
NoCDN: Scalable Content Delivery Without a Middleman
Junbo Xu

Case Western Reserve University
junbo.xu@case.edu

Michael Rabinovich∗
Case Western Reserve University
michael.rabinovich@case.edu

ABSTRACT
Today’s websites achieve scalability by either deploying their own
platforms with sufficient spare capacity or signing up for services
from a content delivery network (CDN). This paper investigates
another alternative, where a website directly recruits Internet users
to contribute their resources to help deliver the site’s content. We
show that this alternative, which we call NoCDN, can be imple-
mented securely, transparently to the users accessing the site, and
without changes to the content itself.

KEYWORDS
Content delivery networks, scalability, performance

1 INTRODUCTION
Scalable content delivery requires a widely distributed server plat-
form with sufficient capacity to absorb any temporary demand
surges. Today’s content providers utilize such a platform either
by deploying it themselves (e.g., Google) or through a third-party
content delivery network (CDN) such as Akamai. In this paper,
spurred by the prevalence of always-on residential broadband (and
impending emergence of ultrabroadband), we explore an alterna-
tive for scalable content delivery that follows a shared-economy
approach that is increasingly applied in other domains, such as
transportation or hospitality services.

We envision that a content provider, say, cnn.com, would re-
cruit volunteers (presumably regular Internet users but potentially
any operator of a suitably connected host) who contribute their
machines and connectivity to essentially become edge servers for
cnn.com. The content provider would compensate the recruits for
their service in some fashion (our working assumption follows
current CDN’s model based on bytes delivered). Multiple content
providers vying for the volunteers and volunteers signing up with
one or more content providers would create a new content delivery
marketplace directly between content providers and volunteers,
without a middleman in the form of a traditional CDN operator.

∗This author’s work on this project was supported in part by NSF through grant
CNS-1647145.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HotWeb’17, October 14, 2017, San Jose / Silicon Valley, CA, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5527-8/17/10. . . $15.00
https://doi.org/10.1145/3132465.3132476

Shared economy has reduced the costs and brought new opportu-
nities in other domains, and we hope it may bring similar benefits
in the content delivery arena.

While seemingly similar to a number of peer-to-peer CDNs
that have been proposed in research (e.g., [8, 13, 16]) and used
commercially [2], the key difference with our approach is that these
systems use peers to augment a CDNplatformwhereaswe eliminate
the third-party CDN altogether. We call our system NoCDN to
highlight this distinction. Although the underlying idea behind
NoCDN is simple, realizing it involves a number of challenges.

• User transparency Individual content providers may lack
the clout of large CDNs to compel users (content consumers)
to change or reconfigure their browsers or install some sort
of a download manager such as [1]. Thus, NoCDN must
ensure complete transparency for users, which in practice
restricts any user-side functionality to only what can be fully
implemented in standard JavaScript.

• Content integrity Peer assistance in current peer-to-peer
CDNs often comes with no awareness from the person who
owns the resource. E.g., the agreement to act as a peer in Aka-
mai’s NetSession is buried inside the agreement to terms of
use of various partners, such as Flash player or Autodesk [9].
When a user explicitly signs up to become a peer in NoCDN,
there is more danger that an attacker would sign up with
an intent of corrupting the content that flows through the
attacker-controlled equipment. NoCDNmust ensure content
integrity despite untrusted peers.

• Accurate accounting Since peer compensation depends on
the amount of their contribution to content delivery, an un-
scrupulous peer has an incentive to inflate their contribution
they report to the content provider. NoCDN must be able to
protect content providers from such behavior.

• Peering for multiple content providers To facilitate an
openmarketplace between potential peers and content providers
as envisioned by the NoCDN approach, it is desirable to
let a peer sign up with multiple content providers. While
not strictly a requirement, avoiding exclusivity in peer-to-
content-provider relationships will foster competition and
flexibility in the ecosystem.

