
Bringing Local DNS Servers Close to Their Clients
Hangwei Qian

Case Western Reserve University
Cleveland, Ohio, USA

Michael Rabinovich
Case Western Reserve University

Cleveland, Ohio, USA

Zakaria Al-Qudah
Dept. of Computer Engineering

Yarmouk University, Jordan

Abstract—This paper provides an indication that the distance
between clients and their local DNS servers (LDNS) can have a
significant negative impact on the performance of content delivery
networks (CDNs). Consequently, we propose a novel peer-to-
peer client-side DNS mechanism that moves LDNS close to their
clients while still allowing nearby clients to share the common
DNS cache. Through trace-driven simulations and prototype
testing, we show that our approach holds significant promise
of facilitating better server selection by CDNs.

I. INTRODUCTION

DNS-based request routing is widely used to facilitate
transparent server replication in today’s large-scale Internet
platforms. For example, content delivery networks (CDNs)
such as Akamai and Limelight, as well as large-scale content
providers such as Google, use DNS-based request routing to
forward client requests to nearby content replicas. The same
mechanism is also used in cloud computing platforms, such
as Google AppEngine.

DNS-based request routing [1] utilizes the need for Web
clients to execute a DNS query to resolve the server’s host-
name before performing the rest of the interaction. When the
authoritative DNS server receives this query, it responds to
the client’s DNS query with the IP address of a server that
is dynamically selected to be “close” to the originator of the
query (where the meaning of “close” is at the discretion of
the service provider, and is often part of its core expertise).
The subsequent interaction of the client occurs with the
nearby server, resulting in better performance. However, the
authoritative DNS server only sees the IP address of the
client’s DNS server (LDNS - for “local DNS”) and not the
client itself, when making the server selection decision. Thus,
the effectiveness of this mechanism is inherently limited by
how close the clients are located to their LDNS.

The proximity between clients and their LDNS was studied
in [2], [3]. In particular, [2] found that only 16% of the clients
were in the same network-aware cluster [4] with their LDNS
servers, and about 36% of them were not in the same au-
tonomous system. These mismatches can negatively affect the
effectiveness of DNS-based server selection. An obvious way
to avoid this problem would be to run the LDNS component
on every host, but that would negate the advantage of a shared
cache provided by current distinct LDNS configurations. The
latter is important because the LDNS cache not only reduces
the burden on the DNS infrastructure, but also improves the

This work was supported in part by the National Science Foundation under
grants CNS-0831821 and CNS-0721890.

response time of the DNS queries satisfied from the cache.
An alternative approach suggested in [3], which is to carry
the IP address of the client requesting the name resolution in
the DNS query message, so that the exact location of the client
is conveyed to authoritative DNS, similarly negates the shared
LDNS cache.

In this work, we propose to run a LDNS component on
every host, and at the same time use peer-to-peer (P2P) tech-
niques to share cached DNS resolutions among hosts within
the same subnet. In our proposed system, peers sharing the
same gateway would form a P2P system, where different peers
would be responsible for different domain names according to
the distributed hash mapping utilized by the P2P infrastructure.
Since all peers in the P2P system are with the same gateway,
they are supposed to be close to each other. Also, by sharing
resolutions among the peers, we can preserve most of cache
benefits of the current system. Through our experiments in
section V, we show that the overhead of running the P2P and
LDNS components on each host is trivial, and the P2P lookup
delay for DNS resolution is acceptable. At the same time,
sharing DNS resolutions among proximal neighbors promises
clients significant improvements in terms of network delay and
bandwidth of their interactions with replicated content servers.

Previously, Cox et al. [5] and Ramasubramanian and Sirer
[6] discussed P2P-based mechanisms for the whole DNS
infrastructure. Our work does not affect the entire DNS
infrastructure and instead only changes the local LDNS setup.
CoDNS [7] is client-side P2P approach but, unlike our scheme,
it focuses on reliability and performance of DNS without
addressing the client-to-LDNS proximity.

