
TCP Stretch Acknowledgements and Timestamps:
Findings and Implications for Passive RTT Measurement ∗

Hao Ding Michael Rabinovich
University of Science and Technology, Beijing Case Western Reserve University

haoding8724@gmail.com michael.rabinovich@case.edu

ABSTRACT

This paper examines several TCP characteristics and their effect on

existing passive RTT measurement techniques. In particular, us-

ing a packet traces from three geographically distributed vantage

points, we find relatively low use of TCP timestamps and signifi-

cant presence of stretch acknowledgements. While the former sim-

ply affects the applicability of some measurement techniques, the

latter may affect the accuracy of RTT estimation. Finally, after re-

moving possible errors that due to different passive RTT measure-

ment technologies, we show unrealized potential for RTT improve-

ment on the Internet.

Keywords

RTT measurement, TCP delayed and stretch acknowledgement,

TCP timestamp

1. INTRODUCTION
Round-trip time delay (RTT) is a fundamental characteristic of

the Internet communication affecting numerous aspects of network

operation, from provisioning and traffic engineering to construction

of wide-area network applications. Passive RTT measurements,

where RTT values are inferred from observing the actual network

traffic, promise non-intrusive and potentially the most faithful ap-

proach to RTT measurement. This paper considers several existing

techniques of passive RTT measurement and examines several TCP

characteristics and their effect on these techniques.

In particular, using a packet trace collected at the edge of a cam-

pus network, we measure the prevalence of TCP timestamp option

and the patterns of TCP acknowledgements. Despite previous stud-

ies’ findings that over 75% of servers support TCP timestamps [18],

or over 92% of flows originating from customers of a particular

LTE network operator carry them [9], we find their use in our ac-

tual traffic to be low (around 30% of flows). We further verify

these findings on other two open traces. Limited timestamp us-

age affects the applicability of some measurement techniques as

discussed later. At the same time, we find significant use of so

called stretch acknowledgements [15], which acknowledge more

than every other segment. Although stretch ACKs (or ACK filter-

ing/thinning, which produces them) have been proposed for various

environments (e.g., [6, 7, 14]), to our knowledge, ours is the first

study to measure their actual usage on the Internet.

Prior work noted – but did not evaluate – the potential effect of

delayed acknowledgements on accuracy of RTT estimation [3]. We

quantify this effect and further show that even after removing the

∗Work supported in part by NSF grant CNS-0831821. The work
of Hao Ding was done during his visit at CWRU, which was spon-
sored by China Scholarship Council.

possibility of the regular delayed acknowledgement bias, the tech-

niques relying on data segment acknowledgements tend to over-

estimate RTT. We further find that this may due to the low perfor-

mance of wifi connections.

Finally, using passive RTT measurement techniques unaffected

by the above biases, we consider RTT distribution of actual Internet

communication from our three vantage points and show that RTTs

of actual communication have barely improved since prior studies

of more than 10 years ago, and the potential RTT improvement

on the Internet remains unrealized. Furthermore, local RTT within

campus intranet, which is sometimes neglected (e.g., [3, 16]), may

constitute a substantial portion of the total network delay.

2. PASSIVE RTT MEASUREMENT
Passive RTT measurement techniques fall into two broad cat-

egories - those that require bidirectional packet trace and those that

only need to see packets in one direction. Our setup allows us to

capture bidirectional traffic and we mostly focus on the bidirec-

tional techniques. Bidirectional techniques often allow estimation

of both total RTT between the communicating end-hosts as well as

RTT components from either host to the measurement monitor. We

refer to the round-trip time between the campus side and the mea-

surement monitor as local RTT, and between the monitor and the

external side as remote RTT. Techniques also differ in whether they

allow a single readout per TCP connection (we call them one-time

techniques) or repeated readouts in the course of the connection

(continuous techniques). We consider the following techniques in

this study.

The popular handshake technique utilizes segment association

during the TCP three-way handshake. Figure1a illustrates this tech-

nique for the case when the caller is from the campus side (but the

technique equally applies to the connections initiated from outside).

With unidirectional traces, handshake method can only measure the

total RTT and only for connections in which the caller-to-callee di-

rection is the one captured. With bidirectional flows, this method

can measure all three kinds of RTTs – local, remote, and total – for

all connections.

A similar method utilizes segment association during the clos-

ing of a TCP connection, to which we refer as teardown technique.

Figure 1b shows how this technique measures local and remote

RTT on the example of the campus host performing active close.

The combined RTT is calculated as the sum of the local and re-

mote RTT. This method also applies to simultaneous close, but fre-

quently abnormal TCP closing makes it less applicable than the

handshake method.

The above two methods are one-time techniques—they can

only measure the RTT at the beginning and ending of a connection.

Several continuous techniques are based on the segment sequence

T
o

ta
l

R
T

T
Campus
 Side

Monitor Remote
Side

R
em

o
te

L

o
ca

l

SYN

ACK

SY
N-
AC
K R

T
T

R
T

T

(a) Handshake

Campus
 Side

Monitor Remote
Side

R
em

o
te

L
o

ca
l

FIN-ACK

FIN
-A
CK

R
T

T

AC
K

ACK R
T

T

(b) Teardown

Recipient

Data Seg! A

Data Seg. B

ACK of A

Monitor

T
o
ta

l
R

T
T

Sender

(c) Timestamp

Figure 1: Passive RTT estimation methods

shown in Figure 1c, where the transmission of segment B is trig-

gered by the arrival of ACK for segment A. While associating data

segment A with the corresponding ACK can be done by sequence

numbers, the key is in reliably associating data segment B with the

ACK that triggered it. Previous studies used TCP congestion win-

dow modeling for this purpose, either during slow-start [11] or

congestion avoidance [10] phase. The TCP timestamp method [18]

utilizes TCP timestamp option to associate a data segment with the

ACK that triggered it. This method associates segment B and the

ACK of A by matching the timestamp in the ACK packet with

the echo timestamp echo in data segment B. These methods can

measure RTT throughout the lifetime of a TCP session as long as

the TCP connection enables timestamp option. Because congestion

window modeling is brittle due to differences among various TCP

stack implementations, we concentrate on the timestamp method

for continuous RTT measurement.