The rest of the paper describes the design of a system that ad-
dresses the above challenges. We further contribute a proof of
concept prototype that shows that our design can in fact be im-
plemented within the current technological landscape. Finally, we
provide a preliminary evaluation of overheads, which represent the
performance penalty the content provider would face in exchange
for being able to scale to unpredictable loads without the expense of,
and reliance on, a CDN service. These overheads will depend on the
content organization and therefore vary among content providers.
Based on these, as well on the monetary considerations, a content
provider would be able to make a business decision on choosing

https://doi.org/10.1145/3132465.3132476

the best way to achieve scalability. NoCDN expands their decision
space by offering a new alternative.

2 RELATEDWORK
Numerous approaches (e.g., [8, 16, 18]) have explored the possibil-
ity to assist a traditional CDN by adding a peer-to-peer content
delivery component, mostly in the context of streaming media
distribution. In [10], researchers quantify the potential gains of a
CDN-P2P scheme. They find that a hybrid CDN-P2P design can
significantly reduce the cost of content distribution. Commercially,
Akamai employs NetSession [18] for peer-assisted content delivery
and uses statistical inference to guard against billing misrepresenta-
tion by peers [4]. Unlike NetSession, our system requires no special
software for end-user browser. LiveSky [16], which is deployed by
ChinaCache, is mainly designed for video streaming sharing. This
system allows a peer to share content with another peer only while
the source peer is watching the same content as the recipient peer.

Several proposals explore direct web object sharing among browsers
by turning the browser into a web cache. These systems typically
require changes to the browsers, usually in the form of a plugin
or a co-located proxy cache (e.g., [11, 14]). A significant challenge
NoCDN overcomes is to have complete transparency to user, i.e.,
to require no browser modification.

The two systems most closely related to our work are Maygh
[17] and Stickler [12]. Like our system, Maygh proposes a way for
a content provider to achieve scalable content delivery through
making browsers deliver the content to each other. Further, Maygh
achieves this without any changes to browsers, leveraging browser-
to-browser communication enabled by Adobe Flash’s RTMP or
Google’s WebRTC. However, in Maygh, content sharing is only pos-
sible while both parties are browsing the same web object. NoCDN
does not have this restriction.

In independent work, Stickler [12] proposes a technique to ver-
ify the integrity of content delivered through an untrusted CDN.
We apply essentially similar technique in a different context of
ensuring content integrity in the environment without a CDN. Fur-
ther, Stickler appears to require content providers to drastically
change content organization, by replacing regular embedded ob-
jects with recursively nested JavaScript scripts (“manifests”) that
obtain, verify, and incorporate any embedded content. NoCDN only
adds wrapper meta-pages, leaving the actual content intact.

3 SYSTEM OVERVIEW
Terminologically, we distinguish a user machine (or just “user” for
short) that accesses content from a peer who sign up with a content
provider to help with content delivery. A a user may act as a peer as
well but that is purely incidental. The content provider operates the
origin site. We assume regular web content, where a webpage com-
prises a container HTML object, which includes embedded objects
(CSS objects, JavaScript code, images, other web pages included
into iframes, etc.), some of which may recursively embed further
objects, resulting in a tree structure. Due to prevalence of HTTP
usage for streaming, our approach directly generalizes to streaming
content also.

There are two asynchronous aspects in our system operation.
The first concerns peer management: supporting sign-on of new

GET /home.html

wrapper page (HTML)

GET loader.js (if not cached)

loader script

GET /home.html

User Peers Origin
Site

home.html

GET
embedded
objects

GET embedded objects
that are not cached

Figure 1: Webpage access in NoCDN

peers and tracking online status of existing peers through heart-
beats (which can be implemented simply by periodic downloads
of a small object through a peer). During sign-on, the peer host
informs the content provider of the port number the peer will be
using for delivering this provider’s content (see § 6 for details on
port selection), and the content provider also records the peer’s
public IP address observed in the communication. The peer then
downloads a package that contains the Apache server and a script
for discovering and configuring port forwarding on a NAT box (if
any) as well for configuring Apache in the reverse proxy mode with
the port specified during the sign-on (see § 6.

