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ABSTRACT
We propose a new traceroute tool, FlashRoute for efficient large-
scale topology discovery. FlashRoute reduces the time required for
tracerouting the entire /24 IPv4 address space by a factor of three
and half compared to previous state of the art. Additionally, we
present a new technique to measure hop-distance to a destination
using a single probe and uncover a bias of the influential ISI Census
hitlist [18] in topology discovery.
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1 INTRODUCTION
Traceroute is one of the fundamental tools for Internet measure-
ments, widely used to troubleshoot network connectivity issues
and reveal the network topology. Among its common applications,
traceroute is used to explore the routing topology to a large number
of destinations or even the entire Internet [6, 12, 21, 22]. Doing so
requires traceroute measurements on a massive scale, which means
completing these measurements with as few probes and in as little
time as possible. Shortening the time for topology measurements
is especially critical because the shorter the time to complete the
measurement the closer to a snapshot the results will be and the
easier it is to understand the dynamics of Internet routing changes
at fine time granularity.

The current state of the art in time efficiency of Internet-scale
traceroutes is Yarrp [4, 5]. Its probing strategy is inspired by ZMap
[9] and adopts ZMap’s two main techniques to achieve high perfor-
mance. First, Yarrp encodes all probing context (i.e., information
needed for matching probes with responses and to time the re-
sponse) in the probe’s header, which makes the scanning process
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stateless, thus reducing memory footprint of the process, and decou-
ples packet sending and receiving tasks, hence dramatically increas-
ing the probing parallelism. Second, to avoid hitting routers’ ICMP
rate limits, Yarrp introduces a computationally efficient random
permutation technique to generate all combinations of destination
/24 prefixes and TTLs on the fly, without preloading all destinations.
With Yarrp, tracerouting all /24 prefixes in IPv4 address space can
be finished from a single vantage point in barely an hour at the
probing speed of 100Kpps.

The drastic improvement in the tracerouting speed, however,
comes at the price of increased number of probes, because for every
target prefix, the vantage point blindly issues a probe to every hop
within the maximum TTL, regardless of the actual hop-distance to
the destination.

In this paper, we propose a new tool for massive tracerouting,
FlashRoute, which further reduces the time required for tracerout-
ing the entire /24 IPv4 address space by the factor of three and half,
from one hour to 17 mins, at the probing speed of 100Kpps. And
if given the same time budget as Yarrp, FlashRoute can run extra
scans, using different source ports, to discover router interfaces on
the alternative routes formed by load-balancing hops.

FlashRoute achieves this efficiency by reintroducing state into
the probing process. The state is carefully designed to preserve
high probing parallelism yet enable elaborate probing strategies
that significantly reduce both the number of probes and the time
required to complete the scan. At the same time, the state is compact
enough, around 900MB for a complete scan of the /24 IPv4 address
space, to be easily handled by modern computers.

FlashRoute’s efficiency can be attributed to several factors. First,
before the main scan, FlashRoute attempts to calculate the hop-
distance to each destination using a single probe, and uses these
distances to optimize the rest of probing. Second, similar to Yarrp,
FlashRoute avoids online matching of probes with responses by
encoding all information necessary to derive the measurement re-
sult into probe headers, which allows FlashRoute to probe in a
highly parallel way. Third, FlashRoute utilizes a specially designed
data structure to maintain some control states without hampering
probing parallelism, which allows it to adjust the exploration pro-
cess of individual routes based on the feedback from responses. In
particular, this allows FlashRoute to explore routes in a backward
direction and stop probing when detecting the route convergence,
the idea originated in Doubletree [8] but abandoned by Yarrp in
favor of randomized parallel probing at every TTL.

An interesting side-observation of our experiments, and another
contribution of this paper, is that we find ISI Census Hitlist [18],
an influential list of most responsive IP addresses from every /24
prefix, to be biased for the purpose of Internet topology exploration.
Specifically, the IP addresses from the Hitlist tend to be at shorter
hop-distances from our vantage point than random destinations.
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We present preliminary evidence that the Hitlist destinations are
preferentially located at the entrance of the stub networks, shielding
from discovery any other routers in the same prefixes that might
be behind the interfaces provided by the Hitlist.

To recap, the main contributions of this work are:
• We present a new tool for massive-scale traceroutes, which uses
less than 30% of probes, and correspondingly, runs the full /24
IPv4 scan in less than 30% of time, of the previous state of the
art;

• We describe a new method of measuring hop-distance to desti-
nations using a single probe;

• We uncover a non-obvious bias of the ISI Census hitlist [18] for
the purpose of Internet topology exploration.

2 BACKGROUND AND RELATEDWORK
Traceroute has been widely studied over the years, with a number
of solutions proposed to improve its the performance. In particular,
Doubletree [8] and its variants [7, 14] reduce probing redundancy
based on the observation that the routes originated from a van-
tage point to the Internet form a tree-like structure, so new routes
only need to be explored between the destinations and the branch-
ing points from the previously discovered routes. Augustin et al.
proposed Paris traceroute to reduce the interference caused by
load-balancers in route exploration and also invented the multipath
detection algorithm (MDA) to explore alternative routes created by
the load-balancers [2, 3]. Later, Vermeulen et al. introduced Mul-
tilevel MDA-Lite [23], reducing the probe usage of MDA. CAIDA
has a long-running experiment to continuously measure the Inter-
net topology from distributed vantage points using Scamper [15],
which employs both Doubletree and Paris traceroute techniques [6].
While these solutions improve traceroute in various ways, the un-
derlying probing technique remains the same as in the conventional
traceroute: probes are issued sequentially one by one to every hop
for each route, issued probes are remembered and matched to the
responses, and expiration of pending probes is managed separately
for each probe to handle missing responses.

Yarrp [4] introduced a new probing technique inspired by ZMap
[9], which greatly increases the probing parallelism and thereby
the probing rate. Later, Yarrp6 [5] extended Yarrp by adding the
"fill mode". The fill mode reduces the maximum TTL within which
hops are probed exhaustively by Yarrp and complements exhaustive
probing within the maximum TTL with sequential probing of one
extra hop upon arrival of the response from the farthest previously
probed hop if this response indicates that the farthest hop is not
the end-target. The fill-mode can reduce the number of probes sent
in a scan, albeit at the cost of missing some interfaces because a
single non-responsive router at a given hop-distance terminates
the sequential forward probing. Both Yarrp and Yarrp6 use a state-
less probing design, allowing the probing to occur with negligible
amount of state. This design, however, results in an increase in the
needed volume of probes. Indeed, as the state is removed, the scan-
ner is unable to effectively utilize the feedback from the responses
to adjust probing strategy. Therefore, both Yarrp and Yarrp-6 ex-
plore topology largely in an exhaustive manner by sending probes
to every possible hops for every destination.

FlashRoute breaks the tradeoff between two types of optimiza-
tions of traceroute: the optimizations having low probing paral-
lelism but low measurement traffic, and the optimizations having a
high parallelism of probing but high measurement traffic. Conse-
quently, FlashRoute can further significantly reduce the time for a
full IPv4 address space scan.

As the probing speed increases, the ICMP rate-limiting becomes
another important issue. [19] found pervasive ICMP rate-limiting
in IPv4, with most routers allowing 500 or less ICMP replies per
second. This observation suggests the network measurement tool
not only needs to have a high speed but also low probing traffic that
avoids creating hot spots. Otherwise, ICMP rate-limiting may be
triggered, which would negatively affect the accuracy or coverage
of the topology discovery. We discuss FlashRoute behavior with
regard to ICMP rate limiting in §4.2.

