
Evasive Internet: Reducing Internet Vulnerability
Through Transient Addressing

Michael Rabinovich Oliver Spatscheck
Case Western Reserve University AT&T Labs–Research

misha@eecs.cwru.edu spatsch@research.att.com

Abstract— This paper presents our vision for Evasive Internet,
where destinations are only reachable through capabilities, which
serve as hosts’ flat transient addresses. Just as today’s host
addresses, our capabilities are obtained from the DNS hierarchy,
thus never exposing destinations themselves to unprotected traf-
fic. Our design supports in-network authentication of transient
addresses and attribution of traffic they generate; our design
further gives hosts full control over incoming flows. We achieve
these objectives without exposing hosts to unprotected capability
request traffic and without distributed filtering infrastructure.
While significant work is needed to flesh out our vision, we hope
it will contribute to improving security in future networks.

I. INTRODUCTION

As Internet continues to permeate through every aspect of
our lives, the stakes are rising in securing it against a variety of
subversive behaviors. Sender’s accountability over generated
traffic [3], [21] and recipient’s control over incoming flows
[6], [1] have emerged as recognized objectives for Internet
design that can improve its security. An influential approach
to achieve these objectives is through a notion of capability,
which represents authorization to communicate with a host,
and which is valid only for a specific sender and for a limited
amount of time. Capabilities have been used in several systems
[25], [19], [24], [4]. While significantly improving network
security, most capability systems are vulnerable to the denial
of capability attack, where the attackers are trying to exhaust
the unprotected capability request channel [5].
This paper proposes a new capability-based approach based

on two key ideas. First, capabilities are the only means for
hosts to be reached; in particular, hosts do not handle capabil-
ity requests. Second, capabilities are distributed by the DNS
system rather than recipient hosts or distinct infrastructure.
Because hosts can only be reached through capabilities, a
packet sender lists its capability in place of the IP address
as its source address. Similarly, DNS servers themselves are
only reached through their own capabilities, issued by higher-
level servers in the DNS hierarchy in the same way current
higher-level servers return name server IP addresses. Thus,
capabilities become in effect the hosts’ addresses, which are
transient due to the limited validity of the capabilities.
By relegating capability assignment to DNS, our approach

leaves the root DNS servers exposed since as in today’s
Internet, they must be always reachable and hence offer well-
known permanently valid capabilities. Some sort of residual
vulnerability is inevitable in any system for bootstrapping
security [23]. However, as foundational enablers in today’s

The work of M. Rabinovich on this project is supported in part by the NSF
under grants CNS-0831821 and CNS-0916407.

Internet communication, root DNS server are already a fre-
quent target, and while protecting them is not an easy task,
their operators have demonstrated these servers – unlike the
rest of today’s Internet – can be protected successfully. Thus,
we believe narrowing the scope of vulnerability to the root
DNS servers is a sensible design choice.
Our architecture achieves sender’s accountability because

it forces the sender to include its proper capability in the
packet header – otherwise the packet will be blocked by
the first compliant router 1. Our architecture enables recip-
ient’s control because each host can implement fine-grained
capability-issuing policies for particular external destinations:
By communicating with its authoritative DNS server (or, in
the case of a DNS server, with its higher-level DNS server),
the host can shorten the validity period of its capability for
suspicious senders or disallow certain senders altogether. Note
that this would make the host and all its applications and
ports unreachable to these senders. Again, any attempt by
blocked senders to reach the host will be terminated by the
first compliant router, shielding most of the network from a
potential DoS attack on a link. This has the same effect as a
remote filter in filtering systems ([15] and references therein)
but without propagating filter requests.
We named our approach Evasive Internet Protocol (EIP) to

reflect its lack of permanent means of reaching a host. While
seemingly radical, Evasive Internet could be deployed incre-
mentally using an approach similar to existing technologies for
migration from IPv4 to IPv6, such as Microsoft’s Teredo [22].
These technologies combine overlay and tunneling techniques
to enable co-existence of a new and current Internet version.
Realizing our idea presents interesting questions. How

would it affect BGP scalability? The routing table sizes have
reached 250,000 entries and are growing rapidly [8]; making
addresses flat and temporary would seem to exacerbate this
situation. How would the new addresses affect DNS? DNS has
held up astonishingly well to the explosive Internet growth,
due in large part to caching, but source-specific addresses
would seem to limit their cacheability. We address these and
other issues in the rest of this paper.

