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Abstract—This paper discusses a way to communicate without
relying on fixed infrastructure at some central hub. This can be
useful for bootstrapping loosely connected peer-to-peer systems,
as well as for circumventing egregious policy-based blocking (e.g.,
for censorship purposes). Our techniques leverage the caching
and aging properties of DNS records to create a covert channel of
sorts that can be used to store ephemeral information. The only
requirement imposed on the actors wishing to publish and/or
retrieve this information is that they share a secret that only
manifests outside the system and is never directly encoded within
the network itself. We conduct several experiments that illustrate
the efficacy of our techniques to exchange an IP address that is
presumed to be a rendezvous point for future communication.

I. INTRODUCTION

The Internet has increasingly moved from a system used

to disseminate information to users from a relatively small

number of content providers to a system that facilitates sharing

information among users. This style can be plainly found in the

most popular destinations and applications: Twitter, Facebook,

Flickr, Skype, BitTorrent, one-click file sharing systems (e.g.,

RapidShare), etc. The shift from merely consuming informa-

tion to sharing information has in fact led to several efforts

to change the basic model of networking from host-based to

content-based [1], [2] as this latter has become the basic mode

of operations for users. That is, users fundamentally do not

want to access some host in the network, but rather want to

swap a given piece of information. The techniques explored

in this paper strive to transfer small amounts of information

using a scheme that is not fundamentally host-centric.

In a network model where information is generally dissemi-

nated upon request, we can readily build highly robust systems.

A user interested in buying a book can easily find a book

seller using a well-known DNS name (e.g., “amazon.com”).

Further, server farms, content delivery networks, replicated

DNS servers, geographically disparate replicas, multi-homed

connectivity, etc. provide robustness of operation. We refer to

this as the central hub model. Even if physically distributed,

the service is orchestrated at some easy-to-find and highly

robust central location. This model makes perfect sense for

certain activities (e.g., legitimate e-commerce).

However, as noted above, users have evolved to become the

most prolific content providers on the Internet. In technological

terms this shift has manifested in one of two basic ways: (i)

using a central hub to connect users and hold the shared con-

tent (e.g., Twitter) or (ii) using a central hub as a bootstrapping

mechanism for direct peer-to-peer information exchange (e.g.,

a BitTorrent tracker or, in the trackerless variant, a site listing

an existing DHT node). While the role of the central hub is

reduced in the second approach, it is still required. Although

a lightweight central hub may be perfectly reasonable in some

cases, there may be other cases where such a central presence

is undesirable, such as:

• For peer-to-peer systems, requiring a central hub to boot-

strap establishes a system vulnerability that can hamper

operation even though the major functionality is dis-

tributed at the peers. For instance, if the central hub loses

connectivity (power, etc.) the larger system would likely

be still functional if not for the inability to bootstrap.

Therefore, for robustness reasons, not depending on a

fixed central hub is useful.

• Another aspect of using a central hub is that it provides

a tangible choke point that can be readily blocked by

policy. For instance, blocking a large BitTorrent tracker

could affect many peers even though the peers themselves

do most of the work to exchange files independently from

the tracker once bootstrapped. Another example is the

recent case of Egypt disconnecting its major ISPs from

the broader Internet—which effectively disconnects users

from myriad central hubs. However, if local connectivity

remains, users could in principle bootstrap to communi-

cate locally even though their usual means for doing so

is disrupted.

This situation begs a question: Can we increase robustness

and flexibility of information sharing services by allowing

consensual actors to initiate communications over the network

without a central hub?

Within a small area this is straightforward. For instance,

within a broadcast domain one party could encrypt a message

with a secret that was pre-arranged with the recipient(s) and

then broadcast the message. The intended recipient(s) would

be the only ones who could make sense out of the message.

Further, there is no direct targeting of the recipient(s). While

such a scheme is trivially possible it does not address our

question when we scale beyond individual broadcast domains.

However, this limited scheme provides for a model of sorts

for solving the problem in a broader way.

