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Abstract—The advent of ultrabroadband Internet connectivity
brings a 2-3 orders of magnitude jump in the capacity of access
networks (a.k.a. the “last mile”). Beyond mere capacity increase,
this leap represents a qualitative shift in the overall Internet
environment. Therefore, we argue that only by seizing the op-
portunity to re-think the way we structure network applications
and services can we realize the full potential ultrabroadband
provides.

Specifically, with ultrabroadband residential networks, we
have the opportunity to re-center our digital lives around our
residence, similar to how our physical lives generally center
around our homes. To this end, we introduce a new appliance
in home networks–a “home point of presence”–that provides a
variety of services to the users in the house regardless of where
they are physically located and connected to the network. We
illustrate the utility of this appliance by discussing a range of
new services that both bring new functionality to the users and
improve performance of existing applications.

Index Terms—network architecture, home networks, ultra-
broadband Internet

I. INTRODUCTION

People generally center their lives around their residence.
This center of gravity is where we can be contacted, store our
things, do our homework, play games, meet after disparate
activities, eat our meals, and so on. At times we branch out
from our homes for specific tasks. We may rent a storage
shed for some items that we do not have room to store. Or,
we keep the bulk of our money in a bank because of the added
protection it enjoys at such institutions. Or, we may eat out for
fun or because we do not have time to cook. However, while
we branch out for specific reasons, our homes are always the
hub of our lives. While we do not always view it as such,
this central hub in our lives facilitates choices. For instance, it
offers a place where we can get our tools out and change the
oil in our car, as opposed to going to a mechanic to have this
service performed. Or, we can use our own kitchen to prepare
a meal precisely as we wish rather than going out and getting
a dish that is a little too spicy or not spicy enough. We make
such choices every day without giving them a second thought.
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Our digital lives are not organized around such a hub.
Rather, we use a myriad of services to communicate with
one another, store pictures, work on documents, share videos,
keep our music, deal with calendars, etc. In this arrangement
we are the hub. Our content and information comes to us
from a range of places to wherever we happen to be at the
moment. This user-centric arrangement clearly has its benefits.
No longer are we beholden to remembering to take a physical
photo album to lunch with a friend to show them pictures
of our kids. Rather, we can just display these on our phone
or tablet at a moment’s notice. The flip side of ubiquitous
access to our information is a more distributed footprint in
the network with a user’s information strewn around a variety
of services. This naturally leads to a case where users are
not fully in control of their own information, but rely on
trusting a bevy of service providers to keep their information
private and safe. For instance, rather than keeping our medical
records in a shoebox under the bed, this new model calls
for us to keep them somewhere out in “the cloud” where
we can always access them. However, at that point we are
not the only ones who can access the records. Further, in
an ironic twist, this “ubiquitous access” may in fact be a
heavy burden if we become incapacitated and a relative needs
to help a doctor understand our medical history and cannot
access the information. Finally, our personal information is
dispersed among numerous services—Google docs in one
place, Facebook profile in another, photos elsewhere, email
elsewhere again. Maintaining and accessing information across
this dispersed footprint becomes increasingly difficult.

Conceptually, of course, we could organize our digital lives
around the same hub as we organize our physical lives:
our residence. We believe there are two major reasons why
we have not taken this approach. First, providing ubiquitous
access to information stored in our home is problematic
given the capacity of today’s home networks. Second, sharing
information from within one’s house requires running servers,
controlling who can access what data, setting priorities for
information access and retrieval and fixing issues as they arise.
These skills are beyond the vast majority of the population.

However, we are witnessing a rapid increase in bandwidth



of residential networks. Bandwidth of tens of megabits per
second has already become routine, and now fiber-to-the-home
(FTTH) is on the verge of making revolutionary new capacity
available. For example, Google has made gigabit residential
connectivity available in a number of cities across the U.S.
[1] and Chattanooga’s power utility has connected homes in
its service area via fiber [2] and has made 10Gbps connectivity
available to each of the 175K households in the 600 sq. mile
area [3].

