Assessing DNS Vulner ability to Record I njection*

Kyle Schomp, Tom Callahah, Michael Rabinovich, Mark Allmant

fCase Western Reserve University, Cleveland, OH, USA
fInternational Computer Science Institute, Berkeley, CAAU

Abstract. The Domain Name System (DNS) is a critical component of the In
ternet infrastructure as it maps human-readable namesaddfesses. Injecting
fraudulent mappings allows an attacker to divert users frdended destinations
to those of an attacker’'s choosing. In this paper, we meakerénternet’s vul-
nerability to DNS record injection attacks—including a nattack we uncover.
We find that record injection vulnerabilities are fairly comon—even years after
some of them were first uncovered.

Keywords: Domain Name System (DNS), Measurement, Security, CactsoRioig

1 Introduction

The Domain Name System (DNS) is a critical component of therfret infrastruc-
ture. DNS maps human-readable hostnames (e.g., “amanaf).toIP addresses and
is involved to some degree in most Internet transactiongeithe foundational role
of DNS in today’s Internet, DNS security has a profound dftecthe overall security,
trust, and operability of the network. In particular, sutosing an authoritative map-
ping with a fraudulent record allows an attacker to divedrieccess to nefarious hosts
with implications ranging from replacing the original cent and phishing attacks to
installing malware on client hosts. In this paper, we meashe prevalence of DNS
vulnerabilities to attacks designed to substitute thea@ittitive mapping. Collectively,
these attacks are known as “record injection” attacks. Wisider known attacks and a
new vulnerability we uncover, as well as the extent of thepgido of suggested best-
practice defenses.

Fraudulent hostname-to-IP address mappings originatearptaces: {) a compo-
nent in the hostname resolution machinery (e.g., a local Bds8lver) or {i) a man-in-
the-middle that can monitor DNS transactions and eithengba®r inject responses. A
variant of the first is a cache poisoning attack whereby atkér populates the cache
of a DNS resolver with an illegitimate record, which the fdgsothen uses to satisfy
subsequent requests for the given hostname.

Cache poisoning attacks generally rely on open DNS resolbat will act upon
DNS requests from arbitrary Internet hosts. Open resolvave long been a known
security issue. However, the prevalence of such resolgdarereasing—from 15M in
2010 [11] to 30M in 2013 [14]. While not all open resolvers ategnerable, their in-
creasing numbers provide a larger attack surface that weundsrstand. Moreover, as

* Work supported in part by NSF grants CNS-0831821, CNS-1212hd CNS-1237265.

we discuss below, open resolvers often give attackers amecattack closed resolvers,
which further weakens the overall system.

The Internet engineering community has spent consideead@degy fortifying DNS
with DNSSEC [1] which cryptographically protects the intigg of the authoritative
bindings set by the holder of a name. While DNSSEC is the kengtsecurity strategy
for the DNS, deployment is currently low—uwith only about 1%ctloe resolvers vali-
dating DNSSEC records [6, 9]. Given the low DNSSEC deploytmerderstanding the
security landscape of DNS without DNSSEC remains of cllifio@ortance.

Unfortunately, assessing the extent of security threatsimihe DNS infrastructure
is anything but straightforward. The path a DNS transadtaies through a maze of
intermediate resolvers is often both complex and hiddem fegternal view. This paper
develops techniques to attribute vulnerabilities to wasiactors in this infrastructure.
Our key observations aret)(that some closed resolvers are still vulnerable to cache
poisoning, {7) while vulnerability mitigations exist, deployment is ngtiquitous, and
(i11) 7-9% of home networks are vulnerable to a simple new caclspiog attack
we uncover. Our general finding is that DNS security soft soe not rare—even
for vulnerabilities that have been known for years. Finallgte that our datasets are
available for community use [13].

2 Terminology and M ethodology

The architecture of the client-side DNS resolution infrasture varies across
providers—which we discuss in depth in companion work [Hére we provide a
short overview of our terminology. Generally, client systedo not query authorita-
tive DNS servers ("ADNS”) directly, but rather rely on a resiwre resolver, which we
denote “RDNS”, to handle these interactions and return tre# ddress mapping. An
RDNS may optionally leverage additional RDNS servers indlo&up process. We de-
note open resolvers that will answer arbitrary requestSOi3NS”. We often find that
ODNS resolvers do not perform recursive lookup themselbasrather simply for-
ward requests to an RDNS. We denote a forwarding ODNS as aNSDrhe RDNS
querying our ADNS for an FDNS is an indirect RDNS, which we aleri'RDNS”.