II. THE ARCHITECTURE

We now sketch the main architectural components of the
Evasive Internet we envision.
A. Addressing

Our architecture involves two concepts to represent desti-
nations on the Internet – IP addresses and capabilities. The

1See Section III for a scenario where a host “steals” someone else’s
capability.

2

IP addresses are still used in routing algorithms for route
computation and forwarding table indexing. This allows EIP
to inherit existing routing protocols (e.g., BGP) and to retain
their scalability properties that stem from the topological
information embedded in IP addresses. In fact, EIP can benefit
from recent proposals to improve aggregation and provider
independence of IP addresses by splitting them into identifiers
and locators (see [20] and references therein), in which case
IP addresses would be replaced with locators throughout the
design below.
Although IP addresses are used for route computation and

forwarding tables, the host IP address cannot be used to
communicate with the host. A compliant router will only
forward a packet with a valid destination capability, which
in effect becomes a transient destination address and which
we refer to as a t-address.
The host t-address contains the following fields2: destination

IP address (16 bytes3); source IP address (16 bytes); validity
constraint (10 bytes); signature generated by the destination or
authoritative name server using its private key (approximately
256 bytes); the certificate chain from the root name server
used by the destination (approximately 1KByte per certificate).
The whole address is signed with the destination’s or the
authoritative name server’s private key.
The validity constraint is set to 10 bytes: 8 bytes for

a timing constraint and 2 bytes for the number of bytes
constraint. The 8-byte time constraint field is sufficient to
carry a UNIX-like time stamp without the fear of wrapping.
Such a time stamp can be used to time out t-addresses with
one second granularity. The 2-byte size constraint represents
the maximum amount of traffic that can be sent before the
capability expires. Thus, a valid capability must satisfy both
constraints. The addressing and validity information is signed,
and all necessary certificates (typically 2-3) are attached to
the t-address. This leaves us with a t-address size in the 2.5-
3.5KByte range. While this size is too large to be transmitted
without fragmentation in today’s networks, which often have
a 1500Byte MTU, it is a fraction of the packet sizes allowed
in newer network technologies. We discuss this and a related
issue of header overhead in EIP datagrams later in this section.

B. Datagrams

Our current design calls for three types of datagrams in
the Evasive Internet protocol. It assumes loosely synchronized
clocks among hosts and routers on the Internet. Note that
properly configured hosts have clocks that are well synchro-
nized in practice within the order of milliseconds. Improperly
configured hosts will be penalized in our architecture, which
may actually alert their operators about the issue.
Type-1 datagrams are the initial datagrams that open a com-

munication between two hosts. Their header (we discuss only
addressing-related fields) includes the source and destination
t-addresses, an optional delegation token, whose purpose will

2We may introduce additional fields as we flesh out our design in the course
of this work; also, several fields could use more careful tightening but we are
presenting a first-cut design.
3We allocate 16 bytes to IP addresses to stress the compatibility of our

design with IPv6 addresses.

Source t-addr Dest t-addr Delegation
token

Flow TTL Flow ID (Flow ID+TTL)
Signature

Payload

≈3.3KB ≈3.3KB 16B ≈256B 8B ≈300B

Source IP addr Dest IP addr
Validity

constraint
(Fields 1-3)
Signature

Chain of 1-3
certificates

16B 16B 10B ≈256B ≈1-3KB

Flow ID Payload

16B

New
Flow TTL

Old
Flow ID

(New FID+TTL)
Signature

Payload

16B ≈256B 8B

New
Flow ID

16B

Type 1 datagram

Type 2 datagram Type 3 datagram

Type

Type Type

1B

1B 1B

Fig. 1. Datagam structure.