Another popular continuous method, which can only produce

either local or remote RTT for a given segment sequence, measures

the time difference between a data segment and its corresponding

ACK. Since typically the data mostly flows in one direction, this

method—to which we refer as Data-ACK—produces mostly either

local or remote, but not the combined, RTT for a given connection.

An interesting unidirectional technique measures combined

RTT as the time between successive data transmission bursts, lever-

aging the TCP tooth-like sending pattern [18]. It utilizes discrete

autocorrelation function to detect the gaps between TCP bursts.

However, the algorithm to detect the burst-gap patterns requires

several pre-defined thresholds that are difficult to determine, espe-

cially when the network conditions are not sufficiently stable. We

do not consider it in this paper.

3. METHODOLOGY AND THE DATASET
This study uses three datasets. Two are TCP packet traces cap-

tured at the edge of two campus networks, Case Western (Cleve-

land) and Colorado State (Fort Collins, CO) [2], and the third is a

TCP packet trace of the traffic on a backbone link in Chicago pro-

vided by CAIDA [1]1 All captures are done using Endace 10Gbps

cards. We estimate losses in measurement instrumentation below.

Because CSU and CAIDA traces are host-anonymized, we could

only use them for some of our analysis verifying our key findings;

the rest of the analysis is done on the CWRU trace. Moreover,

while CWRU and CSU traces are bidirectional, the CAIDA trace

typically sees packets in only one direction in a given connection

due to asymmetric routing. Thus further limits the questions we

1The CWRU capture was reviewed by the IRB and found ex-
empted. The other datasets were obtained using the approved pro-
cedures from the providing organizations.

Table 1: Statistics of three traces

Trace Time of Packets Connections Packet
Capture All Valid Loss

CWRU Jan 5, 2015 1.5B 17.4M 9.6M 0.4%
3–7pm

CSU Jan 16, 2015 0.4B 2.8M 2.5M 0.1%
12–1pm

CAIDA Mar 20, 2014 0.9B 14.5M 12.0M 0.1%
7–8am

Table 2: OS distribution of flow sources (CWRU trace)

Flows Windows Linux Mac Unkwn

Local clients 6.8M 70% 10% 18% 1%

Local servers 2.3M 26% 58% <0.1% 15%

Local total 9.1M 59% 22% 13% 5%

Remote clients 2.3M 54% 34% 8% 3%

Remote servers 6.8M 5% 49% <0.1% 45%

Remote total 9.1M 17% 45% 2% 35%

could answer using the CAIDA trace.

Table 1 shows the trace statistics. We split the traces into TCP

connections by first putting all packets with the same end-point IP

addresses and ports into separate flows and – in case multiple con-

nections reuse the ports – further splitting each flow by locating

TCP handshakes within each flow (which happens in only less than

2% of the flows in each trace.) We consider a connection valid if

it includes at least one segment carrying the ACK flag but not the

SYN, FIN or RST flags. Only valid connections are used in our

analysis. To estimate packet loss in the measurement instrumen-

tation, we first identified the gaps in valid connections that were

not eventually filled completely by reordered packets. These gaps

affected 1.8% connections in CWRU, 0.4% in CSU, and 0.5% in

CAIDA traces. We then conservatively consider all the residual

gaps to be due to packet loss within the instrumentation and esti-

mate the loss rate by assuming that each residual gap smaller than

MSS (which constituted a majority of the gaps) contained one lost

packet and covering larger residual gaps with MSS-sized packets.

The resulting packet loss is listed in Table 1. To avoid distorted

RTT readout due to retransmitted or reordered packets, we do not

use retransmitted data packets or any data packets between retrans-

mitted data packets or between the start of a gap and a packet filling

the gap, or duplicate acknowledgements, to generate RTT samples.

Table 2 lists further characteristics of the CWRU trace. Valid

connections in the trace represent 10K internal and 359K external

IP addresses and 1.2M host-pairs (or more precisely, address-pairs).

We used the MaxMind GeoIP database to map the external ad-

dresses to 11K autonomous systems in 228 countries/regions. We

also used the p0f tool to consider the distribution of the operating

systems (OSs) on both sides of all valid connections that started

with a proper handshake, which accounted for 95.7% of valid con-

nections (the rest included 0.8% that started before our capture,

2.8% that showed retransmission of handshake segments, and 0.6%

with missing handshake segments). The table omits OSs p0f could

detect but found to be not Windows, Linux or Mac; these represent

less than 0.1% of connections on either side. Table 3 shows fine

grained OS distribution of CWRU Trace.

4. STRETCH ACKNOWLEDGEMENTS
TCP expects a recipient to acknowledge at least every other

Table 3: Fine-grained OS Distribution of flow sources (CWRU Trace)

Flows Win 7 or 8 Win Others Mac 10.X/newer Mac Others Linux 2.X Linux 3.X Unkwn

Local Clients 6.8M 66% 4% 11% 7% 6% 4% 1%

Local Servers 2.3M 24% 2% 0 <0.1% 49% 9% 16%

Local Total 9.1M 55% 4% 8% 5% 17% 5% 5%

Remote Clients 2.3M 43% 11% 5% 3% 14% 20% 3%

Remote Severs 6.8M 4% <1% <0.1% 0 5% 44% 45%

Remote Total 9.1M 14% 3% 1% 1% 7% 38% 35%

segment, and this assumption is engrained in both networking prac-

tice (e.g., in common congestion control implementations driven

by the number of acks rather than the amount of data they ac-

knowledge [5]) and TCP-related research (e.g., [10]). However,

we find that flows often have fewer acknowledgements, with an

ACK cumulatively acknowledging more than two data segments at

once (such ACKs were termed “stretch ACKs” in [15]). This find-

ing is interesting because, although there were a number of pro-

posals to use stretch ACKs in various asymmetric environments

(e.g., [6,7,14]), RFC 5690 noted in 2010 that the authors were “not

aware of the deployment of ACK filtering in the Internet” [8], and

RFCs 2525 and 4413 both refer to stretch ACKs as a TCP imple-

mentation bug.

