
Towards a Model of DNS Client Behavior?

Kyle Schomp†, Michael Rabinovich†, Mark Allman‡

†Case Western Reserve University, Cleveland, OH, USA
‡International Computer Science Institute, Berkeley, CA, USA

Abstract. The Domain Name System (DNS) is a critical component
of the Internet infrastructure as it maps human-readable hostnames into
the IP addresses the network uses to route traffic. Yet, the DNS behavior
of individual clients is not well understood. In this paper, we present
a characterization of DNS clients with an eye towards developing an
analytical model of client interaction with the larger DNS ecosystem.
While this is initial work and we do not arrive at a DNS workload model,
we highlight a variety of behaviors and characteristics that enhance our
mental models of how DNS operates and move us towards an analytical
model of client-side DNS operation.

1 Introduction

The modern Internet relies on the Domain Name System (DNS) for two main
functions. First, the DNS allows people to leverage human-friendly hostnames
(e.g., “www.cnn.com”) instead of obtuse IP addresses to identify a host. Second,
hostnames provide a layer of abstraction such that the IP address assigned to
a hostname can vary over time. In particular, Content Distribution Networks
(CDNs) employ this late binding to direct users to the best content replica.
Previous work shows that DNS lookups precede over 60% of TCP connections
[14]. As a result, individual clients issue large numbers of DNS queries. Yet,
our understanding of DNS query streams is largely based on aggregate popula-
tions of clients—e.g., at an organizational [6] or residential level [3]—leaving our
knowledge of individual client behavior limited.

This paper represents an initial step towards understanding individual client
DNS behavior. We monitor DNS transactions between a population of thousands
of clients and their local resolver such that we are able to directly tie lookups
to individual clients. Our ultimate goal is an analytical model of DNS client
behavior that can be used for everything from workload generation to resource
provisioning to anomaly detection. In this paper we provide a characterization
of DNS behavior along the dimensions our model will ultimately cover and also
anecdotally show promising modeling approaches.

Note, one view holds that DNS is a “side service” and should not be directly
modeled, but rather can be well understood by deriving the DNS workload from
applications such as web browsing and email transmission. However, deriving a
DNS workload from application behavior is at best difficult because (i) client

? This work was funded in part by NSF grant CNS-1213157.

caching policies impact what DNS queries are actually sent in response to an
application event, (ii) some applications selectively use pre-fetching to lookup
names before they are needed and (iii) such a derivation would entail under-
standing many applications to pull together a reasonable DNS workload. There-
fore, we take the approach that focusing on the DNS traffic itself is the most
tractable way to understand—and eventually model—name lookups.

To motivate the need for a model, we provide an exemplar from our previous
work. In [14], we propose that clients should directly resolve hostnames instead of
using a recursive resolver. Ideally, an evaluation of this end system-based mech-
anism would be conducted in the context of end systems themselves. However,
the best data we could obtain was at the level of individual households—which
we know to include multiple hosts behind a NAT. Therefore, the results of our
trace-driven simulations are at best an approximation of the impact of the mech-
anism we were investigating. Our results would have been more precise had we
been able to leverage a model of individual client DNS behavior.

Broadly, the remainder of this paper follows the contours of what a model
would capture. We first focus on understanding the nature of the clients them-
selves in §3, finding that while most are traditional user-facing devices, there are
others that interact with the DNS in distinct ways. Next we observe in §4 that
DNS queries often occur closely-spaced in time—e.g., driven by loading objects
for a single web page from disparate servers—and therefore we develop a method
to gather together queries into clusters. We then assess the number and spacing
of queries in §5 and finally tackle the patterns in what hostnames individual
clients lookup in §6. We find that clients have fairly distinct “working sets” of
names, and also that hostname popularity has power law properties.