Modern high capacity networks remove one of the large
barriers for people to center their digital lives around a hub in
their home. Rather than having a small pipe to share content,
users of these networks will have a nearly endless supply
of capacity. While increased capacity is useful in itself, we
argue that ultrabroadband opens the door for re-thinking how
we structure people’s digital lives. Specifically, we discuss
an approach that would provide users with applications that
offer both ubiquitous access and global reach in a form that
is as convenient as using external services. This approach
promises to allow users to retain control of their data and
network footprint while improving performance of Internet
communication. Our central theme involves creating a home
point of presence (HPoP) that can serve as the hub for a given
household. Our goal in building such an appliance is to abstract
many of the technical details of operating such a system from
users, while still allowing them to retain control of their own
resources. Additionally, we note that we are not trying to
preclude cloud-based systems. Rather, we view an HPoP as
an option that users may exercise in some cases and not in
others. As sketched above, this is analogous to other aspects
of life (e.g., kitchens do not obviate the need for restaurants).
Furthermore, as discussed later, HPoP brings about a hybrid
choice whereby cloud-based applications can access—but not
retain—data stored in HPoPs.

II. THE VISION

A gigabit last mile for residential users brings new realities
into the global network environment, which we argue warrants
new thinking in how network applications should be structured
and the information and network services should be organized
and developing new understanding about the operation of
our standard protocols within these high-capacity last mile
environments.

Being content with the benefits purely from the increased
capacity of access network, without rethinking the current
organization of network applications, would dramatically un-
derutilize the opportunities provided by ultrabroadband. Prior
work delivers a stark evidence in support of this claim [4].
This study measured communication performance on Case
Connection Zone (CCZ), an experimental FTTH network run
by Case Western Reserve University that connects a small
neighborhood adjacent to campus of roughly 100 residences
via bi-directional 1 Gbps fiber links. By considering data
transfer rates in each second of communication, this study
found that CCZ users only exceed a download rate of 10Mbps
0.1% of the time and a 0.5Mbps upload rate 1% of the time.

Clearly these users do not fully benefit from the capacity
of their access networks. We identify the following key new
realities due to the gigabit last mile.
Capacity Increase: The 2–3 order of magnitude increase
in edge network capacity is a dramatic jump and in the
short term likely leapfrogs both our applications’ ability to
use the capacity and the increases in capacity of the rest of
the infrastructure—i.e., the Internet servers and core network.
Therefore, at least for the near term, a 1–10 Gbps residential
connection can be viewed as having infinite last mile capacity,
with other parts of the infrastructure determining the quality
of user experience on the Internet.
Bottleneck Shifts: The capacity increase at the last mile link
can lead to bottleneck shifts. While the last mile with FTTH
may have seemingly unlimited capacity, the bottlenecks will
manifest in other locations. As a simple example, in Case
Connection Zone (CCZ) [5] each home is served by a 1 Gbps
link, but the roughly 100 homes are then immediately aggre-
gated onto a shared 10 Gbps link by the service provider. It is
likely that there will be periods when the aggregate link will
become the bottleneck, which is different from the currently
common case of the last mile being the bottleneck. And, while
the last mile capacity is increasing, no commensurate change
in core networks and server resources is expected. Thus, the
bottlenecks may well shift back towards the middle of the
network.
Lateral Bandwidth: A property related to the issue of shifting
bottlenecks is plentiful lateral bandwidth to one’s neighbors.
For instance, the CCZ users have dedicated 1 Gbps con-
nectivity to each other, bypassing any upstream bottlenecks
discussed in the previous paragraph. In essence, a gigabit
neighborhood becomes analogous to todays’ enterprise or data
center networks in terms of enabling applications that are
not generally used over the WAN. Considering multiple such
FTTH neighborhoods of the future, this creates a hierarchy of
connectivity. A host has access to its local devices connected
with, e.g., Firewire S3200 or USB 3 at 3–4Gbps, to its peers
within the FTTH community at 1Gbps, and to the rest of
the Internet through the shared aggregation link. Networked
applications can benefit from factoring this hierarchy into their
design.
Always-on connectivity: The switch from dial-up to today’s
broadband access networks signified a shift from intermittent
to always-on connectivity. However, by combining always-
on connectivity with the other changes mentioned above,
ultrabroadband enables different thinking about Internet ap-
plications and services, which we argue will bring qualitative
new benefits to our digital lives.

Obviously these new realities constitute a significant
change. Therefore, the key question we pose is: How can we
re-think the organization of networks, applications and data
to capitalize on the new opportunities provided, and to reflect
the new realities introduced, by ultrabroadband networks?

Our general thesis is that the dramatic shift in relative
capacity between home networks and the rest of the Inter-
net warrants a corresponding shift of the center of gravity



for users’ data and activities towards their own homes. We
argue that this will allow both quantitative (performance)
and qualitative (new functionality) improvements in end-user
applications and thus in user experiences.