To measure the prevalence of stretch acknowledgements, for

each connection we measure the length of the data packet trains

(we call stretches) between consecutive (i.e., without an ACK with

intervening acknowledgment numbers2) cumulative ACKs. Again,

we exclude potential distortions by excluding stretches containing

out of order data packets or bracketed by duplicate acknowledge-

ments. Further, an RST segment resets the beginning of a stretch.

In what follows, we call a flow local or remote depending on the

source of the flow.

4.1 Prevalence
Figure 2a shows the distribution of stretch sizes in the CWRU

trace. Since at least three data packets are needed for the receiver to

exhibit stretch ACKs, when measuring prevalence of stretch ACKs

in a given flow, we only consider valid connections with least three

data packets coming from the other side. As the result, we inspect

4.1M local flows and 3.5M remote flows in 4.9M connections, in-

cluding 338.7M samples of stretches (241.9M local and 96.8M re-

mote stretch samples). While most stretches have 1 or 2 segments,

11% of all stretches, including 13% local samples and 9% remote

ones, are longer. Such a significant longer stretch prevalence can-

not be explained by packet loss in our instrumentation; indeed, this

would require at least one ACK packet loss for each stretch over 2

packets, or at least 11% loss among ACK segments. Given our es-

timated loss rate of both data packets and handshake packets listed

in Section 3 (the latter especially indicative as it reflects the loss

in both directions), such a high loss rate of acknowledgments is

improbable.

We next consider how often individual connections exhibit

stretch ACKs. Figure 2b plots the distribution of fractions of

greater-than-2 stretches (out of all stretches) in each direction. It

shows that when a flow uses stretch ACKs, it is not an abberation.

In the rest of this paper, we regard a flow to use stretch ACKs if

more than 10% stretches from this flow are greater than 2. It can

be seen from Figure 2b that 19% of all local flows, and 11% of all

remote flows, used stretch ACKs.

2For practical purposes, we only look for ACKs within 300 packets
from a given data packet.

0 2 4 6
0

0.2

0.4

0.6

0.8

1

Stretch Size

C
D

F

Local ACK
Remote ACK

(a) Stretch sizes

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Ratio

C
D

F

Local ACK
Remote ACK

(b) Stretch ACK frequency in
a connection

Figure 2: Prevalence of stretch ACKs in CWRU trace

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Ratio

C
D

F

Figure 3: Per-connection stretch ACK frequency in CSU trace

Our overall conclusion is that stretch ACKs are a fairly com-

mon occurrence. We verify this finding on the CSU trace, inspect-

ing the total of 1.9M flows with at least three data packets in the

other direction (we are unable to distinguish local or remote flows

due to anonymization). The distribution of the fractions of greater-

than-2 stretches is illustrated in Figure 3, which shows that 22% of

flows exhibit stretch ACKs – even greater prevalence than in the

CWRU trace.

4.2 Possible Causes
Stretch ACKs may be an artifact of the TCP implementation at

the end-host or the result of ack filtering within the network, which

has been suggested as the means to reduce router transmission

queues and improve TCP throughput in networks with asymmetric

links [6, 14]. In an attempt to find the source of stretch ACKs, we

use the p0f tool to determine the operating systems of all sources

of flows with stretch ACKs (only the connections that started with

proper handshake were considered). From Table 4 we see that both

local and remote sources of stretch-ACK flows come from a variety

of operating systems, and the distribution of OS types is roughly

similar to all the flows (see Table 2). Table 5 shows fine grained

OS Distribution of both local and remote flows with stretch ACKs,

which can be similarly compared with Table 3. This speaks against

the end-hosts being the culprit, leaving the network elements as a

likely cause. Section 6 below provides further support to this con-

jecture.

Table 4 does show some increase in the prevalence of Win-

Table 4: OS distribution of sources of flows with stretch ACKs

Flows Windows Linux Mac Unkwn

Local Sources 781K 69% 16% 11% 3%

Remote Sources 371K 17% 39% 3% 40%

Table 6: Timestamp Option Prevalence

TCP Packets Valid Connections

CWRU 33% 28%

CSU 27% 23%

CAIDA 57% 41%

dows among local sources of stretch ACK flows. The reason for

this increase is unclear. There is a parameter ”TCPAckFrequency”

in Windows that allows setting the frequency of TCP acknowledge-

ments. But since the default value is no greater than 2 in all Win-

dows versions, we believe it is unlikely that many users change it.

5. TCP TIMESTAMPS
Previous studies that relied on TCP timestamps for passive

measurements provided indirect indication of their common use:

[18] and [12] note that, respectively, over 75% and 83% of the

servers they probed supported the timestamp option, [9] report that

over 92% of flows originating from customers of a particular LTE

network carry them, and [17] states that ”the TCP Timestamp op-

tion is known to be widely deployed in the wild.”

We check the TCP timestamp prevalence in actual traffic, us-

ing all three datasets. Table 6. shows the fraction of all packets

(including from invalid connections) that carry timestamps, and the

fraction of all valid connections using them. All traces, especially

CWRU and CSU, show lower prevalence of timestamp use.