2 Dataset

Our dataset comes from two packet taps at Case Western Reserve University
(CWRU) that monitor the links connecting the two data centers that house all
five of the University’s DNS resolvers—i.e., between client devices and their re-
cursive DNS resolvers. We collect full payload packet traces of all UDP traffic
involving port 53 (the default DNS port). The campus wireless network situates
client devices behind NATs and therefore we cannot isolate DNS traffic to in-
dividual clients. Hence, we do not consider this traffic in our study (although,
future work remains to better understand DNS usage on mobile devices). The
University Acceptable Use Policy prohibits the use of NAT on its wired networks
while offering wireless access throughout the campus, and therefore we believe
the traffic we capture from the wired network does represent individual clients.
Our dataset includes all DNS traffic from two separate weeks and is partitioned
by client location—in the residential or office portions of the network. Details of
the datasets are given in Table 1 including the number of queries, the number
of clients that issue those queries, and the number of hostnames queried.
Validation: During the February data collection, we collect query logs from
the five campus DNS resolvers to validate our datasets1. Comparing the packet

1 We prefer traces over logs due to the better timestamp resolution (msec vs. sec).

Dataset Dates Queries Clients Hostnames
Feb:Residential Feb. 26 - Mar. 4 32.5M 1359 (IPs) 652K
Feb:Residential (filter) Feb. 26-27, Mar. 2-4 16.4M 1262 (MACs) 505K

Feb:Residential:Users 15.3M 1033 499K
Feb:Residential:Others 1.11M 229 7.94K

Feb:Office Feb. 26 - Mar. 4 232M 8770 (IPs) 1.98M
Feb:Office (filter) Feb. 26-27, Mar. 2-4 143M 8690 (MACs) 1.87M

Feb:Office:Users 118M 5986 1.52M
Feb:Office:Others 25.0M 2704 158K

Jun:Residential Jun. 23 - Jun. 29 11.7M 345 (IPs) 140K
Jun:Residential (filter) Jun. 23-26, 29 6.22M 334 (MACs) 120K

Jun:Residential:Users 5.81M 204 116K
Jun:Residential:Others 408K 130 4.13K

Jun:Office Jun. 23 - Jun. 29 245M 8335 (IPs) 1.61M
Jun:Office (filter) Jun. 23-26, 29 133M 8286 (MACs) 1.52M

Jun:Office:Users 108M 5495 1.42M
Jun:Office:Others 25.0M 2791 63.1K

Table 1. Details of the datasets used in this study.

traces and logs we find a 0.6% and 1.8% loss rates in the Feb:Residential and
Feb:Office datasets, respectively. We believe these losses are an artifact of our
measurement apparatus given that the loss rate is correlated with traffic volume.

Tracking Clients: We aim to track individual clients in the face of dynamic
address assignment. Simultaneously with the DNS packet trace, we gather logs
from the University’s three DHCP servers. Therefore, we can track DNS activity
based on MAC addresses. Note, we could not map 1.3% of the queries across
our datasets to a MAC address because the source IP address in the query never
appears in the DHCP logs. These likely represent static IP address allocations.
Further, without any DHCP assignments we are confident that these IPs repre-
sent a single host.

Filtering Datasets: We find two anomalies that skew the data in ways that are
not indicative of user behavior. First, we find roughly 25% of the queries request
the TXT record for debug.opendns.com. (The next most popular record repre-
sents less than 1% of the lookups!) We find this query is not in response to users’
actions, but is automatically issued to determine whether the client is using the
OpenDNS resolver (indicated in the answer) [1]. We observe 298 clients querying
this record, which we assume use OpenDNS on other networks or used OpenDNS
in the past. We remove these queries from further analysis. The second anomaly
involves 18 clients whose prominent behavior is to query for debug.opendns.com
and other domains repeatedly without evidence of accomplishing much work.
The campus information technology department verified that these clients serve
an operational purpose and are not user-facing devices. Therefore, we remove
the 18 clients as they are likely unique to this network and do not represent
users. We do not attempt to further filter misbehaving hosts—e.g., infected or
misconfigured hosts—as we consider them part of the DNS workload (e.g., since
a resolver would be required to cope with their requests).

Timeframe: To more directly compare residential and office settings we exclude
Saturday and Sunday from our datasets.