To realize this shift, we envision a piece of equipment
within an ultrabroadband home network that maintains a fixed
presence on the Internet for its user(s). We call it a home point
of presence, or HPoP. The HPoP functionality could be built
into the home’s access router and not require a distinct device,
or co-locate with another resident device such as a set-top box
or a home file server. In any case, we assume it is operational
as long as there is power and online as long as there is Internet
connectivity, regardless of which if any end-user devices are
connected. In the rest of the paper, we expand on the general
HPoP notion as a framework for new network services as
well as for improved existing applications, and discuss some
examples of these services the HPoP enables. In fact, to the
extent that always-on connectivity is already exhibited by
today’s broadband home networks, some of our ideas, while
spurred by our FTTH thinking, could prove beneficial even in
today’s residential networks.

Finally, we note that while we sketch a series of ways
to restructure networks in a world where ultrabroadband is
common, we do not mean to preclude other ideas. In fact,
part of our goal in writing this paper is to spur the community
to think about how networks may work differently to realize
the promise of these ultra-high speed networks.

III. HPOP

We envision a “home point-of-presence” (HPoP) in each
ultrabroadband-connected residence. We envision the HPoP
as an extensible and configurable platform that can also run
myriad mundane services for the user and the household—
e.g., a contacts server, a calendar server, or an email inbox
(in addition to various new services we discuss below). The
HPoP provides seamless access to these services across various
devices.

For the HPoP to facilitate centering users’ digital lives
around their residence, users must be able to connect to HPoP
whether they are inside or outside of their homes. Thus, a
preliminary issue that we must address is HPoP reachability
in the presence of (potentially multiple levels of) address
translation (NAT). For home networks that are behind a local
NAT device only, the widely supported UPnP protocol [6]
allows simple programmatic configuration for port forwarding
as part of the HPoP setup. For those home networks that
are behind ISP-operated NAT (co-called carrier-grade NAT,
or CGNs), we assume the STUN protocol (or similar) [7]
is used for this purpose. STUN works by so called “hole
punching” through NATs, and not all NAT devices have the
behavior required for hole-punching to work. In those cases,
HPoPs can still be used, with limited functionality, employing
relaying-based traversal mechanisms such as TURN [8]. IPv6
adoption continues to grow [9], therefore reducing IP address
scarcity issues. This may diminish the use of NATs and make
HPoP reachability straightforward. However, even if NATs

SaaS/Web services 

Google Docs 

Attic driver 

User devices 

TripIt 

Attic driver 

Instagram 

Attic driver 

HTTP Data Accesses 

Storage 

Attic 
Server 

Web 
browser 

HPoP 

Fig. 1. A high-level view of a data attic architecture.

persist, traversal techniques such as STUN and TURN will
enable communication with HPoPs. In the rest of the paper,
we assume that HPoPs are reachable from external networks
for both UDP and TCP communication.

IV. HPOP SERVICES

We discuss the benefits of an HPoP by describing a sample
of useful services it can provide to future Internet users. Some
of these services offer new functionality that would benefit
users; others improve the performance of existing functions.

Note: This paper represents a synopsis of our vision of
the potential of ultrabroadband networks and services. The
following subsections include material from our previous work
in striving to reach our vision. In particular, § IV-B includes
material from [10], and § IV-C includes material from [11].

A. Data Attic

Modern Internet services often attempt to add value to users
at the expense of their privacy. For instance, consider Google’s
suite of tools which enable users to work on and share
everything from calendars to spreadsheets to email to pictures.
These cloud-based applications bring great convenience to
users by enabling users to operate on their data from anywhere,
as well as readily share the data with others. Meanwhile, users
do not incur the direct cost and maintenance issues that local
software brings. However, the price for these conveniences is
in giving up data and leaving it exposed to data mining by
cloud operators and vulnerable to accidental leaks and other
security breaches. In fact, even from the legal standpoint,
there are weaker safeguards of one’s data privacy if the
data resides at a corporate data center vs. at a user’s home
[12]. Furthermore, this arrangment ties the user to the cloud
provider in question as switching providers at best involves
a cumbersome process of exporting the data from the old
provider and importing it to the new one and at worst prevents
one from wholesale data movement.

Our first sample HPoP service offers a new paradigm for
organizing external applications, from Flickr and Facebook to
cloud-resident software-as-a-service (SaaS) applications such



as Google Docs, and web-based email. Our approach calls for
these applications to act on data stored a “data attic” in each
user’s home network instead of on a copy of the data that
resides in the cloud. The data attic provides an application-
agnostic interface to user data that external applications and
services can access, but would not store or maintain the data
outside that needed for a specific task. In a sense, the paradigm
we envision is the inverse of Dropbox or Google Drive. As
Figure 1 illustrates, a user’s devices leverage the same HTTP
interface to interact with the Internet services. However, these
services obtain data from the user-run data attic instead of
from their own data store. Obviously, denying SaaS providers
control over user data will trigger changes in business models,
with providers perhaps requiring subscription in lieu of the
data possession. But data attics provide users with choice as
to whether control of their data or a monetary cost is more
important. We summarize key benefits offered by the data
attics to users below.