To see if this is attributable to clients or servers, or any spe-

cific TCP stack, we conduct two experiments. First, we check the

timestamp option announcement in the SYN segments for all the

valid connections that started with a proper handshake of CWRU

trace (916M connections), and find out that only 28% local client

flows and 43% remote client flows announce the timestamp option

in the SYN segment. We further use p0f to determine the OS dis-

tribution of the clients that do not support timestamp option, shown

in Table 7. It can be seen that Windows clients disproportionately

contribute to the low prevalence of timestamp use.

We next consider the prevalence of timestamp support among

servers. According to RFC 1323, the server can not announce

timestamps in its SYN-ACK segment unless it received the times-

tamp option in the SYN segment from the client. Thus, we only

inspect the servers that receive timestamp option announcement

from the clients. We find 97% of local servers and 84% remote

servers support timestamps. Therefore, our study actually supports

the previous studies in terms of the wide support of TCP times-

tamps among servers but not the implication that this indicates their

wide use.

Table 7: OS of CWRU clients without timestamp support
Flows Windows Linux Mac Unkwn

Local Clients 4.8M 98% 0.4% <0.1% 1%

Remote Clients 1.3M 95% 3% <0.1% 1%

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Ratio

C
D

F

CWRU
CSU

Figure 4: Teardown to handshake RTT ratio

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Ratio

C
D

F

Figure 5: Delayed ACK ef-

fect on Data-ACK RTT

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Ratio

C
D

F

Figure 6: Stretch ACK effect

on Data-ACK RTT

Table 8 shows the fine grained OS Distribution of both sources

of flow in CWRU trace that do not use timestamps.

To our knowledge, the only study that passively measured

TCP timestamp use is [13] conducted 10 years ago, which found

21.5% of clients announcing timestamp support (an even earlier

study [4] measured timestamp use from one website perspective,

which could be biased by the clients accessing the site). While the

data we use shows growth in TCP timestamp use over the past 10

years, it remains rather low, which limits the applicability of pas-

sive measurement techniques relying on TCP timestamp presence.

6. COMPARISON OF RTT MEASURE-

MENT TECHNIQUES
We compare RTT measurement techniques in this section. We

round our RTT samples to 1 millisecond precision, and those under

1ms are recorded as 1.

6.1 Handshake vs. Teardown RTT Inference
A frequent concern expressed with the handshake technique

is that it may overestimate RTT since it includes server process-

ing to initialize the connection. Thus, we compare the handshake

and teardown methods for connections where both phases are well-

formed. We find that only around 20% to 25% of connections have

a close that allows unambiguous teardown estimation. Figure 4

plots the CDF of ratio of the teardown to handshake estimates of

full (i.e., including both local and remote) RTT for CWRU trace

(2.3M data points) and CSU trace (479K data points), for connec-

tions that provide both estimates (each connection contributes one

data point). While in most cases there is a variation between the two

methods, one metric exceeds the other in almost half of the cases

with difference less than 1%, which indicates that any processing at

the server in handshake estimates does not lead to consistent RTT

overestimation relative to the teardown method.

6.2 Effect of Delayed Acknowledgements
The Data-ACK and timestamp methods of RTT estimation can

be skewed by delayed acknowledgements. For example, in the

Data-ACK method, when a data segment arrives and the receiver

Table 5: Fine-grained OS distribution of sources of flows with stretch ACKs

Flows Win 7 or 8 Win Others Mac 10.X/newer Mac Others Linux 2.X Linux 3.X Unkwn

Local Side 781K 65% 4% 9% 2% 9% 7% 3%

Remote Side 371K 15% 2% 3% <1% 9% 30% 40%

Table 8: Fine-grained OS Distribution of flow sources without timestamp support (CWRU trace)

Flows Win 7 or 8 Win Others Mac 10.X/newer Mac Others Linux 2.X Linux 3.X Unkwn

Local Clients 4.8M 92% 6% <0.1% <0.1% <1% <0.1% 1%

Remote Clients 1.3M 75% 20% <0.1% <0.1% 3% <0.1% 1%

Local Servers 29K 1% 1% 0 0 29% 29% 40%

Remote Severs 306K <1% <1% 0 0 5% 25% 69%

has already acknowledged all the previously received data, the ac-

knowledgement can be delayed by up to 500ms thus inflating the

RTT estimate. However, in practice, the delay threshold can be

an order of magnitude lower, and then there are various scenar-

ios when acknowledgments are not delayed at all. We would like

to understand if ignoring delayed acknowledgements biases esti-

mates in practice. Since the timestamp method applies to fewer

connections and is biased towards non-windows end points (see

Section 5), we consider the Data-ACK method here; further, be-

cause the data-ACK method is one-sided (i.e., measures either re-

mote or local RTT), we concentrate on remote RTTs as they are

a typical focus of measurements, where the delayed ack effect is

sometimes neglected (e.g., [3]).

To assess RTT inflation, we apply two flavors of Data-ACK es-

timation to the CWRU trace. First, we derive a sample from every

pair of a data segment and its ACK based on the matching sequence

numbers. Second, we only collect a sample if the data segment

participating in the estimate follows an unacknowledged data seg-

ment (thus eliminating a possibility of the delayed acknowledge-

ment bias). Then, for each TCP connection with at least one RTT

sample of both kinds, we compute the ratio of the median values of

RTT samples that ignore and remove the delayed ACK impact.

Figure 5 shows the CDF of these ratios of 1.5M connections

of the CWRU trace. As we see, delayed ACKs do inflate the RTT

estimation: indeed, median RTTs with removed delayed ACK im-

pact exceed those that do not in 6% of connections and are smaller

in around 17% of connections, although more than 75% of the ra-

tios have value 1. Thus, if one is interested in a single connection,

ignoring delayed ACKs will likely still produce the unbiased result.

However, cumulative analysis of a large number of connections will

result in a bias.

