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Abstract
With a key component of latency on the Web being con-
nection set up between clients and Web servers, several
ways to avoid connections have been explored. While the
work in recent years on Content Distribution Networks
(CDNs) have moved some content ‘closer’ to users at the
cost of increasing DNS traffic, they have not fully ex-
ploited the available unused potential of existing proto-
cols. We explore ways by which a variety of Web re-
sponses can be piggybacked on DNS messages. While
we evaluated our idea in the Web context, the approach is
generic and not restricted to Web responses. We propose
an architecture for HTTP piggybacking in DNS messages
and carry out a detailed performance analysis based on a
trace-driven simulation study. Our architecture requires
minimal extensions to existing protocols, utilizing only
the allowed optional fields for these extensions. It is fully
compatible and can coexist with the current Web.

1 Introduction
Many researchers have explored ways to improve user-
perceived latency and reduce load on origin servers and
the network. A common theme among the various strands
of work that have turned out to be beneficial is one that al-
lows incremental deployment rather than new large scale
changes to existing user’s practices. Consequently, we
seek ways to exploit inefficiencies in the current, largely
stable and generally difficult to modify protocols involved
in a Web download (HTTP/1.1 is not yet a standard six
years after introduction!), while minimizing any protocol
extensions and making sure these extensions can coexist
with the current practice.

A typical Web transaction (for more details, see [6],
Section 15.4.1) involves a few protocols (DNS, HTTP,
UDP, TCP) with multiple short transactions among the as-
sociated entities (clients, proxies, servers).

Inefficiencies in the transport layer have been largely
squeezed out by protocol changes at the HTTP layer (per-
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sistent connections, pipelining) as well as proposals to
move some HTTP traffic from TCP to UDP [2, 13]. La-
tency reduction has been advanced by standard proxy
caching techniques and in some cases via non-standard
ones (such as DNS-based content distribution), or again
via protocol extensions (such as compression, delta-
encoding [11], and HTTP range requests). Piggybacking,
which dates back to pre-TCP days, has been exploited for
obviating unnecessary cache validations [7] and for send-
ing hints [3]. Piggybacking techniques that exploit ex-
isting protocols, have low overhead, reduced deployment
costs, are easier to test and hopefully be adopted.

In this paper, we explore ways to speed up Web deliv-
ery by piggybacking some or all of a HTTP resource in
DNS responses. Most HTTP transactions are preceded by
a DNS lookup of the Web site’s server name. which (un-
less cached) are satisfied by authoritative DNS servers.
Authoritative DNS servers are often close, in a network
sense, to the machines whose names they serve [4]. To
access a Web object, clients often must communicate with
a distant host to resolve the Web server name, only to go
back to the same location again for the object itself.

We examine different scenarios where useful informa-
tion can be piggybacked in the unused portion of re-
sponses that come before regular responses. It is not nec-
essary for the entire response to be piggybacked. With
some simple adjustments, we can alter the piggybacked
response (e.g., compress it), or send semantically signifi-
cant portions (an initial portion of predefined size or dif-
ferences between versions of a resource, if a previous ver-
sion is cached). Our approach attempts to reduce the fre-
quency of such repeated communication, and thus reduce
the latency of Web accesses. It will therefore be espe-
cially beneficial for environments with long message la-
tency, such as dial-up clients, clients connected by satel-
lite links and clients accessing very remote Web sites.

A DNS trace study [5] done at MIT and the Korea Ad-
vanced Institute of Science and Technology examined the
failure rates as well as overall performance and reported
on usefulness of caching. A recent example of exploiting
existing DNS servers (although for an entirely different
application, that of measuring latency between arbitrary
Internet hosts) and avoiding installation of new measure-
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ment infrastructure is the King system [4].
Although in this paper we focus on one such sequence

(DNS responses before HTTP responses in the Web con-
text), the idea is more general. and could be used any-
where were DNS is used. While many P2P systems
currently use hardwired IP addresses, short peer-to-peer
query responses can be piggybacked in DNS responses,
when a DNS query is required in that context.

2 Background
Web interaction today involves the following mecha-
nisms. Every HTTP client (‘client’) is configured to use
a DNS server (‘local DNS’ or LDNS) to resolve URL
hostnames into their IP addresses. Typically a group
of clients (usually in the same client location) share the
same LDNS. LDNSs in turn are configured to use well-
known root DNS servers, which keep a database of the
DNS servers that maintain hostname-to-IP-address map-
pings for given domains (authoritative DNS servers re-
ferred to here as remote DNS or RDNS). A Web interac-
tion typically starts with the client sending a DNS query
to LDNS, which resolves it from the appropriate RDNS
(first obtaining the RDNS identity from a root server) and
forwards the response to the client. The client then opens
a TCP connection to the Web server and downloads the
page using HTTP protocol. The DNS interactions occur
over connectionless UDP and involve simple exchange of
request/response datagrams.

DNS makes extensive use of caching at all levels. A
client caches DNS responses to avoid the overhead of
DNS queries when accessing multiple URLS from the
same Web site. An LDNS caches responses to avoid going
to RDNS when another client from the LDNS’s group pre-
viously already resolved the same hostname. Clients shar-
ing the same LDNS share the LDNS’s cache of DNS re-
sponses. To keep cached responses from becoming stale,
RDNS servers assign time-to-live (TTL) to the responses,
indicating validity duration of cached responses.