3 FLASHROUTE OVERVIEW
FlashRoute is optimized for tracerouting a large set of targets. It
combines several techniques from existing traceroute solutions with
novel ideas for increasing the aggregate efficiency of the overall
scan. FlashRoute adopts the following existing techniques:
• Following the lead from Paris traceroute [2], FlashRoute uses

the same source/destination ports and protocol ID in all probes
that explore the route to a given target. This reduces the risk
of exploring hops scattered across alternate routes caused by
load-balancing routers.

• FlashRoute borrows the idea of packet encoding from Yarrp
[4, 5] and, ultimately, ZMap [9], although our encoding details
are different (see §3.1).

• FlashRoute utilizes the Doubletree [8] basic technique, also
used by Scamper, to optimize the route exploration. Doubletree
explores routes from an intermediate point, moving backward,
towards the vantage point, and forward, towards the target.
The backward probing stops once encountering a previously
discovered interface, reducing redundant probing of previously
discovered route sections. We refer to the intermediate point
from which backward and forward probing commences as "split
point" and the TTL that reaches this point as "split TTL".
FlashRoute’s main innovation is the mechanism that retains

Yarrp’s advance of high parallelism through decoupling probe-
sending and response-receiving tasks but at the same time pre-
serves Doubletree’s ability to reduce probing traffic by adjusting
probing strategy based on feedback from prior responses. We thus
prove, by construction, that high parallelism in massive traceroute
scans does not have to come at the cost of high measurement traffic
overhead. While it does introduce some state, resulting memory
footprint is easily manageable by modern computers.

FlashRoute is written in C++ using 2.4k lines of code. It is com-
patible with a variety of Unix-based operating systems. We make
it, along with the data collected in our study, publicly available at
[10, 11].

3.1 Probe Encoding
Like Yarrp and Zmap, we encode all needed information to inter-
pret the measurement into the probe packet header, which is then
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returned in the ICMP response payload. In particular, we encode
initial TTL of the probe into 5 bits of the IPID field and use the
checksum of the destination IP address as the source port number
to verify that the destination has not been changed by a middlebox
en-route. We use another bit of IPID to distinguish probes sent
during the preprobing phase (§3.3). Finally, we encode the times-
tamp of the probe but use a different approach from Yarrp to do it.
Because Yarrp uses TCP-ACK probes by default, it encodes elapsed
time from the start of the scan into the TCP sequence number field.
We wanted to support UDP probes because, as previous studies
shown [17] and we confirmed (§4.2), UDP probes produce more
responses. For the UDP probes, Yarrp attempts to encode the en-
tire elapsed time into the checksum and the packet length fields,
which we found to be problematic (§4.2.1). Instead, we only use
10 remaining bits of IPID and 6 bits of the packet length fields to
encode timestamp of the probe. With millisecond granularity, this
leads to wrap-around in just over 65 seconds – less than the official
maximum segment lifetime but more than enough to derive the
round-trip time for all practical purposes.

3.2 Probing Strategy
FlashRoute explores routes to all destinations in a series of rounds.
Each round cycles through all destinations and issues all its probes
for all destinations back-to-back, without waiting for responses.
Thus, the amount of parallelism in exploring the destinations par-
ticipating in a round (initially all destinations) is only limited by
how quickly FlashRoute is able (or allowed) to issue the probes.
Sending probes and processing responses is decoupled (save for an
unlikely mutex contention to access the control state for a desti-
nation, see §3.4) and is done through separate threads. To avoid
creation of hot spots when probing topologically close destinations,
FlashRoute shuffles the destinations into a random permutation
before the rounds begin.

In each round, up to two probes per destination are issued: one
to the next hop backward, towards the vantage point, and one to
the next hop forward, towards the target. Forward probing towards
the target will stop once the probes reach the target (more pre-
cisely, once the probes elicit a "host/port/protocol unreachable"
response for the target address) or if the number of consecutive
non-responsive hops reaches a configured GapLimit parameter.
Backward probing for a target ends once a probe reaches the van-
tage point (or rather the hop at TTL 1 from the vantage point)
or encounters a previously discovered hop. With both backward
and forward probing completed, the route exploration for the des-
tination completes and the destination is removed from further
rounds.

The sending thread ensures that each round lasts at least one
second, stalling if necessary before starting the next round. This
allows at least one-second elapsed time between consecutive route
exploration steps for a given destination, increasing the likelihood
that enough responses will have arrived to adjust the probing strat-
egy, i.e., to stop probing in either direction. One consequence of this
strategy is that as the number of incomplete destinations decreases,
the probing parallelism will at some point decrease. However, for
100 Kpps, this limit only comes into play at the very end of the pro-
cess, when the number of unexplored destination drops to between

Figure 1: Tree-like router topology: routes merge into com-
mon sections close to the source.

Figure 2: Alternative routes created by load balancer B are
missed by backward probing.

50K and 100K (given that an unexplored destination produces one
or two probes in a round). Therefore, it does not significantly affect
the overall time of the scan.

3.2.1 Backward probing issues. The reasoning behind backward
probing was originally explained and verified in the Doubletree
study and has since become widely accepted; that is, routes from
one vantage point to the rest of the Internet approximate a tree-like
topology. Figure 1 provides an example of this tree-like topology,
where the routes to targets D, G, and H reuse the same section
A-B-C up to the convergence point at router C. Backward probing
allows probing of the common section to occur only once.

At the same time, backward probing can miss some routes, when
the network deviates from the tree topology, as shown in Figure 2.
Here, router B balances traffic by forwarding packets to target H
to router C, producing route B-C-E-H and forwarding packets to
target G to router D, resulting in route B-D-E-G. By stopping at
the convergence point E, backward probing will miss one of these
routes. Yet another potential issue is that if the starting point is
greater than the route length and the end-target is not responsive
to probes, the backward probing will waste extra probes by ex-
ploring nonexistent hops one by one in the backward direction.
Indeed, in this case all those extra non-existent hops will appear
as non-responsive routers, and the backward-probing process has
no alternative but to continue probing each hop until reaching the
responsive section.

The first issue is alleviated to some extent by the fact that
FlashRoute is designed to perform massive scans, and some route
sections missed by one target can be discovered by another target.
For instance, in Figure 2, even if router D is missed by backward
probing from G and H, it would still be discovered by backward
probing from F. The second issue compels systems utilizing back-
ward probing to use the split point that is relatively close to the
source and augment it with forward probing.
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Figure 3: PDF and CDF of the difference between the trigger-
ing TTLs and the measured distances of targets.

In summary, setting the split point far from the vantage point
exploresmost of the routes in a backwardmanner – this allowsmore
aggressive elimination of redundant probes by detecting distant
route convergence points but risks probing through long stretches
of unresponsive routers at the tails of the routes. Starting too close
has the opposite effect: it explores most of the route with forward
probing, more likely stopping fruitless exploration of unresponsive
route tails, but – by narrowing the scope of backward probing
– could miss probes-saving opportunities that backward probing
exploits. In this paper, we consider the performance of FlashRoute
with the split point at TTL 32 (the maximum TTL explored by Yarrp,
which very few paths exceed) and 16 (given the the Doubletree study
finding that reuse of interfaces by routes to multiple destinations
plunges at hop distances approaching this value).1 In addition,
FlashRoute offers an option to measure hop-distance to targets in
a special preprobing phase and use this distance as the split point
(§3.3). Starting backward probing at this point will prevent wasted
probes if the distance is accurate.

3.3 Preprobing
FlashRoute performs preprobing using a new highly efficient mech-
anism for precise measurement of hop-distance to the destination
with a single probe. We present this mechanism, assess its accuracy,
and discuss its use in FlashRoute, below.