In this paper we develop a global covert broadcast domain

that allows actors with only a simple shared secret to exchange

small messages without the secret ever being directly used

within the network (and thus itself becoming a central hub,

of sorts). This message could be self-contained information

or a way to bootstrap further communication. We develop



this covert broadcast domain by using standard DNS servers

to hold information not in the traditional sense of serving

records, but by leveraging the caching behavior of the servers

to convey information. Further, the scheme is not dependent

on any particular DNS server, but rather any DNS server the

actors agree on (as discussed in § II). In other words, we design

a technique that factors out the need for a well-defined central

hub for information sharing and/or bootstrapping.

We explain the mechanism in detail in subsequent sections.

However, as a touchstone the reader can think of breaking

a message into its component bits. Each bit is represented

by a cached record in an arbitrary DNS server the actors

have agreed upon. The value of each bit is represented by

the returned TTL value of the DNS record—e.g., the one bits

may have a TTL 10 seconds larger than the zero bits. In this

way we use DNS servers’ natural capabilities of caching and

aging records to encode ephemeral information in the system

without relying on any particular fixed infrastructure or name.

In the remainder of this paper we show we can accurately

publish and query for such information.

Note: An extended version of this paper that includes

additional experiments and discussion is available [3].

II. DNS SERVER DISCOVERY

As sketched above, we leverage caching DNS servers to

hold information. To fulfill our vision, the first premise is that

there should be many DNS servers on the Internet that will

hold the messages we seek to store. Further, actors should be

able to independently discover common DNS servers to hold

the exchanged messages. Therefore, before we embark on stor-

ing and retrieving information from DNS servers we perform

a DNS scanning experiment to understand the prevalence of

usable DNS servers.

Actors wishing to exchange messages must share a secret

S. This is used in a number of the tasks in our overall

procedure, and in particular for finding common DNS servers.

While we consistently refer to S as a “secret”, we note that

nothing compels the communicating actors to keep S strictly

private. Rather, S must be shared and S is only needed by the

endpoints of the communication and not the DNS servers. For

example, a BitTorrent application could maintain a hard-coded

collection of shared secrets for client use. From S we define

a generator function as:

G(x) = sha1(sha1(S) + x), (1)

where “+” denotes the append operation and x is a string.

By running G(”IP1”) and using the low-order 32 bits as an

IP address any actor holding S can independently derive the

same series of hosts—by replacing “1” in the call to G() with

linearly increasing integers—to find a usable DNS servers to

mediate their communication. Each host in the common list is

probed with a DNS request for a name within a domain that

we know to enable wildcards1.

1In particular the name we use is “dns.research.project.visit.dns-
scan.icir.org.if.problematic.HASH.ws” to be up-front about what we are doing
should our experimental queries trip alarms.

In our scanning experiment we probed from roughly

80 PlanetLab nodes2—each using its own random S—at a

rate of 2 DNS queries/second. A correct response from a

given host is used to trigger two more queries of the same

server to ensure the TTL is being decreased on subsequent

retrievals.3 Assuming the TTL is being correctly decremented,

we consider the server to be usable. However, as we discuss

in subsequent sections, it is not unusual for a DNS server to

pass this initial set of checks only to display non-conforming

TTL behavior during message publication.

Across 22.7 million probes we find that the hit-rate is ap-

proximately 0.4%. The median number of probes sent between

identifying subsequent servers is 194, while the mean is 281.

Further, we find the maximum probes sent before identifying

a server is nearly 9,000, with the 99th percentile being 1,284.

These results make probing tractable for our purposes because

even scanning at a low rate will turn up multiple servers. E.g.,

sending one probe per minute over the course of one day will

yield five DNS servers on average. Further, once the set of

servers is obtained, it can be maintained with even lower-rate

probes over longer time scale. In addition, DNS servers that

simply disappear (as has been noted elsewhere in the literature

[4], [5]) will be readily detected as attempts are made to store

information at the given server. Such knowledge can also be

used to trigger a new server detection phase.

While in this paper we use relatively low rate scans for

all our experiments—at most 10 queries/second—we note

that using a higher scanning rate could be possible in some

circumstances and allow us to find a large number of usable

DNS servers quite rapidly. For instance, we conducted a small

experiment that was able to identify 60 recursive DNS servers

within 15 seconds using a residential cable modem connection.

Finally, we note that hit-list scanning may be more effective

than random scanning. This is discussed in more detail in [3].