3 DNS-Enhanced Web
Here we describe our proposal for DEW—DNS-
Enhanced Web. Before a Web client can send the HTTP
request, it often needs to resolve the host name of a Web
server. The client’s resolver is modified to piggyback the
HTTP request on the unused portion of its DNS request
to its DNS server. DNS servers (both local and authorita-
tive) extract piggybacked HTTP requests and may choose
to piggyback HTTP responses or parts of them on the
DNS responses. We consider strict piggybacking, where
the piggybacked information fits entirely into the unused
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Figure 1: DEW architecture that combines DNS servers
and HTTP caches.

portion of the DNS response, and extended piggybacking
where the DNS response may include up to two additional
datagrams. Limiting the size of extended piggybacking
allows DEW to leave congestion control (essential in large
data transfers) to TCP mechanisms. � We refer to the max-
imum amount of piggybacked HTTP data as size thresh-
old. Our idea leaves open different design choices. We
leave them for an extended version of this paper and con-
centrate here on the architecture shown in Figure 1.

3.1 The Architecture

A high-level architecture of DEW is shown in Figure 1
(root DNS servers are not shown, they are not modified in
DEW). DEW-enabled DNS servers add an HTTP cache
to their normal DNS cache. When the LDNS receives
a query with piggybacked HTTP request, LDNS can re-
spond locally if it has both DNS and HTTP responses in
its respective caches. If neither response is cached, LDNS
forwards the entire query to the authoritative DNS for the
hostname provided the latter is DEW-capable. The re-
mote DNS server contacts the origin server, with which
it may maintain a persistent TCP connection. If the ori-
gin server decides that it is appropriate to do so (based on,
e.g., whether the HTTP request is idempotent in case of
potential loss of DNS response), it sends the desired ob-
ject, or a part thereof, to the RDNS server. The RDNS
server piggybacks this HTTP response in its DNS reply to
the LDNS, which in turn forwards the reply to the HTTP
client. The RDNS can also cache the HTTP response in
its HTTP cache for future use. If the HTTP client receives
a DNS response that includes the requested HTTP object,
the client can immediately use it. If the DNS response
contains just the IP address of the host (or only a portion
of the HTTP response), the client will obtain the (remain-
�
TCP starts a transfer of HTTP responses with congestion window

of two segments. In this paper, we study cases where DEW’s transfer is
more conservative (strict piggybacking), equivalent (one extra datagram)
and slightly more aggressive (two extra datagrams) than TCP’s.
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ing portion of the) object from the HTTP server using a
HTTP Range request.

When the LDNS can satisfy the hostname query from
its DNS cache but does not have the requested HTTP ob-
ject in its HTTP cache, the LDNS can fetch the object
from the Web server and piggyback it on its DNS response
to the client. Its HTTP cache is therefore a standard client
HTTP proxy, but it receives requests from LDNS with the
hostnames in the requests already resolved. This cache
must implement all Web proxy features such as cacheabil-
ity and cache validation rules. Although piggybacking in
this case is limited to the interaction between the client
and LDNS, it is important especially for dial-up users be-
cause the communication between their HTTP clients and
LDNSs occur over dial-up connections with typical la-
tencies of around 200ms. Considering that a document
download often involves HTTP interaction with multiple
Web sites (e.g., the container HTML page from the origin
site, the site’s embedded images from a CDN, and ban-
ner ads from advertising sites), the latency overhead for
communication with LDNS and the TCP set-up can be
significant. If responses from various sites can be piggy-
backed, the benefit accumulates. However, parallel down-
loads will lower the probability of cumulative benefit.

DEW could be especially useful in existing deployed
Content Distribution Network architectures. CDNs, such
as AT&T’s ICDS or Akamai, already use DNS to lo-
cate CDN mirrors (presumed to be) closer to the browser
client’s LDNS. Since most CDNs still deliver small static
images that have a typical size distribution in the few
hundreds of bytes, they make excellent candidates for
DEW. CDNs already run their own DNS hierarchy and
have access/control over delivery of the static image re-
sources. They typically return DNS responses with low
TTLs and do not maintain persistent HTTP connections
with the clients. CDNs are good candidates to accept
piggybacked DNS queries and actually reduce latency for
users in fetching these objects by obviating the HTTP con-
nection.

3.2 Use Cases

DEW uses extensions allowed in the existing DNS pro-
tocol specification and DEW-enabled components (HTTP
clients, LDNS and RDNS servers, and Web servers) can
coexist with their current counterparts. Section 6.1 pro-
vides details on the DEW protocol and on fitting DEW
into DNS. Here, we describe various scenarios in DEW
and compare their timing properties with the current Web.

Consider a client that fetches a page with two embed-
ded images, image1 and image2. In the time diagrams, we
assume a dial-up client, with the RTT between the client
and other hosts being three times the RTT between well-
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Figure 2: Message exchange in today’s Web (DNS re-
sponse cached by LDNS).

connected hosts on the Internet. Let ��� and �
	 be RTTs
between the client and its ISP and between the ISP and the
Internet, respectively. The RTT between the client and the
Internet is �������	 . Let � and � be the size of the con-
tainer page and embedded content, and ��������� be the
size of the entire document. Let the time to download a
file of size � over TCP be ������� , which is the time interval
between the first and the last byte of this content arriving
at the client (that is, excluding connection establishment).
Let ������� be time for a bandwidth-limited download of
such file over UDP.

