
Assessing DNS Vulnerability to Record Injection⋆

Kyle Schomp†, Tom Callahan†, Michael Rabinovich†, Mark Allman‡

†Case Western Reserve University, Cleveland, OH, USA
‡International Computer Science Institute, Berkeley, CA, USA

Abstract. The Domain Name System (DNS) is a critical component of the In-
ternet infrastructure as it maps human-readable names to IPaddresses. Injecting
fraudulent mappings allows an attacker to divert users fromintended destinations
to those of an attacker’s choosing. In this paper, we measurethe Internet’s vul-
nerability to DNS record injection attacks—including a newattack we uncover.
We find that record injection vulnerabilities are fairly common—even years after
some of them were first uncovered.

Keywords: Domain Name System (DNS), Measurement, Security, Cache Poisoning

1 Introduction

The Domain Name System (DNS) is a critical component of the Internet infrastruc-
ture. DNS maps human-readable hostnames (e.g., “amazon.com”) to IP addresses and
is involved to some degree in most Internet transactions. Given the foundational role
of DNS in today’s Internet, DNS security has a profound effect on the overall security,
trust, and operability of the network. In particular, substituting an authoritative map-
ping with a fraudulent record allows an attacker to divert user access to nefarious hosts
with implications ranging from replacing the original content and phishing attacks to
installing malware on client hosts. In this paper, we measure the prevalence of DNS
vulnerabilities to attacks designed to substitute the authoritative mapping. Collectively,
these attacks are known as “record injection” attacks. We consider known attacks and a
new vulnerability we uncover, as well as the extent of the adoption of suggested best-
practice defenses.

Fraudulent hostname-to-IP address mappings originate in two places: (i) a compo-
nent in the hostname resolution machinery (e.g., a local DNSresolver) or (ii) a man-in-
the-middle that can monitor DNS transactions and either change or inject responses. A
variant of the first is a cache poisoning attack whereby an attacker populates the cache
of a DNS resolver with an illegitimate record, which the resolver then uses to satisfy
subsequent requests for the given hostname.

Cache poisoning attacks generally rely on open DNS resolvers that will act upon
DNS requests from arbitrary Internet hosts. Open resolvershave long been a known
security issue. However, the prevalence of such resolvers is increasing—from 15M in
2010 [11] to 30M in 2013 [14]. While not all open resolvers arevulnerable, their in-
creasing numbers provide a larger attack surface that we must understand. Moreover, as

⋆ Work supported in part by NSF grants CNS-0831821, CNS-1213157 and CNS-1237265.



we discuss below, open resolvers often give attackers a vector to attack closed resolvers,
which further weakens the overall system.

The Internet engineering community has spent considerableenergy fortifying DNS
with DNSSEC [1] which cryptographically protects the integrity of the authoritative
bindings set by the holder of a name. While DNSSEC is the long-term security strategy
for the DNS, deployment is currently low—with only about 1% of the resolvers vali-
dating DNSSEC records [6,9]. Given the low DNSSEC deployment, understanding the
security landscape of DNS without DNSSEC remains of critical importance.

Unfortunately, assessing the extent of security threats within the DNS infrastructure
is anything but straightforward. The path a DNS transactiontakes through a maze of
intermediate resolvers is often both complex and hidden from external view. This paper
develops techniques to attribute vulnerabilities to various actors in this infrastructure.
Our key observations are: (i) that some closed resolvers are still vulnerable to cache
poisoning, (ii) while vulnerability mitigations exist, deployment is notubiquitous, and
(iii) 7–9% of home networks are vulnerable to a simple new cache poisoning attack
we uncover. Our general finding is that DNS security soft spots are not rare—even
for vulnerabilities that have been known for years. Finally, note that our datasets are
available for community use [13].

2 Terminology and Methodology

The architecture of the client-side DNS resolution infrastructure varies across
providers—which we discuss in depth in companion work [14].Here we provide a
short overview of our terminology. Generally, client systems do not query authorita-
tive DNS servers (“ADNS”) directly, but rather rely on a recursive resolver, which we
denote “RDNS”, to handle these interactions and return the final address mapping. An
RDNS may optionally leverage additional RDNS servers in thelookup process. We de-
note open resolvers that will answer arbitrary requests as “ODNS”. We often find that
ODNS resolvers do not perform recursive lookup themselves,but rather simply for-
ward requests to an RDNS. We denote a forwarding ODNS as an “FDNS”. The RDNS
querying our ADNS for an FDNS is an indirect RDNS, which we denote “RDNSi”.