Table 1 shows the magnitude of our filtering. We find commonality across
the partitions of the data, so we focus on the Feb:Residential:Users dataset for
conciseness and discuss how other datasets differ as appropriate.

Marker Clients %
All 1262 100%
Google analytics 983 78%
Search engine 1010 80%

Google 1006 80%
Any other 602 48%

Gmail 881 70%
LDAP Login 840 66%
Any 1033 82%

Table 2. Feb:Residential clients that fit markers for general purpose devices.

3 Identifying Types of Clients

Since our focus is on characterizing general purpose user-facing devices, we aim to
separate them from other types of end systems. We expect general-purpose sys-
tems are involved in tasks, such as (i) web browsing, (ii) accessing search engines,
(iii) using email, and (iv) conducting institutional-specific tasks2. Therefore, we
develop the following markers to identify general-purpose hosts:

Browsing: A large number of web sites embed Google Analytics [8] in their
pages, thus there is a high likelihood that regular users will query for Google
Analytics hostnames on occasion.

Searching: We detect web search activity via DNS queries for the largest search
engines: Google, Yahoo, Bing, AOL, Ask, DuckDuckGo, Altavista, Baidu,
Lycos, Excite, Naver, and Yandex.

Email: CWRU uses Google to manage campus email and therefore we use
queries for “mail.google.com” to indicate email use.

Institutional-Specific Tasks: CWRU uses a single sign-on system for authen-
ticating users before they perform a variety of tasks and therefore we use
queries for the corresponding hostname as indicative of user behavior.

Table 2 shows the breakdown of the clients in the Feb:Residential dataset.
Of the 1,262 clients we identify 1,033 as user-facing based on at least one of the
above markers. Intuitively we expect that multiple markers likely apply to most
general purpose systems and in fact we find at least two markers apply to 991 of
the clients in our dataset. Results for our other datasets are similar.

We next turn to the 229 clients (≈ 18%) that do not match any of our mark-
ers for user-facing clients. To better understand these clients we aggregate them
based on the vendor portion of their MAC addresses. First, we find a set of ven-
dors and query streams that indicate special-purpose devices: (i) 48 Microsoft
devices that query for names within the xboxlive.com domain, which we conclude
are Xbox gaming consoles, (ii) 33 Sony devices that query for names within the
playstation.net domain, which we conclude are Sony Playstation gaming con-
soles, (iii) 16 Apple devices that have an average of 11K queries—representing
96% of their lookups—for the apple.com domain, even though the average across
all devices that lookup an apple.com name is 262 queries, which we conclude
are Apple TV devices and (iv) 7 Linksys devices that issue queries for es-
uds.usatech.com, which we conclude are transaction systems attached to the
laundry machines in the residence halls (!).

2 In our case, this is campus-life tasks, e.g., checking the course materials portal.

In addition to these, we find devices that we cannot pinpoint explicitly, but
do not in fact seem to be general-purpose client systems. We find 41 Dell devices
that differ from the larger population of hosts in that they query for more PTR
records than A records. A potential explanation is that these devices are servers
obtaining hostnames for clients that connect to them (e.g., as part of sshd ’s
verification steps or to log client connects). We also identify 12 Kyocera devices
that issue queries for only the campus NTP and SMTP servers. We conclude
that these are copy machines that also offer emailing of scanned documents.

For the IP addresses that do not appear in the DHCP logs (i.e., addresses
statically configured on the hosts), we cannot obtain a vendor ID. However, we
note that 97% of the queries and 96% of the unique domain names from these
machines involve CWRU domains and therefore we conclude that they serve
some administrative function and are not general purpose clients. The remaining
61 devices are distributed among 42 hardware vendors. In the remainder of the
paper we will consider the general purpose clients (Users) and the special purpose
clients (Others) separately, as we detail in Table 1. We find that our high-level
observations hold across all of the Users datasets, and thus present results for
the Feb:Residential:Users dataset only.