When the client has the IP address of the host in its local
DNS cache, it fetches the document from the Web server
over HTTP, both in today’s WEB and in DEW. Such a
request is termed non-participant as no piggybacking is
done by DEW.

Now assume that host name needs to be resolved. We
analyze the case when there is no previously established
persistent connection between the client and the Web
server. This is the most likely case because if the client
must resolve the host name, then either this is its first ac-
cess to this site, in which case the client cannot have an
existing connection, or the previous DNS resolution timed
out, in which case it is most likely that the persistent con-
nection timed out also. The analysis of the cases where
there is a persistent connection is very similar.

Figure 2 shows the time diagram of the messages in-
volved in today’s Web interaction when the local DNS has
the requested host name in its cache. The silent time for
this interaction is  � �!�����#"$�%���&�'�
	(� and the display
time is between  � ��������� and  � �)�*���+�,��	+�-�,���*��� de-
pending on the degree of the overlap between the delivery
of the container page and the requests for embedded con-
tent. The case when LDNS does not cache the requested
host name adds � 	 to all expressions.
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Figure 3: Message exchanges in DEW.

Category Explanation
Non-DEW-participant Client knows Web site’s IP address, no DNS request sent
DEW participant Client does not know Web site’s IP address
Full DEW participant HTTP response to client is fully piggybacked on DNS response
Partial DEW participant Initial portion of HTTP response is piggybacked followed by a Range HTTP request.
Full cache hit Full participant satisfied from LDNS’s cache.
Partial cache hit Partial participant satisfied from LDNS’s cache.
Full HTTP request Full participant such that LDNS’s cache contains DNS response but not HTTP response.
Partial HTTP request Partial participant such that LDNS’s cache contains DNS response but not HTTP response.
Full DEW request Full participant such that LDNS’s cache does not contain DNS response
Partial DEW request Partial participant such that LDNS’s cache does not contain DNS response

Table 1: Summary of request categories.

With the architecture of Figure 1 and assumption that a
client sent a DNS request with HTTP request to its LDNS
raises following cases:

. The LDNS has the host name in its DNS cache
and the container page in its HTTP cache, and the
page is below size threshold. The time diagram
for this case is shown in Figure 3a. Compared to
Figure 2, we observe the reduction in both the dis-
play time, which is the total delay before the user
sees the entire document with all the images, and
especially the silent time, which is the delay be-
fore the browser starts showing some information
to the user [1]. This request is called a full cache
hit. The silent time here is �
� and display time is
either � � �/"0�*� � �1� 	 �2�3�����4�5�1���*�6� if there is
embedded content or � � �7�����4�#�8� � �7���*���
otherwise. 9 For a more vivid comparison with cur-

:
This and similar expressions later in this section are a slightly con-

rent Web, we can further simplify the display time
expression for the case with embedded image by not-
ing that �����4���;�����<�>=1������� . Then, the conserva-
tive estimate for display time in this case becomes
� � �;"0�%� � �?� 	 �&�?������� .

. The LDNS has the host name in its DNS cache but
the container page is not in its HTTP cache. The lat-
ter now issues the HTTP Range request to the Web
server (Figure 3b). The Range request is needed to
limit the transfer to a initial portion of the page that is
below the size threshold. Still assuming for now that
the page is below the threshold, the server responds
with the entire object, which the LDNS caches in its
HTTP cache and forwards to the client in the DEW
response. The effect on response time here depends
on the environment. For a U.S. dial-up client ac-

servative estimate since the display time could be less due to a possible
partial overlap of @BADCFE and G�AIHJE . Any difference would be small how-
ever because C is small in this case.
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Web DEW
full cache hit full HTTP req partial HTTP req partial cache hit

Silent KL���$�M"L��	 ��� ���$�M"L�
	 ���N�;"+�
	 ���
Display KL� � �;"+� 	 �?������� KL� � �;"+� 	 �O���*��� KL� � �OP-� 	 �O���*��� KL� � �?PQ� 	 �O���*��� KL� � �M"L� 	 �O���*���

to or or to to
PQ� � �MKL� 	 �?������� � � �O���*��� � � �;"+� 	 �O���*��� P-� � �MRL� 	 �O���*��� P-� � �OK-� 	 �O���*���

Table 2: Download times of Web and DEW with LDNS caching the DNS response

Web DEW
full DEW req partial DEW req

Silent KL� � �OK-� 	 � � �O� 	 � � �O� 	
Display K-� � �MKL� 	 �O���*��� KL� � �MKL� 	 �O���*��� KL� � �OK-� 	 �O���*���

to or to
P-� � �OP-� 	 �O���*��� � � �O� 	 �O���*��� P-� � �?PQ� 	 �O���*���

Table 3: Download times of Web and DEW when LDNS does not have the DNS response (the estimates for DEW are
conservative).

cessing a domestic Web site, there will be a reduc-
tion in silent time because DEW replaces TCP hand-
shake over slow dial-up link (RTT in the order of
200ms) with TCP handshake over faster Internet link
(cross-country RTT that are roughly a third of dial-
up times). If there were no embedded images this
would translate into similar savings in display time.
With embedded images, depending on the environ-
ment, DEW might increase the display time in this
case because it trades one RTT between client and
the Internet for two RTTs between the ISP and the
Internet. S This request, called a full HTTP request,
has a silent time of  9 �!� � �#"L� 	 ; display time of
 9 �)"0�*���Q�T��	L�$�U�����4�N�T���*�<� (or, conservatively,
 9 �V"$�%���W���
	(�+��������� ) if there is embedded content
or  9 �M�����4�X�1 9 �O���*��� otherwise. We assume
that the link to the client is the bottleneck thus deter-
mining the container page’s download time.