• User Control and Data Privacy: A cloud provider aggre-
gating data from millions of users represents an enticing
target for hackers. As mentioned earlier, user data also
has weaker legal protections when stored externally at a
corporate data center [12]. Data attics leave control over
data access entirely with the user. While individual home
networks are less well managed and protected, data attics
offer “defense in numbers”, since they disperse user data
among millions of home networks.
The issue of user control over outsourced data has
been on the radar of the Internet community. One of
the only existing approaches that would withstand a
security breach has the data self-destructing after use
[13]. However, this notion complicates handling long-
term data. Data attics sidestep the problem by retaining
long-term control of the data. Another alternative would
be to simply let the cloud store user data in encrypted
form. The home network would then provide the external
application the key to decrypt the data when an authorized
user requests a particular service. The user would trust the
application to not keep the key beyond the immediate use.
While this indeed can help address the issue of data con-
trol, the data attic concept addresses additional issues—
e.g., allowing changes and shared access by multiple
actors, through multiple applications, while maintaining
a single source for a file.

• Provider Independence: Data attics allow users to move
freely between application providers that support the
appropriate data formats.

• Flexible Access: As we have noted, users can access their
data attic via cloud-based applications. Additionally, the
data attic can act as a remote-disk and hence users can use
their own local applications—such as word processors or
spreadsheets—the work with their files. Further, just as
some popular cloud-based applications have an “offline
mode” (e.g., Google Docs [14]), similar use of attic-based
data is possible. Just as with cloud-based applications,

changes to the files would need reconciled upon re-
connection (a plethora of approaches exist to address this
issue, e.g., [15]–[17])

1) Case Study: Health Records: An especially intriguing
application of the data attic is for aggregating the electronic
health records of an individual (or family). These records are
currently dispersed among providers, each requiring a separate
release form, making a collection of one’s full medical history
hard (or impossible, e.g., when a past provider is no longer
in business), especially in an emergency situation. Incomplete
records may lead to delayed, duplicate, or even inappropriate
procedures. Our approach will allow patients to easily aggre-
gate and maintain their own electronic medical records in their
home-based data attic. After a one-time bootstrapping with
a provider to set up proper permissions—which would itself
be largely automated—any records subsequently generated
by this provider would be copied to the patients attic. The
data then becomes portable across providers, and the patient
can provide immediate access to their complete records as
they see fit—e.g., circumventing complicated inter-institution
protocols.

In this use case, the health record system at each provider
would interact with each person’s data attic. Further, each
provider would retain a copy of the data to satisfy regulatory
requirements. Therefore, the storage driver at the provider’s
site would duplicate writes to both local copy and the patient’s
remote attic.

The crucial difference between the data attic and current
approaches to medical records aggregation such as Health
Vault [18] or MedeFile [19] is that the latter tie the patient
to the aggregation provider and require the patient to entrust
the provider with data security. Just as with the cloud-resident
data, these platforms represent an enticing target for the
attackers because they concentrate data on millions of people.
Meanwhile, a person’s home only keeps a relatively modest
amount of data about a handful of people.
Architecture: The architecture of the data attic needs to
address the following key questions. First, how will external
services be able to locate and access the required user data?
Second, what is the proper layer at which the data attic should
be implemented? In principle, it could be built based on the
iSCSI interface as a remote disk, an HTTP server, or as a
distributed file system such as NFS. Alternatively, the data
attic may operate in different ways for different applications.
Third, how will the attic be transparent to applications?

We have implemented a data attic prototype to investigate
these questions. We chose HTTP(S) as the basis for our proto-
type and implement a data attic as a WebDAV server. HTTP(S)
offers decoupled communication between the external appli-
cations and the attic and ease of firewall traversal. WebDAV
further mediates access from multiple clients through file
locking. While we envision the data attic as ultimately being
an appliance that requires no nitty-gritty setup by users, our
current prototype is a software system that runs on a general
purpose computer. We have developed a script to automatically
setup all portions of the system.