Our basic methodology for studying the vulnerability of theclient-side DNS in-
frastructure is to probe the Internet in search of ODNS resolvers, similar to previous
efforts [5, 14]. We register a domain and deploy an ADNS for this domain.1 We then
use approximately 100 PlanetLab [3] nodes to randomly scan the IP address space with
DNS requests for various hostnames within our domain. We embed the IP address of the
target of our scan in the hostname request. Therefore, the queries arriving at our ADNS
illuminate the set of ODNS servers. Additionally, the ADNS can use the source IP ad-
dress to discover the set of RDNS resolvers. Given these two pieces of information,
we can distinguish between ODNS resolvers that are themselves performing recursive
lookup from those that are merely forwarding the requests toanother resolver—i.e., the
set of FDNS servers. Table 1 provides information about the datasets we discover and

1 Note, unless otherwise stated, we always work within our ownunused namespace as to not
interfere with users’ normal activities.



Scan Begin Dur. (Days) # ODNS # RDNS
S1 2/29/12 17 1.09M 69.5K
S2 3/1/13 11 40.5K 5.3K
S3 7/19/13 12 2.31M 86.1K

Table 1. Collected Datasets

Observation RDNS
No. %

Total 69K 100%
Unclassified 12K 18%
Classified 57K 82%
Complex Trans. ID Seq. 57K 100%
Var. Ephemeral Port 48K 84%
0x20 Encoding 195 0.3%

Table 2. RDNS Characteristics

utilize in the remainder of the paper. While the general methodology we sketch here ap-
plies to all our experiments, the specifics vary across experiments as we study different
aspects of the infrastructure. The specifics are given in therelevant sections below.

Note, we return to methodological issues in§ 8. In particular, we use the techniques
we develop in the paper to address two specific issues. First,we aim to understand
whether the ODNS servers we find are actually in operational use by real users. Second,
since we do not probe the entire Internet address space, we seek to understand if our
sample is representative of the broader Internet.

3 Kaminsky’s Attack

Kaminsky [10] describes a DNS cache poisoning attack which leverages the connec-
tionless nature of typical UDP-based DNS requests to insertan NS record2 into the vic-
tim’s cache. The Kaminsky attack proceeds with the attackerA sending a large number
of requests for hostnames within a domain to be poisoned,P.com, to a victim RDNS
V in the form of queries forrandom string.P.com. A legitimate response to such re-
quests must (i) be from the ADNS forP.com, (ii) be directed to the correct ephemeral
UDP port number (the source port listed in the request message), (iii) contain the query
string from the request and (iv) use the transaction ID assigned in the request. How-
ever,A knows the query string and can readily determine and spoof the IP address
of the ADNS—leaving only checks (ii) and (iv) as protection against illegitimate re-
sponses. By sending a large number of requests with different query strings,A can then
use brute force guessing of port numbers and transaction IDsin forged replies until a
reply is accepted byV .

Mitigating the Kaminsky attack involves increasing the amount of entropy in DNS
requests such that the average cost of mounting a successfulattack is prohibitively high.
Resolvers can increase entropy by randomizing both the DNS transaction ID and the
ephemeral port number. While randomizing only the DNS transaction ID is insufficient
protection, randomizing both values is an effective strategy [10]. Another technique to
increasing entropy is “0x20 encoding” [4] in which the RDNS randomly changes the
capitalization throughout query strings. Authoritative servers should be case insensitive

2 An NS record contains the hostname of the ADNS for all hostnames within a particular do-
main. For instance, Google has an NS record that indicates the authoritative source for the
binding of “news.google.com” to an IP address.



when resolving the query yet retain the capitalization in their response [12]. Hence,
checking that the capitalization in the request and response matches is another way to
decrease an attacker’s likelihood of forming an acceptableresponse.