III. A BASIC BIT CHANNEL

As described above, our goal is to utilize DNS servers’

natural ability to cache and age information to store small

messages without directly inserting records into the DNS

system. As an initial use case, we consider publishing a 32-

bit IPv4 address using this system as a basic bit channel.

We start with this use case because a bit pipe is the most

basic communication channel. Further, we presume that once

known, an IP address can be used to form the basis of higher

layer communication. In this section we use the procedure

outlined above in § II to find suitable recursive DNS servers

and, as they are found, publish and retrieve 32-bit messages.

A. Procedure

The process of storing messages in DNS servers starts with

a pre-arranged secret S between all parties involved in the

communication. Using this secret, we define a generator as

2PlanetLab often experiences node churn and, while we tried to choose
reliable nodes, the number of nodes used in each individual test throughout
the paper varies slightly.

3We found in early experiments that some DNS servers do not decrement
the TTL of their cached records, leading to this test.



shown in equation 1. We also need a domain we know to

support wildcard DNS queries, that is, queries for unknown

names within the domain still return some record. As will

become clear, we also need the domain to assign a sufficiently

large TTL to its DNS responses. Domains supporting wild-

cards are widespread [6], and we found that many also return

TTLs sufficient for our needs. In all our experiments we use

the “.ws” domain (an arbitrary choice that returns TTLs of

3 hours). Note, we consider alternate designs that do not have

this requirement in [3].

Let M be the message we wish to transmit and Mi be its

ith bit. We now outline two procedures for encoding M within

a DNS server D.

TTL Method: The first method we employ is based on

inserting records corresponding to all bits in M in such a

way that the zeros and ones are distinguishable by the TTLs

returned in lookup responses after publication. The publication

process proceeds as follows:

1) We generate a name for each bit Mi of the message

using:

Ri = G(”Record%d”, i), (2)

where “Record” is just an arbitrary identifier that all

actors involved know (here and in the rest of the paper

we use a printf-like notation to compose strings).

2) Similarly, we generate a “barrier record” using:

B = G(“Barrier′′) (3)

3) Next we form sets of bit numbers, Z and U , where i is

inserted into Z if Mi = 0 and U otherwise.

4) For each j ∈ U we execute a DNS request to D for the

hostname “Rj .ws”, retrying until a response is received

for each record.

5) We next pause for roughly five seconds. The choice of

five seconds is arbitrary. The value needs to be more

than one second as that is the granularity of DNS’ TTL.

We leave optimizing the publication time as future work.

6) We then execute a DNS request for “B.ws”, retrying if

necessary.

7) We again pause for roughly five seconds.

8) For each k ∈ Z we execute a DNS request to D for the

hostname “Rk.ws”, retrying until a response is received

for each record.

The general idea behind this process is that D will cache

the requested records with associated TTLs that originate from

the authoritative server. Given the publication pattern all Ri

records that have a TTL shorter than that of the barrier record

B correspond to Mi = 1 and records having TTLs longer than

that of B correspond to Mi = 0.

The data retrieval process borrows steps 1 and 2 from the

procedure outlined above. We then query for “B.ws” and each

record in R, recording the TTLs for each returned record as

BT and RT
i . We then set M ′

i to one if RT
i < BT and zero

otherwise. At this point the retrieved M ′ should be equivalent

to the message M that was published.

Recursion-Desired Method: The second method was

sketched in a Black Hat presentation [7]. To our knowledge,

TTL Method RD Method

Pub. Attempts 125K 87K

Unusable Servers 21K 12.9K
Non-Responsive Servers 742 520
Non-Recursive Servers 2.6K 1.7K
Non-Decrementing TTL 15K 9.8K
Weird TTL Decrementing 2.8K 898
Ignores RD=0 N/A 2.6K

Usable Servers 104K 72K
Successful 92K 58.8K
Failure: Packet Loss 3.6K 4.8K
Failure: No Data Found 3.6K 3.3K
Failure: Corrupt Data 5.0K 5.4K

TABLE I
BIT-PIPE PUBLICATION RESULTS

there has never been any experimentation to determine whether

the scheme works or how effective it may be. The procedure—

which we denote the “RD method”—works as follows:

1) We generate a name for each bit Mi of the message

using:

Ri = G(”Record%d”, i), (4)

2) Next we form a set U , where i is inserted into U if

Mi = 1.