As an exemplar, we have developed an application that
allows for the use of the data attic to aggregate health records.
Before using a medical provider, the user gives the provider
access to their data attic. This involves interacting with the
local data attic portal to indicate the name of the new provider.
At this point, the data attic will issue a QR code that includes
all information needed to access the correct portion of the
user’s data attic—i.e., everything from the IP address of the
data attic to the proper initial credentials to the location of the
files within the attic1. The QR code is then furnished to the
medical provider which in turn will link the user’s data attic
with the provider’s medical records such that all records get
pushed to the attic.

Finally, to interface with existing applications within the
medical practice, our prototype replaces application’s default
open, close, fopen, and fclose function calls with our own
function calls, implemented in the driver. We then recompile
the applications using the “-wrap” option to the linker, which
allows one to override an existing function. For example,
any reference to “open” is replaced with a reference to
“ wrap open” that has the same input and output parameters
but implements our own functionality—namely, a GET request
for the file to the data attic. Upon receiving the file, the
driver creates a local copy and opens it for the application.
Subsequent accesses to the file will execute on the local copy,
which will be sent back to the attic on close. No change to
the application code is required.
Data Availability: Another potential challenge for data attics
is data availability and preservation. Home networks are gen-
erally less reliable than large cloud data centers. For long-term
data preservation, we can optionally backup the encrypted data
locally—e.g., on a connected external disk or in-home NAS—
or with a cloud such as Amazon Glacier. For data availability,
users could either decide that occasional unavailability is an
inherent reality of home utilities—similar to electric power—
or add replication mechanisms. For instance, this latter may
involve replicating the entire HPoP to attics belonging to
friends and relatives, or redundantly encoding the contents—
e.g., using erasure codes [20]—and storing pieces with a
variety of peers.

B. Content Delivery with NoCDN

Scalable content delivery requires a widely distributed
server platform with sufficient capacity to absorb temporary
demand surges. Todays content providers either deploy such a
platform themselves (e.g., Google) or use a third-party content
delivery network (CDN) such as Akamai. Ultrabroadband
affords the opportunity for an alternative approach to achieving
scalable content delivery whereby content providers recruit
well-connected users to allow their HPoPs to be effectively
used as “edge servers” in an ad hoc CDN. The content provider
could compensate in some fashion—e.g., monetarily or with
free subscriptions to the content they serve. Users could serve

1Our current prototype does not handle the QR codes and requires the
information to be manually entered at the provider’s site.

content for multiple content providers. As content providers
recruit users, a new content delivery marketplace directly
between content providers and users—without a middleman
in the form of a traditional CDN operator—will emerge.

While seemingly similar to a number of proposals for peer-
to-peer CDNs (e.g., [21], [22]), the key difference with our
approach is that previous systems use peers to augment a
CDN platform, whereas we eliminate the third-party CDN
altogether. We highlight this distinction by calling our ap-
proach NoCDN. While traditional CDNs offer a stable and
low-risk way to improve performance and allow content
providers to shed load, they bring non-trivial monetary costs
to the content providers. The cost of traditional CDNs is
commensurate with the resources these platforms bring to
bear for their customers. The NoCDN approach leverages
the spare resources users naturally possess in ultrabroadband
edge networks. In particular, these spare resources are not
part of business operations whereby costs and profits must be
covered. Therefore, the cost to content providers will likely
be lower than traditional CDNs. Further, there is flexibility
in how the users are compensated in NoCDN. E.g., the New
York Times may give free subscriptions to participants instead
of direct monetary compensation. While this re-structuring
offers promise in lowering costs and possibly giving better
performance by serving content from closer to users than
traditional CDNs, the structure also brings many research
questions and risks, as follows.
Browser Transparency: Individual content providers gener-
ally lack the clout to compel users to change or reconfigure
their browsers or install some sort of a download manager.
Thus, NoCDN must work with unmodified browsers, which
realistically means it must be fully implemented in standard
JavaScript.
Content Integrity: Peer assistance in current peer-to-peer
CDNs often comes with no awareness from the person who
owns the resource. E.g., the agreement to act as a peer in
Akamai’s NetSession is buried inside the agreement to terms
of use of various partners, such as Flash player or Autodesk
[23]. Since users must explicitly sign up to become a peer
in NoCDN, there is more danger that an attacker would
sign up with an intent of corrupting the content that flows
through the attacker-controlled equipment. Therefore, NoCDN
must include mechanisms that ensure content integrity despite
untrusted peers.
Accurate Accounting: One method of compensating peers
is based on their objective contribution to content delivery—
e.g., number of bytes served. Therefore, an unscrupulous peer
has an incentive to inflate the contribution they report to the
content provider. NoCDN must be able to protect content
providers from such behavior.
Peer Selection: Traditional CDNs use some combination of
edge server load and proximity to the client when choosing
which content replica to use for a transaction. The methods
are complex and constitute the CDN’s “secret sauce”. Without
a traditional CDN to perform this operation, how should a
content provider select a peer for the client to use? The
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standard metrics that traditional CDNs lean on to select edge
servers also apply in the NoCDN context—e.g., reachability,
bandwidth, packet loss and delay. However, there is also a
trustworthiness element to the decision—i.e., is the edge server
faithfully carrying out its appointed tasks? Further, whereas
traditional CDNs have general access to the edge servers and
therefore can directly assess operation as needed, access to
NoCDN nodes is likely to be more constrained. Therefore,
investigating peer selection in this context is an open problem
which will involve both the protocols for trustworthy telemetry
to gather the relevant information about the peers and ap-
proaches for incorporating this information into peer selection
decisions.
Leveraging Redundancy: Finally, we note that as the number
of recruits for NoCDN content delivery increases, the scale
offers optimization opportunities. For instance, the content
provider could dictate that each object within a webpage come
from a different source. Or, clients could download objects
in chunks (e.g., using HTTP range requests) from disparate
peers instead of as entire objects—as originally suggested in
[24]. These options both spread the load and lower the chance
that one problematic peer—be it malicious or overloaded—
will have a large overall impact on the client.

