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ABSTRACT
This paper examines several TCP characteristics and their effect
on existing passive RTT measurement techniques. In particular,
using packet traces from three geographically distributed vantage
points, we find relatively low use of TCP timestamps and signifi-
cant presence of stretch acknowledgements. While the former sim-
ply affects the applicability of some measurement techniques, the
latter may in principle affect the accuracy of RTT estimation. Using
these insights, we quantify implications of common methodologies
for passive RTT measurement. In particular, we show that, unlike
delayed TCP acknowledgement, stretch acknowledgments do not
distort RTT estimations.

1. INTRODUCTION
Round-trip time delay (RTT) is a fundamental characteristic of

the Internet communication affecting numerous aspects of network
operation, from provisioning and traffic engineering to construction
of wide-area network applications. Passive RTT measurements,
where RTT values are inferred from observing the actual network
traffic, promise non-intrusive and potentially the most faithful ap-
proach to RTTmeasurement. This paper considers several common
techniques of passive RTT measurement from methodological per-
spective and examines several TCP characteristics and their effect
on these techniques. In particular, this study makes the following
contributions (the extended version of this paper [7] includes addi-
tional results).

• We find significant use of so called stretch TCP acknowl-
edgements [17], which acknowledge more than every other
segment. Although stretch ACKs (or ACK filtering/thinning,
which produces them) have been proposed for various envi-
ronments (e.g., [6, 8, 16]), to our knowledge, ours is the first
study to measure their actual usage on the Internet.

• Wemeasure the prevalence of TCP timestamp option and the
patterns of TCP acknowledgements. Despite previous stud-
ies’ findings that over 75% of servers support TCP times-
tamps [20], or over 92% of flows originating from customers
of a particular LTE network operator carry them [11], we find
their use in our actual traffic to be low (28–41% of flows).
Limited timestamp usage affects the applicability of some
measurement techniques as discussed later.

• We quantify the effect of delayed and stretch acknowledge-
ments on accuracy of RTT estimation and find that delayed
ACKs do overestimate RTTs while stretch ACKs do not.
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Prior work noted – but did not evaluate – the effect of de-
layed acknowledgements [3] on RTT estimation. To our
knowledge, we are the first to consider the effect of stretch
acknowledgements.

• We confirm prior studies [3] that found that RTTs measured
in the middle of a connection tend to be higher than the RTT
during the handshake. We further identify hosts connecting
through middleboxes (wifi gateways and VPN servers) as the
likely reason for this RTT inflation.

• Finally, using passive RTT measurement techniques unaf-
fected by the above biases, we show that local delays within
campus intranet, although sometimes neglected in RTTmea-
surements (e.g., [3,18]), may constitute a substantial portion
of the total network delay. We again pin much of the blame
on the middleboxes for this behavior.

While we consider implications of stretch acknowledgments on
RTT measurement, their significant presence can have far-reaching
implications for TCP performance in general, since TCP senders
often regulate sending rate based on the number of received ac-
knowledgements [5]. Our study takes but the first glimpse into this
phenomenon from two vantage points. We hope this will prompt
further research to investigate this phenomenon in greater detail.

2. PASSIVE RTT MEASUREMENT
Passive RTT measurement techniques fall into two broad

categories - those that require bidirectional packet trace and those
that only need to see packets in one direction. Our setup allows us
to capture bidirectional traffic and we mostly focus on the bidirec-
tional techniques. Bidirectional techniques often allow estimation
of both total RTT between the communicating end-hosts as well
as RTT components from either host to the measurement monitor.
We refer to the round-trip time between the campus side and the
measurement monitor as local RTT, and between the monitor and
the external side as remote RTT. Techniques also differ in whether
they allow a single readout per TCP connection (we call them
one-time techniques) or repeated readouts in the course of the
connection (continuous techniques). We consider the following
techniques in this study.
The popular handshake technique utilizes segment association

during the TCP three-way handshake. Figure 1(a) illustrates this
technique for the case when the caller is from the campus side
(but the technique equally applies to the connections initiated
from outside). With unidirectional traces, handshake method can
only measure the total RTT and only for connections in which the
caller-to-callee direction is the one captured. With bidirectional
flows, this method can measure all three kinds of RTTs – local,
remote, and total – for all connections.
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Figure 1: Passive RTT estimation methods