Our basic methodology for studying the vulnerability of t#lent-side DNS in-
frastructure is to probe the Internet in search of ODNS xege| similar to previous
efforts [5, 14]. We register a domain and deploy an ADNS fis ttomain® We then
use approximately 100 PlanetLab [3] nodes to randomly duaift address space with
DNS requests for various hostnames within our domain. Weeeittte IP address of the
target of our scan in the hostname request. Therefore, t@eguarriving at our ADNS
illuminate the set of ODNS servers. Additionally, the ADN&haise the source IP ad-
dress to discover the set of RDNS resolvers. Given these teeep of information,
we can distinguish between ODNS resolvers that are theesglerforming recursive
lookup from those that are merely forwarding the requesémtither resolver—i.e., the
set of FDNS servers. Table 1 provides information about #taskts we discover and

! Note, unless otherwise stated, we always work within our awansed namespace as to not
interfere with users’ normal activities.

Observation RDNS
No. %
Scan | Begin Dur. (Days) | # ODNS #RDNS Total 69K 100%
S1 |2/29/12 17 1.09M 69.5K Unclassified 12K 18%
Sa | 3/1/13 11 40.5K 5.3K Classified 57K 82%
Ss |7/19/13 12 2.31M 86.1K Complex Trans. ID Seq. 57K 100%
Table 1. Collected Datasets Var. Ephemeral Port 48K 84%
0x20 Encoding 195 0.3%

Table 2. RDNS Characteristics

utilize in the remainder of the paper. While the general métthogy we sketch here ap-
plies to all our experiments, the specifics vary across éxysts as we study different
aspects of the infrastructure. The specifics are given inglevant sections below.

Note, we return to methodological issues . In particular, we use the techniques
we develop in the paper to address two specific issues. Riesgim to understand
whether the ODNS servers we find are actually in operatiosgby real users. Second,
since we do not probe the entire Internet address space,ekesenderstand if our
sample is representative of the broader Internet.

3 Kaminsky’s Attack

Kaminsky [10] describes a DNS cache poisoning attack wheekrages the connec-
tionless nature of typical UDP-based DNS requests to imseNS recoréinto the vic-
tim’s cache. The Kaminsky attack proceeds with the attadksending a large number
of requests for hostnames within a domain to be poisoRa@;n, to a victim RDNS
V in the form of queries forandom_string.P.com. A legitimate response to such re-
quests must:§ be from the ADNS forP.com, (ii) be directed to the correct ephemeral
UDP port number (the source port listed in the request me3sg@g) contain the query
string from the request andu) use the transaction ID assigned in the request. How-
ever, A knows the query string and can readily determine and spaofRhaddress
of the ADNS—Ieaving only checkgi#) and (v) as protection against illegitimate re-
sponses. By sending a large number of requests with differeary stringsA can then
use brute force guessing of port numbers and transactioimlBsged replies until a
reply is accepted by

Mitigating the Kaminsky attack involves increasing the amioof entropy in DNS
requests such that the average cost of mounting a succatiaftk is prohibitively high.
Resolvers can increase entropy by randomizing both the Daf&action ID and the
ephemeral port number. While randomizing only the DNS tatien ID is insufficient
protection, randomizing both values is an effective stga{d0]. Another technique to
increasing entropy is “0x20 encoding” [4] in which the RDN&hdomly changes the
capitalization throughout query strings. Authoritatiee\ers should be case insensitive

2 An NS record contains the hostname of the ADNS for all hostsamithin a particular do-
main. For instance, Google has an NS record that indicateadthoritative source for the
binding of “news.google.com” to an IP address.

when resolving the query yet retain the capitalization igirthesponse [12]. Hence,
checking that the capitalization in the request and resparsches is another way to
decrease an attacker’s likelihood of forming an acceptasiponse.