To demonstrate the feasibility of NoCDN—and specifically
the possibility of ensuring content integrity and accountability
using a standard browser with no extra plugins—we have
implemented a proof of concept prototype [10].

Our first observation is that traditional CDNs leverage loose
handoffs within the system—e.g., via classic DNS request
routing [25]—and largely allow various components to operate
independently. This approach works because the components

are under the CDN’s control and therefore they can be trusted
to perform their appointed tasks and accurately report the
results (e.g., for billing purposes). However, NoCDN does not
have the luxury of trust throughout the system and therefore
loose handoffs leave room for abuse. Therefore, our prototype
revolves around javascript that is served directly by the content
provider and orchestrates the content retrieval and reporting
functions.

The workflow of a page download is depicted in Fig-
ure 2. First, when a user accesses a content provider utilizing
NoCDN, the content provider returns a wrapper page, which
(a) lists the IP address of a peer from which to fetch the
container object, (b) maps the URL for each recursively
embedded object to the IP address of a peer to use for
fetching the object, (c) includes a cryptographic hash of all
page objects, as well as a unique short-term secret key for each
peer listed in (a) and (b) above, and (d) includes a JavaScript
loader script that fetches all objects from the peers, verifies
the objects’ hashes, assembles the objects into an integrated
webpage and invokes the rendering function on the browser
to display the page for the user.2 Upon finishing the page
download, the script transfers a usage record to each peer. The
usage report is secured via a cryptographic signature using the
secret key furnished by the content provider and includes a
nonce to prevent replay. The NoCDN peers accumulate usage
records and periodically upload them to the content provider
for payment.

NoCDN does increase the chances of collusion attacks com-
pared with traditional CDNs. In this case, a NoCDN peer and
a client collude to download content—or claim to download
content—for the sole purpose of coaxing payment from the
content provider. The content provider can mitigate this by
including some randomness in the client-to-peer mappings
and hence making the payment path unpredictable, by using
anomalous behavior detection or by non-usage-based payment
methods (e.g., flat or capped payments, or non-monetary
benefits as mentioned earlier).

Each NoCDN peer acts as a normal reverse proxy when
processing user requests—i.e., the peer serves the requested
object from its cache if available or, if not, obtains the object
from the origin server, forwards it to the user, and caches it
locally for future requests. Our prototype uses standard Apache
in reserve proxy mode with virtual hosting—to allow a peer to
sign up for content delivery with multiple content providers—
as the peer implementation.

This mechanism improves scalability of the origin site
because it only has to deliver a small wrapper page, with the
loader script eminently cacheable and the rest of the page
content fetched from the peer(s). The wrapper page would
typically be generated dynamically since its contents reflect
the peer selection for the user and includes short-term secret
keys. Still, depending on the peer selection policies and billing
models employed by the origin site, even the wrapper page

2Note, that the loader script is generic and can be cached by the browsers.
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may be reused among users and/or allowed to be cached by
the user for a certain time.