A similar method utilizes segment association during the clos-
ing of a TCP connection, to which we refer as teardown technique.
Figure 1(b) shows how this technique measures local and remote
RTT on the example of the campus host performing active close.
The combined RTT is calculated as the sum of the local and re-
mote RTT. Frequently abnormal TCP closing and various flavors
of simultaneous close make this method less applicable than the
handshake method.
The above two methods are one-time techniques—they can only

measure the RTT at the beginning and ending of a connection.
Several continuous techniques are based on the segment sequence
shown in Figure 1(c), where the transmission of segment B is trig-
gered by the arrival of ACK for segment A. While associating data
segment A with the corresponding ACK can be done by sequence
numbers, the key is in reliably associating data segment B with the
ACK that triggered it. Previous studies used TCP congestion win-
dow modeling for this purpose, either during slow-start [13] or
congestion avoidance [12] phase. The TCP timestamp method [20]
utilizes TCP timestamp option to associate a data segment with the
ACK that triggered it. This method associates segment B and the
ACK of A by matching the timestamp in the ACK packet with
the echo timestamp echo in data segment B. These methods can
measure RTT throughout the lifetime of a TCP session as long as
the TCP connection enables timestamp option. Because congestion
window modeling is brittle due to differences among various TCP
stack implementations, we concentrate on the timestamp method
for continuous RTT measurement.
Another popular continuous method, which can only produce ei-

ther local or remote RTT for a given segment sequence, measures
the time difference between a data segment and its corresponding
ACK. Since typically the data mostly flows in one direction, this
method—to which we refer as Data-ACK—produces mostly either
local or remote, but not the combined, RTT for a given connection.
An interesting unidirectional technique measures combined RTT

as the time between successive data transmission bursts, leveraging
the TCP tooth-like sending pattern [20]. It utilizes discrete autocor-
relation function to detect the gaps between TCP bursts. However,
the algorithm to detect the burst-gap patterns requires several pre-
defined thresholds that are difficult to determine, especially when
the network conditions are not sufficiently stable. We do not con-
sider it in this paper.

3. METHODOLOGY AND THE DATASET
This study uses three datasets. Two are TCP packet traces cap-

tured at the edge of two campus networks, Case Western Reserve
University (CWRU) in Cleveland and Colorado State University

Table 1: Statistics of three traces

Trace Time of Packets Connections Packet
Capture All Valid Loss

CWRU Jan 5, 2015 1.5B 17.4M 9.6M 0.4%
3–7pm

CSU Jan 16, 2015 0.4B 2.8M 2.5M 0.1%
12–1pm

CAIDA Mar 20, 2014 0.9B 14.5M 12.0M 0.1%
7–8am

(CSU) in Fort Collins, CO [2], and the third is a TCP packet trace
of the traffic on a backbone link between Seattle and Chicago pro-
vided by CAIDA [1]1 All captures are done using Endace 10Gbps
cards. Because the CSU and CAIDA traces are host-anonymized,
we could only use them for some of our analysis verifying our
key findings; the rest of the analysis is done on the CWRU trace.
Moreover, while the CWRU and CSU traces are bidirectional, the
CAIDA trace typically sees packets in only one direction in a given
connection due to asymmetric routing, and in fact we only use one
direction (Seattle to Chicago) in our study. Thus further limits the
questions we could answer using the CAIDA trace.
Table 1 shows the trace statistics. We split the traces into TCP