6.3 Effect of Stretch Acknowledgments
Similar to delayed ACKs, stretch ACKs, can inflate RTT mea-

surements if a host waits for a certain number of data segments

before sending an acknowledgement. We are interested if stretch

ACKs further inflate RTT beyond the inflation from “normal” de-

layed ACKs quantified in Section 6.2. To this end, we collect all

remote RTT samples that exclude the effect the delayed ACKs (as

described in Section 6.2) and all samples where the data segment

participating in the estimate follows at least two unacknowledged

segments. The latter eliminates RTT inflation from stretch ACKs if

a host acknowledges at least every third data segment but not if the

host allows longer stretches. Our assessment hence underestimates

any inflation.

Figure 6 presents the CDF of the ratios of the median values of

the above two kinds of sample RTTs for all 328K connections that

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Ratio

C
D

F

Figure 7: Timestamp to handshake RTT Ratio

produced at least one sample of each kind. The graph shows no in-

flation effect, with roughly 80% of the ratios equal to 1 and the rest

split evenly (within 0.5%) between over- and under-estimation. We

conclude that our data shows no effect of stretch ACKs on RTT es-

timation. This also provides further evidence that hosts are not the

source of stretch ACKs observed in the traces, leaving in-network

filtering as the likely reason.

6.4 Timestamp vs. Handshake RTT
We now compare two methods suitable for estimating total

RTT in unidirectional flows: the handshake and timestamp meth-

ods. We do not consider the teardown method here because it pro-

duces similar estimates to handshake (see Figure 4) but offers fewer

samples. We use the CWRU and CSU traces; we could not use

the CAIDA trace because its unidirectional flows do not allow for

the elimination of the effect of delayed ACKs. For the timestamp

method we exclude the impact of delayed ACKs by only collecting

a sample when the data segment involved follows an unacknowl-

edged data segment. Further, because a timestamp RTT sample can

be distorted when the sender on Figure 1c does not immediately

have data segment B to send, we exclude timestamp RTT samples

over 2000ms.

To see if these filtered timestamp RTT measurements success-

fully mitigates distortion, we compare them with the data-ACK

measurements. As handshake and timestamp methods allow us

to generate both local and remote RTT samples, we calculate all

local and remote handshake, timestamp and data-ack samples in

each connections, and compared both the local/remote timestamp-

to-handshake and data-ack-to-handshake ratios for 159K connec-

tions3, as shown in Figure 8 and Figure 9. It can be seen there

is virtually no difference between the two curves for both local and

3As we always eliminate the impact of normal delayed ACK in
both timestamp and data-ack methods, these connections are all of
the connections that could generate all kinds of RTT samples

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Ratio

C
D

F

Timestamp
Data-ack

Figure 8: Remote Timestamp-to-handshake Ratio and Data-

ack-to-handshake Ratio Comparison

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Ratio

C
D

F

Timestamp
Data-ack

Figure 9: Local Timestamp-to-handshake Ratio and Data-ack-

to-handshake Ratio Comparison

remote RTTs, which means that the data-ack and filtered timestamp

estimates match closely.

For each connection that produced at least one estimate of both

kinds (349K and 73K in the CWRU and CSU traces respectively),

we compute the ratio of the median RTT value according the

timestamp method to the (only) estimate according to handshake

method. Figure 7 plots the CDF of these ratios. It shows that the

timestamp method, which produces measurements throughout the

connection, generates larger estimates than those from the hand-

shake method more often (55% of connections in CWRU trace and

46% in the CSU traces) than smaller estimates (only about 27% of

connections in CWRU trace and 19% in the CSU trace).

It has been noted previously that RTTs measured in the course

of a connection are higher than during handshake [3] but those mea-

surements did not eliminate the delayed ACK impact. We show the

bias remains, at least for the timestamp method, even with this im-

pact removed. The rest of this section attempts to shed light on the

reasons behind this phenomenon.

Our first question is whether the inflation is due to local or

remote delays. Since segment exchanges in both timestamp and

handshake methods allow one-sided RTT measurements, Figure 10

plots the CDFs of the timestamp-to-handshake RTT ratios of both

local and remote sides The local timestamp RTTs exhibit higher

skew than remote RTTs. Local timestamp RTTs exceed those from

handshake in 27% cases and only in 8% cases are lower. For re-

mote RTT, in 41% cases timestamp RTTs are higher and in 28%

lower than handshake RTTs – showing significantly less inflation

than total RTTs. This indicates that local RTTs are indeed largely

responsible for RTT inflation.

We speculated the above difference could be due to the fact

that most flows (two thirds, see Table 2) in the CWRU trace had

local hosts acting as clients, and clients are more likely to connect

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Ratio

C
D

F

Remote
Local

Figure 10: Timestamp to

handshake RTT ratios for lo-

cal and remote RTTs

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Ratio

C
D

F

Wifi/VPN
Others

Figure 11: Timestamp to

handshake local RTT ratios

per connection types

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Ratio

C
D

F

<10ms
10-500ms
>500ms
All

Figure 12: Remote-to-total

RTT ratios using handshake

estimates

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Ratio

C
D

F

Wifi/VPN
Others

Figure 13: Remote to to-

tal RTT ratios for Wifi/VPN

hosts and other hosts

through middleboxes such as wireless gateways or VPN servers.

Thus, knowing the IP addresses of these devices, we considered

local RTTs for the flows with local hosts behind these devices sep-

arately from the flows with other local hosts. Figure 11 presents the

corresponding CDFs of the RTT ratios. Indeed, it shows that virtu-

ally all the skew observed in local RTTs in Figure 11 is due to the

hosts behind the middleboxes with 74% of their timestamp RTTs

inflated. For the other flows, the vast majority (89%) of their local

median timestamp RTTs were equal to, and only 7% were higher

than their handshake counterparts, while 4% were lower.