4 Query Clusters

Applications often call for multiple DNS queries in rapid succession—e.g., as part
of loading all objects on a web page, or prefetching names for links users may
click. In this section, we quantify this behavior using the DBSCAN algorithm [4]
to construct clusters of DNS queries that likely share an application event. The
DBSCAN algorithm uses two parameters to form clusters: a minimum cluster
size M and a distance ε that controls the addition of samples to a cluster. We
use the absolute difference in the query timestamps as the distance metric. Our
first task is to choose suitable parameters. Our strategy is to start with a range
of parameters and determine whether there is a point of convergence where the
results of clustering do not change greatly with the parameters. Based on the
strategy in [4], we start with an M range of 3–6 and an ε range of 0.5–5 seconds—
note that M = 2 simplifies to threshold based clustering, but does not produce
a point of convergence. We find that 96% of the clusters we identify with M = 6
are exactly found when M = 3 and hence at M = 3 we have converged on a
reasonably stable answer which we use in the subsequent analysis. Additionally,
we find that for ε ∈ [2.5, 5], the total number of clusters, the distribution of
cluster sizes, and the assignment of queries to clusters remain similar irrespective
of ε value and therefore use ε = 2.5 seconds in our analysis. We define the first
DNS query per cluster as the root and all subsequent queries in the cluster
as dependents. In the Feb:Residential:Users dataset, we find 1M clusters that
encompass 80% of the roughly 15M queries in the dataset.

To validate the clustering algorithm we first inspect the 67K unique host-
names the algorithm labels as noise. We find a variety of hostnames with the
most frequent being: WPAD [7] queries for discovering proxies, Google Mail
and Google Docs, software update polling (e.g., McAfee and Symantec), heart-
beat signals for gaming applications (e.g., Origin, Steam, Blizzard, Riot), video

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 10 100
Count per metric (log scale)

C
D

F
 p

er
 c

lu
st

er

SLDs Hostnames Queries

Fig. 1. Number of queries, hostnames,
and SLDs per cluster.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.1 1 10 100 1K 10K
Mean queries sent per day (log scale)

C
D

F
 p

er
 c

lie
nt

Feb:Residential:Others Feb:Residential:Users

Fig. 2. Queries issued by each client per
day.

streaming (e.g., Netflix, YouTube, Twitch), and the Network Time Protocol
(NTP). All of these names can intuitively come from applications that require
only sporadic DNS queries, as they are either making quick checks every once in
a while, or are using long-lived sessions that leverage DNS only when starting.

To validate the clusters themselves, we observe that there are frequently oc-
curring roots. Indeed, the 1M clusters have only 72K unique roots, with the 100
most frequently occurring roots accounting for 395K (40%) of the clusters. Fur-
ther, the 100 most popular roots include popular web sites (e.g., www.facebook.com,
www.google.com). These are the type of names we would expect to be roots in
the context of web browsing. Another common root is safebrowsing.google.com
[9], a blacklist directory used by some web browsers to determine if a given web
site is safe to retrieve. This is a distinctly different type of root than a popular
web site because the root is not directly related to the dependents by the page
content, but rather via a process running on the clients. This in some sense means
SafeBrowsing-based clusters have two roots. While use of SafeBrowsing is fairly
common in our dataset, we do not find additional prevalent cases of this “two
roots” phenomenon. From a modeling standpoint we have not yet determined
whether “two roots” clusters would need special treatment.

Figure 1 shows the distribution of queries per cluster. While the major-
ity of clusters are small, there are relatively few large clusters. We find that
90% of clusters contain at most 26 queries for at most 22 hostnames. Addi-
tionally, we find 90% of the clusters encompass at most 10 SLDs. The largest
cluster spans 95 seconds and consists of 9,366 queries for names that match
to the 3rd level label. The second largest cluster consists of 6,211 queries for
myapps.developer.ubuntu.com—which is likely a Ubuntu bug.