connections by first putting all packets with the same end-point IP
addresses and ports into separate bucket and – in case multiple con-
nections reuse the ports – further splitting each bucket by locating
TCP handshakes within each bucket (which happens in only less
than 2% of the buckets in each trace). We consider a connection
valid if it includes at least one segment carrying the ACK flag but
not the SYN, FIN or RST flags. Only valid connections are used in
our analysis. The CWRU trace is bidirectional, the CAIDA trace is
mostly unidirectional, and the CSU trace is bidirectional for most
hosts except for a few local prefixes whose traffic is consistently
captured in one direction only (the CSU colleagues who provided
the trace confirmed that routing setup for these prefixes bypassed
the capture point on the inbound traffic). These unidirectional pre-
fixes affect 2.9M packets and 550K valid connections. We use the
full trace for the timestamp analysis but only the bidirectional part
for the stretch ACK analysis.
To estimate packet loss in the measurement instrumentation, we

note that, unlike losses in the network, which result in eventual
retransmissions and thus manifest themselves as reordered pack-
ets in the trace, losses in the measurement instrumentation are not
retransmitted and thus never appear in the trace. Consequently, we
first identified the gaps in valid connections that were not eventually
filled completely by reordered packets. These gaps affected 1.8%
connections in CWRU, 0.4% in CSU, and 0.5% in CAIDA traces.
We then conservatively consider all the residual gaps to be due to
packet loss within the instrumentation and estimate this loss rate by
assuming that each residual gap smaller than MSS (which consti-
tuted a majority of the gaps) contained one lost packet and covering
larger residual gaps with MSS-sized packets. The resulting packet
loss is listed in Table 1. Given the small number of affected flows
and we still obtain RTT samples from unaffected parts of the flow,
the number of flows that could not produce RTT samples is neg-
ligible and does not affect our findings. To avoid distorted RTT
readout due to retransmitted or reordered packets, we do not use
retransmitted data packets or any data packets between retransmit-

1The CWRU capture was reviewed by the IRB and found ex-
empted. The other datasets were obtained using the approved pro-
cedures from the providing organizations.



Table 2: OS distribution of flow sources (CWRU trace)

Flows Windows Linux Mac Unkwn
Local clients 6.8M 70% 10% 18% 1%
Local servers 2.3M 26% 58% <0.1% 15%
Local total 9.1M 59% 22% 13% 5%

Remote clients 2.3M 54% 34% 8% 3%
Remote servers 6.8M 5% 49% <0.1% 45%
Remote total 9.1M 17% 45% 2% 35%

ted data packets or between the start of a gap and a packet filling
the gap, or duplicate acknowledgements, to generate RTT samples.
Table 2 lists further characteristics of the CWRU trace. Valid

connections in the trace represent 10K internal and 359K exter-
nal IP addresses and 1.2M host-pairs (or more precisely, address-
pairs). We used the MaxMind GeoIP database to map the external
addresses to 11K autonomous systems in 228 countries/regions.
We also used the p0f tool2 to consider the distribution of the op-
erating systems (OSs) on both sides of all valid connections that
started with a proper handshake, which accounted for 95.7% of
valid connections (the rest included 0.8% that started before our
capture, 2.8% that showed retransmission of handshake segments,
and 0.6% with missing handshake segments). The table omits OSs
p0f could detect but found to be not Windows, Linux or Mac; these
represent less than 0.1% of connections on either side.

4. STRETCH ACKNOWLEDGEMENTS
TCP expects a recipient to acknowledge at least every other seg-

ment, and this assumption is engrained in both networking prac-
tice (e.g., in common congestion control implementations driven
by the number of ACKs rather than the amount of data they ac-
knowledge [5]) and TCP-related research (e.g., [12]). However,
we find that flows often have fewer acknowledgements, with an
ACK cumulatively acknowledging more than two data segments at
once (such ACKs were termed “stretch ACKs” in [17]). This find-
ing is interesting because, although there were a number of pro-
posals to use stretch ACKs in various asymmetric environments
(e.g., [6,8,16]), RFC 5690 noted in 2010 that the authors were “not
aware of the deployment of ACK filtering in the Internet” [9].
To measure the prevalence of stretch acknowledgements, for