become clear in Sec. II-E3, a flow ID (FID), a flow time-
to-live (TTL), and a signature signing both FID and TTL.
The source and destination t-addresses (transiently) identify
the end-points of the communication. An (FID) is a 128-
bit nonce (a “number used only once” with high probability)
that identifies this communication in subsequent packets. Flow
TTL tells a router processing this datagram how long the flow
ID should remain valid. Flow signature signs the FID and
TTL with the sender’s public key, allowing verification of the
voracity of the corresponding fields.
Because t-addresses include certificate chains, the initial

datagrams have a large header - in the order of several
kilobytes. Consequently, type-2 datagrams amortize the header
overhead over subsequent communication by including only a
flow ID. Our current design assumes these flow IDs are sent
in the clear for efficiency, relying on short lifetime of these
FIDs for a “good enough” protection against an injection of
fraudulent packets with the same FID by man-in-the-middle.
This is only a specific design choice reflecting our view on
the current costs/risks landscape. We sketch an alternative
design, trading efficiency for better protection and reflecting
one possible trend on computer development, below. The
address-related header size of type-2 datagram is only 16 bytes
for the FID; we assume that these datagrams will carry most
of data exchanges.
To ensure uninterrupted communication, the sender must

replace the current FID with a new one before the current
FID expires (and the sender knows the expiration time because
it assigns the TTL). The replacement is accomplished with
a type-3 datagram type, which lists the current FID and the
new signed FID and TTL. Note that whenever a new FID is
introduced, it is signed to ensure its integrity. This is important
because this information affects security for the entire next
TTL period, and it incurs acceptable computational overhead
at the sender because the sender must generate the signature
only once every TTL interval. Our current assumption is that
flow TTL would be in the order of 5-10 seconds, which is
several orders of magnitude more than typical local clock
drift. The address-related header size of type-3 datagram is
approximately 300 bytes (256 bits for the two FIDs, 8 bytes
for the new TTL, and around 256 bytes for the signature).
Finally, before its t-address becomes invalid, the sender

may choose to include a subsequent-use t-address with its
next packet, if it is willing to continue the communication.

3

This is done with an optional header field in type-2 or type-3
datagrams, adding up to 3.5KB (t-address size) to the header.
The subsequent-use t-address enables the source to have
a long-running communication with the destination without
re-acquiring a new t-address from the name service. This
allows t-address distribution by the name service to remain
application-oblivious without adding the overhead of repeated
name resolutions.
Alternative design: As mentioned, the above design was

driven by our desire to reduce the frequency of signature
generation by senders; this is a computationally expensive
operation, and requiring every sender (e.g., a high-volume
web server) to generate a signature on every packet would be
taxing. However, hardware-implemented signature generators
are becoming available. Once their cost decreases enough, we
can simplify the protocol and make it more secure as follows.
We will no longer use flow ID TTL or type-3 datagrams;

the flow ID does not expire. Instead, every type-2 datagram
includes the current timestamp, and the signature of the FID
and timestamp pair generated using the sender’s private key.
The signature ensures the packet could only originate from
the same destination that issued the initial datagram. The
timestamp makes it extremely unlikely that a signed FID
could be replayed by a man-in-the-middle. Indeed, a router
would drop any message older than a reasonable estimate of
the maximum network message delay, forcing the sender to
resend the packet with full type-1 headers (see Section II-C for
details). This drastically narrows the window of opportunity
for the attacker to inject a fraudulent packet, and hence the
duration of a possible attack.

C. Routing

By using flat transient addressing, Evasive Internet brings
a challenge of keeping the size of routing tables and updates
manageable. Our approach to this challenge utilizes two dis-
tinct means of representing Internet destinations. In Evasive
Internet, route computation and maintenance is all done using
destination IP addresses. In particular, routing tables will
be keyed and aggregated based on destination IP addresses.
However, packet forwarding utilizes t-addresses: no legitimate
router will forward a packet addressed with the destination IP
address - the valid t-address is required.
Routers rely heavily on caching to achieve acceptable for-

warding performance. When processing a type-1 datagram, a
router extracts the destination IP address from the t-address,
verifies that the t-address is still valid and if the source
IP address from the source t-address matches the one from
the destination t-address. If the above checks are satisfied,
the router looks up the routing entry for the destination’s
IP address and forwards the packet accordingly. Finally, the
router caches the state reflecting the end-point IP addresses
and t-address and flow expiration. Otherwise, the router drops
the datagram. The cached entry is removed upon the flow
expiration unless it is replaced with a new FID in a type-
3 datagram. The cache is indexed by the flow ID from the
datagram as well as by a combination of source and destination
IP addresses extracted from the t-addresses (for the reasons to
be clear shortly).