. The LDNS does not have the host name in its DNS
cache. It forwards the DEW request to RDNS, which
responds with the message containing both the re-
quested IP address and the HTTP page. Y Similar to
the cache hit case, this case (named a full DEW re-
quest) results in the reduction of silent and display
time, the latter due to better pipelining. The expres-

Z
Because this case assumes a small container page, there would be

little overlap between the download of the container page and requests
for embedded content, so the Web interaction would involve at least
three RTTs between the client and the Internet as in Figure 2.[

RDNS would obtain the HTTP page either from its HTTP cache or
from the origin HTTP server. In the latter case, we assume that RDNS
and the HTTP server are connected with a high-bandwdih low-latency
link because they usually belong to the same enterprise. Thus, we do not
distinguish these two cases in our analysis.

sions for the silent and display times are the same as
in the case of the full cache hits with added �\	 for
RDNS query in both expressions.

. The page is above the size threshold. When the
LDNS has the host name in its DNS cache but the
container page is not in its HTTP cache, LDNS does
not know the page size. So, its HTTP cache issues
the Range request for ] initial bytes, which allows
LDNS to limit the response size without knowing
the page size. When the Web site returns the ini-
tial portion of the container page, it is cached for the
future use and returned to the client piggybacked on
the DNS response. This allows the browser to im-
mediately start displaying the received portion of the
data, reducing the silent time.

The browser also issues HTTP Range request for the
remaining part of the container page. Unlike in the
current Web, if embedded objects happen to be spec-
ified in the initial portion of the container page al-
ready received, the browser can pipeline the requests
for these objects right after the HTTP Range request
for the remainder of the container page (see Fig-
ure 3c). The effect of DEW on the display time in
this case is unclear because improved pipelining is
offset by an extra TCP handshake over the fast link.
We call client requests processed according to this
scenario as partial-page HTTP requests. The silent
time here is  FK^�1���N�"L��	 . The the display time is
between  FK_�M"0�*���`�?��	+�&�?����]^�&�)�����baU]'�?�6�
and  FKc�'K$�*���N�O�
	(���;���*]^���;�����3a?]b�;�<� de-
pending on whether the embedded content is refer-
enced in the beginning or the end of the container
page. The opportunity for pipelining HTTP requests
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is higher here than in the current Web. For example,
Figure 3c shows a scenario when all HTTP requests
from the client to the Web server are pipelined, while
today the request for the container page inherently
precedes the pipelining. We can conservatively re-
place the last two terms in both formulas with ���*��� .

. The other two cases, partial-page cache hits, and
partial-page DEW requests are analogous to their
full-page counterparts. The initial portion of the con-
tainer page in the partial-page cache hit case is sat-
isfied from LDNS, resulting in significant reduction
in silent times. Similar to partial-page HTTP re-
quest, partial-page cache hit improves pipelining of
the remaining portion of the page and embedded im-
ages, but this time without extra TCP handshake be-
tween LDNS and the Web server, reducing the dis-
play time. The silent time here is  FP3�d��� . Re-
calling that ����]^�X�#�����!a']e�b�6�4=f�g���*�,� , the
conservative estimate for the display time is between
 XPJ�h"0�%���i�,��	j�Q�,���*��� and  XPJ�,KN�%���i�,��	+�-�,���*���
depending on whether the embedded content is ref-
erenced in the beginning or the end of the container
page.

The partial-page DEW request occurs when LDNS
piggybacks the HTTP request over its DNS request
to RDNS, and the RDNS returns only the initial por-
tion of the page because the page exceeds the size
threshold. Similar to full-page DEW requests, this
scenario reduces silent time, and depending on where
the embedded images are specified, the display time
due to better pipelining. The RDNS query adds � 	
to the expressions for the silent and display times for
the full-page DEW request case.

We summarize request categories in DEW in Table 1
and the expressions for silent and display times for dif-
ferent categories in Tables 2 and 3. We study how often
these scenarios occur in real traces in Section 5. In many
of the above scenarios, DEW reduces the total number of
packets exchanged by eliminating some TCP handshake
and acknowledgment messages. Quantifying the effective
reduction in network loads is beyond the scope of this pa-
per.

4 Experiment methodology

The DEW architecture will have different effects from
the vantage points of the client, the proxy (if any), and
the content provider. We used trace-driven simulations
to evaluate the effect of the system from these three per-
spectives. Given the time analysis of individual scenarios

from Section 3.2, we focus on understanding how often
these scenarios occur.

0 10000 20000 30000 40000
Object size

0

0.2

0.4

0.6

0.8

1

Largesite
Larmancom
NLANR

Figure 4: CDF of object sizes in the logs.

Table 4 shows the traces used in our study. Larmancom
is a trace merged from three proxy logs at three sites of
a large manufacturing company recorded over the course
of a week in July 2001. This trace contains distinct client
IP addresses, anonymized such that class locality is pre-
served, allowing us to use it for studying both client and
proxy perspectives. The NLANR trace is taken from a
proxy in the NLANR cache hierarchy [14]. The client IP
addresses in this trace are sanitized; hence we used this
trace only for the proxy perspective evaluation. For the
content provider evaluation we used a trace from a large
commercial Web site.