each connection we measure the length of the data packet trains (we
call stretches) between consecutive cumulative ACKs (i.e., without
an ACK with intervening acknowledgment numbers3). For exam-
ple, if every data segment was acknowledged with a separate ACK,
the corresponding stretches would be of length 1. For regular de-
layed ACKs, with every two data segment being acknowledged cu-
mulatively by one ACK, the corresponding stretches have length 2.
Stretch ACKs acknowledge stretches of data segments with length
greater than 2. We refer to the data segments as unacknowledged
if they are only acknowledged cumulatively by an ACK that also
acknowledges a later segment. In other words, a data segment with
sequence number s and payload size n is called acknowledged if
it is followed in the trace with an ACK from the opposite direction
with the acknowledgement number s+n and unacknowledged oth-
erwise.
Again, we exclude potential distortions by excluding stretches

containing out of order data packets or bracketed by duplicate ac-
2http://lcamtuf.coredump.cx/p0f3/
3For practical reasons, we only look for ACKs within 300 packets
from a given data packet.
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Figure 2: Prevalence of stretch ACKs in CWRU trace

knowledgements. Further, an RST segment resets the beginning
of a stretch. In what follows, we call a flow local or remote de-
pending on the source of the flow. For instance, a “local flow with
stretch ACKs” refers to a flow from a local sender that contains
ACK packets acknowledging more than two data packets from the
opposite direction.

4.1 Prevalence
Figure 2(a) shows the distribution of stretch lengths in the

CWRU trace. Since at least three data packets are needed for the
receiver to exhibit stretch ACKs, when measuring prevalence of
stretch ACKs in a given flow, we only consider valid connections
with least three data packets coming from the other side. As the
result, we inspect 4.1M local flows and 3.5M remote flows in 4.9M
connections, including 338.7M samples of stretches (241.9M lo-
cal and 96.8M remote stretch samples). While most stretches have
1 or 2 segments, 11% of all stretches, including 13% local sam-
ples and 9% remote ones, are longer. Such a significant longer
stretch prevalence cannot be explained by packet loss in our instru-
mentation; indeed, this would require at least one ACK packet loss
for each stretch over 2 packets, or at least 11% loss among ACK
segments. Given our estimated loss rate of both data packets and
handshake packets listed in Section 3 (the latter especially indica-
tive as it reflects the loss in both directions), such a high loss rate
of acknowledgments is improbable.
We next consider how often individual connections exhibit

stretch ACKs. Figure 2(b) plots the distribution of fractions of
greater-than-2 stretches (out of all stretches) in each direction. It
shows that when a flow uses stretch ACKs, it is not an abberation.
In the rest of this paper, we regard a flow to use stretch ACKs if
more than 10% of stretches from this flow are greater than 2. It
can be seen from Figure 2(b) that 19% of all local flows, and 11%
of all remote flows, used stretch ACKs (these percentages corre-
spond to the fractions of flows with ratios over 0.1 on the x-axis in
Figure 2(b)).
Our overall conclusion is that stretch ACKs are fairly common.

We verify this finding on the CSU trace, inspecting the total of
1.9M flows with at least three data packets in the other direction (we
are unable to distinguish local or remote flows due to anonymiza-
tion). The distribution of the fractions of greater-than-2 stretches
is illustrated in Figure 3, which shows that 22% of flows exhibit
stretch ACKs – even greater prevalence than in the CWRU trace.

4.2 Possible Causes
Stretch ACKs may be an artifact of the TCP implementation at

the end-host or the result of ack filtering within the network, which
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Figure 3: Per-flow stretch ACK frequency in CSU trace

Table 3: OS Distribution of sources of flows with stretch ACKs

Flows Windows Linux Mac Unkwn
Local Sources 781K 69% 16% 11% 3%
Remote Sources 371K 17% 39% 3% 40%

has been suggested as the means to reduce router transmission
queues and improve TCP throughput in networks with asymmetric
links [6, 16]. In an attempt to find the source of stretch ACKs, we
use the p0f tool to determine the operating systems of all sources
of flows with stretch ACKs (only the connections that started with
proper handshake were considered). From Table 3 we see that both
local and remote sources of stretch-ACK flows come from a variety
of operating systems, and the distribution of OS types is roughly
similar to the OS type distribution for all the flows, shown in Ta-
ble 2. This provides some initial indirect evidence against the end-
hosts being the culprit (since stretch ACKs are not limited to a
particular TCP/IP stack implementation), leaving the network ele-
ments as a more likely cause. Section 6 below provides further –
and stronger – support to this conjecture.
Table 3 does show some increase in the prevalence of Windows

among local sources of stretch ACK flows. The reason for this
increase is unclear. There is a parameter “TCPAckFrequency” in
Windows that allows setting the frequency of TCP acknowledge-
ments. But since the default value is no greater than 2 in all Win-
dows versions, we believe it is unlikely that many users change it.