II. MOTIVATION

To get a sense of the importance of the problem we are
addressing, we provide an indication of the effect of the
separation between clients and their LDNS on server selection
by content delivery networks, which carry a significant portion
of the entire Web accesses.1 In a parallel project, we use
a technique from [2] to instrument a popular Web site and
harvest provably correct associations between Web clients
and their LDNS servers. We have collected nearly 161K
distinct client/LDNS pairs and utilized a GeoIP database [8]
to map them to geographical locations. After removing the
pairs where at least one of the hosts in a pair could not be

1Indeed, Akamai alone claims to deliver 20% of the total Web content,
the claim that our parallel ongoing study of our university traffic finds
conservative.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.001 0.01 0.1 1 10 100 1000 10000

C
D

F

Air Miles

Akamai Model
LimeLight Model

Fig. 1. Extra air miles between clients and CDN servers due to LDNS-based
server selection

mapped, we ended up with nearly 154K mapped pairs. We
then modeled server locations for the two leading CDNs -
Akamai and Limelight - and estimated how much off their
server selection would be for the clients in our dataset from
the perspective of geographic proximity. Obviously, CDNs
use more sophisticated considerations for server selection, but
our back-of-the-envelop estimation indicates the impact of the
issue we are considering.

We model CDN server locations as follows. For Akamai,
which is known to have presence in most sizable cities in
the world, our model consists of 1033 server locations, with
754 major cites in the US and 279 major cities in the rest
of the world (Akamai claims around 7000 locations in total).
On the other hand, Limelight has only a couple dozen data
centers and we modeled their actual data center locations as
reported in [9]. In either case, we select the closest CDN server
based on the client’s location (which would be the desired
choice according to geographic proximity) and the closest
CDN server based on the location of the corresponding LDNS
(which would be the currently practical choice for CDNs).
Then we obtain the extra miles the client’s packets need to
travel because of the potentially wrong choice of the CDN
server.

Figure 1 shows the cumulative distribution function (CDF)
of the extra miles. As expected, more Akamai clients incur
distance penalty at low penalty values: Akamai’s numerous
server locations allow for finer-grained geographical server
selection but by the same token make it more sensitive to
the inaccurate representation of client’s location by its LDNS
server.2 Most important, however, is that roughly 30% of all
clients incur over 500 miles extra travel for both models.
Furthermore, our results confirm an early finding from [2] that
many clients reside in an autonomous system that is different
from that of their LDNS servers - we had around 21% of such
clients in our dataset.

These results indicate that a significant portion of clients
are configured with LDNS far enough to adversely affect
proximity-based CDN server selection. In principle, there
could be a variety of reasons for this phenomenon, such
as: (i) ISPs deploy a relatively small number of LDNSs in
their networks to save administration and equipment costs; (ii)

2This should not be construed as Limelight’s advantage because this penalty
represents the extra distance over the distance to closest server and not the
absolute distance between the clients and CDN servers.

LDNSs are not uniformly distributed in ISP’s networks, even
if their overall number might be large; (iii) when configuring
the LDNS servers for clients, ISPs do not specifically attempt
to reduce the proximity between clients and the LDNS servers
assigned to them; and (iv) ISPs assign a large number of clients
to the same shared LDNS server in an attempt to increase its
cache utilization, and a large population of clients stipulates
assembling them from a large geographical area.

Although all these reasons are theoretically possible, we
speculate that reason (i) is the most likely. Indeed, previous
work (supported by our results below) indicates that very high
DNS cache hit rates are achieved with modest number of
clients sharing the LDNS cache [10]. We can discount other
reasons by assuming that ISPs would be willing to improve
the service for their clients when it can be done with little
effort on their part.

Given the above reasoning, one potential solution for the
ISPs is to add LDNS functionality to the boxes that are
deployed more widely, such as access routers at the points of
presence. For example, each access router can run the LDNS
software and all the clients sharing the same access router
would be configured to use it for DNS resolutions. Since
PoPs are supposed to be close to their clients, they are well
positioned to act on behalf of their clients for server selection.
However, this approach would require ISPs to customize and
redeploy these boxes in their networks, which may incur high
replacement cost. Furthermore, these boxes are often highly
optimized specialized pieces of equipment, and loading them
with significant new functionality may not be feasible.