One reason why middleboxes might impose longer delays on

segments inside the connection than on the handshake segments

could lie in their difference in size. Shorter control segments have

less chance to encounter interference and experience link-layer re-

transmission. Another possibility is that arriving window-fulls of

segments from inside a connection pile up at the middlebox and

queue behind each other, in addition to competing with packets

from other connections, while control segments always arrive in

isolation and only have to compete with packets from other con-

nections. Further research is needed to fully understand this phe-

nomenon.

6.5 Effect of Local RTT
Finally, we consider the contribution of local RTT (within

campus network, using CWRU trace only) to the overall delays,

which is sometimes neglected in RTT measurements (e.g., [3, 16]).

We use the handshake methods for this purpose as it allows deriva-

tion of remote and total RTTs depending on the segments consid-

ered (see Figure 1). Figure 12 plots CDFs of the ratios of remote

to total RTTs for 9.1M connections with handshake samples. Ac-

cording to Figure 12, for about 12% of all samples, the remote RTT

accounts for no more than 80% of the total RTT. Further, this find-

ing is not limited to short-haul communication: the samples in the

10–500ms range follow the same distribution. Short-haul commu-

nication does exhibit higher contribution of local RTTs (over 25%

of samples with at least 20% local contribution). For RTTs ex-

ceeding 500ms, the remote-to-total RTT ratios are more clustered

towards 1 but in 20% of the cases these delays are so high in the

first place due to local RTT, presumably some hiccup within the

intranet (note that only 0.9% of all RTTs were this high).

To understand the reason for high local RTTs, we split the

samples involving local middleboxes from the rest of local hosts.

Figure 13 plots the corresponding CDFs of remote to total RTT ra-

tios ((1.7M samples for Wifi/VPN hosts and 7.4M samples for other

hosts). These plots show that middleboxes are largely responsible

for high local RTTs.

Our overall conclusion is that local RTTs can add sizable con-

tribution to the overall delay and hence to inaccuracy in measure-

ments ignoring them. However this inaccuracy is mostly limited to

the RTTs involving local middleboxes, such as wireless gateways

and VPN servers.

7. CONCLUSION AND FUTURE WORK
We analyze a packet trace collected at the edge of campus net-

work, along with other two open traces, from the perspective of

extracting passive RTT measurements. Our key findings are as fol-

lows. Contrary to a common perception, we find relatively low use

of TCP timestamps (which reduces the applicability of some mea-

surement techniques) and significant presence of stretch acknowl-

edgements (which can affect the accuracy of RTT estimation). We

quantify the impact of regular delayed acknowledgements on RTT

measurement accuracy, and show that even with their impact fac-

tored out, the RTT measurements in the course of a connection of-

ten exceed those during the handshake. We show that local delays

(within campus network) can be responsible for a significant part of

the overall delays and should not be ignored. Finally, we show that

RTTs of actual communication could vary a lot, and the potential

RTT improvement on the Internet remains unrealized.

The significant presence of stretch acknowledgements could

have multiple impact on the TCP protocol. The lack of acknowl-

edgements could slower the phase of slow start. As it might also

add the waiting time for the sender, it might cause more packet

retransmission. Besides, it could invalidate existing research pro-

posals(like RFC 5690), and affect precision of RTT measurement

as we discussed. As stretch acknowledgement is proposed as an op-

timization to the current network, to see how much traffic it saved

and the consequences on the actual network could be our future

work.

Acknowledgements: The authors are indebted to the LANDER

project (John Heidemann of ISI and Christos Papadopoulos of Col-

orado State University and their teams), KC Claffy of CAIDA, and

CWRU’ ITS organization (especially Jim Nauer, Kevin Chen, Dan

Matthews, and Roger Bielfeld) for their help in procuring data for

this study.

Further Results

This section presents additional observations from the CWRU trace

regarding RTT estimation.

7.1 Stretch ACKs in Busy and Quiet Times
Since some network elements are known to filter ACKs , we

inspect the flows from known middleboxes in the CWRU network,

namely, all campus wireless gateways, which we were able to iden-

tify by obtaining the list of their external IP addresses. We collected

two additional traces of traffic flowing through these wi-fi routers

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Ratio

C
D

F

Busy
Quiet

Figure 14: Stretch ACK frequency in flows of local wifi hosts

at a busy and quiet time4 and compare the prevalence of stretch ack

connections in both traces. If the wireless gateways are responsible

for ack filtering, the prevalence of stretch ACKs would be higher

during the busier time of the day, when it is more likely that a newly

arriving ACK would find an earlier ACK already in the queue that

could be dropped. Figure 14 shows the fraction of greater-than-2

stretches of the two traces for 623K (busy) and 94K (quiet) local

flows. The fraction of local flows with stretch ACKs (recall that

these are flows with at least 10% of stretches longer than 2) drops

from 22% to 15% from the busy to quiet period. We also used the

p0f tool to consider the distribution of the operating systems of the

clients behind the gateways. Table 10 shows the OS distribution

of the all local flow sources behind the wireless gateways using

stretch ACKs, and Table 9 shows the OS distribution from all local

flow sources behind the wireless. For ease of comparison, Table 11

shows the OS distribution of non-stretched local flows of the bus-

ier/quieter wifi period. (This table could be produced by arithmetic

calculations over the results in the other two tables.)

These results are inconclusive. We do see some increase in

stretch ACKs during busy period. However, we also see an increase

in Windows prevalence compared to the general trace, which as

mentioned can be configured to use stretch ACKs. At the same

time, when looked at the OS distribution difference between the

busy and quiet traces, we see that the prevalence of stretch ACKs

in the busy period increases while the prevalence of Windows OS if

anything decreases slightly. We also ran the same test on two other

busy-quiet periods in August 2014. That experiment also showed

an increase in stretch ACKs during busy time, from 9% to 17%. In

general, these experiments provide some additional weak evidence

in support of ACK filtering in the network.