3.3.1 One-probe hop-distance measurement. The method to mea-
sure hop-distance with one probe is as follows. FlashRoute issues a
probe with TTL 32 to every destination at port 33434. Since the des-
tination port is set to 33434, which is a port reserved for traceroute
purpose, the probe may trigger the host to return an ICMP port-
unreachable response. As the response carries the original packet
header of the probe, FlashRoute can calculate the hop distance
of the destination using the residual TTL of the probe extracted
from the response. The calculated distance reflects the length of
the forward path from the vantage point to the destination.
3.3.2 Accuracy of hop-distance measurement. The accuracy of this
method can be affected if amiddlebox resets TTL for a probe enroute

1We leave a more careful exploration of other potential values of this parameter to
future work.

to the destination (e.g., as suggested in [13]). In order to verify
how often this case happens, we send probes with TTLs covering
the entire 1 to 32 range and record the first TTL that triggers the
ICMP port-unreachable, mimicking the traditional approach to
distance measurement through traceroute. We thereby can compare
the difference between the minimum TTL that triggers the ICMP
port-unreachable responses, and our measured hop-distance to the
destination. Note that this method will detect the inaccuracy but
not necessarily the extent of it, because the traceroute method itself
is not guaranteed to be accurate. In particular, if a middlebox resets
TTL to a standard value, a probe will reach the destination as long
as its initial TTL is sufficient to reach the middlebox regardless of
the number of remaining hops. Typically, however, middleboxes
sit at the entrance of the stub networks, and the number of the
remaining hops is small, so we can assume the distance to the
middlebox roughly approximates the distance to the destination.

As shown in Figure 3, for around 89.7% of routes, the measured
distances and triggering TTLs are the same, indicating the measure-
ments are accurate. For additional 7% of destinations, triggering
TTLs are within 1 hop of the measured distances. Because it would
take quite a coincidence for the middlebox to replace the current
TTL of an incoming packet with such a close value, we speculate
that many of these discrepancies are caused by route dynamic-
ity; in any case, the discrepancy is small. This leaves only around
3.3% of destinations where our method differs from the traditional
traceroute by more than 1 hop. We conclude that our proposed
measurement of hop-distance provides generally accurate results
with a single probe to the destination.

3.3.3 Hop-distance predictions. Our distance measurement tech-
nique requires the destinations to return ICMP port unreachable
responses. Applied to FlashRoute, however, it produces few results
because FlashRoute picks a random target address within each /24
block, which may not even be assigned to a host. To improve the re-
call of distance measurements, we observe that many stub networks
advertise larger than /24 blocks (e.g., our campus advertises two /16
networks), in which case many adjacent /24 blocks will have similar
hop-distance from the vantage point. Coupled with the fact that
FlashRoute uses these distances as purely performance-improving
hints, it can take the measured distance to one block to predict the
distances to other blocks in close proximity in the address space.
For example, if the address block 100.100.123/24 is 15 hops away
from the vantage point, FlashRoute can predict that the hop dis-
tances to both the blocks of 100.100.122/24 and 100.100.124/24 are
also around 15. The proximity span for prediction is controlled
by a configuration parameter we refer to as "proximity span"; by
default, FlashRoute uses proximity span of 5, which means it uses
the measured distance to a given block to predict distances of its 5
preceding and 5 succeeding blocks.

3.3.4 Accuracy of hop-distance prediction. Since the distance pre-
diction is applied to the destinations that do not return ICMP port-
unreachable messages, the accuracy of the prediction can not be
verified using the triggering TTLs. Fortunately, with the default
proximity span of 5, around 89.5% of the address blocks with mea-
sured distances are in the proximity of other blocks with measured
distances. We then take our measured distance to one of these
blocks as the predicted distance to the other blocks within the first
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Figure 4: PDF and the CDF of the difference between mea-
sured and predicted distances of targets.

block’s proximity scope, and compare these predicted distances
with the measured distances obtained through our technique.

Figure 4 provides the PDF and CDF of the differences between the
predicted distances and the triggering TTLs that mimic traceroute-
based measurements, for the same destinations. As can be seen,
around 59.1% of predicted distances are equal to, and additional
25.4% are within one hop from, the traceroute distances.

Recall that FlashRoute’s route exploration uses these predicted
distances purely as an optimization hint; the accuracy of discovered
routes does not depend on the accuracy of the prediction. Thus,
and as long as our prediction is more often correct than wrong, the
overall efficiency of route exploration improves. With over 84% of
predictions beingwithin 1 hop of traceroute-measured distances, we
conclude that the predicted distances, calculated with the proximity
span of 5, provide a useful hint when measured distances are absent.

3.3.5 Preprobing in FlashRoute. FlashRoute sets the split points
of the routes using their measured or predicted hop-distances. For
routes with unavailable distances, the split point remains the default
16 or a user-configured value.

FlashRoute has a special optimization when the default split-TTL
of the main probing is set to 32, the same as the preprobing TTL. In
this case, the preprobing can be taken as the first probing round of
the main probing. This is because a response to preprobing is indis-
tinguishable from the response to the same destination at TTL-32
during main probing. Therefore, when preprobing a destination at
hop-32 produces no response or TTL-expired response, FlashRoute
can directly take this outcome as the result of the first round and
use it as part of the discovered topology. The main probing will
therefore start at TTL 31 for this destination.

3.4 Control State
FlashRoute needs control state to support its probing logic. For each
destination, it maintains a "destination control block (DCB)", shown
in Listing 1, to keep track of the probing progress in both forward
and backward directions as well as the "forward probing horizon",
which limits the forward probing to at most GapLimit number of
consecutive unresponsive hops. Variables nextBackwardHop and
nextForwardHop represent, respectively, the TTL of the next back-
ward and forward hop scheduled to be probed in the next round;

Figure 5: The control state structure.

these variables are accessed by the sending thread, and nextBack-
wardHop can also be updated by the receiving thread, which sets it
to special value (zero) upon receiving the response that completes
the backward scan (i.e., the response either from a hop at TTL 1 or
from a previously discovered hop, indicating a convergence point).
Variable forwardHorizon keeps value (𝑚𝑎𝑥_𝑇𝑇𝐿+𝐺𝑎𝑝𝐿𝑖𝑚𝑖𝑡), where
𝑚𝑎𝑥_𝑇𝑇𝐿 is the TTL of the farthest hop from the source that has
responded to a probe so far. It is updated by the receiving thread
when processing responses and read by the sending thread. Thus,
each DCB is protected by a mutex, but contention is highly un-
likely as it only occurs when the sending thread happens to handle
the destination at the same time when a response from a previous
probe for this destination arrives. If nextForwardHop reaches for-
wardHorizon, it means the previous GapLimit number of hops have
not responded and the forward probing stops.

FlashRoute’s two threads place conflicting demands on the con-
trol state. The sending thread, in each round, must be able to ef-
ficiently move from DCB to DCB in the order determined by the
random permutation, and also remove DCBs that finished probing
from this sequence. The receiving thread, when a probe response
arrives, must be able to quickly access the corresponding DCB to
update its horizon or nextBackwardHop. Figure 5 illustrates our
control state design to satisfy these requirements.

Like Yarrp, FlashRoute is designed to trace every /24 prefix. Con-
sequently, FlashRoute keeps all DCBs in an array with 224 slots,
indexed by the /24 prefix of the destination IP address. Prefixes
excluded from the scan still occupy their slots. This arrangement
allows the receiving thread to immediately locate the DCB corre-
sponding to an arrived response, based on the destination IP address
extracted from the response.