5 Query Timing

Next we tackle the question of when and how many queries clients issue. We begin
with the distribution of the average number of queries that clients issue per day,

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.001 0.01 0.1 1 10 100
Inter−query time in seconds (log scale)

C
D

F
 p

er
 in

te
r−

qu
er

y
tim

e

90% Aggregate

Fig. 3. Time between queries from the
same client in aggregate and per client.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1ms 10ms 100ms 1s 10s 100s
Time (log scale)

C
D

F

Intra−cluster time Cluster duration Inter−cluster time

Fig. 4. Duration of clusters, inter-cluster
query time and intra-cluster query time.

as given in Figure 2. We find that clients in Users issue 2K lookups per day at
the median and 90% of clients in Users issue less than 6.7K queries per day. The
Others datasets show greater variability where relatively few clients generate the
lion’s share of queries—i.e., the top 5% of clients produce roughly as many total
DNS queries per day as the bottom 95% in the Feb:Residential:Others dataset.

A related metric is the time between subsequent queries from the same client,
or inter-query times. Figure 3 shows the distribution of the inter-query times. The
“Aggregate” line shows the distribution across all clients. The area “90%” shows
the range within which 90% of the individual client inter-query time distributions
fall. The majority of inter-query times are short, with 50% of lookups occurring
within 34 milliseconds of the previous query. However, we also find a heavy tail,
with 0.1% of inter-query times being over 25 minutes. Intuitively, long inter-query
times represent off periods when the client’s user is away from the keyboard (e.g.,
asleep or at class). The Others datasets show wide ranging behavior suggesting
that they are less amenable to succinct description in an aggregate model.

For the Users dataset, we are able to model the aggregate inter-query time
distribution using the Weibull distribution for the body and the Pareto distri-
bution for the heavy tail. We find that partitioning the data at an inter-query
time of 22 seconds minimizes the mean squared error between the data and the
two analytical distributions. Next, we fit the analytical distributions—split at
22 seconds—to each of the individual client inter-query time distributions. We
find that while the parameters vary per client, the empirical data is well repre-
sented by the analytical models as the mean squared error for 90% of clients is
less than 0.0014. Thus, parameters for a model of query inter-arrivals will vary
per client, but the distribution is invariant.

Next, we move from focusing on individual lookups to focusing on timing
related to the 1M lookup clusters that encompass 12M (80%) of the queries in
our dataset (see §4). Figure 4 shows our results. The “Intra-cluster time” line
shows the distribution of the time between successive queries within the same
cluster. This time is bounded to ε = 2.5 seconds by construction, but over 90% of
the inter-arrivals are less than 1 second. On the other hand, the line “Inter-cluster

1E−7

1E−6

1E−5

1E−4

1E−3

1E−2

1E−1

1E+0

1 10 100 1K 10K 100K
Index of name, sorted (log scale)

F
ra

ct
io

n
of

 to
ta

l q
ue

rie
s

(lo
g

sc
al

e)

90% Aggregate

Fig. 5. Fraction of queries issued for each
hostname per client.

1E−3

1E−2

1E−1

1E+0

1 10 100 1K 10K 100K
Index of name, sorted (log scale)

F
ra

ct
io

n
of

 c
lie

nt
s

(lo
g

sc
al

e)

SLDs Hostnames

Fig. 6. Fraction of clients issuing queries
for each hostname and SLD.

time” shows the time between the last query of a cluster and the first query of
the next cluster. Again, most clusters are separated from each other by much
more than ε time, the minimum separation by construction. The line “Cluster
duration” shows the time between the first and last query in each cluster. Most
clusters are short, with 99% less than 18 seconds. Additionally, we find that most
of client DNS traffic occurs in short clusters: 50% of clustered queries belong
to clusters with duration less than 4.6 seconds and 90% are in clusters with
duration less than 20 seconds. For the Others datasets, a smaller percentage of
DNS queries occur in clusters—e.g., 60% in the Feb:Residential:Others dataset.