To understand the vulnerability to the Kaminsky attack we assess the adoption of
the strategies for enhancing entropy by sending multiple requests for unique hostnames
to each ODNS. Then, in ourS1 dataset, we check successive queries from a single
RDNS at our ADNS for variation in the ephemeral port selection, DNS transaction ID,
and for the use of 0x20 encoding. Table 2 shows our results. First, our dataset does
not contain enough requests,3 to accurately characterize 12K (or 18%) of the RDNS
resolvers. For the remainder, we find that nearly all RDNS resolvers employ a complex
(presumably random) method for selecting DNS transaction IDs.4 Further, 84% of the
classified RDNS resolvers use some variation in their ephemeral port selection. That
means 9K RDNS serversuse a static ephemeral port on all transactions! Per the dis-
cussion above, both the ephemeral port and the transaction ID values must be random
to thwart attacks and therefore roughly 16% of classified RDNS servers are vulnerable
to the Kaminsky attack. Furthermore, we observe RDNS resolvers using static source
ports in 37% of the autonomous systems in our dataset, which illuminates the breadth of
the issue. Additionally, we find that 0x20 encoding is in use by roughly 0.3% of RDNS
resolvers—showing that resolvers are generally not using this strategy for increasing
the entropy of requests.5 These results are nearly identical when only considering the
RDNSi subset of RDNS resolvers that we know to serve FDNS clients.

Finally, we note that the use ofRDNS pools (e.g., [7, 14]) serves to mitigate the
Kaminsky attack as well. Regardless of the IP address the attacker uses as entry point
into the pool, the IP address used to communicate with the ADNS is chosen according
to an algorithm unknown to the attacker. Therefore, to launch a Kaminsky attack against
an RDNS pool, the attacker must either target every RDNS in the pool simultaneously,
know how the pool distributes requests internally, or guessthe destination IP address.

4 Bailiwick Rules Violations

Bailiwick rules prevent malicious ADNS servers from inserting fraudulent records into
resolvers’ caches [2]. Under this attack, a legitimate response fromX.com also includes
an “additional answers” section that supplies arbitrary unrelated bindings—e.g., for
www.Y.com. To potentially save time later, a susceptible resolver adds www.Y.com

to its cache. During ourS1 scan, we test for this vulnerability by returning legitimate
responses from our domain that also include information fora non-existent google.com
subdomain.6 We then query the ODNS for the google.com subdomain and determine

3 We require at least ten transactions for the results in this paper, but in other experiments we
find the insights are not sensitive to the exact threshold.

4 We conclude that resolvers do not use static, incrementing,or decrementing transactions IDs
by observing a high standard deviation in the transaction IDsequence.

5 Our results may be a lower bound on the adoption of 0x20 encoding as at least one major
RDNS pool—Google Public DNS [8]—uses 0x20 encoding on a white-listed set of domains.
Unfortunately, we have no information on the prevalence of white-listing.

6 This will not interfere with regular Google traffic as the hostnames involved are not in use.



whether the response includes our poisoned result or an error message from Google
indicating a non-existent domain.

Preventing this attack can be accomplished through the implementation of baili-
wick rules—such as checking that any records in the “additional answers” section be-
long to the domain owned by the responding ADNS. In the most simplistic attack, we
find 675 cases where client-side DNS infrastructure readilycaches a DNS response for
a mapping we provide for a bogus google.com subdomain. Furthermore, we observe
231 cases where the resolvers cache any additional record from a response to an MX
query (these are queries for the mail server for the domain inquestion) and 203 cases
where the resolver caches any additional CNAME-type record. Overall, there are a total
of 749 cases where we find a resolver falling prey to at least one of these record injection
attacks. While a relatively small number, these RDNS resolvers are completely exposed
to crude poisoning by malicious ADNS servers, with no guessing involved.