In addition, we overlay a circular doubly linked list on the top of
the array by having each DCB connect to successor and predeces-
sor DCBs with pointers. Unlike the underlying physical array, in
which probing states are ordered according to the prefixes of the
destinations, the sequence of DCBs in the doubly linked list follows
the random permutation order computed during the initialization
phase. That means two consecutive DCBs on the linked list can be
far from each other on the array, and a successor DCB in the list can
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reside before its predecessor in the array. The circular list allows
the sending thread to complete its rounds by moving from one des-
tination to the next along the DCB links and also efficiently remove
the destinations that finished tracing from the future rounds by
simply removing the corresponding DCBs from the list.

The entire structure, along with the other overhead, such as
mutexes, occupies around 900 MBytes memory for all /24 prefixes,
the amount that is easily within the capacity of modern computers.
There is a potential to reduce this footprint, most significantly by
replacing general per-DCB mutexes with primitive atomic oper-
ations (such as a spinlock over the test-and-set instruction) but,
given the overall memory consumption is modest, we opted for a
more portable general approach.

Listing 1: Destination Control State
1 s t ruc t De s t i n a t i o nC on t r o l S t a t e {
2 u i n t 3 2 _ t d e s t i n a t i o n ;
3
4 / ∗ P r o b i n g p r o g r e s s i n f o rma t i o n ∗ /
5 u i n t 8 _ t nextBackwardHop ;
6 u i n t 8 _ t nextForwardHop ;
7 u i n t 8 _ t forwardHor i zon ;
8
9 / ∗ Doubly L inked L i s t P o i n t e r s ∗ /
10 u i n t 3 2 _ t nex t Index ;
11 u i n t 3 2 _ t p r e v i ou s I nd ex ;
12 . . .
13 } ;

This structure is initialized before the scan as follows. First, each
DCB is initialized to include a destination IP address randomly
generated from its /24 prefix (FlashRoute also has an option to load
IP addresses from an exterior file instead but would still only use one
address per /24 block.) Further, the variables to control the backward
and forward probing are initialized using the default split point
at TTL 16, or the value set by users, or the hop-distance obtained
by preprobing (if this option is employed). Second, FlashRoute
connects the DCBs into the circular doubly linked list to form a
random permutation sequence of all /24 prefixes. Finally, all private,
multicast, and reserved destinations, along with the destinations
from the exclusion list, are removed from the doubly linked list
before probing commences.

4 PERFORMANCE EVALUATION
We evaluate FlashRoute performance by studying the impact of its
main design decisions and configuration parameters on its overall
performance (§4.1) and by comparing its performance with rep-
resentative existing alternatives, Yarrp, representing the state of
the art in high-performance traceroute scans, and Scamper, an in-
fluential traceroute utility in current use for ongoing traceroute
scans (§4.2). We consider the following metrics when comparing
the tools. First, we conduct a full /24 scan with each tool to assess
characteristics reflecting the tools’ effectiveness for topology snap-
shot discovery: the number of interfaces discovered, the number
of probes issued, and the scan time. Second, we compare the in-
trusiveness of the tools, by assessing how often their probing rate
exceeds routers’ ICMP response rate limit. Third, we compare the

scalability of Yarrp and FlashRoute by considering the maximum
scanning rate they can sustain.

Our testing environment is a Dell PowerEdge R610 server with
Intel Xeon CPU E5620 @ 2.40GHz, 8 GB memory space, and 1 Gbps
network connectivity. The capacity of this testbed can be easily
met by most modern servers (or even laptops).

4.1 Impact of Features and Parameters
FlashRoute has three main features that may affect the performance:
preprobing (including both hop-distance measurement of respon-
sive targets and predicting the hop-distance of nearby unresponsive
targets), backward probing, and forward probing. The preprobing
helps FlashRoute decide where to place the split point on each route.
The backward probing can increase the probing performance by
removing the probing redundancy. The forward probing explores
the route from the split point towards the target and allows con-
servative placement of the split point at an internal hop within the
route. FlashRoute also has two configuration parameters, GapLimit
and split TTL. This section assesses the impact of these features
and parameters on the FlashRoute performance.

Table 1: Impact of redundancy elimination during backward
probing.

Split-TTL Redundancy removal Interfaces Probes Scan time

32 On 805,472 164,882,469 27:54.19
32 Off 826,701 338,063,800 56:36.14
16 On 814,801 101,314,451 17:16.94
16 Off 817,509 257,983,117 43:33.55

4.1.1 Backward Probing. To quantify the impact of redundancy
elimination during backward probing, we conduct full /24 scans
with and without termination of backward probing at the route
convergence points, when backward probing starts at TTL 16 and
32. The rest of configuration options are fixed to include preprobing
with distance prediction based on proximity span 5 and forward
probing with the gap limit 5.

Table 1 shows the performance metrics of these scans. Here and
in the rest of the paper, the reported probes include the probes
issued in preprobing phase if applicable, the scan time is the total
time of the scan, again including any preprobing, and the number
of interfaces reflects unique interfaces revealed in the scan. Re-
dundancy elimination greatly reduces – by more than half – the
number of probes and time required to conduct a scan. At the same
time, while early termination of backward probing can miss inter-
faces on alternative routes (§3.2.1), the number of missed interfaces
is very small, 2.5% and 0.3% for split-TTL 32 and 16, respectively.
Thus, redundancy elimination brings substantial efficiency gains at
a marginal cost in reduced function.

4.1.2 Forward probing and GapLimit. Forward probing of a route
terminates after encountering the GapLimit number of successive
silent hops. Using a large gap limit increases the chance to detect
interfaces behind the silent stretch but increases the number of
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Figure 6: Discovered interfaces and scan time as a function
of gap-limit.

unproductive probes and, consequently, the scan time. We quantify
this trade-off below.

We test FlashRoute on full /24 scans varying the gap limit while
keeping the rest of the configuration fixed (preprobing enabled
with the prediction using proximity-span 5, backward probing with
redundancy elimination enabled, split-TTL 16). When the gap-limit
is 0, FlashRoute performs no forward probing. Figure 6 plots the
number of discovered interfaces and scan time as the functions of
the gap limit (the number of probes used correlates tightly with
time and not shown). The scan time grows linearly with the increase
of the gap limit but the number of discovered interfaces flattens
considerably once the gap limit reaches 5. This suggests gap limit
of 5 as a good default value (re-validating the default configuration
of Scamper, which also uses this value).

4.1.3 Preprobing. We now assess the effect of preprobing on Flash-
Route performance. With randomly picked representative IP ad-
dresses from each /24 block, only around 4.0% of the targets re-
spond to our hop-distance measurement. Adding predictions for
the neighboring prefixes, the distances to around 22.95% of the
targets become available for FlashRoute’s main probing phase. One
way to increase the success rate of preprobing is to preprobe the
destinations that are more likely to be responsive. The ISI Census
Hitlist [18] maintains a list of addresses from each /24 block that are
most responsive to ICMP pings. Using these IP addresses, preprob-
ing is able to directly measure the distances to 10.0% of the targets
and predict the distances to further 28.2% of the targets, for the
total coverage of 38.2% of all prefixes.

We have found, however, a bias in the Census hitlist that affects
the topology measurements (§5.1). Thus, in our experiment, we use
the hitlist only for the distance measurement during preprobing,
and use random addresses for each /24 block for the actual probing.
Although the hitlist bias will result in slightly shorter hop-distances,
they are still useful as performance hints in FlashRoute, while using
random destinations for the actual probing will avoid the bias in
the discovered topology. This arrangement, however, precludes the
optimization from §3.3.5 as the result of preprobing is no longer
identical to the first round.