7.2 Remote RTT Inflation of Local WiFi
Hosts

Figure 15 plots timestamp to handshake remote RTT ratio for

wifi hosts and other hosts respectively. For the wifi curve there

are 81K samples and in 35% cases tiemstamp RTT are greater than

handshake, in 18% cases lower. For other hosts, there are 268K

samples and in 43% cases timestamp are higher, 31% timestamp

are lower.

Figure 16 plots data-ack to handshake remote RTT ratio for

wifi hosts and other hosts respectively. For the wifi curve there

are 233K samples and in 34% cases data-ack RTT are greater than

handshake, in 23% cases lower. For other hosts there are 1.28M

samples and in 36% cases data-ack are higher, 36% data-ack are

lower.

4Busy period, comprising 349.2M TCP packets in 1.3M valid con-
nections, and quiet period, comprising 76.9M TCP packets in 250K
valid connections, respectively.

Table 9: OS distribution of sources of all local wifi flows
Flows Win 7 or 8 Win Others Mac 10.X/newer Mac Others Linux 2.X Linux 3.X Unknown

Busier Period 1.2M 40% 4% 17% 26% 1% 11% <0.1%

Quieter Period 237K 37% 3% 14% 29% 1% 15% <0.1%

Table 10: OS distribution of sources of local wifi flows with at least 10% stretch ACKs
Flows Win 7 or 8 Win Others Mac 10.X/newer Mac Others Linux 2.X Linux 3.X Unknown

Busier Period 136K 56% 7% 10% 19% 1% 7% <0.1%

Quieter Period 14K 47% 9% 9% 23% 1% 10% <0.1%

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Ratio

C
D

F

Wifi
Others

Figure 15: Timestamp to handshake Remote RTT

ratio for Wifi hosts and Other hosts

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Ratio

C
D

F

Wifi
Others

Figure 16: Data-ack to handshake Remote RTT

ratio for Wifi hosts and Other hosts

These results show that the flows allowing timestamp RTT es-

timation still shows some remote RTT inflation while a much larger

set of flows that allow data-ack estimations show virtually no re-

mote RTT inflation. This is understandable because as we saw, flow

with timestamps are sent disproportionally by non-windows sys-

tems, and these systems are disproportionally represented among

devices using wifi (as these are often smartphones that use Android

or IOS). The difference in the OS mix among hosts is highlighted

in Table 12, which shows the fine grained OS distribution of local

clients behind wifi/VPN middle-boxes of the CWRU trace.

Curiously, we also see that remote RTTs of flows with local

hosts behind wifi gateways show some inflation compared to other

hosts. We have no explanation for this observation except to spec-

ulate that servers serving mobile apps exhibit different behavior.

7.3 Other RTT results
Figure 17 plots data-ack to handshake ratio for local and re-

mote RTT respectively. For the local RTT there are 2.28M samples

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Ratio

C
D

F

Remote
Local

Figure 17: Data-ack to handshake remote/local

RTT ratio

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Ratio

C
D

F

Wifi/VPN
Others

Figure 18: Data-ack to handshake Local RTT ra-

tio for Wifi/VPN hosts and Other hosts

and in 23% cases data-ack RTT are greater than handshake, in 8%

cases lower. For remote RTT there are 1.5M samples and in 36%

cases data-ack are higher, 34% data-ack are lower.

Figure 18 plots data-ack to handshake ratio for local wifi/VPN

hosts and other hosts respectively. For the wifi/VPN curve there

are 562K samples and in 68% cases data-ack RTT are greater than

handshake, in 19% cases lower. For other hosts there are 1.7M sam-

ples and in 8% cases data-ack are higher, 4% data-ack are lower.

Figure 19 plots the comparison of data-ack to handshake Local

RTT ratio for Wifi and VPN hosts at beginning and throughout the

connection respectively(both curves 401K samples from the same

connections). The inflation at the beginning of the connection (in

48% cases data-ack RTT is greater, 29% data-ack is smaller than

handshake) is much smaller than thoughout the connection (in 67%

cases data-ack is greater, 19% data-ack is smaller), which suggests

that local queueing delay in the network middle-box is the main

reason for these local RTT inflation.

Table 11: OS distribution of local Wifi clients with flows without stretch ACKs
Flows Win 7 or 8 Win Others Mac 10.X/newer Mac Others Linux 2.X Linux 3.X Unkwn

Busier Period 1.1M 38% 5% 18% 27% 9% 2% <0.1%

Quieter Period 223K 36% 3% 14% 30% 1% 15% <0.1%

Table 12: OS Distribution of local clients behind wifi/VPN middle-boxes

Flows Win 7 or 8 Win Others Mac 10.X/newer Mac Others Linux 2.X Linux 3.X Unkwn

Local Wifi Clients 1.2M 44% 3% 22% 20% 1% 9% <1%

Local VPN Clients 458K 57% 6% 22% 14% <0.1% <0.1% 1%

Local Wifi Clients without timestamp 582K 92% 7% <0.1% <0.1% <0.1% <0.1% <1%

Local VPN Clients without timestamp 288K 90% 10% 0 0 0 0 <1%

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Ratio

C
D

F

Beginning
Throughout

Figure 19: Data-ack to handshake local RTT ratio

for Wifi/VPN hosts at beginning and throughout

the connection

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Ratio

C
D

F

Local ACK
Remote ACK

Figure 20: Stretch ACK frequency in longer con-

nections

7.4 Stretch ACK prevelance of longer connec-
tion

If the filtering on network to be responsible for the cause of

stretch ack, then it is understandable that flows with more data

packets are more likely to give opportunity for the other side to

use stretch ack. To see if this is the truth, we consider flows with

more than 20 data packets, and plot the distribution of fractions

of greater-than-2 stretches (out of all stretches) in each direction if

we see at least 20 data packets from the other side. As show in

Figure 20, we in total inspect 997K local flows and 357K remote

flows, and it shows that 35% local and 31% remote relatively long

flows are using stretch ack.