5 Preplay Attack

The Kaminsky attack requires an attacker to forge an acceptable DNS response. How-
ever, in the course of our investigation we determined that FDNS servers were vulnera-
ble to a previously unknown injection attack. While FDNS servers do not themselves re-
cursively look up mappings, they often do have caches of previous lookups. The FDNS
servers populate these caches with the responses from upstream RDNS resolvers. In
some cases we find that FDNS servers fail to validate the DNS responses. This leaves
these FDNS servers vulnerable to the crudest form of cache injection: a “preplay” attack
whereby an attacker sends a request to a victim FDNS and then,before the legitimate
response comes back, the attacker answers the request with afraudulent response. The
FDNS will then forward the fake response to the originator and cache the result. An
FDNS that (i) forwards requests with a new random ephemeral port number and DNS
transaction ID and (ii) verifies these and the upstream RDNS’ IP address on returning
responses would be protected against the preplay attack. Such protections would reduce
an attacker to guessing a variety of values in the short amount of time before the legiti-
mate response from the RDNS arrives. However, we find a non-trivial number of FDNS
servers simply forward on the packets received and/or do notverify the values on DNS
responses. This leaves the door open for a crude attack whereby an attacker does not
have to guess these values, but can just use those from the original request.

To assess the extent of this vulnerability during ourS2 andS3 experiments, we
send a request for a hostname within our domain to each ODNS and immediately issue
a fraudulent response containing IP addressX . On the other hand, our ADNS responds
to these requests with a binding to IP addressY . The probing host issues a subsequent
request and determines which IP address is in the ODNS’ cache.

In its most primitive form, the preplay attack does not involve spoofing or guessing
to make the fraudulent response appear legitimate—we use the ephemeral port number
and DNS transaction ID from the original request. Additionally, we use the probing
machine’s genuine IP address. We use variants of this attackthat attempt to leverage
information arriving at the ADNS (e.g., the RDNS server’s IPaddress) to craft DNS
responses that look more legitimate. However, to date our variants do not point to higher



vulnerability rates. Finally, while we use the DNS default port 53 as the ephemeral port
in the results herein, using a random ephemeral port number shows similar results.

We first test the preplay attack during theS2 scan. Unlike our other scans which
were performed from PlanetLab nodes, theS2 scan leverages a single node in a resi-
dential network.7 For each ODNS we attempt each attack variant three times to reduce
any impact from packet loss. Of the roughly 41K ODNS servers we test, we find 3.5K
(or 8.6%) to be vulnerable to the preplay attack. Therefore,we conclude that ODNS
servers are failing to take three simple measures to thwart this attack: (i) use a new and
random DNS transaction ID, (ii) verify that the source IP address in DNS responses
matches the IP address of the upstream RDNS, and (iii) verify the destination port
number on responses. The latter is particularly intriguingas it suggests these devices
are not running a traditional protocol stack in which packets arriving on an unbound
port number are dropped. Given we find no increase in the success rate with our at-
tempts at spoofing, we return to PlanetLab with theS3 scan to assess the vulnerability
at a larger scale. Of the 2.3M ODNS servers we test, we find 170K(or 7.3%) to be
vulnerable to the preplay attack.

6 DNS Message Rewriting

We now examine DNS record modification by network operators.Depending on one’s
perspective this may or may not be considered a security issue. However, we believe
that responses deviating from the authoritative intent areat least worth understanding.
NXDOMAIN Rewriting: A DNS request for a non-existent name evokes a response
with the “NXDOMAIN” return code. Previous anecdotal observations indicate that such
responses are prone to interception and replacement with valid addresses by some ISPs
and DNS providers. This practice is generally attempting tomonetize the unfulfilled re-
quest (e.g., by trying to sell the domain or sending a user to asimilar page in an attempt
to meet their intent). In ourS1 experiment, we send a request to each ODNS that causes
our ADNS to return an NXDOMAIN message. We find that roughly 258K (23.7%)
of ODNS servers are subject to NXDOMAIN rewriting as we receive an address in
response to our invalid query, which is close to previous measurements [15]8 To under-
stand who may be responsible for rewriting, we analyze the set of RDNS resolvers on
the path of rewritten messages. We determine an RDNS is a probable rewriter if more
than half the open resolvers served by the RDNS experience rewriting. We find over
100 ISPs/DNS providers that we suspect of performing rewriting by default, including
Qwest/Centurylink, OpenDNS, Frontier, Rogers, Airtel, RoadRunner, and TE Data.
Search Engine Hijacking: Previous work shows several ISPs alter DNS responses
from major search engines in an effort to place a proxy between the user and the search
results [15–17]. This allows the ISPs to monetize users’ searching (e.g., by placing ads

7 Due to some of our (unreported) tests using spoofed addresses (against PlanetLab’s AUP).
8 As a methodological note, one must be careful in selecting query strings. For instance, we

initially misclassified OpenDNS as not performing rewriting because our queries began with
dotted-quad IP addresses—a pattern OpenDNS excludes from its rewriting process. A second
pass with a different query string correctly classifies OpenDNS as a rewriter. Thus, our findings
are conservative due to other potential edge cases.



on the results). Since our strategy allows us to assess ISPs’RDNS resolvers, we inves-
tigate this behavior and find no evidence the practice is now in widespread use. Still,
we find 18 smaller regional ISPs that appear to rewrite DNS responses for google.com.