The other aspect deals with the actual content delivery. It would
seem that we could use classic DNS-based request routing employed
by traditional CDNs to direct users to peers for content delivery [6].
However, this would make it impossible for the content provider
to verify the integrity of the content delivered by the peer, and to
ensure peers’ truthfulness when they report the amount of delivered
bytes for billing. Thus, users must download content via a (trusted)
script provided directly by the origin site. Furthermore, as discussed
in § 5, this script cannot be embedded directly in the container object
– the container object must also be downloaded by the script.

With these considerations, the workflow of a page download
is depicted in Fig. 1 as follows. When a user accesses a URL of a
content provider utilizing NoCDN, the content provider returns a
wrapper page, which (a) lists the IP address of a peer from which to
fetch the container object, (b) for every recursively embedded object
reachable from the container object, maps the object URL to the IP
address of a peer to use for fetching the corresponding object1, (c)
a for every object (including the container object), a cryptographic

1While the format of the wrapper page used in our current prototype specifies a single
peer for all objects on the page to be accessed, it is straightforward to allow different
peers to be used for different objects, which would improve the overall access time
by aggregating peer upload bandwidth. We use this more general assumption in this
paper except in the evaluation section where we employ our actual prototype.

2

hash of its content and (d) a loader script in JavaScript2 that fetches
the above objects from the peers, verifies them by computing their
hashes and comparing them to the hashes listed in the wrapper
page, assembles the objects into an integrated webpage and invokes
the rendering function on the browser to display the page for the
user. A peer acts as a normal reverse proxy when processing user
requests – the peer serves the requested object from its cache if
available or obtains the object from the origin server, forwards it
to the user, and caches it locally for future requests.

This mechanism improves scalability of the origin site because
it only has to deliver a small wrapper page, with the loader script
eminently cacheable and the rest of the page content fetched from
the peer(s). The wrapper page would typically be generated dy-
namically since its contents reflect the peer selection for the user.
However, depending on the peer selection policies employed by
the origin site, even the wrapper page may be reused among users
and/or allowed to be cached by the user for a certain time.

4 NAT TRAVERSAL
Many peers can be expected to be behind gateways that perform
network address translation (so-called NAT boxes), and any peer-
to-peer system including NoCDN must provide a way for incoming
connections to traverse the NAX boxes. Peer-assisted CDNs (in-
cluding both Akamai’s NetSession and ChinaCache’s LiveSky) use
the STUN protocol for NAT traversal between the user and the
peer. This is a complex solution that requires an external STUN
server, imposes delay for establishing port mappings at the time of
communication, and relies on NAT boxes to use consistent endpoint
translation [3]. In contrast, because of an explicit sign-on in our
case (rather than an implicit installation of the code as part of an un-
related package such as Flash player [9]), the content provider can
worry less about compatibility with every residential environment
– incompatible peers can simply be rejected. Consequently, we are
able to use a much simpler approach based on UPnP to discover the
NAT box and configure permanent port mapping on it if it exists.
Our automatic configuration script has been successfully tested on
three different UPnP-compliant wifi routers (Netgear wnr2000v4,
TP-link tl-wr841n, and Netgear wgr614v10).

5 THE LOADER SCRIPT
The two key functions of the loader script are to ensure content
integrity and mitigate potential inflation of the bytes served as
reported by a peer to content provider for billing. This section
discusses interesting lessons we learned from implementing these
functions and optimizing the script performance.

5.1 Content Integrity
Our implementation introduces an extra step into the critical path
of page access – the fetching of the wrapper page, which is a “meta-
object” that must be obtained before any actual content starts flow-
ing to the browser. A natural question is – why can’t this extra step
be avoided by including the loader script directly into the container

2The wrapper page actually includes a link to a separately obtained JavaScript object
with the loader script – since this script is generic, this object to be cached, thus
minimizing the size of the wrapper page.

object (which in this case would be fetched from the origin site and
therefore would not need to be checked for integrity)?

To answer this question, consider possible locations within the
container object where the loader script could be inlined. Let the
loader script appear at the top of the container object, right after
the list of all the embedded objects and their hashes. The script
can fetch and verify all the objects recursively embedded in the
container object. But because the browser in this case executes the
script before the rest of the container object is loaded, the script
would not know how to assemble all the verified objects into an
integrated webpage.