6 Query Targets

Finally, we tackle the queries themselves including relationships between queries.
Popularity of Names: We analyze the popularity of hostnames using two
methods—how often the name is queried across the dataset and how many clients
query for it. Figure 5 shows the fraction of queries for each hostname (with the
hostnames sorted by decreasing popularity) in the Feb:Residential:Users dataset.
Per §5, we plot the aggregate distribution and a range that encompasses 90%
of the individual client distributions. Of the 499K unique hostnames within our
dataset, 256K (51%) are looked up only once. Meanwhile, the top 100 hostnames
account for 28% of DNS queries. Figure 6 shows the fraction of clients that query
for each name. We find that 77% of hostnames are queried by only a single
client. However, over 90% of the clients look up the 14 most popular hostnames.
Additionally, 13 of these hostnames are Google services and the remaining one
is www.facebook.com. The plot shows similar results for second-level domains
(SLDs), where 66% of the SLDs are looked up by a single client.

The distributions of both queries per name and clients per name demonstrate
power law behavior in the tail. Interestingly, the Pearson correlation between
these two metrics—popularity by queries and popularity by clients—is only 0.54
indicating that a domain name with many queries is not necessarily queried by
a large fraction of the client population and vice versa. As an example, update-
keepalive.mcafee.com is the 19th most queried hostname but is only queried by

8.1% of the clients. At the same time, 55% of the clients query for s2.symcb.com,
but in terms of total queries this hostname ranks as only the 1215th most pop-
ular. This phenomenon may be partially explained by differences in TTL. The
record for s2.symcb.com has a one hour TTL—limiting the query frequency.
Meanwhile, updatekeepalive.mcafee.com has a 1 minute TTL. Given this short
TTL and that the name implies polling activity, the large numbers of queries
from a given client is unsurprising. Thus, a model of DNS client behavior must
account for the popularity of hostnames in terms of both queries and clients.

The heavy tails of the popularity distributions represent a large fraction of
DNS transactions. However, we cannot disregard unpopular names—even those
queried just once—because together they are responsible for the majority of DNS
activity therefore impacting the entire DNS ecosystem (e.g., cache behavior).

Co-occurrence Name Relationships: In addition to understanding popular-
ity, we next assess the relationships between names, as these have implications
on how to model client behavior. The crucial relationship between two names
that we seek to quantify is frequent querying for the pair together. We begin
with the request clusters (§4) and leverage the intuition that the first query
within a cluster triggers the subsequent queries in the cluster and is therefore
the root lookup. This follows from the structure of modern web pages, with a
container page calling for additional objects from a variety of servers—e.g., an
average web page uses objects from 16 different hostnames [10].

Finding co-occurrence is complicated due to client caching. That is, we cannot
expect to see the entire set of dependent lookups each time we observe some
root lookup. Our methodology for detecting co-occurrence is as follows. First, we
define clusters(r) as the number of clusters with r as the root across our dataset
and pairs(r, d) as the number of clusters with root r that include dependent
d. Second, we limit our analysis to the case when clusters(r) ≥ 10 to reduce
the potential for false positive relationships based on too few samples. In the
Feb:Residential:Users dataset, we find 7.1K (9.9%) of the clusters meet these
criteria. Within these clusters we find 7.5M dependent queries and 2.2M unique
(r, d) pairs. Third, for each pair (r, d), we compute the co-occurrence as C =
pairs(r, d)/clusters(r)—i.e., the fraction of the clusters with root r that include
d. Co-occurrence of most pairs is low with 2.0M (93%) pairs having a C much
less than 0.1. We focus on the 78K pairs that have high C—greater than 0.2.
These pairs include 98% of the roots we identify, i.e., nearly all roots have at least
one dependent with which they co-occur frequently. Also, these pairs comprise
28% of the 7.5M dependent queries we study.

We note that intuitively dependent names could be expected to share labels
with their roots—e.g., www.facebook.com and star.c10r.facebook.com—and this
could be a further way to assess co-occurrence. However, we find that only 27%
of the pairs within clusters with co-occurrence of at least 0.2 share the same SLD
and 11% share the 3rd level label as the cluster root. This suggests that while
not rare, counting on co-occurring names to be from the same zone to build
clusters is dubious. As an extreme example, Google Analytics is a dependent of
1,049 unique cluster roots, most of which are not Google names.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Min cos similarity for same client on consecutive days

C
D

F
 p

er
 c

lie
nt

Hostnames SLDs

Fig. 7. Cosine similarity between the
query vectors for the same client.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Max cos similarity between clients for any day(s)

C
D

F
 p

er
 c

lie
nt

 p
ai

r

Hostnames SLDs

Fig. 8. Cosine similarity between the
query vectors for different clients.