Another way to address this problem is proposed in [3].
Authors propose to carry the IP address of the client requesting
the name resolution in the DNS query message. In this case,
the authoritative DNS server would know the actual identity of
the clients and make server selection based on the identity of
the actual client and not its LDNS server. While this method
indeed makes DNS-based server selection precise, it requires
the modification of the existing DNS protocol. Furthermore,
it impedes sharing of the returned DNS resolutions among
clients since responses can be specific to a particular client.
This can greatly diminish the DNS cache effectiveness (as we
show in Section V, the hit ratio for a single client is only about
60%).

In our proposed system, clients themselves run an LDNS
component and at the same time use peer-to-peer (P2P) tech-
niques to share cached DNS resolutions with their neighbors.
This approach requires no modifications to the DNS protocol
and minimal effort/investment on the part of the ISPs. In
the remainder of the paper, we describe the architecture
and implementation of our system and present a preliminary
evaluation study of its performance.

III. ARCHITECTURE

This section outlines the architecture of our system. We also
describe several issues and our design decisions to address
them.

 Host N

Seed Server

 Host 1

P2P
 Component

LDNS
 Component

 Application

P2P Network

 DNS
 Cache

P2P
 Component

LDNS
 Component

 Application

 DNS
 Cache

Fig. 2. System architecture

A. Overview

As shown in Figure 2, every host in our architecture runs a
LDNS component and a P2P component. When a host starts
up, in addition to the gateway and other information the host
normally gets from the DHCP server, the host will also get
the IP address of the seed server that is maintained by the ISP
and which keeps track of various client clusters. The members
of each cluster form a P2P system within their cluster. The
host sends the gateway IP address to the seed server, the latter
selects a client cluster for the host to join based on the gateway
information and returns seeds (a few hosts that are already
members of the selected cluster) to the host. Then the P2P
component on the host sends a JOIN message to one of the
seeds to join the P2P system of the corresponding cluster. In
selecting clusters for each new client, the seed server ensures
that clusters comprise only clients that are topologically close
to each other.

When an application at host i , e.g., web browser, needs to
resolve a domain name, the application sends the DNS query
to its co-located P2P component, which sends a LOOKUP
message into the P2P system. The lookup message is routed
through the cluster according to the distributed hash table
employed by the P2P network and using the requested domain
name as the key, until it arrives to the destination host k,
which is the host responsible for the given domain name.
The P2P component on host k asks its LDNS component to
perform an actual DNS query (in the same way as current
LDNS servers do). After obtaining the resolution, host k puts
it in a RESPONSE message and sends it to host i. The
P2P component at host i then returns the resolution to the
application.

P2P sharing of DNS resolutions allows hosts to benefit
from a shared DNS cache. Each host maintains a local cache
of DNS responses, whether obtained previously by its own
applications or as a result of processing a lookup message from
a peer. Before sending a lookup message, the P2P component
checks its local DNS cache and responds to the application
immediately if the requested DNS record is available there
and is still valid. Similarly, the destination peer of a lookup
message checks its local DNS cache and uses the cached DNS

record to construct its RESPONSE message if the valid DNS
record is available in its local cache.

Finally, the internal reliability mechanisms of P2P networks,
which are designed for frequent peer disconnections, provide
for continued operation of our system in the face of unreliable
peers. In particular, our prototype uses Bamboo, a P2P system
designed to tolerate high peer churn [11].

B. Traversing Firewalls and NAT Boxes

Network address translation (NAT) devices present two
challenges to our system3. First, a host behind a NAT box
obtains a private IP address of the NAT box (e.g., home router)
as its gateway during startup. While this is acceptable in most
organizational settings, where the entire P2P cluster can be
formed behind the firewall using private IP addresses (and
where our system may in fact not be needed if the organization
runs its own LDNS within its local network, in which case
hosts would be already close to their LDNS), residential clients
may need to form clusters that span multiple home networks.
In this case, the host must provide the IP address of its ISP
access router, and not of its home router, to the seed server.

To deal with this issue, we note that home routers obtain
the IP address of their ISP access router by executing their
own DHCP protocol over the public side of the network.
Furthermore, most home routers (e.g., linksys) provide an API
(usually HTTP-based) to the hosts on the private side that
allows hosts to obtain this information as an HTML page.
Thus, the host can parse the IP address of its ISP access router
from the HTML text and submit it to the seed server.