To understand the vulnerability to the Kaminsky attack weeas the adoption of
the strategies for enhancing entropy by sending multigleests for unique hostnames
to each ODNS. Then, in ou$; dataset, we check successive queries from a single
RDNS at our ADNS for variation in the ephemeral port selattiDNS transaction ID,
and for the use of 0x20 encoding. Table 2 shows our resultst, Eiur dataset does
not contain enough requests$p accurately characterize 12K (or 18%) of the RDNS
resolvers. For the remainder, we find that nearly all RDNSIvess employ a complex
(presumably random) method for selecting DNS transacts{ IFurther, 84% of the
classified RDNS resolvers use some variation in their epharpert selection. That
means 9K RDNS serverse a static ephemeral port on all transactions! Per the dis-
cussion above, both the ephemeral port and the transa&ligalies must be random
to thwart attacks and therefore roughly 16% of classified BR¥rvers are vulnerable
to the Kaminsky attack. Furthermore, we observe RDNS resslusing static source
ports in 37% of the autonomous systems in our dataset, wihichinates the breadth of
the issue. Additionally, we find that 0x20 encoding is in ugedughly 0.3% of RDNS
resolvers—showing that resolvers are generally not ugirgstrategy for increasing
the entropy of requestsThese results are nearly identical when only consideriag th
RDNS; subset of RDNS resolvers that we know to serve FDNS clients.

Finally, we note that the use &®&DNS pools (e.g., [7, 14]) serves to mitigate the
Kaminsky attack as well. Regardless of the IP address thekatt uses as entry point
into the pool, the IP address used to communicate with the 83\hosen according
to an algorithm unknown to the attacker. Therefore, to laumkaminsky attack against
an RDNS poaol, the attacker must either target every RDNSarptol simultaneously,
know how the pool distributes requests internally, or gilessiestination IP address.

4 Bailiwick Rules Violations

Bailiwick rules prevent malicious ADNS servers from ingegtfraudulent records into
resolvers’ caches [2]. Under this attack, a legitimate@asp fromX.com also includes
an “additional answers” section that supplies arbitraryelated bindings—e.g., for
www.Y.com. To potentially save time later, a susceptible resolvesaddw.Y.com
to its cache. During ouf; scan, we test for this vulnerability by returning legitimat
responses from our domain that also include informatiomfoon-existent google.com
subdomairf. We then query the ODNS for the google.com subdomain andrditer

3 We require at least ten transactions for the results in thigep but in other experiments we
find the insights are not sensitive to the exact threshold.

4 We conclude that resolvers do not use static, incrementindecrementing transactions 1Ds
by observing a high standard deviation in the transactiosd@uence.

5 Our results may be a lower bound on the adoption of 0x20 engods$ at least one major
RDNS pool—Google Public DNS [8]—uses 0x20 encoding on aevhited set of domains.
Unfortunately, we have no information on the prevalence lotsvlisting.

8 This will not interfere with regular Google traffic as the hmames involved are not in use.

whether the response includes our poisoned result or an message from Google
indicating a non-existent domain.

Preventing this attack can be accomplished through theeimg@htation of baili-
wick rules—such as checking that any records in the “aduti@answers” section be-
long to the domain owned by the responding ADNS. In the maspkstic attack, we
find 675 cases where client-side DNS infrastructure readibhes a DNS response for
a mapping we provide for a bogus google.com subdomain. Eurtbre, we observe
231 cases where the resolvers cache any additional reaorddiresponse to an MX
query (these are queries for the mail server for the domaguéestion) and 203 cases
where the resolver caches any additional CNAME-type redoverall, there are a total
of 749 cases where we find a resolver falling prey to at leasbdthese record injection
attacks. While a relatively small number, these RDNS resslare completely exposed
to crude poisoning by malicious ADNS servers, with no guessivolved.