To verify how the preprobing affects the performance of FlashRoute,
we run six experiments. Three of them use split-TTL 16 and three
use split-TTL 32. For either split-TTL value, we conduct a scan
with preprobing based on the hitlist ("hitlist preprobing"), a scan

Table 2: Effect of preprobing on FlashRoute performance.
The number in the configuration column refers to the de-
fault split-TTL.

Configuration Interfaces Probes Scan Time

32/hitlist preprobing 807,588 159,185,459 27:31.85
32/random preprobing 805,472 164,882,469 27:54.19
32/no preprobing 799,562 181,757,638 30:48.48
16/hitlist preprobing 812,403 97,807,092 17:16.56
16/random preprobing 814,801 101,314,451 17:16.94
16/no preprobing 802,524 96,687,844 16:39.06

with preprobing using randomly generated destinations ("random
preprobing"), and a scan without preprobing. All scans use dis-
tance prediction with the proximity span of 5 whenever preprobing
is employed, forward probing with gap limit 5, and redundancy
elimination during backward probing.

Table 2 shows the effect of preprobing on FlashRoute perfor-
mance. For default split-TTL 32 with random preprobing, preprob-
ing does not entail extra probes because these probes replace the
first round of the main probing phase. Thus, it leads to pure savings
in terms of the number of probes and the scan time. With this, ran-
dom preprobing saves 10% of the probes and 10% of the scan time,
as shown in table. While folding preprobing into the main probing
cannot be applied for hitlist preprobing, hitlist preprobing produces
more estimates for split-TTL, which overcomes the extra overhead.
Thus, hitlist preprobing brings even slightly higher savings, cut-
ting 12% of the probes and 11% of the scan time. With the default
split-TTL 16, when destinations fail to produce the hop-distance es-
timate, the probes send in the preprobing phase are wasted for both
random and hitlist preprobing. The end-result is that the overhead
outweighs the improvement.

The number of discovered interfaces is affected by preprobing
because preprobing can change split-TTL for destinations and there-
fore the balance between backward and forward probing. Backward
and forward probing miss interfaces in different ways: backward
probing can miss alternative routes preceding convergence points
(as in Figure 2) while forward probing can miss interfaces behind a
silent stretch. On the balance, preprobing seems to slightly increase
interface discovery.

Finally, the default split-TTL of 16 is significantly better over-
all than 32, with or without preprobing, in terms of the number
of discovered interfaces, the number of probes, and the scanning
time. The reason is that for the destinations that fail to produce
hop-distance estimates during preprobing, TTL-32 has to probe
backwards through long stretches of non-responsive routers, espe-
cially when routes to these destinations have a long unresponsive
tail, whereas forward probing in TTL-16 stops exploration after
encountering GapLimit of non-responsive routers in a row.

Overall, considering all the factors above, including scan time,
probe volume, and interface discovery, default split-TTL of 16 with
preprobing based on hitlist appears to be the most beneficial config-
uration for FlashRoute (but see §4.2.2 for further considerations).
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4.2 Comparison with Exiting Solutions
We compare performance of FlashRoute with Yarrp and Scamper.
We note that Scamper was designed with different goals from Yarrp
and FlashRoute. While Yarrp and FlashRoute are designed for mas-
sive fast scans from a single vantage point, Scamper is geared for
long-term network measurement held frommultiple vantage points
to draw a full picture of the topology of the Internet. For this reason,
Scamper optimizes the scan to reduce probing redundancy not only
from the local vantage point but also across vantage-points, using
the Doubletree algorithm. We include Scamper in our study as it
has been an influential tool, long representing the state of the art
even for the massive scans from a single vantage point before Yarrp
emerged.

4.2.1 Scan Efficiency. We run full /24 scans with each tool using the
following configurations. Given the results from §4.1, we consider
two configurations for FlashRoute, one with the default split-TTL
16, gap limit 5, redundancy removal enabled, and preprobing using
destinations from the hitlist [18] (referred to FlashRoute-16) and the
other with the default split-TTL 32 and the rest of configuration the
same as FlashRoute-16 (FlashRoute-32). We use split-TTL 16 ("first-
TTL" in Scamper’s terminology), maximum TTL 32, and the default
gap limit 5 for Scamper but restrict its retry on failure to ensure it
behaves similarly to FlashRoute and Yarrp, issuing one probe per
hop. We also consider two configurations of Yarrp, one using the
split-TTL 16 with fill-mode enabled up to the maximum distance
32 (recommended configuration in the Yarrp6 study [5], denoted
Yarrp-16), and the other with the maximum TTL 32 (as proposed
in the Yarrp original paper [4], denoted Yarrp-32). The probing
speed of both Yarrp and FlashRoute is set to 100Kpps, the limit
used by Yarrp’s study, which we also were able to negotiate with
our network administrators. Since Scamper limits the maximum
probing speed to 10 Kpps, we test it at its maximum speed.

Finally, both Scamper and FlashRoute use the Paris-UDP probes.
Yarrp, on the other hand, uses Paris-TCP-ACK probes by default
and experiences an error when using the UDP probes2. Therefore,
we use the default Paris-TCP-ACK probes for Yarrp, but in addition,
we simulate the Yarrp-32 scan with Paris-UDP using FlashRoute
without preprobing or forward probing and without terminating
backward probing at convergence points. In this mode, FlashRoute
issues one probe to every hop from 1 to 32 for all destinations just as
Yarrp-32 would. Given that both the set of probes and the sending
rate are the same in both cases, and both tools harvest interfaces
from the responses to the same set of probes, we take FlashRoute’s
scan results in this mode for Yarrp-UDP3.

Table 3 provides the results. As can be seen, FlashRoute-16 uses
the least time and fewest probes to finish the scan. FlashRoute-32
uses around 61% more time and probes than FlashRoute-16 but is
still faster than the existing tools. Yarrp-16 uses almost twice as
much time as FlashRoute-16 to complete its scan, yet it can only

2With UDP, Yarrp encodes part of the elapsed time in the packet length header field,
quickly outgrowing the maximum packet size allowed by the system, resulting in
"Network API error: Message too long".
3Note that while the set of probes is the same, the order in which they are issued
is different. In particular, due to Yarrp’s randomized order, nearby routers are less
likely to exceed ICMP rate limit in Yarrp than in FlashRoute in this mode. However, an
over-limit interface would omit responses only after responding to probes that arrive
within the limit and thus would highly likely be discovered in FlashRoute as well.

Table 3: Performance of FlashRoute, Yarrp, and Scamper on
a full /24 traceroute scan.

Tool Interfaces Probes Scan Time

FlashRoute-16 812,403 97,807,092 17:16.56
FlashRoute-32 807,588 159,185,459 27:31.85
Yarrp-16 393,433 177,851,221 30:14.71
Yarrp-32 801,455 355,702,000 1:00:15.21
Scamper-16 819,149 131,833,846 3:43:27.56
Yarrp-32-UDP (Simulation) 829,387 355,701,952 59:58.40

discover less than half the number of interfaces obtained by the
other tools, so it has limited utility as a topology discovery tool. We
believe this behavior is mainly caused by premature termination
of forward probing in Yarrp’s fill mode. Yarrp’s stateless design
entails an inherent gap limit of 1 in forward probing because the
next probe forward is triggered by the arrival of a TTL-expired
response from the hop at the current maximum distance. As a result,
Yarrp’s forward probing stops after encountering a single silent
interface, missing any interfaces beyond. Yarrp-32 with either Paris-
TCP-ACK probes or (simulated) Paris-UDP probes finishes the scan
using around one hour, the same as reported in the Yarrp original
paper [4]. Not surprisingly, Scamper is the slowest, taking more
than 3.5 hours to complete the scan at its maximum speed.