The second issue is typical for all P2P networks and has to
do with NAT boxes preventing a peer from being contacted
from outside hosts. We use standard techniques to address this
issue. The NAT boxes can be configured with a permanent port
mapping allowing outside communication (in fact, this can be
done by a script using the NAT’s API). The closed nature of
our P2P network alleviates attendant security issues.4

C. Degenerate Clusters

Given that many clusters in our envisioned system would
be residential, their size can drop significantly during periods
of low activity, e.g., at night when home users may turn off
their computers. When this happens, as shown in section V, the
DNS hit ratio can degrade significantly. While this would have
limited effect on the load on the DNS infrastructure because
the hit rate reduction would be canceled by the overall low
level of use, the users may experience higher response time in
their Internet accesses. We considered two ways to address this
problem: (i) merge extremely small clusters with other nearby
clusters - in this case hosts in degraded clusters would query

3Firewalls present the same issues and our discussion applies to them too.
4Furthermore, permanent port mappings and the presence of the seed server

as coordinator allow outside communication to be permitted on demand only:
the seed server alerts two peers that must establish a link; the peers send each
other join messages, each of which opening a hole in the sender’s NAT box.
The second message to arrive at the destination peer will find the hole open
and establish the communication channel, which can then be maintained with
periodic keep-alive messages.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10 100 1000

H
it

 R
at

io

Size of Cluster

hit ratio

(a) Hit rate vs. cluster size

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Hit Ratio

refresh hit ratio

(b) Per-client hit rate with refresh

Fig. 3. DNS hit rate

the seed server for a nearby cluster to join, and (ii) let the
P2P component proactively refresh expired DNS resolutions
when cached records become invalid (as suggested in [12] in
a different context), with the additional DNS load, again, being
counterbalanced by the overall low activity level.

The tradeoffs between these approaches are that, with
cluster merging, a degraded cluster may not find a sufficiently
close neighbor cluster to join. At the same time, the efficacy
of proactive DNS refresh depends on how much clients revisit
old domain names. Our experiments of Section V show that
roughly half the clients get over 80% DNS hit rate with DNS
pre-refresh even when the cluster reduces to a single peer. We
also note that the effectiveness of cluster DNS cache sharing
increases rapidly with the cluster size. As we will see, a cluster
with only six hosts has DNS cache hit rate of at least 85%
even without cache refreshing. Thus, we consider handling of
degraded clusters as more of a precautionary mechanism.

IV. PROTOTYPE IMPLEMENTATION

We implemented our system and deployed it both in our
lab and the Emulab testbed. Our implementation uses bind-
9.5.0 [13] as the LDNS component. We built our P2P compo-
nent on top of Bamboo DHT [11] table. In the prototype,
we modified Firefox to send DNS queries directly to the
P2P component instead of LDNS. In real implementation,
all the components of our system would be wrapped in a
daemon listening on port 53 and mimicking a regular LDNS
server. Then, to route local DNS queries from all of the host’s
applications to our P2P component, each host would simply
be configured to use localhost as its LDNS server.

V. EVALUATION

To estimate the performance of our approach, we first
evaluate the DNS hit ratio in client clusters of various sizes.
Then we evaluate the overhead, in terms of CPU and memory,
for running the P2P component and DNS component on
the host. Next, we measure the delay for looking up DNS
resolutions in the P2P system in client clusters of varying
size. Finally, we measure the end-to-end improvement when
employing our system.

A. Hit Ratio

We use trace-driven simulation to explore DNS hit rates
in our system. We used an anonymized 4-hour HTTP trace

collected on May 9, 2006 at Case Western Reserve University.
The trace comprises over 5.8 million HTTP downloads from
over 6,600 clients. We extracted the hostnames from the
trace and obtained TTLs of the corresponding type-A DNS
responses by performing actual DNS queries for each name.
When evaluating the hit ratio of a client cluster with a specific
size s, we randomly choose s clients from the trace and
simulate each access from these clients while mimicking the
DNS cache behavior, which we can do faithfully by using the
actual TTLs obtained. We repeat each simulation 20 times for
different random client clusters and report the average hit ratio.