C. Practical Detour Communication

Numerous studies conclude that communication between
two Internet hosts can be improved if the hosts forego the
native path offered by IP routing in favor of sending traffic via
a third-party relay [26]. The overlay detour paths produced
by the relay hosts often have less packet loss [27], lower
latency [28], and higher bandwidth [29], due to inefficiencies
in native IP routes. Moreover, past studies have shown that
most performance benefits can be obtained by using a single
waypoint between the end-hosts [27], [30].

While the benefits of detour routing have been well estab-
lished for almost two decades, the use of detours has largely
been limited to communication within distributed platforms,
notably, Akamai’s “SureRoute” technology [31]. Numerous
previously proposed overlay or peer-to-peer networks typically
operate at the application layer and are not transparent to
the application at both sides of the connection. Even when
their functionality is encapsulated within a runtime library,
such as in RON [32], applications still require modification to
link to the custom library. However, ultrabroadband residential
networks hold promise as locations for well-connected way-
points and hence potentially significant performance benefits
to Internet users—especially if users can utilize multiple
detour paths in parallel to speed up their content accesses.

To be practical, detours must meet several requirements.
First, they should be transparent to applications at both ends
of the communication, and especially to Internet servers that
are outside clients’ control. Second, because it is difficult to
predict if a particular detour will be beneficial or harmful
to a given communication, hosts should be able to add,
remove, or change detours dynamically in the course of the
communication. This would make it possible to select detours
by using “trial and error” to explore multiple detours and
retain the beneficial ones. Third, while some applications
may provide point solutions for parallelizing communication
through intermediaries at the application level, detours should
be available to all applications.

We explore an HPoP-enabled approach satisfying the above
requirements in [11]. Our approach—termed the “Detour
Collective” (DCol)—calls for users forming cooperatives in
which members agree to serve as waypoints to each other.

We leverage multipath TCP (MPTCP) [33] to make detours
transparent to applications. Figure 3 illustrates our solution.
MPTCP normally allows a device to communicate with a
server on several network interfaces in parallel, but we use
it to instead communicate through external waypoint hosts.
In the figure, both the client and waypoint are part of the
cooperative and install the DCol code. To engage a waypoint
in its communication with the server, the client establishes a
tunnel between the client and waypoint. The waypoint then
mimics an MPTCP subflow to the server, making the server
oblivious to the overlay detour. The server will not understand
that the two subflows are not coming from two interfaces
on the same device—as in regular MPTCP—but from two
separate machines, potentially located in different corners of
the world.

In the common case when most of the data flows from the
server to the client, the client establishes subflows to the server
through waypoints, but it is still up to the server to split the
communication among the waypoint(s) and the original direct
path to the client. However, the client can indirectly influence
these decisions by withdrawing undesirable detours (i.e., clos-
ing the corresponding subflows), adding new detours, or ma-
nipulating the acknowledgements. Since the default MPTCP
schedulers use RTT as a key factor in their subflow scheduling
policy, a custom client’s scheduler can reduce server’s use of
a detour by delaying subflow-level acknowledgments of the
corresponding subflow and thus increasing the RTT values
seen by the server. When the data flows mostly from the
client to the server—e.g, in file uploads, video-conferencing, or
other increasingly common cases of user-generated content—
the client can directly explore different waypoints by sending
a few data packets over new subflows and staying with whose
waypoints that perform well. In either case, the client is able
to explore different waypoints to find efficient overlay detours,
and further to aggregate bandwidth of several available paths.
Most importantly, since MPTCP presents the same binary-
compatible OS-level API as TCP, unmodified applications may
use this mechanism simply by using our patched kernel.

While very few content servers currently support MPTCP
[34], there are signs that this might be changing. For instance,
Apple uses MPTCP for its Siri service [35]. We assume that
as compelling use cases such as the one offered here emerge,
the deployment by content servers will grow. Additionally, the
IETF is working on a proposal to facilitate deploying MPTCP
proxies within the network. This approach allows MPTCP-
adopting clients to benefit from MPTCP even when interacting
with a non-MPTCP servers, by leveraging an MPTCP proxy
in server’s vicinity [36]. Our approach can be used in this
deployment scenario as well, by establishing subflows with
the MPTCP proxy.
Client-to-Waypoint Tunneling: Since both client and way-
point run DCol code, they can implement any custom tunnel-



ing mechanism. However, standard tunneling mechanisms are
readily available for easy implementation. We have explored
two existing mechanisms for tunneling MPTCP subflows
between the client and waypoint in our prototype: VPN
tunneling and network address translation at the waypoint. Our
prototype can chose either technology for individual detours
interchangeably.