If the script is at the bottom of the container object, an external
script within the container object may be loaded and executed
before the loader script at the bottom runs, and may modify the
loader script or redirect the browser to a completely different page.

5.2 Accounting
We assume the peers would be compensated based on the amount of
bytes they serve to users. Since peers are unlikely to be thoroughly
vetted, it is important to give content providers a mechanism to
acquire accurate information about peer utilization. Note that be-
cause the user always contacts the origin for the wrapper page,
by logging which peers are picked to deliver which objects, the
content provider can have an upper bound on the amount of data
served by a given peer (modulo any distortion from wrapper page
caching, the extent of which is again at the origin site’s control).
However, this may inflate the payment incurred by the content
provider because the user may have unknown fraction of the ob-
jects in the browser cache, and never request those objects from
the peer.

A more accurate bookkeeping would be possible if the loader
script sent usage record to the origin server after loading all objects
from the page. But this would double the number of requests fielded
by the origin server.

Our solution is as follows. When processing the user request
for a page, the origin site includes into the wrapper page a set of
secret keys, with each key unique for a given user-peer IP address
pair. When the loader script finishes obtaining embedded content
from the peers, the loader script generates a usage record for each
peer (the amount of bytes downloaded from the peer as the result
of the page access), produces an HMAC for this record, along with
a nonce to prevent a replay, using the corresponding key, and
uploads this record to the peer at the end of the interaction. The
peers accumulate these records and periodically upload them to the
origin site for payment. Making the keys specific to given user-peer
pair complicates key trafficking by unscrupulous users who could
otherwise obtain the keys (that would be valid for any peer) and
share them with peers for subsequent misuse. Further, collusion of
a user with a peer is complicated because such a collusion would
succeed only if the colluding peer happens to be selected to serve
the colluding user.

5.3 Further Implementation Details
To work with unmodified user browsers, NoCDN must implement
the loader script entirely in JavaScript. We use the Cross-Origin Re-
source Sharing (CORS) [7] mechanism to overcome the same origin

3

policy that would prevent the loader from accessing data down-
loaded from a peer. Specifically, each peer-served object includes an
Access-Control-Allow-Origin header with the origin site’s domain,
thus allowing a script from this domain to access the contents of
the object.

We use JavaScript’s Promises API [5] to download objects in par-
allel. On a tree representing recursively embedded objects on the
webpage, our implementation downloads in parallel all top-level
subtrees emanating from the container object, and then within each
top-level subtree, downloads in parallel all subtrees at the next level
down, and so on recursively. Note that no matter how many con-
current downloads the loader tries to execute, the browser would
still only open up to six concurrent TCP connections to the peer
that will be used by all the downloads. Paralel download improves
performance even when using one peer for all the objects, but espe-
cially useful when downloading from different peers. Indeed, while
a regular CDN can be expected to have well-connected edge servers,
NoCDN’s peers reside mostly in residential networks with limited
upload bandwidth. Downloading from multiple peers in parallel
would allow the loader to aggregate bandwidth of several peers.

If the user fails to fetch any web object of the webpage from the
peer, due to causes such as an object verification failure or the peer
not responding, the loader will fetch the web object from the origin
server directly. For simplicity, the loader script simply aborts the
current attempt to fetch the page and retrieves the whole webpage
from the origin site by using a distinct port number (different from
the one normally used to access the website). A different port is
needed because otherwise the origin server will return another
wrapper page.

6 SIGNING UPWITH MULTIPLE CONTENT
PROVIDERS

In the shared economy marketplace envisioned by NoCDN, one can
expect a peer to sign up for content delivery with multiple content
providers. Our prototype demonstrates how this can be supported
by leveraging existing technologies.

As mentioned, we use Apache in the reverse proxy mode. To
support sign-on with multiple content providers, we use the reverse
proxy mode in combination with virtual hosting. Normally virtual
hosts are distinguished by their domain names in the requests’ Host
header. However, because the wrapper page lists peers by their IP
addresses to avoid an extra DNS query, the Host header in the
requests arrived at a peer will carry peer’s IP address. Thus, we
assign different virtual hosts different port numbers, and Apache
distinguishes between the virtual hosts accordingly.