One important aspect determining the request category
is the size of the response. Table 4 lists mean and me-
dian responses sizes in our traces, and Figure 4 shows the
CDFs of the response sizes. The size distributions all have
a similar shape and confirm previous studies showing a
prevalence of small objects. With a median size of less
than 1K, a majority of the objects are candidates for strict
piggybacking.

The effectiveness of DEW depends on the following
key factors: size of objects that can be returned in a
DEW response, TTLs of objects (both DNS responses
and HTTP objects) in the DEW cache, and grouping of
clients into clusters that share the same LDNS server. In
our simulations we have direct control over the first two
factors. We ran the simulations using different combina-
tions of values for these factors. To reduce the number
of combinations, we used the same value for TTLs of
both DNS and HTTP responses. We also simulated the
effect of compressing objects. We ran our simulations
assuming that textual objects are compressed by a spec-
ified ratio (since compression increases the effectiveness
of DEW, we assumed conservatively that only textual ob-
jects are compressible). We inferred textual objects by
either MIME type (when available) or by the file name

6



Name Date Total Requests Mean/Median Simulation (section)
Object Size (bytes)

Larmancom July 8-14, 2001 216,251,781 7610/965 client ( 5.1), proxy ( 5.2)
NLANR October 21-27, 2002 11,815,289 12050/902 proxy ( 5.2)
Largesite August 1-7, 2001 51,747,434 3680/792 content provider ( 5.3)

Table 4: Logs used for simulations.

extension from the object’s URL (e.g., URLs ending with
“.html” or “.asp” were assumed to be textual objects). We
chose a compression ratio by measuring it on homepages
of top 148 Web sites as discussed in the next section.

To evaluate the deployment of DEW at the proxy we
simulated a DEW-capable LDNS server that is used solely
by the proxy. In the client- and content provider-based
evaluations we simulated deployment of DEW-capable
LDNS servers at each client location. The client evalua-
tion assumes no proxy participation. The content provider
evaluation is agnostic to proxy participation since clients
in the logs may represent end-users as well as proxies. In
the last two evaluations, we needed to group individual
clients into clusters sharing the same LDNS server.

For the client-based evaluation we do not have spe-
cific information about the sharing of LDNS servers by
the clients in the logs, and we assume that clients are
grouped by the most significant three octets of their IP ad-
dress. This imprecise grouping can affect the breakdown
of DEW participants into categories k but does not change
the overall percentage of DEW participants.

For the content-provider simulation, our trace is from
the same site and the same time period that was used
in a previous study to assign Web clients to their LDNS
servers [8]. Thus, we have precise client-LDNS maps for
content-provider evaluation. We used these maps to pre-
cisely simulate sharing of LDNS servers by clients and to
maintain the state of the LDNS servers.

During the simulation, each request in the trace is ex-
amined according to the choice of values for the current
simulation run and the state of the DEW-capable LDNS
cache. The request is then categorized according to the
use scenarios defined in Section 3.2. The output of each
simulation is a count of the number of requests in each
category. We do not model packet loss. As explained later
in Section 6, DEW’s behavior in high-loss environments
should not be worse than the current Web.

l
Because the imprecision is likely on the side of overestimation of

LDNS sharing, it may increase the percentage of participants categorized
in Section 3.2 as cache hits and HTTP requests at the expense of DEW
requests.

5 Results

We now present the results of evaluating the impact of the
system from the perspectives of clients without a proxy, a
client proxy, and a content provider, which is agnostic as
to whether or not its clients represent proxies or end-users.
Our main findings are:

. There is a reasonable opportunity for piggybacking
of HTTP on DNS messages. While this opportunity
drops for higher TTLs, it remained significant (20%)
in the content provider case even for TTL of one day.

. Most of the DEW benefits come from piggyback-
ing HTTP on DNS responses that come all the way
from RDNS to LDNS to clients. Contributions
from HTTP caching and downloading functionality
of DEW-enabled LDNS was low.

. DEW Participation expectedly goes down in the
presence of proxies due to reuse of cached DNS reso-
lutions but there is still roughly 20% participation in
the Larmancom trace and 40% in the NLANR trace
for DNS TTL of a minute.

. Compression benefits were inconclusive: it in-
creased a fraction of full DEW participants in the
content provider and NLANR traces, but did not have
much affect in the Larmancom trace, for both client
and proxy perspectives.

5.1 Client

We used the Larmancom logs to to evaluate the sys-
tem from the client’s viewpoint. We ran the simulations
grouping clients as described in Section 4 using the com-
mon TTLs of 15, 60, 300 and 86400 seconds (1 day),
as well as 0 seconds as a boundary case. Some clients
do not obey small TTLs in DNS responses and cache
them anyway for some period of time (up to a few min-
utes). For these clients, DEW participation would freeze
at the level corresponding to this “imposed TTL” for any
smaller TTL returned by the RDNS. We considered size
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(b) Container pages.

Figure 5: Percentage of DEW participants (Larmancom
logs).

thresholds of 1180, 2660, 4140, which approximate re-
sponses taking one, two, and three UDP packets. We as-
sume a 1480-byte datagram and deduct 300 bytes from
the total size for HTTP headers and the DNS response
itself. Although the DNS specification limits DNS re-
sponses to 512 bytes [10], this limitation was specified be-
fore MTU discovery has made 1480-byte packets ubiqui-
tous and consequently led to the Proposed Standard (RFC
2671 [16]) that specifies a method of increasing the DNS
response size. A DEW-capable server can just assume
that, since it is receiving a DEW request, the LDNS can
handle responses of a size greater than 512 bytes.