Table 4: Timestamp Option Prevalence

TCP Packets Valid Connections
CWRU 33% 28%
CSU 27% 23%
CAIDA 57% 41%

5. TCP TIMESTAMPS
Previous studies that relied on TCP timestamps for passive mea-

surements provided indirect indication of their common use: [20]
and [14] note that, respectively, over 75% and 83% of the servers
they probed supported the timestamp option, [11] report that over
92% of flows originating from customers of a particular LTE net-
work carry them, and [19] states that “the TCP Timestamp option
is known to be widely deployed in the wild.”
We check the TCP timestamp prevalence in actual traffic, using

the three datasets studied. Table 4. shows the fraction of all packets
(including from invalid connections) that carry timestamps, and the
fraction of all valid connections using them. All traces, especially
CWRU and CSU, show lower timestamp use than the levels implied
in previous studies.

Table 5: OS of CWRU clients without timestamp support

Flows Windows Linux Mac Unkwn
Local Clients 4.8M 98% 0.4% <0.1% 1%
Remote Clients 1.3M 95% 3% <0.1% 1%

To see if this is attributable to clients or servers, or any specific
TCP stack, we conduct two experiments. First, we check the times-
tamp option announcement in the SYN segments for all the valid
connections that started with a proper handshake of CWRU trace
(9.1M connections), and find out that only 29% local client flows
and 43% remote client flows announce the timestamp option in the
SYN segment. We further use p0f to determine the OS distribution
of the clients that do not support timestamp option, shown in Ta-
ble 5. It can be seen that Windows clients disproportionately con-
tribute to the low prevalence of timestamp use. Specifically, only
9.2K local windows clients (0.2% of all local windows clients) and
1.1K remote windows clients (0.9% of all remote windows clients)
supported timestamps4.
We next consider the prevalence of timestamp support among

servers. According to RFC 1323, the server can not announce
timestamps in its SYN-ACK segment unless it received the times-
tamp option in the SYN segment from the client. Thus, we only in-
spect the servers that receive timestamp option announcement from
the clients. We find 97% of local servers and 84% remote servers
support timestamps. Therefore, our study actually supports the pre-
vious studies [14, 20] in terms of the wide support of TCP times-
tamps among servers but not the implication (such as expressed in
[19]) that this indicates their wide use.
To our knowledge, the only study that passively measured TCP

timestamp use is [15] conducted 10 years ago, which found 21.5%
of clients announcing timestamp support (an even earlier study
[4] measured timestamp use from one website perspective, which
could be biased by the clients accessing the site). Our data shows
their use remains rather low, which limits the applicability of pas-
sive measurement techniques relying on TCP timestamp presence.

6. COMPARISON OF RTT MEASURE-
MENT TECHNIQUES

We compare RTT measurement techniques in this section. We
round our RTT samples to 1 millisecond precision, and those under
1ms are recorded as 1. To compare two given RTT measurement
techniques, we present the cumulative distribution of the ratios of
connection RTTs derived using both techniques. This allows us to
detect any biases between the techniques involved but not absolute
differences. We include results on absolute differences in the ex-
tended version of the paper [7].