Finally, we cannot test the majority of the clusters and pairs for co-occurrence
because of limited samples. However, we hypothesize that our results apply to
all clusters. We note that the distribution of the number of queries per cluster in
Figure 1 is similar to the distribution of the number of dependents per root where
the co-occurrence fraction is greater than 0.2. Combining our observations that
80% of queries occur in clusters, 28% of the dependent queries within clusters
have high co-occurrence with the root, and the average cluster has 1 root and
10 dependents, we estimate that at a minimum 80 ∗ 0.28 ∗ 10/11 = 20% of DNS
queries are driven by co-occurrence relationships. We conclude that co-occurrence
relationships are common, though the relationships do not always manifest as
requests on the wire due to caching.

Temporal Locality: We next explore how the set of names a client queries
changes over time. As a foundation, we construct a vector Vc,d for each client c
and each day d in our dataset, which represents the fraction of lookups for each
name we observe in our dataset. Specifically, we start from an alphabetically
ordered list of all hostnames looked up across all clients in our dataset, N . We
initially set each Vc,d to a vector of |N | zeros. We then iterate through N and
set the corresponding position in each Vc,d as the total number of queries client
c issues for name Ni on day d divided by the total number of queries c issues on
day d. Thus, an example Vc,d would be < 0, 0.25, 0, 0.5, 0.25 > in the case where
there are five total names in the dataset and on day d the client queries for the
second name once, the fourth name twice and the fifth name once. We repeat
this process using only the SLDs from each query, as well.

We first investigate whether clients’ queries tend to remain stable across days
in the dataset. For this, we compute the minimum cosine similarity of the query
vectors for each client across all pairs of consecutive days. Figure 7 shows the
distribution of minimum cosine similarity per client in the Feb:Residential:Users
dataset. In general, the cosine similarity values are high—greater than 0.5 for
80% of clients for unique hostnames—indicating that clients query for a similar
set of names in similar relative frequencies across days. Given this result, it is
unsurprising that the figure also shows high similarity across SLDs.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 10 100 1K 10K
Mean names queried per day (log scale)

C
D

F
 p

er
 c

lie
nt

SLDs Hostnames

Fig. 9. Mean hostnames and SLDs
queried by each client per day.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 10 100 1K
Stack Distance (log scale)

C
D

F
 p

er
 c

lie
nt

Median Mean

Fig. 10. Mean and median stack distance
for each client.

Next we assess whether different clients query for similar sets of names. We
compute the cosine similarity across all pairs of clients and for all days of our
dataset. Figure 8 shows the distribution of the maximum similarity per client
pair from any day. When considering hostnames, we find lower similarity values
than when focusing on a single client—with only 3% showing similarity of at
least 0.5—showing that each client queries for a fairly distinct set of hostnames.
The similarity between clients is also low for sets of SLDs, with 55% of the pairs
showing a maximum similarity less than 0.5. Thus, clients query for different
specific hostnames and distinct sets of SLDs. These results show that a client
DNS model must ensure that (i) each client tends to stay similar across time
and also that (ii) clients must be distinct from one another.

A final aspect we explore is how quickly a client repeats a query. As we show
in Figure 2, 50% of the clients send less than 2K queries per day on average.
Figure 9 shows the distribution of the average number of unique hostnames that
clients query per day. The number of names is less than the overall number of
lookups, indicating the presence of repeat queries. For instance, at the median,
a client queries for 400 unique hostnames and 150 SLDs each day. To assess
the temporal locality of re-queries, we compute the stack distance [12] for each
query—the number of unique queries since the last query for the given name.
Figure 10 shows the distributions of the mean and median stack distance per
client. We find the stack distance to be relatively short in most cases—with over
85% of the medians being less than 100. However, the longer means show that
the re-use rate is not always short. Our results show that variation in requerying
behavior exists among clients, with some clients revisiting names frequently and
others querying a larger set of names with less frequency.