We assume that during the sign-on procedure, the peer host will
download and run locally a script that uses UPnP to (a) discover a
NAT box if any; (b) view existing port mappings on the NAT box;
(c) pick an unused port and add it to the port mappings on the NAX
box. The script then (a) communicates with the content provider to
send the picked port to the content provider and receive the port
and hostname of the origin web server for fetching cache misses;
and (b) augments the Apache configuration file with a new virtual
host section, mapping it to the peer’s IP address and selected local

Min Max Ave
(s) (s) (s)

Without NoCDN Total 0.52 0.62 0.54
Fetching 0.17 0.23 0.20
Rendering 0.31 0.40 0.34

With NoCDN Total 1.74 1.92 1.83
Fetching wrapper 0.02 0.03 0.03
Running loader 0.46 0.57 0.51
Rendering 1.24 1.35 1.30

Table 1: NoCDN Overhead (delay components may not sum
up to totals due to rounding)

port number and specifying the ProxyPass directive to contain the
origin’s hostname and port number3.

7 PERFORMANCE
We assess NoCDN performance from two angles: the overhead
imposed on the user due to extra processing and the end-to-end
effect on user experience. We use a complex real home page of
a real high-volume website for our experiments. Specifically, we
clone the home page of 360.cn – a popular website ranked 24th in
the Alexa global top-500 list. The home page’s container object is
271KB and it has 135 embedded web objects totalling 2.5MB. We
also have studied how the amount of local processing is affected
by page structure, using synthetic pages whose structure we can
control. Refer to [15] for these experiments.

7.1 Overheads
Our first goal is to assess the overhead of NoCDN, which comes
from two main sources: the need to fetch the wrapper page prior to
fetching any actual content, and the execution of the loader script.
We compare the time it takes to access this page in two scenar-
ios: the current situation (browser just access the container object
plus all the embedded objects natively) and the NoCDN scenario
(browser accesses the wrapper page, then executes the loader to
fetch container object, and embedded objects). All the components
in both scenarios are cached by the browser, so we factor out any
network delays and focus just on the overhead of NoCDN. We ac-
cess our test page using a laptop with Intel i5 6267u (base 2.9GHz)
CPU with 8GB RAM running Chrome Version 55.0.2883.95 (64-bit)
browser. We run the experiment eight times under each scenario.

Table 1 shows the total time it takes the browser to access and
render the page with and without NoCDN, as well as the main
components contributing to the total access time. We use Chrome’s
DevTools to separately obtain the time to fetch all the content in
the page for the case without NoCDN, and the wrapper page for
the case with NoCDN. For the NoCDN access, we further record
the execution time of the loader script, which includes the time to
fetch the actual content. We attribute the remaining time (total time
minus fetch time in the case without NoCDN and total time minus

3Our current prototype automatically configures port forwarding to demonstrate
the critical part of this script, but leaves port selection and Apache configuration
augmentation to manual manipulation.

4

the wrapper fetch minus the loader execution time) to rendering
time.

The results show a substantial performance penalty due toNoCDN.
Overall, local processing takes 3.4 times longer when accessing our
test page through NoCDN. Note, however, that the origin server
using NoCDN can always decide whether to return, in response to
a given request, a wrapper (thus redirecting the browser to peers)
or a regular page (thus serving all content directly as normal). In
particular, the content provider can redirect users to NoCDN peers
only when under heavy load, when it would not otherwise be able
to satisfy all the demand or when its own response time degradation
would exceed the NoCDN overhead. See § 7.3 for more thoughts
on content provider strategies.

Another interesting observation is that most overhead comes
not from executing the loader script but from rendering the content.
We speculate the reason has something to do with the data URI
scheme we use in the integrated page that inlines all the embedded
content into the container object. Considering most of the content
web objects are images, and the data URI scheme of binary image
data uses base64 character encoding, rendering the integrated ob-
ject would entail a large amount of decoding for the browser. If it
was possible to integrate binary data directly, we believe NoCDN
overhead would decrease substantially.

