
with 256MB RAM to a Xeon with 2GB RAM. We use the
sprintlink-us network topology available from Rocketfuel [22],
with link latencies inferred in [16] and zero link loss. To
control the total number of nodes in the network, we vary the
number of routers in each city (PoP). Routers in the same city
are connected via a LAN with 0 latency. For each group, we
select first-hop routers to join the group uniformly at random
from the entire set of nodes in the experiment. Similar to our
simulation, we assume that 10% groups are active and that
they contribute to 75% of the data traffic. Finally, we use the
default settings of FreePastry 1.4.4.

State efficiency: We first look at the results from experiments
to show the benefit of the membership tree (MT ) over the
dissemination tree (CBT ) with respect to the total state stored
at on-tree routers. Figure 8(a) shows the number of nodes that
maintain state for a group, as a function of the number of
subscribed first hop routers. With our design of the member-
ship tree, only a small number of nodes need to maintain state
for the group, and this number grows slowly. With CBT , the
number of on-tree routers grows much more rapidly as more
first-hop routers join the tree. MT thus achieves significant
state reduction over CBT . The state efficiency of MAD is close
to MT because 90% of all groups are inactive and maintain
only the efficient MT .

Forwarding efficiency: Figure 8(b) shows the average la-
tency of delivering a data message from the core to all the
member routers in a tree. CBT achieves much lower message
delivery latency than MT . This is not surprising because MT

is designed primarily for state efficiency, not for forwarding
efficiency. Meanwhile, the delivery latency of MAD is very
close to that of CBT , because most of the data traffic comes
from active groups and is thus delivered via CBT in the MAD
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Fig. 9. Cost of mode transition from MT to CBT

protocol — recall that we assume active groups contribute to
75% of all the data traffic.

Mode transition cost: We measure the cost of mode transi-
tion from MT to CBT (as an inactive group becomes active)
in terms of (i) the transition latency (i.e., the time it takes
for all nodes in a group to complete mode transition) and
(ii) the message duplication ratio (i.e., the ratio between the
number of duplicate messages and the total number of distinct
messages received during the transition period). Recall that
mode transition from CBT to MT is almost instantaneous and
does not result in any duplicated messages (see §IV-C).

Figure 9(a) shows the average, minimum, and maximum
transition latency from MT to CBT as the number of first-hop
routers in the group increases. The transition latency is quite
low — the average transition latency is close to 1 second and
the worst-case transition latency is only 1.8 seconds.

Figure 9(b) shows the average, minimum, and maximum
message duplication ratio during mode transition. The mes-
sage duplication ratio is less than 1 because as soon as a
first-hop router receives the first message from the CBT , it
informs its parent in the MT to suppress all future duplicate
messages. Therefore, during the entire transition period, only
those messages that are sent before the suppression occurs
will be received in duplicate. Since the transition latency is
low, the overhead due to message duplication is acceptable
(especially given the increased forwarding efficiency after the
mode transition completes).

Summary: Our experimental results clearly demonstrate that
MAD achieves both the high state efficiency of MT and the
high forwarding efficiency of CBT . Meanwhile, such a benefit
comes at a low cost — the mode transition between MT and
CBT only takes 1–2 seconds and the overhead due to message
duplication during the transition is acceptable.

VII. CONCLUSIONS

In this paper, we presented Multicast with Adaptive Dual-
state (MAD), a novel architecture for providing efficient
multicast service at massive scale. The key to its scalability
and efficiency is the decoupling of group membership and
forwarding state, which allows us to optimize for different
objectives for active and inactive groups. Group membership
is maintained scalably in a distributed fashion using a hier-
archical membership tree (MT). Inactive groups forward data
over their membership trees. Active groups use IP multicast-
style dissemination trees (DT) for efficient data forwarding.
MAD provides seamless and efficient mechanisms for a group
to transition between DT-based and MT-based forwarding as
its activity level changes.

We examined the scaling characteristics of the MAD proto-
col through analysis, simulation and a prototype implementa-
tion. Compared with IP-multicast style approaches (e.g., CBT),
MAD achieves nearly an order of magnitude reduction in
state requirement and control overhead. As a result, MAD can
support hundreds of billions of multicast groups with long-
lived membership on today’s commercial hardware platform.
Meanwhile, MAD achieves comparable forwarding efficiency
and low message delivery latency, through the use of DT-based
forwarding for active groups. Thus, MAD achieves the best of
both worlds – scalability and persistence in group membership
by using MT, and efficient data forwarding by using DT.
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