Turning to the number of discovered interfaces, all tools except
Yarrp-16 discover between 801,455 and 829,387 interfaces during a
complete /24 IPv4 scan. The differences in the numbers of discov-
ered interfaces can be attributed to two main reasons.

First, according to a previous study [16], the probe type will
affect the interface discovery, and UDP probes can generally detect
more interfaces than probing with TCP packets. This can explain
why Yarrp-32 discovers fewer interfaces than the other tools. In
particular, Scamper discovers 2.1% more interfaces than Yarrp-32 in
our experiments, a slightly greater difference than observed in the
original Yarrp study, which compared this metric with both tools
using TCP-ACK probes.

Second, removing probing redundancy through backward prob-
ing with termination at convergence points reduces the number of
discovered interfaces by missing alternative routes (§3.2.1). Indeed,
both FlashRoute-16 and FlashRoute-32 discover fewer interfaces
(by, resp., 2.0% and 2.6%) than Yarrp-32-UDP simulation because
FlashRoute employs this optimization while Yarrp-32-UDP does
not.

Interestingly, Scamper-16 discovers around 0.8% more interfaces
than FlashRoute-16 even though both Scamper-16 and FlashRoute-
16 use the same split-TTLs and presumably adopt the same redun-
dancy removal optimization from Doubletree. While the difference
is small, we wanted to understand the reason behind it, and we
found that, even though Scamper claims it uses the Doubletree
backward probing, its implementation is actually different. Figure
7 provides the distribution of the number of targets whose routes
are explored by Scamper and FlashRoute-16 at different TTLs. As
the figure shows, FlashRoute-16 progressively terminates route
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exploration at TTLs below 16 due to redundancy elimination. Scam-
per, however, starts removing redundancy one hop later, and then
preserves a certain level of probing redundancy until the TTL re-
duces to 6, as the blue curve turns flat from 14 to 6. The curve
suddenly plunges at TTL 6, converging to that of FlashRoute, indi-
cating return to full redundancy elimination. As a result, Scamper
sends more probes than FlashRoute in the backward probing and
thereby has a higher chance to discover router interfaces on alterna-
tive routes. The overall effect is that Scamper discovers 0.8% more
interfaces at the cost of 34.7% more probes than FlashRoute-16.

We note that Yarrp has an optimization to reduce the probes sent
to routers near the source called neighborhood protection. This
optimization stops issuing probes to the nearby routers at a given
hop-distance from the source if no new interfaces are discovered
for the default of 30 sec. To examine the effect of this optimization,
we run two extra scans with the same configuration as Yarrp-32 but
with neighborhood protection enabled, protecting routers within,
respectively, three and six hops from the vantage point. The result
shows that 3-hop neighborhood protection reduces probe volume
by 6.3% (around 22,410,163 probes) and scan time to 57 minutes
while 6-hop neighborhood protection reduces probe volume by
15.7% (around 55,846,057 probes) and scan time to 51 minutes. This
improvement, however, comes at cost of impairing the completeness
of interface discovery within the neighborhood. We find that 3-
hop neighborhood protection misses 20% (5 out of 25), and 6-hop
neighborhood protection misses 35.6% (98 out of 275) of interfaces
in their respective neighborhoods.

In summary, FlashRoute conducts scans three and a half times
faster, and finds marginally more interfaces, than the best opera-
tional configuration of Yarrp, which represents the prior state of
the art in massive traceroutes. Scamper finds 0.8% more interfaces
but takes over 13 times longer, and uses 34.7% more probes, to
complete its scan. Thus, FlashRoute offers experimenters signifi-
cant new capabilities in taking Internet topology snapshots at finer
time-granularity. Moreover, since most missed interfaces are from
the alternative paths, FlashRoute can use some of the time saved to
run multiple probing cycles with different source port numbers to
explore alternative paths (see §5.2).

4.2.2 Scan Intrusiveness. Both Yarrp and FlashRoute have a high
probing rate. As more probes are sent per unit of time, the risk to
trigger the ICMP rate limiting also rises – the occurrence we refer
to as "router overprobing". Higher frequency of router overprobing
makes a scan more intrusive to regular network operation and less
precise in its topology discovery as affected routes will miss oth-
erwise responsive hops. Yarrp sends its probes in totally random
order to reduce the risk of overprobing a router – this makes Yarrp
less likely to send too many probes to the same router in a quick
succession. FlashRoute, on the other hand, probes routes determin-
istically backward and forward from the split point but reduces
redundant probing of the same routers through early termination
of backward probing at convergence points. This section compares
the extent of router overprobing by the two tools during a full /24
scan.

Unfortunately, we cannot directly observe incidents of router
overprobing during the scans because we cannot know the reason
why a hop has not responded to a probe. Therefore, we run a

Figure 7: The distribution of targets with routes probed at a
given TTL.

Table 4: Interface overprobing.

Tool and Overprobed Dropped
Configuration Interfaces Probes

FlashRoute-16 5,746 14,569,275
FlashRoute-32 3,091 8,312,385
Yarrp-32 9,895 53,813,793
Yarrp-32 3-hop protection 9,903 53,792,883
Yarrp-32 6-hop protection 9,886 53,364,491

simulation using the probes issued by FlashRoute and Yarrp in real
scans at 100Kpps but mapping them to the topology discovered by
Scamper at the probing speed of 10Kpps. Specifically, we assume
that a probe specifying a given destination IP address and a given
TTL, issued by either tool, will experience the "TTL expired" event
at the hop discovered by Scamper for the same destination address
at the same TTL distance. We then consider real timing of each
probe issuance by each tool and consider mapped hops from the
Scamper topology to be overprobed if they are issued more probes
than the ICMP rate limit in each one-second interval of the tool’s
scan duration. In this analysis, we assume the ICMP rate limit is 500
pps for each router interface, which is the upper bound of ICMP
rate-limiting for most devices [19]. We consider both FlashRoute-16
and FlashRoute-32 and compare them with Yarrp-32 and its two
variants, with 3-hop and 6-hop neighborhood protection (denoted
Yarrp-32 3-hop protection and Yarrp-32 6-hop protection, resp., for
brevity). We do not consider Yarrp-16 given the scan effectiveness
results from §4.2.1.

The results of this experiment are summarized in Table 4. Table 4
shows that both Flashroute configurations are significantly less
intrusive than Yarrp-32. While FlashRoute-16 lowers the number of
overprobed interfaces compared to Yarrp-32 by 41.9%, it also low-
ers the severity of overprobing when it does happen, as the total
number of dropped probes in FlashRoute-16 is just 27% of those in
Yarrp-32. FlashRoute-32 further drastically decreases overprobing
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Table 5: Non-throttled scan speed.

Tool and Scan Speed Estimated Scan
Configuration (Kpps) Time

FlashRoute-32 302.826/228.929 11:23.4
FlashRoute-16 302.826/215.573 6:55.38
Yarrp-32 239.088 24:47.74
Yarrp-16 189.704 15:37.51

and is by far the least intrusive of the five configurations. In partic-
ular, it overprobes 3.2 times fewer routes, and loses 6.4 times fewer
probes, than Yarrp-32. Thus, the deterministic route exploration
of FlashRoute is more than compensated by early termination of
backward probing in terms of the amount of overprobing, and
the aggressive application of early termination by FlashRoute-32
produces especially strong effect in this regard.