6.1 Handshake vs. Teardown RTT Inference
A frequent concern expressed with the handshake technique is

that it may overestimate RTT since it includes server processing
to initialize the connection. Thus, we compare the handshake and
teardown methods for connections where both phases are well-
formed. We find that only around 20% to 25% of connections have

4These numbers do not match those one could derive from Tables 2
and 5 due to rounding.
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a close that allows unambiguous teardown estimation5. Figure 4
plots the CDF of ratio of the teardown to handshake estimates of
full (i.e., including both local and remote) RTT for CWRU trace
(2.3M data points) and CSU trace (479K data points), for connec-
tions that provide both estimates (each connection contributes one
data point). While in most cases there is a variation between the
two methods, one metric exceeds the other in almost half of the
cases with difference less than 1%, which indicates that any pro-
cessing at the server in handshake estimates does not lead to con-
sistent RTT overestimation relative to the teardown method.

6.2 Effect of Delayed Acknowledgements
The Data-ACK and timestamp methods of RTT estimation can

be skewed by delayed acknowledgements6 . For example, in the
Data-ACK method, when a data segment arrives and the receiver
has already acknowledged all the previously received data, the ac-
knowledgement can be delayed by up to 500ms thus inflating the
RTT estimate (Figure 5(a)). However, in practice, the delay thresh-
old can be an order of magnitude lower, and then there are vari-
ous scenarios when acknowledgments are not delayed at all. We
would like to understand if ignoring delayed acknowledgements bi-
ases estimates in practice. Since the timestamp method applies to
fewer connections and is biased towards non-windows end points
(see Section 5), we consider the Data-ACK method here; further,
5The low percentage of connections allowing teardown RTT esti-
mation is mostly due to flows that involve RST in the closing phase
and, to a less extent, with simultaneous close. A small further frac-
tion of connection also included retransmitted packets in the clos-
ing phase. RTT can only be derived reliably from a “perfect” and
not-simultaneous close.
6Note that unlike TCP’s estimation of effective RTT, which inten-
tionally includes any delayed acknowledgment effects to avoid pre-
mature retransmissions, we are interested in actual RTTs.
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because the data-ACK method is one-sided (i.e., measures either
remote or local RTT), we concentrate on remote RTTs as they are
a typical focus of measurements, where the delayed ack effect is
sometimes neglected (e.g., [3]).
To assess RTT inflation, we apply two flavors of Data-ACK es-

timation to the CWRU trace. First, we derive a sample from every
pair of a data segment and its ACK based on the matching sequence
numbers, which may include inflated RTT samples as illustrated by
Figure 5(a). Second, we only collect a sample if the data segment
participating in the estimate follows an unacknowledged data seg-
ment (thus eliminating a possibility of the delayed acknowledge-
ment bias, since the delayed ACK mechanism stipulates that the ar-
rival of the second data segment triggers an immediate ACK, see
Figure 5(b)). Then, for each TCP connection with at least one RTT
sample of both kinds, we compute the ratio of the median values of
RTT samples that ignore and remove the delayed ACK impact.
Figure 6 shows the CDF of these ratios of 1.5M connections of

the CWRU trace. As we see, delayed ACKs do inflate the RTT
estimation: indeed, median RTTs with removed delayed ACK im-
pact exceed those that do not in 6% of connections and are smaller
in around 17% of connections, although more than 75% of the ra-
tios have value 1. Thus, if one is interested in a single connec-
tion, ignoring delayed ACKs will likely still produce the unbiased
result. However, cumulative analysis of a large number of connec-
tions will result in a bias.

6.3 Effect of Stretch Acknowledgments
Similar to delayed ACKs, stretch ACKs, can inflate RTT mea-

surements if a host waits for a certain number of data segments
before sending an acknowledgement. We are interested if stretch
ACKs further inflate RTT beyond the “normal” delayed ACKs con-
sidered in Section 6.2. To this end, we collect all remote RTT sam-
ples that exclude the effect the delayed ACKs (as described in Sec-
tion 6.2) and all samples where the data segment participating in
the estimate follows at least two unacknowledged segments. The
latter samples eliminate RTT inflation from stretch ACKs if a host
acknowledges at least every third data segment but not if the host
allows longer stretches. Although our assessment underestimates
the total amount of inflation, it captures the largest jump (if any):
eliminating longer stretches would drastically reduce the number
of available samples but could only capture the diminishing infla-
tion increments.
Figure 7 presents the CDF of the ratios of the median values

of the above two kinds of sample RTTs for all 328K connections
with stretched ACKs from the remote side (i.e., whose remote flows
showed at least 10% of stretch ACKs) that produced at least one
sample of each kind. The graph shows no inflation effect, with
roughly 80% of the ratios equal to 1 and the rest split evenly (within
0.5%) between over- and under-estimation. We conclude that our
data shows no effect of stretch ACKs on RTT estimation. This also
provides further evidence that hosts are not the source of stretch
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ACKs observed in the traces, leaving in-network filtering as the
likely reason.