On receiving a type-2 datagram with a non-expired FID,
the router looks up the corresponding cached flow entry by
the FID and forwards the datagram accordingly. The router
also updates the number of bytes transmitted in the flow.
If the router cannot find the cache entry for the received
FID, it drops the datagram. Thus, any route change during
an ongoing communication will result in a dropped datagram,
which would presumably be retransmitted by the higher-layer
protocols at the end-hosts using type-1 datagram. On receiving
a type-3 datagram with a non-expired old FID, the router
updates its corresponding cached entry with the new FID,
increments the number of bytes in the flow (so that the overall
size constraint for the capability can be tracked), and extends
the flow retention time. While processing type-1, and to a
less extent, type-3 datagrams is expensive, most traffic will be
carried by type-2 datagrams, which require trivial processing.

When the router receives a type-1 datagram, before creating
a cache entry for a new flow, the router extracts the source
and destination IP addresses and checks if there is an existing
flow for these end-points (hence double-indexing of the cache).
If so, the router compares the timestamp of the capability
from existing flow with that of the current datagram. If the
timestamps match, the new type-1 datagram does not represent
a new authorization from the destination. Consequently, the
router simply replaces the FID in the existing cache entry with
the new FID from the datagram and increments the number
of bytes in the flow. Thus, the sender cannot circumvent the
size restriction by sending extra type-1 datagrams. If the new
timestamp is greater, the new capability represents a new
authorization and the router resets the byte count in the flow
entry with the payload size in the datagram. In either case,
the new type-1 datagram updates the state in the existing flow
entry as long as one exists. Thus, a router maintains at most
one flow entry for a given end-point pair, preventing a sender
from attacking the router cache space by sending multiple
type-1 datagrams. Furthermore, a router follows the elegant
mechanism from [25] to utilize the capability size constraint
to keep up with the line speed with a fixed cache size (we
refer the reader to [25] for details).
One consequence of the above design is that a capability

represents a common authorization to send traffic for all
applications on a host, with the constraints shared among all
the applications. This is a consciously conservative design
choice. In the absence of misbehaving applications, the re-
cipient will extend its authorization by issuing a subsequent-
use t-address before the current authorization becomes invalid.
A misbehaving application may penalize other applications
running on the same host. Note also that flows in our approach
are uni-directional, and so asymmetric routing is supported
naturally: the flows in either direction would simply be cached
by the routers on the corresponding path.
An advantage of this scheme is that invalid or illegitimate

packets are discarded early (at the first router to detect the
problem). Even if all routers on the routing path to the desti-
nation collude to forward the packet without a valid t-address,
this packet will be stopped by the the destination’s ISP routers
or, as the last resort, quickly discarded by the destination itself

4

before the packet is ever passed to the transport layer or above.
However, such multiple router collusion is highly unlikely.

D. MTU Limitations

Depending on the number of certificates in source and
destination t-addresses, the size of type-1 datagram header
can reach 7K. While this size is too large to be transmitted
without fragmentation in today’s networks, which often have
a 1500Byte MTU, it is less than the packet sizes allowed
in newer network technologies. In fact, most core networks
utilizing 10GETH and OC3-768 technologies already support
jumbo Ethernet frames with an MTU of 9000 Bytes. For
access networks, the only thing that prevents jumbo Ethernet
frames is relatively low bandwidth (which can cause jitter in
real-time communication due to the transmission delay of a
competing frame). However, Cisco routers provide standard
support for link fragmentation and interleaving (LFI) [13].
With this technology, the MTU will still show the full Ethernet
frame, and the fragmentation is only limited to a single link
(the fragment is reassembled by the router on the other side
of the link). Given that even DSL is moving away from ATM
and towards Ethernet for the last mile, and that LFI reassembly
would only be required for type-1 datagrams (limiting routers’
LFI processing costs), EIP datagrams are feasible with most
of today’s access links.
Furthermore, Cisco’s rule of thumb is to keep frame trans-