Figure 3(a) shows the DNS hit rates for different sizes
of client clusters. The results (which are consistent with the
previous findings from [10]) show that even small client
clusters exhibit high DNS hit rates: as long as the size of
client clusters is bigger than 6, the difference of hit ratio is
within 7% of the maximum possible, when the cache is shared
among all the clients in the trace.

Our next experiment considers hit rates achievable by de-
generate clusters with DNS refresh discussed in Section III.
We consider the extreme case of clusters with only one host
and obtain the DNS hit rate of each client in the trace assuming
every DNS record in the cache is refreshed upon expiration
and hence available to the client when requested. We did
not evaluate the extra DNS traffic this would cause as this
mechanism would only be engaged during periods of low
activity. Figure 3(b) shows the CDF of hit ratios with refresh
for all clients. According to the figure, roughly half the clients
would have 80% or larger hit ratio. Still, many clients would
have low hit rate, with almost 20% of clients exhibiting under
30% hit rate. We note, however, that this result is conservative
because the cache contents of individual client are limited by
the short duration of our trace.

B. Resource Consumption

In this subsection, we evaluate the resource consumption of
the new components on the client machines, focusing on the
CPU and memory. We deployed our prototype at Emulab [14]
for this experiment. To overcome the difficulty of scheduling
a large number of machines, we use the following setup. We
allocate 28 physical machines, each with 2 core CPU and 2G
memory. On 10 of them, we deploy our system directly. On
the remaining 18 physical machines, we allocate the total of
190 virtual machines and deploy our system on each VM.
We compose a client cluster of size s with the 10 physical
machines and (s − 10) randomly selected virtual machines.
Thus, we can evaluate the behavior of a large cluster – up to
200 hosts – while measuring the actual resource consumption
on the 10 physical machines. Our results reflect the average
numbers over the 10 physical machines.

In the experiment, the machines form a cluster using a
separately deployed seed server. The cluster is formed in a
random manner: as nodes join, each new node receives the
full set of previously joined peers from the seed server and
picks a random seed to send a join message. Once the cluster
is formed, every node sends out DNS queries at the rate

computed as follows. We first obtain the maximum request
rate within 5 second interval for each client according to
the trace. Then we order the clients by these rates and use
the average request rate among clients in the 50% percentile
(e.g., the most active 50% of all the clients), which is about
7.1 req/s. During the experiment, each client sends out 7.1
DNS queries per second for the domain names taken from
the list of unique domain names extracted from the trace. The
resource consumption of our system components was found to
be negligible – within 1.3% of one core for CPU and about 3%
for memory – and barely grows with the cluster size. Given
these small overhead levels, we omit the graphs due to space
limitations.

C. P2P Lookup Delay

We now turn to the delay overhead in our approach due
to the P2P lookup. The testbed setup is the same as in
Section V-B. Since all machines in Emulab are on the same
LAN, the delay between any pair of hosts is around 0.3ms.
Thus, any time a P2P routing hop involves two peers running
on virtual machines that happen to reside on the same physical
machine, we add 0.3ms to the overlay delay. To focus on how
much additional delay occurs due to the P2P nature of our
system, we (1) turn off DNS caching, so every lookup leads
to the P2P communication and (2) exclude the external delay
the DNS queries spend outside the cluster, as this delay would
be the same in our and the current systems. Consequently,
when the LOOKUP message reaches its target peer, the latter
constructs a RESPONSE message with the priori known IP
address and sends this message to the source host immediately.

In this experiment, we pick a random cluster of clients of a
given size and assign each client to each peer in the testbed.
We then extract HTTP accesses of these clients from the trace,
and for each access, perform a DNS lookup for the URL’s
hostname from the corresponding peer. Bamboo DHT offers
two options for message routing, “send-back” where response
messages are sent back directly from the target to source peer,
and “route-back” where response messages are routed from
the target to source peer through the overlay network. In our
experiments, we consider both options.

Figure 4 shows the results. We can see that the lookup delay
is between 2ms and 3.5ms. Furthermore, the delay is virtually
flat as the cluster size increases in the case of the route-back,
and grows only marginally in the case of send-back (we are
puzzled by the higher delay of the send-back option; we can
only speculate that it is an implementation artifact of Bamboo).
This, along with the fact that the send-back, which incurs
fewer P2P routing hops, exhibits higher delay, suggests that
the overall delay is dominated by processing at the source and
target peers rather than by the routing itself.