7.2 End-to-end Performance
We now turn to evaluating the end-to-end performance of a fully
deployed prototype of NoCDN. We consider two extreme scenarios.
First, we consider a situation where the user and peer are in close
proximity to each other (in terms of network latency) and connected
with a high-bandwidth network path as compared to the origin
server. This scenario, which we call “nearby peer” case, is the most
beneficial to our system. Second, we consider a situation where the
user and the peer are still close to each other geographically but the
connection has higher latency and lower bandwidth. This situation,
to which we refer as “remote peer”, is the worst case for NoCDN.

To emulate the two scenarios, we set the peer (Intel i7 4700MQ
2.4GHz CPU with 8GB memory) at one of the authors’ home net-
work In Columbus, OH and the origin server (a virtual machine with
Intel Xeon 3.3 GHz CPU with 1GB memory) at a well-connected
datacenter in Oregon that is part of Amazon’s AWS cloud (average
measured bandwidth is 70Mbps for both upload and download4).

In the nearby peer scenario, the user machine (Intel i5 6267u
2.9GHz CPU with 8GB memory) is co-located with the peer in
the same residential local area network. In this case, both the user
and peer have the same connectivity to the Internet (up to 1Mbps
upload/15Mbps download according to the Internet service plan but
measured to be 2.3Mbps upload/20Mbps download) and round-trip
latency to the origin server (97ms) and a much higher-capacity
connection between themselves (50Mbps and 3ms latency).

In the remote peer scenario, we move the same user machine
to a well-connected network at Ohio State University. The user’s
measured connectivity to the Internet now is 29 Mbps upload and
86Mbps download, the latency to the origin server is 68ms latency,

4The bandwidth of all Internet links is measured using an online service
http://beta.speedtest.net/. The bandwidth within the home LAN is measured using a
large file transfer.

Direct Peer cache Peer cache
fetch (s) hit (s) miss (s)

Nearby Peer Total 3.74 2.67 6.82
Fetching wrapper 0.23 0.24
Running loader 1.18 5.36
Rendering 1.27 1.23

Remote Peer Total 2.03 11.31 12.82
Fetching wrapper 0.15 0.16
Running loader 9.93 11.41
Rendering 1.24 1.25

Table 2: End-to-end time to access the test page (delay com-
ponents may not sum up to totals due to rounding)

and the latency to the peer 36 ms. Thus, the bandwidth of the
path for downloading content from the origin server is likely to be
an order of magnitude higher than from the peer (limited by the
2.3Mbps peer upload bandwidth).

In both scenarios, we host the cloned 360.cn home page (with all
its embedded objects) on our AWS instance, which runs both the
web server and the authoritative DNS server for our domain. We
measure how long it takes the user browser to fetch and render the
web page with the NoCDN setup in two cases – when all content
served by the peer is available in the peer cache (“cache hit”) and
when the peer cache is disabled (“cache miss”). In all cases, we
ensure the browser cache is not utilized for any object fetches.

Table 2 summarizes our results. When the user is well connected
to the peer (the “nearby peer” row), it enjoys a significant reduc-
tion in access time over the direct page access from the web site
assuming the peer caches the content. A cache miss does incur
response time penalty, due to the execution of the loader script and
especially the longer rendering time of NoCDN. However, because
a large part of the delay is due to the transmission of content from
the origin to the home network (present in all cases), the penalty is
relatively modest.

The situation is dramatically different with a remote peer. In this
case, the limited-capacity network path between the peer and the
user is the bottleneck dominating the NoCDN download time on
either peer cache hit or miss, and this bottleneck is absent when the
user accesses the page directly from the origin. Thus, access time
throughNoCDN is similar in the peer cache hit andmiss cases, but is
over XXX times higher with NoCDN than with the direct download.
With a poorly connected peer in place of a well connected origin site
obviously degrades the performance of an individual access, and
NoCDN’s main benefit in this case is scalability to a large volume
of accesses. This result also highlights the importance of being able
to aggregate bandwidth of multiple peers by downloading different
embedded objects from different peers in parallel. As mentioned,
this extension is straightforward to implement but is currently not
supported by our prototype.