5 Preplay Attack

The Kaminsky attack requires an attacker to forge an acblEpRINS response. How-
ever, in the course of our investigation we determined tE & servers were vulnera-
ble to a previously unknown injection attack. While FDNSv&gs do not themselves re-
cursively look up mappings, they often do have caches ofipusMookups. The FDNS
servers populate these caches with the responses froneapsRDNS resolvers. In
some cases we find that FDNS servers fail to validate the DNj$oreses. This leaves
these FDNS servers vulnerable to the crudest form of caghetion: a “preplay” attack
whereby an attacker sends a request to a victim FDNS and bleéore the legitimate
response comes back, the attacker answers the requestfvatidalent response. The
FDNS will then forward the fake response to the originatat aache the result. An
FDNS that () forwards requests with a new random ephemeral port numitzbD&lS
transaction ID andi() verifies these and the upstream RDNS’ IP address on returnin
responses would be protected against the preplay attack.[Batections would reduce
an attacker to guessing a variety of values in the short ahafuime before the legiti-
mate response from the RDNS arrives. However, we find a neiattnumber of FDNS
servers simply forward on the packets received and/or doerdy the values on DNS
responses. This leaves the door open for a crude attack lshareattacker does not
have to guess these values, but can just use those from geabrequest.

To assess the extent of this vulnerability during ddrand S; experiments, we
send a request for a hostname within our domain to each ODN8ranediately issue
a fraudulent response containing IP addEs©n the other hand, our ADNS responds
to these requests with a binding to IP addrEs§ he probing host issues a subsequent
request and determines which IP address is in the ODNS’ cache

In its most primitive form, the preplay attack does not imeo$poofing or guessing
to make the fraudulent response appear legitimate—we eseptihemeral port number
and DNS transaction ID from the original request. Additibnave use the probing
machine’s genuine IP address. We use variants of this atitetlattempt to leverage
information arriving at the ADNS (e.g., the RDNS server'sd@dress) to craft DNS
responses that look more legitimate. However, to date aiavis do not point to higher

vulnerability rates. Finally, while we use the DNS defautyb3 as the ephemeral port
in the results herein, using a random ephemeral port nunhiogrsssimilar results.

We first test the preplay attack during t§e scan. Unlike our other scans which
were performed from PlanetLab nodes, iescan leverages a single node in a resi-
dential networkK. For each ODNS we attempt each attack variant three timesltaee
any impact from packet loss. Of the roughly 41K ODNS servezdest, we find 3.5K
(or 8.6%) to be vulnerable to the preplay attack. Therefaee conclude that ODNS
servers are failing to take three simple measures to thivarattack: {) use a new and
random DNS transaction IDj# verify that the source IP address in DNS responses
matches the IP address of the upstream RDNS, aiijl\erify the destination port
number on responses. The latter is particularly intriguaegt suggests these devices
are not running a traditional protocol stack in which paslatriving on an unbound
port number are dropped. Given we find no increase in the saaege with our at-
tempts at spoofing, we return to PlanetLab with fiiescan to assess the vulnerability
at a larger scale. Of the 2.3M ODNS servers we test, we find 1(00K.3%) to be
vulnerable to the preplay attack.

6 DNS Message Rewriting

We now examine DNS record modification by network operafdepending on one’s
perspective this may or may not be considered a securitg.idsowever, we believe
that responses deviating from the authoritative intenaateast worth understanding.
NXDOMAIN Rewriting: A DNS request for a non-existent name evokes a response
with the “NXDOMAIN" return code. Previous anecdotal obsatiens indicate that such
responses are prone to interception and replacement withaddresses by some ISPs
and DNS providers. This practice is generally attemptingtmetize the unfulfilled re-
quest (e.g., by trying to sell the domain or sending a usestmdar page in an attempt

to meet their intent). In ou$; experiment, we send a request to each ODNS that causes
our ADNS to return an NXDOMAIN message. We find that roughh\8R523.7%)

of ODNS servers are subject to NXDOMAIN rewriting as we rgeean address in
response to our invalid query, which is close to previoussussments [15]To under-
stand who may be responsible for rewriting, we analyze thefSBDNS resolvers on

the path of rewritten messages. We determine an RDNS is apl@bewriter if more
than half the open resolvers served by the RDNS experienadtirey. We find over

100 ISPs/DNS providers that we suspect of performing revgriby default, including
Qwest/Centurylink, OpenDNS, Frontier, Rogers, AirtelgdBunner, and TE Data.
Search Engine Hijacking: Previous work shows several ISPs alter DNS responses
from major search engines in an effort to place a proxy batvlee user and the search
results [15-17]. This allows the ISPs to monetize userg’chéiag (e.g., by placing ads

" Due to some of our (unreported) tests using spoofed addréagainst PlanetLab’s AUP).