Interestingly, we find that Yarrp’s neighborhood protection does
not help in reducing the overall scan intrusiveness of Yarrp. This
can be attributed to two reasons. First, the number of interfaces
in the protected neighborhood is small and extensively probed; as
a result, they are already overprobed before the protection is acti-
vated. Second, because the overall probing rate is fixed at 100Kpps,
neighborhood protection can intensify probing of non-neighboring
hops, potentially exacerbating the severity of their overprobing. We
note that our analysis does not capture a positive effect that Yarrp’s
neighborhood protection can reduce the severity and duration of
neighborhood overprobing. However, because this effect comes
at the cost of missing a significant fraction of the neighborhood
interfaces (§4.2.1), we use Yarrp-32 for the rest of the paper.

The above results also uncover an interesting trade-off between
FlashRoute-16 and FlashRoute-32. On the one hand, FlashRoute-16
completes a scan considerably faster and discovers virtually the
same number of interfaces with considerably fewer probes. On the
other hand, FlashRoute-32 is much less intrusive and loses many
fewer probes; hence, while both configurations find the same to-
tal number of interfaces, the routes discovered by FlashRoute-32
will have fewer holes. Thus, an experimenter may choose the con-
figuration based on the measurement priorities: if the goal is to
approximate a snapshot in time as closely as possible, they should
use FlashRoute-16; if the main concern is to obtain the most com-
plete routes to destinations, FlashRoute-32 with preprobing seems
a better choice.

4.2.3 Tool scalability. All our scans so far were conducted at 100K
probes per second, the limit we have negotiated with our network
administrators, which is also the rate used in the Yarrp study. We
have seen that both tools can sustain this rate. We now assess
the potential efficiency of both tools, for someone who might be
able to negotiate a higher probing rate. To this end, we received
a permission to run each tool for a limited time without artificial
throttling. Thus, we start a full /24 scan with each tool at full speed,
run each scan for the allowed time (5 minutes), and measure the
probing rate each tool exhibits.

Table 5 lists the probing rate observed for different tools during
these limited runs, as well as the estimated time for a full scan
completion at this rate, given the number of probes each tool issues
(see Table 3). The two numbers for FlashRoute-32 and FlashRoute-
16 reflect probing rates during preprobing and main probing phases.
The results show that Yarrp-32 can support slightly higher probing
rate than FlashRoute, 11% higher than FlashRoute-16 and 4% higher
than FlashRoute-32 in the main phase. This improvement, however,
cannot compensate for the fewer probes FlashRoute issues, and it
has only negligible effect on FlashRoute’s advantage in total scan
time. In particular, FlashRoute-16 can complete a full /24 IPv4 scan
in less than 7 minutes. For completeness, we include the results of
Yarrp-16; its probing rate is actually lower than the rest of the tools,
presumably due to the slow fill-mode.

The above results are meant to assess the maximum scalability
of the tools. Thus, they were obtained using the most performant
regime in each tool. FlashRoute offers an option to exclude response
logging, relegating this task to an external sniffer, while Yarrp’s
internal logging is built in. Consequently, the results in Table 5
are obtained without logging for FlashRoute and with logging for
Yarrp. We also tested FlashRoute with internal logging, to make
it directly comparable to Yarrp. While the preprobing rate drops
significantly (to 219.432 Kpps for both FlashRoute configurations),
the main probing phases achieve roughly the same probing rate
(234.791 Kpps for FlashRoute-32 and 214.751 Kpps for FlashRoute-
16). Because preprobing is a very small part of the overall scan, the
overall estimated scan time remains similar, 11:21.2 for FlashRoute-
32 and 7:34.2 for FlashRoute-16.

4.2.4 Summary of Comparative Evaluation. Our results show that
FlashRoute cuts the time to complete a full /24 Internet traceroute
scan by over 3 times, saves a similar amount of probes, and is less
intrusive to networks under measurement than Yarrp, the current
state of the art in massive traceroutes. While FlashRoute does re-
introduce control state to achieve these results, having to maintain
this state has negligible effect on its overall performance: running
on a low-capacity 8 year old server4, it can sustain over 200K probes
per second during its scans, just 4-11% lower than Yarrp, which
requires many more probes to complete the same scans.

5 DISCUSSION
We made some interesting observations in the course of our experi-
ments with FlashRoute. We discuss some of these observations, as
well as our plans for future work, below.

5.1 On Census Hitlist Bias
The Census Hitlist [18] is generated by a long-running experiment
which uses ICMP pings to detect the most responsive destination
in each routable IPv4 /24 prefix. When we used the addresses from
the hitlist as representatives for each /24 prefix in our scans, we
observed that the number of interfaces discovered during a scan de-
creases significantly compared to scanning random representatives.
In particular, the exhaustive probing of every hop from 1 to 32 of
each destinations discovers 829,338 interfaces when each /24 prefix
is represented by a random destination (referred to as the "random
4The one server within our campus DMZ from which we are able to conduct massive
scans.
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Figure 8: Jaccard index of the interface sets at a given hop-
distance from the destinations, produced by the scans using
the hitlist and random targets.

scan" below) and only 759,961 interfaces when representatives from
the hitlist are used (the "hitlist scan").

In an attempt to understand the reason behind the difference, we
compare the similarity between the sets of interfaces discovered by
the two scans at each hop-distance from the destinations. Figure 8
shows the Jaccard index of the two sets of interfaces at each hop
distance from the destination. Jaccard index measures the similarity
between sets of elements, ranging from 1 for identical sets to 0 for
totally different sets. As shown in Figure 8, the main difference in
the composition of discovered interfaces between two scans is at
the two hops next to the destinations.

We further observe that the lengths of the discovered routes tend
to be shorter in the hitlist scan than in the random scan: 1,515,626
routes to random destinations are longer than routes to hitlist
destinations from the same /24 prefixes, while the reverse is true
for only 1,349,814 routes. We hypothesized that this difference of
route lengths is the main cause to the difference in the numbers of
discovered interfaces. Therefore, we compare the unique interfaces
on the extra route parts to the same prefix in the two scans. The
result shows that the random scan discovers 57,532 more unique
interfaces on extra parts of its longer routes than the hitlist scan,
roughly matching the difference in the total number of discovered
interfaces between two scans (69,377).

As a potential factor contributing to this phenomenon, we spec-
ulate that the hitlist tends to prefer gateway appliances (routers,
firewalls, NAT boxes, etc.) in stub networks as they are more likely
to respond to pings than internal hosts. Therefore, tracerouting
hitlist destinations may not explore the routes in the stub networks
interior. Random destinations, on the other hand, are equally likely
to select any address within a address block and do not exhibit this
bias.

To find evidence for this explanation, we consider how many
hitlist destinations appear as intermediate hops on the routes to
random destinations within the same /24 prefixes, and, reversely,
how many random destinations appear as intermediate hops on the
routes to hitlist destinations. We find 27,203 hitlist addresses en-
route to random destinations, and only 6,421 random destinations

on the paths to hitlist destinations. There are 1,273,230 hitlist desti-
nations and 540,060 random destinations that respond to preprob-
ing. Thus, while responsive random destinations constitute 42% of
responsive hitlist destinations, the number of random destinations
appearing on the routes to hitlist destinations represents only 24%
of the hitlist destinations appearing on the routes to random des-
tinations. Thus, hitlist destinations are indeed more likely to be
routers on address block periphery although their absolute number
appears to be too small to fully explain our finding.

An alternative explanation for the observed bias could be that,
since the hitlist destinations are by design more likely than random
ones to exist, they are less prone to a potential network configura-
tion bug, where the stub network forwards packets to non-existent
addresses along a default route back towards its ISP (in the same
way it forwards packets to external destinations). This could result
in a loop, when the ISP routers return the packets back to the stub
network, or in dropped packets, if the ISP employs ingress address
filtering, but the end result in both cases would be a longer route
measured for non-existent destinations.