Obviously, the delay cost of a P2P routing hop will be
higher for some residential clusters, such as those with
DSL-connected peers. Yet other popular access technologies,
namely cable modems, represent broadcast medium with very
low RTT between hosts on the same coaxial cable. Because
one cable typically connects hundreds of homes, these neigh-

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 20 40 60 80 100 120 140 160 180 200 220

de
la

y
(m

s)

Size of Cluster

route-back
send-back

Fig. 4. Routing delay

borhoods would be prime candidates to form a P2P cluster.
Further, newer access network technologies such as fiber-to-
the-home (FTTH) are gaining rapid adoption and exhibit low
RTTs similar to organizational LANs. Finally, note that a host
would generate a lookup message only for local cache misses,
and according Figure 4, the local hit rate for a stand-alone
host is around 60%, meaning that most lookups will not incur
any delay. In fact, the shared cache hit ratio grows to 80%
for three hosts, suggesting a possibility for hosts in individual
home networks to form their own clusters. In summary, the
P2P routing delay in our approach is negligible for clusters
of hosts with cable modem or FTTH Internet connectivity
and acceptable in multi-computer home networks with DSL
connectivity. A further study is needed to assess its suitability
for clusters of individual DSL-connected hosts.

D. End-to-end Improvement

Finally, we study the improvement in user-perceived service
quality our system promises, depending on the distance of
the clients from their LDNSs. We investigate this problem by
comparing the performance of Akamai CDN servers returned
by LDNSs with different network distances to the clients. We
consider two metrics here: network delay and the effective
bandwidth of a web download (BW). We select 100 PlanetLab
nodes distributed around the world as clients and obtain the set
of LDNS servers as follows. We first get a list of Gnutella peer
IP addresses from [15] and a list of web server IP addresses
from [16]. Then we perform reverse DNS queries to get the
authoritative DNS server (ADNS) for each of these IPs and
filter out those ADNSs that reject external recursive DNS
queries as they could not be used in our experiment. As a
result, we were able to identify 13420 ADNSs that could act
as LDNS for our clients.

In the experiment, each client first obtains the ping distance
to all the LDNSs. Then it sends DNS query for the domain
name of a URL that is delivered by Akamai to each LDNS
and gets the corresponding Akamai server IP address selected
by Akamai. After that, the client collects the ping distance to
each Akamai server (averaged over 3 tries) and the effective
bandwidth of downloading the URL from that server (using
the curl command, averaged over 5 tries). To ensure every
download occurs from the Akamai server’s cache and not
from the original Web site, we download the object first from
each Akamai server (thus bringing the object into the server’s
cache) before performing the actual measurement.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

-0
.2

-0
.1 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

C
D

F

Delay improvement (sec)

delay-improvement

(a) CDF of delay improvement

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

-0
.4

-0
.2 0

 0
.2

 0
.4

 0
.6

 0
.8 1

 1
.2

 1
.4

 1
.6

 1
.8 2

 2
.2

 2
.4

 2
.6

 2
.8 3

C
D

F

BW improvement (megabytes per sec)

BW-improvement

(b) CDF of BW improvement

Fig. 5. End-to-end improvement (object size 6.8k)

Since the effective download bandwidth depends on the ob-
ject size, our experiment used three Akamai-delivered objects
with sizes 6.8k, 54k and 2M. Among 100 planetlab nodes, we
were only able to get complete results from 85 of them due to
node failures and other unknown errors. We also eliminate the
results in which we fail to get the ping distance from clients to
LDNS or Akamai servers due to the filtering of ICMP packets.