7.3 Discussion
Our performance results suggest a general content delivery strategy
for content provider along the following lines.

5

• The origin site should monitor the throughput of content
transfer to users and peers and record this information as
input for its content delivery decisions. A subtle point is
that from its interactions with peers the origin can only
learn peers’ download bandwidth but not the upload that
is relevant to the user performance. This suggests that the
loader script should include into the user’s usage report not
just the number of bytes for accounting but also the observed
performance of downloading from the peer.

• During periods of low demand, when the origin site is able
to serve all the demand, serve all requests directly, without
engaging NoCDN.

• During periods of high demand, serve well-connected users
preferentially directly and serve poorly connected users
through NoCDN peers (to preserve capacity for serving well-
connected users).

• If the demand is such that even well-connected users must be
offloaded, use well-connected peers preferentially for well-
connected users.

• “Pool” bandwidth of poorly connected peers by assigning
different objects for download from different peers, since
the NoCDN loader will often perform these downloads in
parallel (depending on the structure of the page).

The investigation of content delivery strategies with NoCDN is
a subject for future work.

8 LIMITATIONS
NoCDN will not obviate traditional CDNs. First, while the over-
heads discussed earlier could likely be reduced by tuning of the
implementation and evolution of JavaScript API, there will always
be some performance cost that traditional CDNs do not face. Sec-
ond, NoCDN can only outsource delivery of objects whose URLs
are easily parseable from the content of the embedding objects.
In particular, this excludes objects whose URLs are constructed
dynamically by a JavaScript script or buried deep inside JavasScript
variables. Hence, although we believe this limitation is not going
to be practically significant for most websites, the scope of content
that NoCDN can deliver is fundamentally narrower than with tra-
ditional CDNs. We consider NoCDS a “poor man’s approach” to
scalable content delivery, which trades these limitations for remov-
ing the cost of and reliance on a middleman between providers and
consumers of content.

From a peer’s perspective, in addition to contributing its re-
sources to deliver content for content providers, the peer opens
a permanent port to externally initiated communication for each
provider the peer signs up with. Fundamentally, external ports can
only decrease security of the peer’s network. NoCDN’s marketplace
will presumably arrive at prices that would compensate the peers
for added risks.

9 CONCLUSION
This paper investigates a new approach to scalable content deliv-
ery that does not require a website to sign up for CDN services.
Instead, a website directly recruits Internet users to contribute their
resources to help deliver the site’s content, and compensates the
participants based on the amount of data they help to deliver. This

creates a new open marketplace directly between content providers
and Internet users, without a middleman in the form of a traditional
CDN operator. We show that this approach, which we call NoCDN,
can be implemented securely (despite untrusted recruits), transpar-
ently to the users accessing the site (without any configuration or
modification of the browser), and without changes to the content
itself. A preliminary performance evaluation shows that, depending
on relative connectivity of the browser, origin server, and the peers,
and whether the peer has the requested content in its cache or has
to fetch it from the origin, the performance of a stand-alone user
access may improve or greatly diminish compared to accessing the
origin server directly. While the latter can be viewed as a reasonable
cost for being able to scale to a large volume of accesses, future
work will develop peer selection strategies to minimize penalized
user accesses.

All code comprising NoCDN is available at https://github.com/
aloell/NoCDN.

REFERENCES
[1] Akamai Download Manager. https://www.akamai.com/us/en/products/media-

delivery/download-manager-overview.jsp (Accessed on 8/13/2017).
[2] Akamai NetSession interface overview. https://www.akamai.com/us/en/products/media-

delivery/netsession-interface-overview.jsp (Accessed on 8/09/2017).
[3] Hole punching (networking). https://en.wikipedia.org/wiki/Hole_punching_(networking).

Accessed on 08/04/2017.
[4] P. Aditya, M. Zhao, Y. Lin, A. Haeberlen, P. Druschel, B. Maggs, and B. Wishon.