3) For each j ∈ U we execute a recursive DNS request to

D for the hostname “Rj .ws”, retrying until a response

is received for each record.

The general idea behind this approach is that the records

corresponding to the one bits in M are cached by D, whereas

the zero bits are not encoded in D in any way. We leverage

this when retrieving the data by sending queries for each of

the 32 names in R with DNS’ “recursion desired” flag set to

false. This indicates that D should only look in its own cache

for the given name and not recurse up the DNS hierarchy to

resolve the given name. We initialize an M ′ to all zeros and

then any “Rj .ws” query that returns a valid response indicates

that M ′

j should be set to one. After considering each of the

32 records M ′ should be equivalent to the original M .

B. Results

We tested the accuracy of both publication mechanisms

described above by storing a 32-bit message (a la an IPv4

address for bootstrapping) in a DNS server and then attempting

to retrieve the message. We use the procedure outlined in § II

to probe for DNS servers and upon finding each such server

we publish a message and then attempt to retrieve it. Each

publication strategy is tested in its own scanning pass (which

run in sequence, not parallel). We use roughly 80 PlanetLab

nodes for the test. Each node performs independent scans to

identify DNS servers and start the subsequent tests.

After each publication the host waits 10 seconds and then

retrieves the message to assess the efficacy of the data insertion

process. Table I shows the results of our publication attempts.

First we note that in spite of our efforts (sketched in § II) to

identify unusable DNS servers during the scanning phase we

still ended up with problems in roughly 15% of the servers



we tried. The largest problems come from TTL decrementing

issues—even though we tried to weed out servers with this

issue during our scanning pass (§ II)4. We note that when

using the RD method, we find servers that ignore the RD=0

setting in our requests. This would be trivial to also exclude

in the scanning phase and in future efforts based on the RD

method we would certainly do so. While these problems do

not speak to the efficacy of our information sharing technique,

they do illustrate that one must exercise some care in choosing

suitable DNS servers.

The lower portion of the table shows the results for usable

servers. We find a publication success rate of roughly 88% for

the TTL method and 81% for the RD method. The largest and

most problematic publication issue is data corruption. Whereas

the other issues listed in the table—no data found and packet

loss—can be readily identified during the retrieval process,

corrupted data gives no outward signs of problems. As we

have designed a generic bit pipe, it would be possible to apply

Forward Error Corruption (FEC), or simply a parity bit, to

the bit-stream to reduce the number of corruption errors (at

the expense of requiring more bits, of course). Also, we note

that packet loss is an issue—even though we re-try pending

queries every two seconds until we receive a response or have

transmitted four queries. The final problem of no data being

found likely comes from DNS servers that recursively lookup

records, but do not cache names (for long).

We next turn to a more general investigation of information

retrieval. For the successfully published messages we sched-

uled retrievals from a set of 55 different PlanetLab nodes

chosen via round robin across our list of roughly 80 PlanetLab

nodes. We schedule five retrievals (from different nodes) at

each of eleven intervals between 10 seconds and 128 minutes

after publication. This methodology allows us to test both (i)

whether the information is available to a breadth of hosts

around the network and (ii) the storage longevity we can

expect from the mechanisms.

Figure 1 shows the results of retrieving the information we

published as a function of time since publication. We note that

just after publication the TTL method shows a roughly 90%

retrieval success rate, whereas the Recursion Desired method

is nearly flawless. The success rate two hours after publication

drops to roughly 70% for both methods. As shown in the plot,

the predominant cause of the dropoff in success is an increase

in the instances of not finding the data on the server as the

time since publication increases. This is a natural result of

names being evicted from the cache. Even though the names

nominally have TTL left, the names are to a large extent not

being used and so it is natural that some LRU-like policy

would evict the names corresponding to all our queries. We

also note that failures to contact the DNS server rise with

the time since publication, likely due to the transient nature

of many of these DNS servers. The remainder of the failure

causes remain fairly constant and relatively small across the

4Non-conforming TTL handling does not render a server unusable in the
case of RD method; however, we wanted to compare both methods over a
similarly-selected set of DNS servers.
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Fig. 1. Bit pipe retrieval results for the TTL (top) and Recursion Desired
methods.

time period.