7 Implications

Duration of Record Injection: The injection attacks we discuss above can only be
successful when part of the DNS infrastructure caches a fraudulent record and then
returns that record in response to a normal user request. An assessment of the caches
of FDNS and RDNS resolvers [14] finds (i) little evidence of cache evictions based
on capacity limits and (ii) that records with long TTLs—which can be set in injected
records—stay in the cache for at least one day in 60% of the RDNSi resolvers and 50%
of the FDNS servers. This shows the impact of record injection can be long-lived.
Indirect Attacks: It is not enough for RDNS resolvers to act on requests only from
authorized devices as these devices are in turn commonly globally accessible and open
RDNS resolvers to indirect attacks. The large and growing set—doubling to over 30M
in the last three years—of open resolvers [14] represents anattack vector to otherwise
inaccessible RDNS resolvers. For instance, we find that 62% of the RDNS resolvers in
theS1 dataset do not answer external queries and yet we are still able to probe these
servers. Further, using ODNS servers to indirectly attack other portions of the DNS
ecosystem provides a layer of obfuscation that helps attackers escape attribution.
Phantom DNS Records: A class of denial-of-service attacks relies on placing a large
DNS record in a cache (at an RDNS, say) and then spoofing requests that will cause
the record to be sent to some victim. This can both hide the actual origin of the attack,
as well as amplify (in volume) an attackers traffic by using records that are larger than
requests. To date this requires attackers to register a domain and serve large records
to insert them into the various caches or find an ADNS that is already serving large
records. However, using record injection techniques, an attacker does not need to be
bound to any centralized infrastructure. In fact, any domain could be readily inserted in
the cache and then used in a subsequent attack. This leaves less of a paper trail that can
potentially trace back to an attacker. The preplay attack allows such record injection
into millions of devices with trivial effort.

8 Context

We now return to contextual issues surrounding our measurements, as sketched in§ 2.
Are Open Resolvers Used? We first turn to the question of whether ODNS servers
in fact serve users or are active, yet unused artifacts. Thisbears directly on whether
the preplay attack represents a real problem. First, in companion work we use several
criteria—including scraping any present HTTP content on the ODNS, consulting black-
lists of residential hosts and observing UDP protocol behavior—to determine that “78%
[of ODNS servers] are likely residential networking devices” [14]. Using the same cri-
teria against the FDNS servers in theS3 scan, we find that 91% of the FDNS servers
that are vulnerable to the preplay attack are likely residential network devices. While



this result does not speak directly to use, our experience isthat these devices act as DNS
forwarders for devices within homes and therefore we believe this suggests actual use.

Additionally, we seek to test directly for evidence that theFDNS servers we probe
are in use by some client population. We start by gathering round-trip time (RTT) sam-
ples for each FDNS and the corresponding RDNS. For the FDNS weuse the preplay
attack to measure the RTT by taking the time between sending afraudulent response
to the FDNS and receiving the response back from the FDNS at our client. Measuring
the RTT to the RDNS is more complicated. The process starts with the client requesting
some nameN from our ADNS. The ADNS responds with some CNAMEN ′, which the
RDNS then resolves and our ADNS returns a random addressA. The mapping between
N andA then returns to the FDNS and ultimately our client. The client then issues a
request forN ′—which will presumably be in the RDNS’ cache, but given the primitive
nature of preplay-vulnerable FDNS devices not in the FDNS’ cache. The response for
N ′ will be A when the RDNS answers the request from the cache.