Reliable client accounting for P2P-infrastructure hybrids. In Proceedings of the
9th USENIX Conference on Networked Systems Design and Implementation (NSDI).
USENIX Association, 2012.

[5] J. Archibald. JavaScript Promises: an Introduction.
https://developers.google.com/web/fundamentals/getting-
started/primers/promises; Accessed on 08/05/2017.

[6] A. Barbir, B. Cain, R. Nair, and O. Spatscheck. Known Content Network (CN)
Request-Routing Mechanisms. RFC 3568 (Informational), July 2003.

[7] Cross-origin resource sharing. W3C Recommendation, 16 January 2014. Available
at https://www.w3.org/TR/cors/.

[8] M. El Dick, E. Pacitti, and B. Kemme. Flower-CDN: a hybrid P2P overlay for effi-
cient query processing in CDN. In Proceedings of the 12th International Conference
on Extending Database Technology (EDBT), pages 427–438. ACM, 2009.

[9] S. Hanselman. CSI: My Computer - What is netsession_win.exe from Akamai
and how did it get on my system? Available at goo.gl/wgM1CK (Accessed on
08/03/2017), 2011.

[10] C. Huang, A. Wang, J. Li, and K. W. Ross. Understanding hybrid CDN-P2P: why
limelight needs its own Red Swoosh. In Proceedings of the 18th International
Workshop on Network and Operating Systems Support for Digital Audio and Video
(NOSSDAV), pages 75–80. ACM, 2008.

[11] S. Iyer, A. Rowstron, and P. Druschel. Squirrel: A decentralized peer-to-peer web
cache. In Proceedings of the 21st Annual Symposium on Principles of Distributed
Computing (PODC), pages 213–222. ACM, 2002.

[12] A. Levy, H. Corrigan-Gibbs, and D. Boneh. Stickler: Defending against malicious
content distribution networks in an unmodified browser. IEEE Security & Privacy,
14(2):22–28, 2016.

[13] S. Seyyedi and B. Akbari. Hybrid CDN-P2P architectures for live video streaming:
Comparative study of connected and unconnected meshes. In Int. Symp. on
Computer Networks and Distributed Systems (CNDS), pages 175–180. IEEE, 2011.

[14] J. Terrace, H. Laidlaw, H. E. Liu, S. Stern, and M. J. Freedman. Bringing P2P to
the web: security and privacy in the FireCoral network. In Proceedings of the 8th
Int. Workshop on Peer-to-Peer Systems (IPTPS), page 7, 2009.

[15] J. Xu. Scalable content delivery without a middleman. Master’s thesis, Case
Western Reserve University, 2017.

[16] H. Yin, X. Liu, T. Zhan, V. Sekar, F. Qiu, C. Lin, H. Zhang, and B. Li. Livesky:
Enhancing CDN with p2p. ACM Transactions on Multimedia Computing, Com-
munications, and Applications (TOMM), 6(3):16, 2010.

[17] L. Zhang, F. Zhou, A. Mislove, and R. Sundaram. Maygh: Building a CDN from
client web browsers. In Proceedings of the 8th ACM European Conference on
Computer Systems, pages 281–294. ACM, 2013.

[18] M. Zhao, P. Aditya, A. Chen, Y. Lin, A. Haeberlen, P. Druschel, B. Maggs, B. Wis-
hon, and M. Ponec. Peer-assisted content distribution in Akamai NetSession. In
Proceedings of the Internet Measurement Conference (IMC), pages 31–42. ACM,
2013.

6

https://github.com/aloell/NoCDN
https://github.com/aloell/NoCDN
goo.gl/wgM1CK

	Abstract
	1 Introduction
	2 Related Work
	3 System Overview
	4 NAT traversal
	5 The Loader Script
	5.1 Content Integrity
	5.2 Accounting
	5.3 Further Implementation Details

	6 Signing up with Multiple Content Providers
	7 Performance
	7.1 Overheads
	7.2 End-to-end Performance
	7.3 Discussion

	8 Limitations
	9 Conclusion
	References