Figures 5 – 7 show CDFs of the reduction in latency and
increase in download bandwidth of the Akamai server selected
by Akamai when we used the LDNS co-located with the client
over Akamai servers selected when using decoupled LDNSs.
We can see significant end-to-end improvement by running
LDNS on local machine in the overwhelming majority of
cases.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

-0
.4

-0
.3

-0
.2

-0
.1 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

C
D

F

Delay improvement (sec)

delay-improvement

(a) CDF of delay improvement

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

-4 -2 0 2 4 6 8
 1

0
 1

2
 1

4
 1

6
 1

8
 2

0

C
D

F

BW improvement (megabytes per sec)

BW-improvement

(b) CDF of BW improvement

Fig. 6. End-to-end improvement (object size 54k)

To see how the improvements depend on the distance
between the client and LDNS, we calculate the Spearman’s
rank correlation between the distance from a given client to
each LDNS and our two quality metrics of the CDN servers
selected by Akamai when we used that LDNS. Table I presents

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

-0
.4

-0
.3

-0
.2

-0
.1 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

C
D

F

Delay improvement (sec)

delay-improvement

(a) CDF of delay improvement

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

-8 -4 0 4 8
 1

2
 1

6
 2

0
 2

4
 2

8
 3

2
 3

6
 4

0

C
D

F

BW improvement (megabytes per sec)

BW-improvement

(b) CDF of BW improvement

Fig. 7. End-to-end improvement (object size 2M)

TABLE I
RANKING CORRELATION

Image size Delay-delay Delay-BW
correlation correlation

6.8k 0.881 -0.869
54k 0.882 -0.861
2M 0.826 -0.729

the average values of the Spearman’s correlation coefficient for
these two metrics computed over all the clients and all three
object sizes. The results show very strong correlation between
the client/LDNS distance and both server quality metrics we
used. We conclude that bringing LDNS as close as possible
to the clients directly improves the quality of server selection
by Akamai.

VI. CONCLUSION

In this work, we observed that the distance between clients
and their LDNS servers can have a significant negative impact
on DNS-based server selection, which is widely used by
content deliver networks (CDNs) and other platforms. We then
proposed a novel peer-to-peer client-side DNS mechanism that
moves LDNS close to their clients while still allowing nearby
clients to share the common DNS cache. Through trace-driven
simulations and tests on a real prototype setup, we showed that
our approach holds significant promise of facilitating better
server selection by CDNs. In the future, we plan to investigate
security issues of our scheme, in particular, making it resilient
to situations when some clients in a cluster are compromised.

REFERENCES

[1] A. Barbir, B. Cain, R. Nair, and O. Spatscheck, “Known Content
Network (CN) Request-Routing Mechanisms,” IETF RFC 3568, 2003.

[2] Z. M. Mao, C. D. Cranor, F. Douglis, M. Rabinovich, O. Spatscheck, and
J. Wang, “A precise and efficient evaluation of the proximity between
Web clients and their local DNS servers,” USENIX ATC, 2002.

[3] A. Shaikh, R. Tewari, and M. Agrawal, “On the effectiveness of DNS-
based server selection,” IEEE INFOCOM, 2001.

[4] B. Krishnamurthy and J. Wang, “On network-aware clustering of web
clients,” ACM SIGCOMM, 2000.

[5] R. Cox, A. Muthitacharoen, and R. T. Morris, “Serving DNS using a
peer-to-peer lookup service,” IPTPS, 2002.

[6] V. Ramasubramanian and E. G. Sirer, “The design and implementation
of a next generation name service for the internet,” ACM SIGCOMM,
2004.

[7] K. Park, V. Pai, L. Peterson, and Z. Wang, “CoDNS: Improving DNS
performance and reliability via cooperative lookups,” USENIX OSDI,
2004.

[8] “http://www.maxmind.com/app/ip-location,”
[9] C. Huang, A. Wang, J. Li, and K. W. Ross, “Measuring and evaluating

large-scale CDNs,” ACM SIGCOMM Internet Measurement Conf. (paper
withdrawn), 2008.

[10] J. Jung, E. Sit, H. Balakrishnan, and R. Morris, “DNS performance and
the effectiveness of caching,” IEEE/ACM Transactions on Networking,
vol. 10, pp. 589–603, 2002.

[11] “http://bamboo-dht.org,”
[12] H. Ballani and P. Francis, “Mitigating DNS DoS attacks,” ACM CCS,

2008.
[13] “http://www.bind9.net,”
[14] “http://www.emulab.net,”
[15] “http://mirage.cs.uoregon.edu/p2p/snapshots.html,”
[16] “http://www.icir.org/tbit/urllistfeb2004.txt,”