After we obtain RTTs for both FDNS and RDNS, we seek to understand whether
popular web site names are in the FDNS cache as a proxy for whether the FDNS is in use
by a population of users. We therefore issue DNS requests forthe Alexa9 top 1,000 web
sites and time the responses.10 Given unreliable TTL reporting by FDNS servers [14],
we determine that a given hostname is in the FDNS cache using the time required to re-
solve the name. Since we expect individual FDNS to have diurnal variation, we perform
the lookups on each FDNS every 4 hours for one day. Our own queries will populate
the FDNS cache and therefore we must exercise care with subsequent probes lest we
wrongly conclude users employ the FDNS when it is our own probes we observe. We
mitigate this issue in two ways. First, we probe all names with an authoritative TTL of
4 hours or more only once, accounting for 415 names. Second, we inject records into
FDNS cache from our ADNS with the same TTLs as the remaining 1,585 records in
our corpus (all of which are less than 4 hours). At each 4 hour interval we check our
own records and if the FDNS incorrectly returns a record thathad an initial TTL ofx
we exclude all but the initial query for popular names with aninitial TTL of at leastx.

We determine that a given hostname is in the FDNS cache if the time required to
resolve the name during ourS3 scan does not exceed the median FDNS RTT. Figure 1
shows the distribution of the fraction of FDNS servers that hold a given number of
records in their cache. The “All” line shows the distribution for all preplay-vulnerable
FDNS servers. We find 81% of the FDNS servers have at least one popular name in
their cache at some point during the experiment. However, the distribution also shows
that over 30% of the FDNS servers have at least 100 hostnames in the cache. This seems
unlikely and we believe these represent cases where our heuristic is not properly delin-
eating between the FDNS and RDNS cache. Therefore, in an effort to better delineate
the FDNS and RDNS caches we plot the subset of FDNS servers where the maximum
FDNS RTT is at least 10 msec less than the minimum RDNS RTT, which we denote as
“Far from RDNS”. This subset encompasses 8.4K FDNS servers and we do see the tail
of the distribution fall away. Within this subset, 53% of theFDNS servers are in use.

9 www.alexa.com
10 Note, we augment the list of sites by prepending each web sitename from Alexa with

“www”—which is not included in the list—and we therefore probe for 2,000 names.



0 1 10 100 2K
0

0.2

0.4

0.6

0.8

1

Records in Cache

C
C

D
F

 

 

All
Far from RDNS

Fig. 1. Distribution of popular web-
sites in FDNS server caches.

1 2 3 4 5 6 7 8 9 10

0.05

0.1

0.15

0.2

Snapshots in chronological order

 

 

FDNS Vulnerable to Preplay

RDNS Vulnerable to Kaminsky

Fig. 2. Vulnerability frequency at
snapshots during discovery.

Additionally, we examine the subset of FDNS servers that areaccessible for our en-
tire 24 hour experiment. In this subset, we find more in-use FDNS servers—90% of all
FDNS servers and 68% of FDNS servers that are far from their corresponding RDNS
resolver. We exclude the 24 hour lines from the graph for readability.

Note, our heuristic provides a lower bound on the number of in-use FDNS servers
since we only measure a fraction of the 24 hour period. Indeed, the median TTL for
the popular names is 10 minutes. Assuming the median TTL, an FDNS that enforces
the TTL and an FDNS available for 24 hours, our strategy provides a one-hour window
into the FDNS’ cache—or, just over 4% of the day. Further, ourextensive probing of
the FDNS’ cache may actually overflow the cache thus pushing out records added via
use. Therefore, we believe that many of the FDNS servers thatdo not show as in use
are in fact in use, but that short TTLs and our coarse and extensive probing conspire to
hide the use. Our general conclusion is that the FDNS serverswe find are in fact in use
by people during their normal browsing.
Representativeness: Finally, we return to the issue of representativeness of ourresults
as mentioned in§ 2. Since our scans do not encompass the entire Internet our insights
could be skewed by our scanning methodology. To check this wedivide our scans into
ten chronological slices and derive the cumulative vulnerability rate at each slice for the
Kaminsky and preplay attacks. The slices are equal in size interms of the number of
vulnerable RDNS servers and vulnerable ODNS servers for theKaminsky and preplay
vulnerabilities, respectively. The cumulative vulnerability rate should plateau once the
dataset is typical of the broader population. Figure 2 showsthe cumulative vulnerability
rate across the ten slices for both attacks. The FDNS vulnerability rate reaches steady
state immediately, illustrating that we are in fact capturing a representative sample of
FDNS servers with random sampling of IP addresses—which is not surprising.