6.4 Timestamp vs. Handshake RTT
We now compare two methods suitable for estimating total RTT

in unidirectional flows: the handshake and timestamp methods. We
do not consider the teardown method here because it produces sim-
ilar estimates to handshake (Section 6.1) but offers fewer samples.
We use the CWRU and CSU traces; we could not use the CAIDA
trace because its unidirectional flows do not allow for the elimina-
tion of the effect of delayed ACKs. For the timestamp method we
exclude the impact of delayed ACKs by only collecting a sample
when the data segment involved follows an unacknowledged data
segment. Further, a timestamp RTT sample can be distorted when
the sender on Figure 1(c) does not immediately have data segment
B to send, which could happen especially often in interactive ap-
plications, where the application would send segment B only af-
ter the user enters another request. To remove these cases, we ex-
clude timestamp RTT samples over 2000ms, with the intuition that
most network delays are less than, and user think time greater than,
this value. In the extended version of this paper [7], we show that
these filtered timestamp RTT measurements, when applied to only
remote RTT, match closely RTTs measured with the Data-ACK
method (which is not subject to this distortion), indicating that our
filtering successfully mitigates the above distortion.
For each connection that produced at least one estimate of both

kinds (349K and 73K in the CWRU and CSU traces respectively),
we compute the ratio of the median RTT value according the
timestamp method to the (only) estimate according to handshake
method. Figure 8 plots the CDF of these ratios7. It shows that the
timestamp method, which produces measurements throughout the
connection, generates larger estimates than those from the hand-
shake method more often (55% of connections in CWRU trace and
46% in the CSU traces) than smaller estimates (only about 27% of
connections in CWRU trace and 19% in the CSU trace).
It has been noted previously that RTTs measured in the course of

a connection tend to be higher than during handshake [3] but those
measurements did not eliminate the delayed ACK impact. We show
the bias remains, at least for the timestamp method, even with this
impact removed. The rest of this section uses the CWRU trace to
shed light on the reasons behind this phenomenon.
Our first question is whether the inflation is due to local (within

the campus network we monitor) or remote delays. Since seg-
ment exchanges in both timestamp and handshake methods al-
low one-sided RTT measurements, Figure 9 plots the CDFs of the
timestamp-to-handshake RTT ratios of both local and remote sides.
The local timestamp RTTs exhibit higher skew than remote

RTTs. Local timestamp RTTs exceed those from handshake in 27%
7Note that this distribution has heavy tails and in fact sizable frac-
tion of ratios extend beyond the cut-off value 2 in the graph. Be-
cause we are mainly interested in the skew of the estimates rather
than maximum errors, this and similar later graphs suffice.
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Figure 9: Timestamp to hand-
shake RTT ratios for local and
remote RTTs
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Figure 10: Timestamp to
handshake local RTT ratios
per connection types
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Figure 11: Remote-to-total
RTT ratios using handshake
estimates
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Figure 12: Remote to to-
tal RTT ratios for Wifi/VPN
hosts and other hosts

cases and only in 8% cases are lower. For remote RTT, in 41%
cases timestamp RTTs are higher and in 28% lower than handshake
RTTs – showing significantly less inflation than total RTTs. This
indicates that local RTTs are indeed largely responsible for RTT in-
flation.
We speculated the above difference could be due to the fact that