7 Related Work

Models of various protocols have been constructed for understanding, simulat-
ing and predicting traffic (e.g., [13] for a variety of traditional protocols and
[2] as an example of HTTP modeling). Additionally, there is previous work on
characterizing DNS traffic (e.g., [11,6]), which focuses on the aggregate traffic

of a population of clients, in contrast to our focus on individual clients. Finally,
we note—as we discuss in §1—that several recent studies involving DNS make
assumptions about the behavior of individual clients or need to analyze data for
specific information before proceeding. For instance, the authors of [5] model
DNS hierarchical cache performance using an analytical arrival process, while in
[14], the authors use simulation to explore changes to the resolution path. Both
studies would benefit from a greater understanding of DNS client behavior.

8 Conclusion

This work is an initial step towards richly understanding individual DNS client
behavior. We characterize client behavior in ways that will ultimately inform an
analytical model. We find that different types of clients interact with the DNS
in distinct ways. Further, DNS queries often occur in short clusters of related
names. As a step towards an analytical model, we show that the client query
arrival process is well modeled by a combination of the Weibull and Pareto
distributions. In addition, we find that clients have a “working set” of names
that is both fairly stable over time and fairly distinct from other clients. Fi-
nally, our high-level results hold across both time and qualitatively different user
populations—student residential vs. University office. This is an initial indication
that the broad properties we illuminate hold the promise to be invariants.

References
1. OpenDNS. http://www.opendns.com/.
2. P. Barford and M. Crovella. Generating Representative Web Workloads for Net-

work and Server Performance Evaluation. In ACM SIGMETRICS, 1998.
3. T. Callahan, M. Allman, and M. Rabinovich. On Modern DNS Behavior and

Properties. ACM SIGCOMM Computer Communication Review, July 2013.
4. M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A Density-Based Algorithm for

Discovering Clusters in Large Spatial Databases with Noise. In AAAI International
Conference on Knowledge Discovery and Data Mining, 1996.

5. N. C. Fofack and S. Alouf. Modeling Modern DNS Caches. In ACM International
Conference on Performance Evaluation Methodologies and Tools, 2013.

6. H. Gao, V. Yegneswaran, Y. Chen, et al. An Empirical Re-examination of Global
DNS Behavior. In ACM SIGCOMM, 2013.

7. P. Gauthier, J. Cohen, and M. Dunsmuir. The Web Proxy Auto-Discovery Pro-
tocol. IETF Internet Draft. https://tools.ietf.org/html/draft-ietf-wrec-

wpad-01 (work in progress), 1999.
8. Websites Using Google Analytics. http://trends.builtwith.com/analytics/

Google-Analytics.
9. Google Safe Browsing. https://developers.google.com/safe-browsing.

10. HTTP Archive. http://httparchive.org.
11. J. Jung, A. W. Berger, and H. Balakrishnan. Modeling TTL-Based Internet Caches.

In IEEE International Conference on Computer Communications, 2003.
12. R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation Techniques for

Storage Hierarchies. IBM Systems Journal, 1970.
13. V. Paxson. Empirically Derived Analytic Models of Wide-Area TCP Connections.

IEEE/ACM Transactions on Networking, 1994.
14. K. Schomp, M. Allman, and M. Rabinovich. DNS Resolvers Considered Harmful.

In ACM Workshop on Hot Topics in Networks, 2014.

http://www.opendns.com/
https://tools.ietf.org/html/draft-ietf-wrec-wpad-01
https://tools.ietf.org/html/draft-ietf-wrec-wpad-01
http://trends.builtwith.com/analytics/Google-Analytics
http://trends.builtwith.com/analytics/Google-Analytics
https://developers.google.com/safe-browsing
http://httparchive.org