On the other hand, the figure shows that for the Kaminsky attack, the vulnerability
rate increases as the scan progresses, indicating that the RDNS resolvers we discover
at the beginning of the scan areless vulnerable to the Kaminsky attack than those we
discover later in the scan. While we choose ODNS servers at random, we only indi-
rectly discover RDNS resolvers. In particular, the probability of discovering an RDNS
resolver is directly proportional to the size of the FDNS population that it serves. Thus,
as the scan proceeds the discovery rate decreases and we find smaller scale RDNS re-
solvers. We believe these results sum to indicate that busier RDNS servers are better



maintained and less vulnerable to the Kaminsky attack. The plot also indicates that our
estimate of the Kaminsky vulnerability rate is a lower bound.

9 Conclusion

In this study, we assess the susceptibility of the client-side DNS infrastructure to record
injection attacks. We find that many open resolvers are stillvulnerable to record injec-
tion. Further, these devices provide a back door to attack shared DNS infrastructure.
Through active probing, we assess the extent of known recordinjection threats and the
deployment of known protective techniques. We further uncover and measure a new
attack vector—the preplay attack. We find 7–9% of the open DNSresolvers are vul-
nerable to the preplay attack and 16% of recursive DNS servers are vulnerable to the
Kaminsky attack. Therefore, we conclude that the client-side DNS ecosystem is non-
trivially vulnerable to record injection attacks.

References

1. R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. DNS Security Introduction and
Requirements.RFC 4033, 2005.

2. D. Bernstein.http://cr.yp.to/djbdns/notes.html.
3. B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak, and M. Bowman.

PlanetLab: An Overlay Testbed for Broad-Coverage Services. ACM CCR, 33(3), 2003.
4. D. Dagon, M. Antonakakis, P. Vixie, T. Jinmei, and W. Lee. Increased DNS Forgery Resis-

tance Through 0x20-bit Encoding: Security via Leet Queries. In ACM CCS, 2008.
5. D. Dagon, N. Provos, C. Lee, and W. Lee. Corrupted DNS Resolution Paths: The Rise of a

Malicious Resolution Authority. InNDSS, 2008.
6. K. Fujiwara. Number of Possible DNSSEC Validators Seen atjp. In DNS-OARC Workshop,

2012.
7. Google Public DNS. Performance Benefits.https://developers.google.com/

speed/public-dns/docs/performance.
8. Google Public DNS. Security Benefits. https://developers.google.com/

speed/public-dns/docs/security.
9. O. Gudmundsson and S. Crocker. Observing DNSSEC Validation in the Wild. InWorkshop

on Securing and Trusting Internet Names (SATIN), 2011.
10. D. Kaminsky. Black Ops 2008: It’s the End of the Cache As WeKnow It. Black Hat USA,

2008.
11. D. Leonard and D. Loguinov. Demystifying Service Discovery: Implementing an Internet-

Wide Scanner. InACM Internet Measurement Conference, 2010.
12. P. Mockapetris. Domain Names Implementation and Specification.RFC 1035, 1987.
13. K. Schomp, T. Callahan, M. Rabinovich, and M. Allman. Client-Side DNS Infrastructure

Datasets.http://dns-scans.eecs.cwru.edu/.
14. K. Schomp, T. Callahan, M. Rabinovich, and M. Allman. On Measuring the Client-Side

DNS Infrastructure. InACM Internet Measurement Conference, 2013.
15. N. Weaver, C. Kreibich, B. Nechaev, and V. Paxson. Implications of Netalyzr’s DNS Mea-

surements. InWorkshop on Securing and Trusting Internet Names (SATIN), 2011.
16. N. Weaver, C. Kreibich, and V. Paxson. Redirecting DNS for Ads and Profit. InWorkshop

on Free and Open Comm. on the Internet, 2011.
17. C. Zhang, C. Huang, K. Ross, D. Maltz, and J. Li. Inflight Modifications of Content: Who

Are The Culprits? InLEET, 2011.