Figure 5a shows the total percentage of DEW partici-
pants and the percentage of full DEW participants (those
completely fitting into the size threshold) for each combi-
nation of values. Participants include requests categorized
as DEW Requests, HTTP Requests and Cache Hits.

The boundary case of zero TTL indicates the maxi-
mum possible percentage of requests that are candidates
for DEW participation. A request is not a DEW candidate
if its HTTP request method is other than GET or HEAD,
or if it does not involve a DNS lookup (hostname portion
of the URL is a raw IP address). Approximately 97% of
the requests are potential DEW participants. 2% of the
requests have IP addresses in the URLs and 1% employ
non-GET or HEAD request methods.

With a higher TTL, clients use cached DNS resolutions
for requests that revisit the same Web server; as explained
in Section 3.2, these requests become non-DEW partic-
ipants. The higher the TTL the longer a client can use
cached DNS responses, and the fewer requests are po-
tential DEW requests. Each of the participant curves de-
creases as TTL increases. The percentages of total DEW
participants are 97%, 21%, 15%, 10% and 7%, respec-
tively. This quick dropoff is due to HTTP traffic pattern:
loading a Web page is typically followed by a burst of re-
quests to the same server (or a limited number of servers)

for embedded objects (images, scripts, etc.). These sub-
sequent requests are “masked” because the client already
has the IP address of the destination server and will not
contact the LDNS for the subsequent requests until the
DNS TTL expires. Low DNS TTLs are common for ob-
jects delivered by CDNs. Clients are therefore expected
to experience a greater performance enhancement from
DEW for CDN-delivered objects.

The initial requests for container pages (i.e., those that
embed images and other objects) are of particular impor-
tance because their silent time determines the silent time
for the entire Web document. As our time analysis of
Section 3.2 showed, DEW participation of a container
page also improves display time for the entire document
in most cases, due to better pipelining. We thus exam-
ined the percentage of DEW participants among requests
for container pages only. Figure 5b shows the proportion
of DEW participants and full DEW participants among
container pages. Comparing Figures 5a and 5b we see
that higher percentage of container pages benefit from the
DEW architecture. For example, for TTL of 300 seconds,
approximately 20% of requests to container pages are full
or partial DEW participants, and 11% are full participants
with strict piggybacking (i.e., they can be piggybacked in
a single DNS response packet).

To gain insight into the behavior of Figure 5b, we in-
spected the breakdown of the categories of DEW partic-
ipants from container pages. We normalized each of the
points of Figure 5b to 100% and examined the contribu-
tion of the category to the normalized total. For example,
in Figure 5b, for a TTL of 15 seconds, the “all partici-
pants” curve shows approximately 40% of requests being
either partial or full participants. We found that nearly
100% of these requests are DEW requests. This was true
for all TTLs up to 300 seconds. Similarly, nearly all
full participants are DEW requests for any size threshold.
Overall, we found that the DEW Requests category far
outweighs the HTTP requests and Cache Hits. Even with
a TTL of one day, the proportion of cache hits is only
around 10%. This suggests that requests for container
pages in conjunction with DNS requests exhibit only in-
significant sharing among clients belonging to the same
client site. Thus, most benefits come from the piggyback-
ing capability and not from the caching and HTTP func-
tionality of the LDNS server.

Most DEW benefits occur when a request is a full par-
ticipant. Figure 5 shows that full participants constitute
at least half, and often a majority, of participants for all
size thresholds. We investigated the possibility of further
increasing the proportion of full participants by combin-
ing DEW with the practice of compressing objects at the
content provider. We downloaded the home page of 148
popular Web pages [9] and compressed them via gzip.
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(b) Container pages.

Figure 6: Percentage of DEW participants, 4:1 compres-
sion (Larmancom logs).

The mean and median compression ratios were 4.6:1 and
4.4:1, respectively. Using a conservative compression ra-
tio of 4:1, we simulated the compression of all objects
deemed compressible as per the criterion mentioned in
Section 4. These results are shown in Figure 6a. There
is very little change between Figure 5a and Figure 6a.
For example, with a TTL of 15 seconds, 4:1 compression
raises the percentages of full participants from 21%, 14%,
13% and 11% to 21%, 17%, 15% and 12%, respectively.
This result is not surprising given the small gap between
full and total participants on Figure 5.

Although compression provided little benefit to DEW
when considering all requests—container pages and em-
bedded objects—compression proved more beneficial
when considering only container pages. As shown in Fig-
ure 6b, a noticeably higher percentage become full partici-
pants, particularly for lower TTLs. This suggests that con-
tainer pages for domain names that generally have lower
TTLs, such as those delivered by CDNs, will receive an
added benefit by compressing container pages.

5.2 Proxy
To evaluate the effects of DEW from a client proxy
perspective, we simulated an environment where many
clients share a single proxy. We assume an explicit proxy
deployment (see [12], Chapter 8) where all clients send all
HTTP requests to the proxy with unresolved host names,
and only the proxy interacts with the LDNS. We do not
consider transparent proxy deployment because clients in
this case perform their own DNS lookups and hence the
DEW effects would be similar to those of Section 5.1.