To assess this possibility, we test if the observed bias would
still be present if we only considered /24 prefixes in which both
hitlist and random destinations were responsive to our probes, i.e.,
both existed. Our dataset contains 294,123 /24 prefixes where both
the hitlist and random targets were responsive. In 64,279 of these
prefixes, random targets have a longer hop distances than hitlist
targets, and only in 34,057 prefixes the paths to the hitlist targets
are longer. Thus, the bias we observed for the full set of prefixes
remains even for the prefixes in which both hitlist and random
targets respond to our probes. Further, as a side observation, we
directly assess the prevalence of the loops in the paths leading
to unresponsive random targets. We have 971,113 prefixes in our
dataset with responsive hitlist and unresponsive random targets. Of
these, in 16,549 prefixes, or 1.7%, routes to (unresponsive) random
targets include a loop. Thus, these loops do exist but are rare.

In summary, one must be cognizant of the Census Hitlist bias
when using it for Internet topology explorations. In particular, as
mentioned earlier, FlashRoute only uses this hitlist for preprobing
and reverts to random destinations for the main probing.

5.2 Discovery-Optimized FlashRoute
FlashRoute cuts the amount of time required to conduct a full /24
IPv4 traceroute scan to 7 minutes at maximum probing speed, likely
less on a more capable server. It can optionally use some of the
saved time to discover load-balanced alternative routes by issuing
extra probes with different source port numbers. We refer to this
option as the discovery-optimized mode.

In thismode, FlashRoute begins by conducting a normal FlashRoute-
32 scan. Using split-TTL 32 explores most parts of the routes by
backward probing; as a result, the "stop set" of potential conver-
gence points used for backward probing termination contains the
majority of discovered interfaces. After that, FlashRoute runs a
given number of extra scans, using backward probing only, starting
from the initial TTL randomly picked from 1 to 32 for each destina-
tion. For 𝑖-th extra scan, probes for a given destination use source
port number 𝑃 ′ = 𝑃 + 𝑖 , where 𝑃 is the source port used by the
initial regular scan for this destination (recall that it is checksum
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of the destination IP address). A different port number prompts
per-flow load-balancers to route probes through different interfaces
in each extra scan. Random initial TTLs allow the discovery of load-
balanced path sections affecting early (i.e., near the vantage point)
parts of the routes. Since the stop set is shared across main scan
and extra scans, extra scans explore only previously undiscovered
routes as they stop once encountering observed interfaces. As a
result, extra scans take much less time than the normal scan but
have a high chance to discover alternative routes.

We run a scan using the discovery-optimized mode of FlashRoute
with three extra scans. The entire scan takes 56 minutes to fin-
ish at 100Kpps. FlashRoute discovers 865,339 interfaces, or 35,952
more than what simulated Yarrp-32-UDP can discover in the same
amount of time, or 63,884 more than real Yarrp-32 with the default
configuration detects.

5.3 In-flight Address Modification
Some middleboxes modify destination address of packets on their
way to the target. An earlier study reported this affected around 2%
of the probes in their experiment [17]. Since FlashRoute uses the
checksum of the destination address as probe’s source port, we can
check whether or not the destination address of the target has been
changed in-flight by observing a mismatch between the checksum
and the destination address from the quoted probe header in the
response, and drop the responses exhibiting mismatches. The num-
ber of mismatches we observe varies by scans, ranging from 0.007%
to 0.054%, but is significantly lower than in [17]. Besides possible
Internet changes in the time between the two studies, another rea-
son could be the difference in the methodology: while [17] used
only around 84k IP addresses of web servers as the target set and
TCP-SYN probes, our experiments probe destinations representing
every /24 block using UDP packets. Thus, we believe our results
reflect more current and general behavior.

5.4 Limitations and Future Work
A current FlashRoute limitation is that it probes only one IP ad-
dress from each /24 block. We chose to base FlashRoute on this
assumption because (a) it’s the common approach for topology
scans, which FlashRoute aims to improve (e.g., CAIDA’s Skitter
measurements follow this approach, and Yarrp is also built on this
assumption), and (b) most BGP routers don’t accept advertisements
for longer than /24 prefixes [1]; so, from the perspective of external
routes to the destination, /24 seems sufficient granularity. How-
ever, the autonomous system holding a given /24 subnet may in
principle use different internal paths for different addresses within
this /24, which would be left undiscovered by probing only one
address. There are two ways FlashRoute could use to mitigate this
limitation.

First, FlashRoute could scan at finer granularity with still feasible
memory consumption. Since its memory footprint is overwhelm-
ingly determined by our main control data structure, which grows
exponentially with the prefix length, scanning one address per up
to /28 block would still be entirely feasible as it would only re-
quire < 15GB memory. Going beyond that, however, quickly makes
memory demands impractical, up to 230GB for a complete /32 scan.

Second, discovering these additional internal paths could also
be done within the “Discovery-Optimized Mode” (Sec. 5.2), that
could vary not just the source port number but also the destination
address within each block in the additional scans. Which approach
is more productive for finding those additional internal paths (i.e.,
extending the initial targets to one per /28 or discovery-optimized
mode with varying target addresses) is an interesting question for
future work.

In the future, we plan to extend FlashRoute to tracerouting IPv6
address space. This will require a redesign of the control state: as
the allocated IPv6 addresses are sparsely assigned [20], FlashRoute
will no longer be able to keep DCBs in an array indexed by address
prefixes. There are also several further avenues for optimization
that we would like to explore. First, our current choice of the de-
fault value for proximity span is rather arbitrary and may not be
the optimal choice. We plan additional experiments to find a sub-
stantiated recommended value, which can potentially increase the
coverage of distance prediction and hence further improve the tool
efficiency. Second, the current discovery-optimized mode random-
izes the starting point of backward probing within 32 hops for extra
scans. We will explore more purposeful heuristics to guide the start-
ing point selection. For example, if we find the route length in the
main scan to be 20, our random starting point in the extra scans
could be selected from the range of 1 through, say, 25 instead of
32, since alternative routes may not drastically change the route
length – saving seven backward probes.

6 CONCLUSION
In this paper, we propose FlashRoute, a new tool for large-scale
traceroute scans, which cuts the time needed to complete a full /24
Internet scan by over three times from the current state of the art.
Furthermore, FlashRoute completes its scans with fewer probes and
is less intrusive to networks under measurement. If allowed to scan
at full speed, FlashRoute can obtain a snapshot of the Internet routes
from a given vantage point in just seven minutes, when running on
a low-capacity server. Other contributions of this study include a
new simple method of measuring hop-distance to a destination with
a single probe, and a finding of bias in a popular hitlist of Internet
destinations, which can affect topology-related studies. We will
make FlashRoute prototype and all the data from our experiments
public after the double-blind review.
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APPENDIX: ETHICS
FlashRoute scans the Internet at a high speed. We employ best
practices of good Internet citizenship to minimize the intrusiveness
of our experiments. First, we coordinate our experiments with our
ITS department, so they can respond quickly to any complaints.
Second, we include a text message in probe payload to disclose
our identity and contact information as well as research intention.
Third, the server from which we run the scans has a reverse DNS
record, which can be used to obtain the email address of the ITS

department from the Whois database. Any complaints regarding
our experiments submitted to this email are also forwarded to
us. Fourth, we randomize the probing sequence to reduce risk of
overprobing a given network. Throughout the development and
testing, we received 7 complaints in total, all finding us from the
Whois lookup. We promptly added the involved addresses to our
exclusion list thus removing them from all future experiments.
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