8 As a methodological note, one must be careful in selectirgrygstrings. For instance, we
initially misclassified OpenDNS as not performing rewrtinecause our queries began with
dotted-quad IP addresses—a pattern OpenDNS excludestoawiriting process. A second
pass with a different query string correctly classifies @8 as a rewriter. Thus, our findings
are conservative due to other potential edge cases.

on the results). Since our strategy allows us to assess FIPISS resolvers, we inves-
tigate this behavior and find no evidence the practice is mowidespread use. Still,
we find 18 smaller regional ISPs that appear to rewrite DNfSaeses for google.com.

7 Implications

Duration of Record Injection: The injection attacks we discuss above can only be
successful when part of the DNS infrastructure caches alfilaat record and then
returns that record in response to a normal user requestsgessment of the caches
of FDNS and RDNS resolvers [14] find$) (ittle evidence of cache evictions based
on capacity limits andi() that records with long TTLs—which can be set in injected
records—stay in the cache for at least one day in 60% of the R D@&solvers and 50%
of the FDNS servers. This shows the impact of record injaeaten be long-lived.
Indirect Attacks: It is not enough for RDNS resolvers to act on requests onlgnfro
authorized devices as these devices are in turn commonalijyaaccessible and open
RDNS resolvers to indirect attacks. The large and growirig-sl@ubling to over 30M
in the last three years—of open resolvers [14] represengdtack vector to otherwise
inaccessible RDNS resolvers. For instance, we find that 62%edRDNS resolvers in
the S; dataset do not answer external queries and yet we are déltafprobe these
servers. Further, using ODNS servers to indirectly attatieroportions of the DNS
ecosystem provides a layer of obfuscation that helps adtadscape attribution.
Phantom DNS Records: A class of denial-of-service attacks relies on placing gdar
DNS record in a cache (at an RDNS, say) and then spoofing recies will cause
the record to be sent to some victim. This can both hide thehotigin of the attack,
as well as amplify (in volume) an attackers traffic by usingprels that are larger than
requests. To date this requires attackers to register aidcand serve large records
to insert them into the various caches or find an ADNS thatrisaaly serving large
records. However, using record injection techniques, tacker does not need to be
bound to any centralized infrastructure. In fact, any dencauld be readily inserted in
the cache and then used in a subsequent attack. This leasex & paper trail that can
potentially trace back to an attacker. The preplay attaldwal such record injection
into millions of devices with trivial effort.

8 Context

We now return to contextual issues surrounding our measemtsynas sketched 2.

Are Open Resolvers Used? We first turn to the question of whether ODNS servers
in fact serve users or are active, yet unused artifacts. Bééss directly on whether
the preplay attack represents a real problem. First, in eonop work we use several
criteria—including scraping any present HTTP content @@DNS, consulting black-
lists of residential hosts and observing UDP protocol baravto determine that “78%
[of ODNS servers] are likely residential networking dewtgL4]. Using the same cri-
teria against the FDNS servers in thg scan, we find that 91% of the FDNS servers
that are vulnerable to the preplay attack are likely redidenetwork devices. While

this result does not speak directly to use, our experiertbaishese devices act as DNS
forwarders for devices within homes and therefore we belibis suggests actual use.

Additionally, we seek to test directly for evidence that EFHi@NS servers we probe
are in use by some client population. We start by gatheringdetrip time (RTT) sam-
ples for each FDNS and the corresponding RDNS. For the FDN8s&dhe preplay
attack to measure the RTT by taking the time between sendfraudulent response
to the FDNS and receiving the response back from the FDNSratli@mt. Measuring
the RTT to the RDNS is more complicated. The process statisthe client requesting
some nameV from our ADNS. The ADNS responds with some CNAME, which the
RDNS then resolves and our ADNS returns a random addte$he mapping between
N and A then returns to the FDNS and ultimately our client. The tliben issues a
request forN’—which will presumably be in the RDNS’ cache, but given thienitive
nature of preplay-vulnerable FDNS devices not in the FDN&he. The response for
N’ will be A when the RDNS answers the request from the cache.