mission delay within 10ms. Assuming this is the right guide-
line, a jumbo frame can be serialized in 10ms on a roughly
9Mbps link or higher. Residential broadband is clearly moving
into this territory and beyond. Indeed, Korea is planning to
provide country-wide gigabit access by 2012 [14]. Cablevision
offers 101Mbps downlink and 15Mbps uplink access [12].
Similar speeds are offered by Comcast [16] and Verizon. With
these speeds, one can support jumbo frames straight, without
LFI. The same considerations also apply to modern wireless
links which offer bandwidth of 54Mbps and beyond.
So, even if today’s home access networks do not support

jumbo frames, there seems to be no technological reason to
prevent them, and we assume they will be available by the
time t-addresses would be introduced natively at large scale.

E. Name Service

Many attempts at securing the Internet through mandating
authenticated communication were stymied by the need for
key distribution infrastructure. We sidestep this thorny issue
by leveraging the Internet name system, which is already a
crucial component in the current Internet infrastructure, for
distributing t-addresses (and certificates) without any addi-
tional infrastructure.
Our approach relies on everyone being able to authenticate

the entity that issues a t-address. We piggyback the certificate
authority hierarchy needed for authentication with the name
service hierarchy. Most organizational networks today operate
both local and authoritative DNS servers (in fact, it is common
that the same server fulfils both tasks). Our architecture
formalizes this practice and assumes that every subnet belongs
to an authoritative name server hierarchy.

1) Bootstrapping: Root name servers act as top-level cer-
tificate authorities, which delegate their authority to lower
level servers if any (such as top-level domain name servers
in today’s DNS). When an authoritative name server registers
with a higher-level name server, it obtains from it a separate
certificate for each range of destination IP addresses that
it will be handling (the certificate encrypts the IP address
range). When a host connects to the network, as part of the
initialization, it obtains a certificate from its authoritative name
server that delegates the host the authority to generate its own
t-addresses. Whether it is an authoritative name server that
constructs and signs a t-address for a destination, or a host
itself issues a subsequent-use t-address, anyone can verify that
the issuer is authorized to mint t-addresses for the host with the
given IP address and trace the authority to the corresponding
root server. Note that, as Needham and Schroeder point out
in their classic paper, this only means that the entity (and t-
addresses it returns) is as trustworthy (or as suspicious) as the
root server that ultimately certified it [18]. We refer to the path
from the hosts to their authoritative name server to the roots
as the registration path.
Registration path represents bootstrapping of t-addresses,

and hence registrations themselves require out-of-band com-
munication. We do not consider the protocols for such com-
munications in this paper; they can take different forms, from a
separate secure network control protocol over raw IP addresses
to a non-computer communication such as obtaining a compact
disk with necessary certificates via postal service. In all cases,
because registration involves a delegation of trust, it typically
involves human interaction.
Once the registration process is complete, the root servers

can return a t-address of the authoritative server for a domain
name, the authoritative server can return a t-address for a host
within its domain, and a host can generate its own t-address
as a source address when initiating communication or as a
subsequent-use t-address.
2) Root Name Servers: Root name servers must be well-

known and reachable by any host just in today’s Internet.
Thus, they must have an infinite expiration and hence remain
a permanent target for the attackers. This residual corner of
vulnerability is necessary to bootstrap the system. However,
the scope of this vulnerability in our architecture is limited to
just a few well-administered addresses. It is feasible to defend
them well, and even build address-specific defences into the
Internet, given their small number (currently there are only
thirteen root DNS server IP addresses). To our knowledge,
after major ISPs started using anycast to access root DNS
servers, they have not seen any outages due to security issues
at root servers.
3) Obtaining a Destination T-Address: We now describe

the general procedure for communication between two hosts.
A host that wishes to communicate with another host must
obtain that host’s valid t-address. To this end, the source host
generates its own source t-address and sends a DNS query
with the destination hostname to the source’s local name server
(LDNS). The local name server routes the query through name
service infrastructure on its own behalf, that is, by providing
its own t-address as the requester. Thus, when obtaining the