most flows (two thirds, see Table 2) in the CWRU trace had lo-
cal hosts acting as clients, and clients are more likely to connect
through middleboxes such as wireless gateways or VPN servers.
Thus, knowing the IP addresses of these devices, we considered lo-
cal RTTs for the flows with local hosts behind these devices sepa-
rately from the flows with other local hosts. Figure 10 presents the
corresponding CDFs of the RTT ratios. Indeed, it shows that virtu-
ally all the skew observed in local RTTs in Figure 10 is due to the
hosts behind the middleboxes with 74% of their timestamp RTTs
inflated. For the other flows, the vast majority (89%) of their local
median timestamp RTTs were equal to, and only 7% were higher
than their handshake counterparts, while 4% were lower.
One reason why middleboxes might impose longer delays on

segments inside the connection than on the handshake segments
could lie in their difference in size. Shorter control segments have
less chance to encounter interference and experience link-layer re-
transmission. Another possibility is that arriving window-fulls of
segments from inside a connection pile up at the middlebox and
queue behind each other, in addition to competing with packets
from other connections, while control segments always arrive in
isolation and only have to compete with packets from other con-
nections. Further research is needed to fully understand this phe-
nomenon.

6.5 Effect of Local RTT
Finally, we consider the contribution of local RTT to the overall

delays, which is sometimes neglected in RTT measurements (e.g.,
[3,18]). We use the CWRU trace of this analysis as the other traces
are anonymized and do not allow determining which side is local.
We use the handshake methods for this purpose as it allows deriva-
tion of remote and total RTTs depending on the segments consid-



ered (see Figure 1). Figure 11 plots CDFs of the ratios of remote
to total RTTs for 9.1M connections with handshake samples. Ac-
cording to Figure 11, for about 12% of all samples, the remote RTT
accounts for no more than 80% of the total RTT. Further, sizable
contribution of local delays is not limited to short-haul communi-
cation: the samples in the 10–500ms range follow the same distri-
bution. Short-haul communication does exhibit higher contribution
of local RTTs (28% of samples with at least 20% local contribu-
tion). For RTTs exceeding 500ms, the remote-to-total RTT ratios
are more clustered towards 1 but in 20% of the cases these delays
are primarily due to local RTT (note that only 0.9% of all RTTs
were this high).
To understand the reason for high local RTTs, we split the sam-

ples involving local middleboxes from the rest of local hosts. Fig-
ure 12 plots the corresponding CDFs of remote to total RTT ra-
tios (1.7M samples for Wifi/VPN hosts and 7.4M samples for other
hosts). These plots show that middleboxes are largely responsible
for high local RTTs. While the specific mechanisms behind this
are outside the scope of this paper, bufferbloat [10] has been impli-
cated in excessive network delays.
Our overall conclusion is that local RTTs can add sizable con-

tribution to the overall delay and hence to inaccuracy in measure-
ments ignoring them. However this inaccuracy is mostly limited to
the RTTs involving local middleboxes, such as wireless gateways
and VPN servers.

7. CONCLUSION AND FUTUREWORK
Using packet traces collected at three vantage points, we ana-

lyze several common techniques of passive RTTmeasurement from
methodological perspective and examine several TCP characteris-
tics and their effect on these techniques. Contrary to a common
perception, we find significant presence of stretch acknowledge-
ments (which can affect the accuracy of RTT estimation) and rela-
tively low use of TCP timestamps (which reduces the applicability
of some measurement techniques). We quantify the impact of reg-
ular delayed acknowledgements, as well as stretch acknowledge-
ments, on RTT measurement accuracy, and find that while delayed
acknowledgements sometimes inflate RTT estimation, and – de-
pending on the nature of measurement – cannot be ignored, stretch
acknowledgements do not distort RTT estimation. We further find
that even with the impact of delayed ACKs factored out, the RTT
measured in the course of a connection often exceed those during
the handshake, and identify middleboxes to be responsible for this
behavior. Finally, we show that local delays (within campus net-
work) can contribute a sizable portion of the overall delays and
should not be ignored.
While we considered implications of stretch acknowledgments

on RTT measurement, their significant presence in TCP com-
munication can have far-reaching implications for TCP perfor-
mance. We hope future research will investigate this phenomenon
in greater detail.
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