Finally, to ensure that the PlanetLab platform itself was

not biasing our results in some fashion we replicated the

above experiments from a host at ICSI. While the PlanetLab

retrievals were conducted from 55 disparate machines we used

the same machine at ICSI for all aspects of our tests (scanning,

publication and retrieval). The results from the ICSI runs

are consistent with the PlanetLab experiments. The retrieval

results are similar with the RD method showing higher success

soon after publication than the TTL method, but both dropping

off over time. The predominant cause of failures over time

is finding no data on the DNS servers, just as we find in

the PlanetLab results. Therefore, overall we conclude that

the PlanetLab platform itself is not significantly biasing the

conclusions we draw from our experiments.

C. Discussion

We now briefly touch on additional ways to enhance the

basic bit pipe we have constructed.

Robustness: A traditional way to make a bit channel more

robust is to add coding to the message. For instance, a Reed-



Solomon code that doubled the size of the message (to 64-bits)

could detect any bit error and correct up to 16 bit errors in the

message. For corrupted retrievals, we find that the corruption

rate is less than half the message across both our methods at

both mean and median. Coding would also help reduce the

impact of losses in our results.

Widening: A natural way to widen the channel in the TTL

method is to add more barrier records, which allows for more

symbols to be transmitted. For instance, using two barrier

records we could encode three symbols—enough to encode

messages in Morse Code (using dots, dashes and spaces). We

explore this further in [3]. The RD method is not directly

amenable to widening due to the reliance on a fundamentally

binary property of the system (namely the RD flag).

Synchronization: Note that messages in the system have a

higher probability of being successfully retrieved within the

first several minutes after publication. While retrievals further

out in time have reasonable success rates, it may behoove some

uses of such a channel to roughly synchronize publication and

retrieval. For instance, when swapping S out-of-band, actors

may also agree that publications will take place at the top

of every hour. Even with imperfectly synchronized clocks this

could increase the chances of successful message transmission.

Collisions: One issue with a single secret is that if multiple

actors are publishing to that secret they will corrupt each

other’s messages. A straightforward way to deal with this is to

assign roles to actors with respect to a particular secret during

the secret exchange. For instance, for some secret S1 Alice

may be designated as the publisher and Bob the recipient,

while the opposite could hold for a second secret S2.

IV. ADDITIONAL CONSIDERATIONS

There are additional issues that must be considered when the

mechanism we outline in this paper. Due to space constraints

we are only able to point interested readers to our longer

technical report [3] for a discussion of and mitigations for

protecting messages from eavesdropping, for mitigating the

detection of use of these schemes by network monitors and

additional channels for encoding information in ways similar

to those described in this paper.

V. RELATED WORK

Due to space constraints we elide a full discussion of related

work. We note that the only directly related work we are aware

of is [7], as discussed in detail in § III. There are a number of

additional papers in the literature that are somewhat related [8],

[9], [10], [11], [12]. A longer discussion of these is available

in our extended paper [3].

VI. CONCLUSIONS

This paper discusses a way to communicate through the

network without relying on fixed infrastructure at some central

hub. This can be useful for bootstrapping loosely connected

peer-to-peer systems, as well as for circumventing egregious

policy-based blocking (i.e., censorship). Our techniques lever-

age the caching and aging properties of DNS records to create

a covert channel of sorts that can be used to store ephemeral

information. The only requirement imposed on the actors

wishing to publish and/or retrieve this information is that they

share a secret that only manifests outside the system and is

never directly encoded within the network itself. Crucially we

piece together a communication fabric from classes of services

and not from particular instances of those classes. That is,

while we require a recursive DNS server, we have shown

that there are many DNS servers on the network that will

suffice. Additionally, we require domains that offer wildcard

DNS entries—which again are widespread. While the process

can be optimized by assuming the actors share more than just a

simple secret—e.g., hit lists to scan in lieu of random scanning,

or roughly synchronizing when messages will be published—

we show in this paper that these are not strictly necessary. We

show that we are able to effectively use these channels for

bootstrapping information. Additionally, our extended version

of this paper shows that we are able to send short Twitter-

like 140 character messages using a technique similar to that

outlined in this paper [3]. Future work includes optimizing

the process and looking for ways to make it more robust.
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