We use the Larmancom and NLANR traces for this ex-
periment, assuming that all requests from the trace are
processed by a single proxy, simulate the state of a DEW-
capable LDNS used by the proxy, and categorize requests
accordingly. Merging three proxy traces into one makes

0
2

0
4

0
6

0
8

0
1

0
0

0 15 60 300 86400
TTL

P
e
rc

e
n
ta

g
e

All participants
Full, 3 pkts
Full, 2 pkts
Full, 1 pkt

(a) Larmancom trace, no
compression

0
2

0
4

0
6

0
8

0
1

0
0

0 15 60 300 86400
TTL

P
e
rc

e
n
ta

g
e

All participants
Full, 3 pkts
Full, 2 pkts
Full, 1 pkt

(b) NLANR trace, 4:1 com-
pression

Figure 7: Percentage of DEW participants for container
pages at a proxy.

our results on DEW participation conservative because
this increases sharing of cached DNS responses among
a greater number of clients. We use the same set of TTLs
and thresholds as we did for the client evaluation as the
simulation parameters.

Since the proxy is the only client of its LDNS in the
simulation, the DNS cache at the proxy and at the LDNS
are exactly synchronized. The resolution for a domain
name expires at the same time for both. In this configura-
tion, since we assume that both the DNS response and the
HTTP object have the same TTL, cache hit or HTTP re-
quest categories of DEW participants can never occur. In-
deed, an HTTP request occurs when requested host name
is in LDNS’s DNS cache but the object is not in its HTTP
cache. However, proxy in this case will also have this
host name in its DNS cache and will send the request
directly to the Web server by HTTP. A cache hit occurs
when LDNS caches both the requested host name and the
object. The proxy in this case will also have a valid host
name in its DNS cache and will interact with the Web
server directly. Thus, in the proxy simulations, the only
possible participants are DEW requests.

In the previous section we argued that reducing the de-
lay for delivery of container pages provides the greatest
benefit for clients. Therefore, for brevity, in this sec-
tion and the next we examine the effect of the proxy-
DEW configuration only for container pages, and also
present results only without compression for Larmancom
and with compression for NLANR. Figure 7a shows the
fraction of DEW participants among requests for con-
tainer pages in the Larmancom trace. Comparing to Fig-
ure 5b, we see fewer DEW participants, which is under-
standable because the proxy reuses locally cached DNS
resolutions across all requests while clients can only reuse
their own DNS resolutions. What is surprising is that for
moderate TTLs the reduction is quite modest: for TTL of
60s, 18% of requests for container pages are still DEW
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Figure 8: Percentage of DEW participants for container
pages at server (Largesite logs).
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Figure 9: CDF of container page sizes (Largesite logs).

participants, and 9% enjoy strict piggybacking. However,
DEW participants all but disappear for TTL of one day.

Proxy results for the NLANR logs using 4:1 compres-
sion are shown in Figure 7b. These results are similar to
those for the Larmancom logs, but show much higher per-
centages of DEW participants. For TTL of 60s, the partic-
ipants approach 40% of all container page requests, with
20% fitting into a single packet for strict piggybacking.
The numbers remain significant (around 20%) for TTL of
300s. While we could not use NLANR traces for studying
the no-proxy environment because of scrambled client IP
addresses, the number of participants in that case would
be higher yet, as explained before.

5.3 Content Provider
Finally, we consider DEW performance from the point of
view of the content provider. One of the major goals of
the content provider is to provide the best possible per-
formance to its clients. The simulation is similar to that
of Section 5.1 except we use the Largesite logs and group
clients around a shared LDNS server using precise client-
LDNS maps as described in Section 4.

Again, in this simulation we focus solely on results
for container pages, which were responsible for approx-

imately 4% of the requests in the Largesite logs. The re-
sults, shown in Figure 8a, are very different from those
of the previous experiments. First, the total number of
DEW participants is significantly higher than in the pre-
vious experiments. Even with TTL of one day, when the
greatest percentage of requests are masked from DEW at
the LDNS server, 25% percent of container page requests
participate. For TTL of 300s, a value more likely with
a CDN-delivered Web site, the percentage of participants
increases to over 60%.

Second, full participants represent a significantly
smaller portion of all the participants. Furthermore, the
number of full participants for different size thresholds are
clustered together. To understand this result, we examined
the CDF of sizes of requests for container pages in the
Largesite logs, shown in Figure 9. This figure shows that
relatively few – less than a third – of the container pages
served by this particular server are below even the largest
threshold we consider. Moreover, most of these pages are
actually below the lowest threshold of one packet: the per-
centage fitting under the threshold grows only from 30 to
33% as the threshold increases from one to three packets.

However, considerably higher percentages of container
pages—around 19%, 38%, and 50%—fall within these
thresholds when a 4:1 compression ratio can be employed.
The results of our simulations using 4:1 compression for
the container pages are shown in Figure 8b. We find that
for the Largesite logs, compression greatly increases the
number of full DEW participants. Since full participants
achieve the greatest benefits from DEW, we conclude that
compression would be highly beneficial for this site.

6 Issues

In this section we discuss issues related to the deployment
of a DEW system.