5

t-address on behalf of its clients, the LDNS will receive the
t-address specific to its own (not the client’s) IP address. The
name server will then give this t-address to the source host
(and to subsequent clients until this t-address expires).
Of course, when the source now sends a type-1 data-

gram opening the communication with the destination, the
IP address from the source t-address (which is the source
host’s IP address) will no longer match the source IP address
embedded into the destination t-address (which is the LDNS’s
IP address). We bridge this gap with the help of delegation
tokens. When returning a non-client-specific t-address, the
local name server will also give the client a signed delegation
token, which includes both the client and the name server IP
addresses. The size of this token is approximately 300 bytes
(32 bytes for the two IP addresses and around 256 bytes for
the signature4). The client then includes this token into its
type-1 datagram to the destination. Routers will use this token
to verify proper delegation of the destination t-address.
In today’s DNS, hostname-to-IP mappings are cached by

both client machines (sources) and their local DNS servers. In
particular, local DNS servers provide a shared cache that can
benefit a potentially large number of clients. It might seem
that Evasive Internet would defeat the shared cache of local
DNS servers because it makes destination t-addresses specific
to the client’s IP address. Fortunately, the above procedure
reveals this is not the case.
Note that with LDNS caching, the validity constraint in t-

address is shared among all clients using this t-address. Thus,
the destination’s policy for validity constraint assignment
becomes coarser grained, in a sense that it applies to all the
clients behind the LDNS server. This introduces an interesting
trade-off between allowing LDNS caching and coarsening the
granularity of the validity constraint, which remains to be
explored as future work.

III. SECURITY

We already discussed the advantages of transient addresses
and relegating their distribution to the DNS system (which
removes the unprotected capability request channel from paths
to the destinations thus limiting the vulnerability to denial of
capability attacks).
Other security properties of Evasive Internet stem from

the following observation. Unless the attacker colludes with
the destination or eavesdrops on the network (see below), it
can only acquire a valid destination t-address by revealing
its own identity. Indeed, the sender can only obtain a non-
expired t-address by requesting it from the name service. To
get the response, the attacker needs to supply the name service
with its valid source t-address, including its identity. However,
this same identity will be embedded into the unforgeable
destination t-address returned. Some of the consequences of
the above observation are as follows.
An attacker cannot fake its identity: such a packet will be

discarded at the first router. This protection is much stronger
than current ingress filtering that (a) is in imprecise science,

4Note that we do not need a certificate chain here because it will be the
same as the one from the source t-address.

except for stub networks, and (b) gets in the way of innovation
such as mobile IP.
The attacker can “amplify” its identity by sending packets

with the same identity from multiple hosts. However, the effect
of this would be limited because (a) the current destination t-
address will expire in a short time, and subsequent t-address
requests by the same requester can be penalized (see Sec. V
for more details); (b) the return packets will all be delivered
to the original host (consuming its resources and making it the
bottleneck, especially in application-level attacks that require
the sender’s continued participation); and (c) the original host
will be traceable. Furthermore, a router can verify the rightful
owner of the source t-address with a mechanism similar to [3].
If the attacker gains network eavesdropping capability, it can

attempt a replay attack, by resending packets observed on the
network. The damage from such an attack would be mitigated
by the fact that flows and destination t-addresses quickly
expire. The attacker would need a continued eavesdropping
capability over a network link with continued legitimate traffic
to the destination to launch a sustained attack against the
destination. Thus, Evasive Internet would significantly narrow
the scope of replaying attacks.

IV. RELATED WORK

The literature on network and host security is too large to
survey here. This section touches upon some prior work that
is most related technically to our approach.
We use capabilities as transient addresses. Existing capa-

bility systems [25], [19], [24], [4] include an unprotected
communication channel to hosts for initial capability requests;
these request reach hosts using their IP addresses. In Evasive
Internet, DNS is used to distribute capabilities, thus end-hosts
are never exposed. We also leverage the DNS hierarchy for
distributing authentication certificates to all parties involved.
The SANE architecture [7] uses separate network components
to issue capabilities in the context of enterprise networks.
By operating at a higher layer, Evasive Internet offers less
hard-and-fast protection but targets public Internet and does
not require new components. In fact, our approach does not
preclude a SANE deployment within an enterprise.
Filtering approaches ([15] and references therein) improve