After we obtain RTTs for both FDNS and RDNS, we seek to undesiwhether
popular web site names are in the FDNS cache as a proxy fohesibie FDNS is in use
by a population of users. We therefore issue DNS requestidaklexa top 1,000 web
sites and time the responsé@Given unreliable TTL reporting by FDNS servers [14],
we determine that a given hostname is in the FDNS cache usértgne required to re-
solve the name. Since we expectindividual FDNS to have diwariation, we perform
the lookups on each FDNS every 4 hours for one day. Our owniegueiill populate
the FDNS cache and therefore we must exercise care with guéseprobes lest we
wrongly conclude users employ the FDNS when it is our own psolse observe. We
mitigate this issue in two ways. First, we probe all names ait authoritative TTL of
4 hours or more only once, accounting for 415 names. Secoadhject records into
FDNS cache from our ADNS with the same TTLs as the remainibg§3.records in
our corpus (all of which are less than 4 hours). At each 4 haterval we check our
own records and if the FDNS incorrectly returns a record tizat an initial TTL ofx
we exclude all but the initial query for popular names withir@tial TTL of at leastz.

We determine that a given hostname is in the FDNS cache fifirtiee iequired to
resolve the name during o8 scan does not exceed the median FDNS RTT. Figure 1
shows the distribution of the fraction of FDNS servers thaidha given number of
records in their cache. The “All” line shows the distributifor all preplay-vulnerable
FDNS servers. We find 81% of the FDNS servers have at least omelgr name in
their cache at some point during the experiment. Howeverdistribution also shows
that over 30% of the FDNS servers have at least 100 hostnartfes¢ache. This seems
unlikely and we believe these represent cases where oustieis not properly delin-
eating between the FDNS and RDNS cache. Therefore, in art &dfbetter delineate
the FDNS and RDNS caches we plot the subset of FDNS servergwemaximum
FDNS RTT is at least 10 msec less than the minimum RDNS RTTGhwve denote as
“Far from RDNS”. This subset encompasses 8.4K FDNS servets\v@ do see the tail
of the distribution fall away. Within this subset, 53% of thBNS servers are in use.

% www.alexa.com
10 Note, we augment the list of sites by prepending each webrsitee from Alexa with
“www"'—which is not included in the list—and we therefore pefor 2,000 names.

1 0.2
—All -+FDNS Vulnerable to Preplay

--Far from RDNS ~+RDNS Vulnerable to Kaminsky

..... \
02
%1 10 100 2K 1 2 3 4 5 6 7 8 9 10
Records in Cache Snapshots in chronological order
Fig. 1. Distribution of popular web- Fig.2. Vulnerability frequency at
sites in FDNS server caches. shapshots during discovery.

Additionally, we examine the subset of FDNS servers thataamessible for our en-
tire 24 hour experiment. In this subset, we find more in-usblEBervers—90% of all
FDNS servers and 68% of FDNS servers that are far from theiesponding RDNS
resolver. We exclude the 24 hour lines from the graph forabdidy.

Note, our heuristic provides a lower bound on the number-afse FDNS servers
since we only measure a fraction of the 24 hour period. Indéedmedian TTL for
the popular names is 10 minutes. Assuming the median TTL [d4S-that enforces
the TTL and an FDNS available for 24 hours, our strategy mlesa one-hour window
into the FDNS’ cache—or, just over 4% of the day. Further, extensive probing of
the FDNS’ cache may actually overflow the cache thus pushingexords added via
use. Therefore, we believe that many of the FDNS serverdithabt show as in use
are in fact in use, but that short TTLs and our coarse and sixeeprobing conspire to
hide the use. Our general conclusion is that the FDNS sewefid are in fact in use
by people during their normal browsing.

Representativeness: Finally, we return to the issue of representativeness ofesults
as mentioned i 2. Since our scans do not encompass the entire Internetsighta
could be skewed by our scanning methodology. To check thidivide our scans into
ten chronological slices and derive the cumulative vulbiitg rate at each slice for the
Kaminsky and preplay attacks. The slices are equal in sizerins of the number of
vulnerable RDNS servers and vulnerable ODNS servers fakémeinsky and preplay
vulnerabilities, respectively. The cumulative vulnefiéypirate should plateau once the
dataset is typical of the broader population. Figure 2 shbesumulative vulnerability
rate across the ten slices for both attacks. The FDNS vliilgyarate reaches steady
state immediately, illustrating that we are in fact captgra representative sample of
FDNS servers with random sampling of IP addresses—whichtisurprising.