6.1 Implementation

Our goal is to use the existing protocols with minimal
changes in such a way that DEW can be incrementally
deployed. We achieve this in the following manner:

. The HTTP request can be embedded into the DNS
request by using the OPCODE=Query in the DNS
request header. The client would set the QDCOUNT
to reflect the number entries in the query section, one
of which is a new type of query, QTYPE=HTTP. The
complete HTTP request header would then be em-
bedded in the QNAME field. DNS servers that do
not understand the HTTP QTYPE ignore this portion
of the query and respond to the portion of the query
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that is understood. The client receives a normal re-
sponse to the DEW query and proceed in a non-DEW
fashion. This is used by the client when resolving a
host name from its LDNS, and by the LDNS when
sending requests to the remote DNS.

. When an LDNS server issues an HTTP request, it
must indicate to the Web server that the response size
should be below the size threshold and identify itself
via the User-Agent request header that it is DEW-
enabled. The LDNS server uses the Range request
mechanism but is not aware of the precise size of the
response header (although it is typically less than 200
bytes). The DEW-aware Web server would subtract
the response header size from the Range limit speci-
fied and send the response that fits precisely into the
piggybacked limit. Responses from DEW-unaware
Web servers might slightly exceed this limit, causing
the LDNS to discard the extra bytes.

. The client must know how many bytes are required
to make up a received object. This is accomplished
at the client by examining the Content-Length
field of the response header. Note that if the
Content-Length field is not present, the client
can use the N- option in Range requests (e.g.,
Range:1000-) which will request all but the first
N bytes.

. When a DNS response contains NS records refer-
ring the requester to other authoritative nameservers,
the additional info section of the response carries
DEW resource records (RRs). These records indicate
which nameservers are DEW-capable. This is pri-
marily intended to avoid unnecessary piggybacking
of HTTP requests to DEW-incapable RDNS servers.

6.2 Packet Loss
Since DEW responses are piggybacked on DNS responses
they are subject to packet loss. When the complete re-
sponse can be contained in a single packet, loss of this
packet results in no worse performance than it would
without DEW; receipt of the DNS response is required
before the data transfer can take place. When the piggy-
backed response contains more than one packet, the DNS
response in the first packet is still sufficient for obtaining
the rest of the content via a normal HTTP Range request
to the Web server. Consequently, the LDNS handles a
loss of a subsequent DEW response packet from RDNS
by sending to the client a DEW response containing just
the contiguous portion of HTTP data that was successfully
received. The client handles packet loss by simply issuing
the appropriate HTTP Range request to the Web server,
using the N- option discussed above if necessary.

The remaining issue is how to decide when a loss oc-
curred. Since there is no acknowledgment of data receipt
in DEW, timeouts are the only option for loss detection.
The timeout, however, can be quite short since the re-
sponse packets are expected to be sent in an immediate
burst, and should arrive within a very small time window
at the client after the initial response packet. (Note that
this timeout is different from the timeout in the DNS pro-
tocol that concerns retransmissions of the DNS requests.)
Furthermore, a host (either an HTTP client communicat-
ing with its LDNS or the LDNS communicating with the
RDNS) can avoid frequent timeouts during high-loss pe-
riods by specifying the size threshold of one packet in its
DEW requests.

7 Conclusion
We proposed and evaluated a method to improve effi-
ciency of Web browsing by piggybacking HTTP inter-
actions on DNS responses. Such piggybacking promises
improved responsiveness of Web browsing (our focus in
this paper) as well as reduced network traffic due to fewer
TCP control messages. We designed our scheme, called
DEW for DNS-enhanced Web, conservatively with the
goals of (a) limiting piggybacking only to existing DNS
messages generated by the current Web anyway, (b) us-
ing only allowed optional fields in DNS and HTTP proto-
cols for our protocol extensions, (c) allowing coexistence
with current Web including compatibility with Network
Address Translation (NAT [15]) and hence incremental
deployment of DEW, (d) being non-intrusive in terms of
Internet congestion control, and (e) coping with the best-
effort nature of DNS messages.

We evaluated the frequency with which the opportunity
for piggybacking arises in several environments: when
clients access the Web without a proxy, when a proxy
aggregates accesses from a large number of clients, and
from the point of view of a large Web content provider.
We found that, overall, DNS messages offer reasonable
opportunity for HTTP piggybacking. Not surprisingly,
this opportunity decreases with increased time-to-live of
cached DNS responses, so DEW should be especially
useful for content delivered through content delivery net-
works because they use very short TTLs. But even with
TTL of a full day, when our proxy traces exhibited small
DEW benefits, our content provider trace showed that
25% of full-document (container page plus embedded ob-
jects) downloads would still benefit from DEW. Further-
more, even the proxy evaluation, which we expected to
show very small opportunity for piggybacking due to ex-
tensive DNS caching at the proxy, showed respectable
piggybacking frequency for NLANR trace (over 20% of
full-document downloads with TTL of 5 minutes).
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Another interesting observation is that most of the
DEW benefits come from piggybacking HTTP all the way
from authoritative DNS servers to client DNS servers to
HTTP clients, rather than from delivering piggybacked
HTTP content cached by client DNS or obtained by client
DNS from the Web over HTTP. Thus, most DEW bene-
fits can be had with a simplified DEW architecture where
client DNS servers have no added HTTP caching and re-
trieval functionality.

Our future work on the DEW project includes investi-
gation of DEW benefits on CDN traces and on traces from
more content providers. Studying CDN traces would be
especially interesting because we expect DEW to be most
useful for CDN-delivered content. We would also like to
quantify DEW’s effect on network traffic reduction and
to prototype DEW to be able to directly evaluate its im-
provements in Web browsing responsiveness.
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