network security by allowing hosts to install remote filters
blocking identified malicious senders. They rely on a sepa-
rate filtering mechanism, which itself needs to be carefully
protected [15]. Several other approaches propose to improve
security by leveraging separate rendezvous points [2], a name-
routed signaling infrastructure [9], or by isolating client and
server address spaces [11]; other approaches utilize distributed
hash tables for rendezvous server distribution [10]. Evasive
Internet involves less ambitious architectural changes. The
Host Identity Protocol [17] separates host identifiers from IP
addresses and stores the former in DNS. Our approach goes
beyond this as it is based on capabilities as transient identifiers
and enables in-network host authentication.
There has been a lively debate in the research community

on the relative merits of filter-based and capability-based
approaches to network security. Argyraki and Cheriton pointed

6

out the vulnerability of capability systems to the denial of
capability attack, where the attackers are trying to exhaust
the unprotected capability request channel [5]. Parno et al.
countered with an elegant scheme using proof-of-work to
ensure that legitimate capability requests will eventually get
through [19]. On the other hand, Liu et al. proposed a
filter-based approach that protects the filter infrastructure by
using a separate closed-control plane for filter requests [15].
By relegating capability assignment to DNS, our approach
narrows the scope of vulnerability to the root DNS servers
(see Sec. II-E). Protecting these servers is still not easy, but it
is much simpler than protecting the entire Internet.
Several approaches address network security by enabling

packet source attribution and accountability [3], [21]. These
are key capabilities in the network defence arsenal. Our
approach also allows attribution but goes further by preventing
hosts from being permanent targets for attacks.

V. FURTHER THOUGHTS: DESTINATION RATING

While we currently assume a trivial t-address expiration
policy, simply as a constant validity time, we can envision
much more elaborate policies in the future.
Authoritative name servers maintain close relationship with

destinations they represent - they are either operated by the
same network or by an external service with a business
relationship with the destinations’ network. We can exploit
this relationship to implement a fine-grained control over the
t-address expiration, with the goal of improving scalability
without hurting security. When a name resolution query arrives
from a new requester, the authoritative name server can assign
a low expiration time to the t-address to keep the security
risk low. However, depending on the nature of the ensuing
communication with the corresponding host, the host can often
determine the clients that exhibit “expected” behavior. In these
cases, the host can (a) include the optional subsequent-use t-
address with its own packets to the client so that the client can
extend its communication without going back the the name ser-
vice (as discussed earlier), and (b) assign an appropriate rating
to this client and communicate this rating to the authoritative
name server. The authoritative name server can store ratings
from more active clients and return t-addresses with longer
expiration to clients with high rating. Note that, as explained
in the previous section, the client rating may in fact apply
to a set of hosts from the same network. Further, similar to
capabilities, the client rating applies to all applications running
on the client host, so a misbehaving application will affect
other co-located applications. We believe this is an appropriate
consequence of running a misbehaving application.
Client rating is somewhat similar to reputation in reputation

systems except its scope is limited to the destination: it reflects
the local experience of the destination site with this client and
it is interpreted and acted upon by the destination site. Because
of that, it is free from typical issues in reputation systems, such
as data pollution, privacy, and trust. The destination site has
full authority to assign and interpret client ratings in any way it
sees fit. While purely a heuristic-driven performance hint, this
mechanism could prove a powerful scalability tool in practice.

VI. CONCLUSION

The paper outlines our vision of an Evasive Internet - a net-
work where destinations can only be reached through transient
addresses. We achieve this by utilizing capabilities as the sole
means of reaching hosts on the Internet. Our design leverages
name service infrastructure to distribute hosts’ capabilities as
well as security certificates, which are used for authentication
of transient addresses and traffic attribution and to ensure
that destinations themselves control over their own address
duration. While significant work is needed to flesh out our
vision, we hope it will contribute to improving security in
future networks.

REFERENCES

[1] A. Seehra and J. Naous and M. Walfish and D. Mazieres and A. Nicolosi
and S. Shenker. A policy framework for the future Internet. In HotNets–
VIII, 2009.