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

RTT

C
D

F

CWRU
CSU
CAIDA

Figure 21: Per-connection Distribution of Hand-

shake RTT Estimates

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Ratio

C
D

F

light speed
2/3 light speed

Figure 22: Per-flow propagation-delay-to-RTT ra-

tio

7.5 Actual RTT distribution and Propagation
delay

We turn to actual network delays exhibited in all campus com-

munications and backbone links. As handshake estimate is appli-

cable to both bidirectional and one-direction flows, and could gen-

erate total RTTs from most connections, Figure 21 plots the CDF

of RTT estimates using handshake methods for all the three traces,

representing 9.1M(CWRU), 1.9M(CSU) and 8.7M(CAIDA) con-

nections respectively. It can be seen that for all traces, mroe than

95% connections experienced a handshake RTT of less than 500ms.

While the host from campus experience a much smaller RTT than

backbone links, there is also a significant difference between dif-

ferent campuses. This highlights the difficulty in RTT comparison.

To see if the above finding is due to inherently remote com-

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Ratio

C
D

F

light speed
2/3 light speed

Figure 23: Per-host-pair propagation-delay-to-

RTT ratio

Figure 24: Per-flow Relationship between

propagation-delay-to-RTT ratio and minimum

RTT

munication, we consider routing stretch, i.e., the difference of our

RTTs from the theoretical minimum as represented by the straight-

line speed-of-light delay between the geographical locations of

the end-points (determined from IP addresses using the Maxmind

GeoIP database). As the the propagation speed depends on the

physical medium of the link and could drop to 2/3 of the initial

value, we consider both boundary propagation speeds in the study.

Figure 22 and Figure 23 show the ratio of ideal-RTT-to-observed-

RTT ratio per flow (8.9M samples) and per host-pair(1.2M sam-

ples) respectively by using the minimum RTT value observed in

each flow and host-pair of our campus network, i.e. CWRU trace.

In all cases, for more than 70% of all the samples physical propaga-

tion only accounts for less than half the overall delay, which offers

plenty of untapped opportunity for network optimization5. We also

plots the relationship between the propagation-to-RTT-delay ratio

and actual RTT. Figure 24 plots the distribution of per-connection

propagation-delay-to-RTT ratio and the correspondence minimum

RTT measured from that connection using 2/3 of the light speed.

8. REFERENCES

[1] The caida ucsd statistical information for the caida

anonymized internet traces.

http://www.caida.org/data/passive/passive trace statistics.xml.

Accessed: 2015-01-20.

[2] Usc/isi ant datasets and dataset formats.

http://www.isi.edu/ant/traces/. Accessed: 2015-01-20.

5There are exception ratios (greater than 1) in Figure 22 and Fig-
ure 23, which we attribute to network NATs and inaccuracies in the
GeoIP database.

[3] J. Aikat, J. Kaur, F. D. Smith, and K. Jeffay. Variability in

TCP round-trip times. In 3rd ACM SIGCOMM Conf. on

Internet measurement, pages 279–284, 2003.

[4] M. Allman. A Web Server’s View of the Transport Layer.

Computer Communications Review, 30(5):10–20, Oct. 2000.

[5] M. Allman, V. Paxson, and E. Blanton. TCP congestion

control. RFC 5681, 2009.

[6] H. Balakrishnan, V. N. Padmanabhan, and R. H. Katz. The

effects of asymmetry on TCP performance. Mobile Networks

and applications, 4(3):219–241, 1999.

[7] G. Fairhurst, N. K. G. Samaraweera, M. Sooriyabandara,

H. Harun, K. Hodson, and R. Donadio. Performance issues

in asymmetric TCP service provision using broadband

satellite. Communications, IEE Proceedings-, 148(2):95–99,

Apr 2001.

[8] S. Floyd, A. Arcia, D. Ros, and J. Iyengar. Adding

acknowledgement congestion control to TCP. RFC 5690,

2010.

[9] J. Huang, F. Qian, Y. Guo, Y. Zhou, Q. Xu, Z. M. Mao,

S. Sen, and O. Spatscheck. An in-depth study of LTE: effect

of network protocol and application behavior on

performance. In ACM SIGCOMM Conf., pages 363–374,

2013.

[10] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and

D. Towsley. Inferring tcp connection characteristics through

passive measurements. In INFOCOM, 2004.

[11] H. Jiang and C. Dovrolis. Passive estimation of TCP

round-trip times. ACM SIGCOMM Computer

Communication Review, 32(3):75–88, 2002.

[12] M. Kühlewind, S. Neuner, and B. Trammell. On the state of

ECN and TCP options on the internet. In Passive and Active

Measurement, pages 135–144. Springer, 2013.

[13] A. Medina, M. Allman, and S. Floyd. Measuring the

evolution of transport protocols in the internet. ACM

SIGCOMM Computer Communication Review, 35(2):37–52,

2005.

[14] I. T. Ming-Chit, D. Jinsong, and W. Wang. Improving TCP

performance over asymmetric networks. ACM SIGCOMM

Computer Communication Review, 30(3):45–54, 2000.

[15] V. E. Paxson. Measurements and analysis of end-to-end

Internet dynamics. PhD thesis, University of California,

Berkeley, 1997.

[16] L. Qian and B. E. Carpenter. Some observations on

individual tcp flows behavior in network traffic traces. In

11th Int. Symp. on Comm. and Inf. Technologies (ISCIT),

2011.

[17] S. D. Strowes. Passively measuring TCP round-trip times.

CACM, 56(10):57–64, 2013.

[18] B. Veal, K. Li, and D. Lowenthal. New methods for passive

estimation of tcp round-trip times. In Passive and Active

Network Measurement, pages 121–134, 2005.