On the other hand, the figure shows that for the Kaminsky lattae vulnerability
rate increases as the scan progresses, indicating thaDXN& Resolvers we discover
at the beginning of the scan dmss vulnerable to the Kaminsky attack than those we
discover later in the scan. While we choose ODNS serversmatora, we only indi-
rectly discover RDNS resolvers. In particular, the probgbof discovering an RDNS
resolver is directly proportional to the size of the FDNS plaion that it serves. Thus,
as the scan proceeds the discovery rate decreases and waéither scale RDNS re-
solvers. We believe these results sum to indicate that bBREXNS servers are better

maintained and less vulnerable to the Kaminsky attack. Tdteapso indicates that our
estimate of the Kaminsky vulnerability rate is a lower bound

9 Conclusion

In this study, we assess the susceptibility of the clied&-8INS infrastructure to record
injection attacks. We find that many open resolvers arewtilierable to record injec-

tion. Further, these devices provide a back door to attaakeshDNS infrastructure.

Through active probing, we assess the extent of known réngection threats and the
deployment of known protective techniques. We further wec@nd measure a new
attack vector—the preplay attack. We find 7-9% of the open D&sSlvers are vul-

nerable to the preplay attack and 16% of recursive DNS seas@r vulnerable to the
Kaminsky attack. Therefore, we conclude that the cliede$DNS ecosystem is non-
trivially vulnerable to record injection attacks.

References

1. R. Arends, R. Austein, M. Larson, D. Massey, and S. RoseS BNcurity Introduction and
RequirementsRFC 4033, 2005.
2. D.Bernsteinhttp://cr.yp.to/djbdns/notes. htni.
3. B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, Mwi#niak, and M. Bowman.
PlanetLab: An Overlay Testbed for Broad-Coverage Servie€M CCR, 33(3), 2003.
4. D. Dagon, M. Antonakakis, P. Vixie, T. Jinmei, and W. Leecreased DNS Forgery Resis-
tance Through 0x20-bit Encoding: Security via Leet QueriBACM CCS, 2008.
5. D. Dagon, N. Provos, C. Lee, and W. Lee. Corrupted DNS Résal Paths: The Rise of a
Malicious Resolution Authority. IINDSS, 2008.
6. K. Fujiwara. Number of Possible DNSSEC Validators Segp.dn DNS-OARC Workshop,
2012.
7. Google Public DNS. Performance Benefitst t ps: // devel opers. googl e. comf
speed/ publ i c- dns/ docs/ per f or mance.
8. Google Public DNS. Security Benefits. htt ps:// devel opers. googl e. comf
speed/ publ i c- dns/ docs/ security.
9. O. Gudmundsson and S. Crocker. Observing DNSSEC Vaidatithe Wild. InWoerkshop
on Securing and Trusting Internet Names (SATIN), 2011.
10. D. Kaminsky. Black Ops 2008: It's the End of the Cache AsKfdew It. Black Hat USA,
2008.
11. D. Leonard and D. Loguinov. Demystifying Service Disegv Implementing an Internet-
Wide Scanner. IACM Internet Measurement Conference, 2010.
12. P. Mockapetris. Domain Names Implementation and Spatifin. RFC 1035, 1987.
13. K. Schomp, T. Callahan, M. Rabinovich, and M. Allman. e@tiSide DNS Infrastructure
Datasetsht t p: // dns- scans. eecs. cwr u. edu/ .
14. K. Schomp, T. Callahan, M. Rabinovich, and M. Allman. Oeadduring the Client-Side
DNS Infrastructure. IIACM Internet Measurement Conference, 2013.
15. N. Weaver, C. Kreibich, B. Nechaev, and V. Paxson. Inagiins of Netalyzr's DNS Mea-
surements. IMbrkshop on Securing and Trusting Internet Names (SATIN), 2011.
16. N. Weaver, C. Kreibich, and V. Paxson. Redirecting DNiSAds and Profit. Irforkshop
on Free and Open Comm. on the Internet, 2011.
17. C. Zhang, C. Huang, K. Ross, D. Maltz, and J. Li. Inflightdiizations of Content: Who
Are The Culprits? ILEET, 2011.