[2] D. Adkins, K. Lakshminarayanan, A. Perrig, and I. Stoica. Towards
a more functional and secure network infrastructure. Technical Report
UCB/CSD-03-1242, UC Berkeley, 2003.

[3] D. Andersen, H. Balakrishnan, N. Feamster, T. Koponen, D. Moon, and
S. Shenker. Accountable Internet protocol (AIP). In SIGCOMM, 2008.

[4] T. Anderson, T. Roscoe, and D. Wetherall. Preventing Internet denial
of service attacks with capabilities. In HotNets-II, 2003.

[5] K. Argyraki and D. Cheriton. Network capabilities: The good, the bad
and the ugly. In HotNets-IV, 2005.

[6] H. Ballani, Y. Chawathe, S. Ratnasamy, T. Roscoe, and S. Shenker. Off
by Default! In HotNets-IV, 2005.

[7] M. Casado, T. Garfinkel, A. Akella, M. J. Freedman, D. Boneh,
N. McKeown, and S. Shenker. SANE: a protection architecture for
enterprise networks. In USENIX Security Symposium, 2006.

[8] Growth of the bgp table - 1994 to present. http://bgp.potaroo.net/.
[9] S. Guha and P. Francis. An end-middle-end approach to connection

establishment. In SIGCOMM, 2007.
[10] A. Gurtov, D. Korzun, A. Lukyanenko, and P. Nikander. Hi3: An

efficient and secure networking architecture for mobile hosts. Computer
Communications, 31(10):2457 – 2467, 2008.

[11] Mark Handley and Adam Greenhalgh. Steps towards a DoS-resistant
Internet architecture. In FDNA (ACM SIGCOMM Workshop), 2004.

[12] S. Hansell. Cablevision goes for U.S. broadband speed record. New York
Times, 04/28/2009. http://bits.blogs.nytimes.com/2009/04/28/cablevi-
sion-goes-for-us-broadband-speed-record/.

[13] D. Hartmann. Cisco QoS: Link fragmenta-
tion and interleaving. Network World, 03/04/2009.
http://www.networkworld.com/community/node/39221.

[14] R. C. Hodgin. Gigabit broadband coming to Korea by 2012. TG Daily,
02/03/2009. http://www.tgdaily.com/content/view/41292/103/.

[15] X. Liu, X. Yang, and Y. Lu. To filter or to authorize: Network-layer dos
defense against multimillion-node botnets. In SIGCOMM, 2008.

[16] J. Meisner. Comcast revs its engine in broadband-speed race.
Linux Insider, 12/11/2008. http://www.linuxinsider.com/sto-
ry/trends/65472.html?wlc=1256158928.

[17] R. Moskowitz and P. Nikander. Host identity protocol (HIP) architecture.
Request for Comments 4423.

[18] R. M. Needham and M. D. Schroeder. Using encryption for authenti-
cation in large networks of computers. Communications of the ACM,
21(12):993–999, December 1978.

[19] B. Parno, D. Wendlandt, E. Shi, A. Perrig, B. Maggs, and Y.-C. Hu.
Portcullis: protecting connection setup from denial-of-capability attacks.
In SIGCOMM, 2007.

[20] B. Quoitin, L. Iannone, C. de Launois, and O. Bonaventure. Evaluating
the benefits of the locator/identifier separation. In MobiArch (ACM
SIGCOMM Workshop), 2007.

[21] A. C. Snoeren, T. Kohno, S. Savage, A. Vahdat, and G. M.
Voelker. Privacy-preserving attribution and provenance. www.nets-
find.net/Funded/Privacy.php.

[22] Teredo Overview. January, 2003. http://www.microsoft.com/technet/net-
work/ipv6/teredo.mspx.

[23] J. Touch. Personal communication.
[24] A. Yaar, A. Perrig, and D. X. Song. SIFF: A stateless Internet flow

filter to mitigate DDoS flooding attacks. In IEEE Symp. on Security
and Privacy, 2004.

[25] X. Yang, D. Wetherall, and T.E. Anderson. A DoS-limiting network
architecture. In SIGCOMM, 2005.