With VPN tunneling, a client uses packet encapsulation to
divert traffic through a waypoint. In our prototype, a waypoint
runs an OpenVPN server with DHCP service for its VPN.
To use a waypoint for detouring, the client creates a virtual
interface and joins the corresponding VPN by running DHCP
to acquire an IP address on the virtual subnet. The client
further sets up a routing rule for this interface with high
cost to all destinations in an effort to prevent the interface
from being used for unrelated traffic. To connect to multiple
waypoints simultaneously, the client would create multiple
virtual interfaces and join multiple VPNs. To avoid addressing
conflicts between the VPNs, each waypoint can use a distinct
address block for its private IP subnet. For instance, consider
assigning each waypoint in the collective a /26 from the
10.0.0.0/8 block of private addresses. This allows for each
of 256K non-conflicting waypoints to serve 64 clients simul-
taneously. In our prototype we assign subnets manually, but
in a large collective, subnet allocations would be managed by
an appropriate management plane.

With NAT tunneling, the client and waypoint negotiate a
port on which the waypoint would receive packets from the
client and the intended final destination of those packets.
This forwarding is realized via standard NAT translation
rules. Then, the client’s kernel—with DCol modifications—
addresses packets to agreed upon port on the waypoint. The
waypoint forwards these to the final destination, rewriting
the IP addresses and port numbers accordingly. Replies are
similarly passed from the waypoint to the client. Linux offers
standard NAT facilities within the netfilter framework to set
up the NAT rules, with no custom code needed for packet
forwarding.

The two tunnelling techniques have their tradeoffs. Once a
client establishes a VPN tunnel with a waypoint, this tunnel
may be reused to create a detour for any TCP connection to
any server, without any additional setup. The NAT mechanism
requires signaling with the waypoint for every new server
address and port number combination. On the other hand, VPN
adds 36 bytes of per-packet overhead for IP encapsulation and
UDP and OpenVPN headers, while NAT adds no extra bytes
to a packet.
Security: Inserting a waypoint into a communication path
introduces potential security and privacy concerns. However,
modern Internet applications increasingly use TLS [37]. Our
prototype requires the client to complete the TLS handshake
with the server over the direct path before establishing any
detours. Therefore, any subflows through detours will be
encrypted. While this keeps the contents obscured from the
waypoints, the waypoints still learn the IP addresses with
which the client is communicating. While this information

already flows openly through the Internet in the unencrypted
IP headers, our approach makes it readily available to the
waypoints involved. This is an inherent cost of DCol.

A malicious waypoint could also disrupt its subflow in
arbitrary ways. For instance, by dropping some or all of
the packets on the subflow. The application can detect the
resulting performance impact and withdraw this waypoint,
while transparently recovering the affected packets over the
remaining subflows. Furthermore, the misbehaving peer can
be expelled from the collective to avoid future issues.

D. Internet@home

As network and computer capacities grow, latency will
inevitably become the performance bottleneck that limits the
responsiveness of the system. Put differently, one can always
buy additional bandwidth but latency gains are often limited by
the laws of physics. For instance, consider TCP’s performance.
Initially TCP is limited to sending only a few segments in
the first RTT of data transmission. The data rate increases
exponentially afterwards. However, over a 1 Gbps network
path with a 50 msec RTT a TCP connection will require
10 RTTs and over 14 MB of data before utilizing the available
capacity. Most transfers carry nowhere near enough data to
achieve these speeds [4]. This shows that realizing high speed
transfer is not as easy as simply adding raw capacity.

In addition to leveraging numerous content replicas as we
sketch in § IV-B, we envision a more radical notion: keeping a
local copy of the entire Internet. Instead of retrieving content
on-demand over the wide-area network, users will access a
local copy cached in the HPoP. This arrangement allows us
to use the copious bandwidth within ultrabroadband networks
to lower the users’ perceived delay. Of course, even with the
high capacity of ultrabroadband, copying the entire Internet is
ridiculous! Therefore, a key task is in approximating an exact
copy of the Internet for the given residence, which entails
several facets, as follows.
Aggressiveness: Traditional prefetching of content tries to
leverage users’ actions to anticipate their near-term needs.
Our approach is less fine-grain. We aim to leverage users’
long-term history to copy the portion of the Internet the users
visit and are likely to visit. This starts with understanding
the requirements imposed by various snapshots of history,
including storage requirements, core network workload and
server workload. Given the HPoP’s vantage point it can
measure these aspects as part of the system’s operation.
These measurements can drive decisions, such as determining
whether to keep content fresh by fetching a new copy as a
cached version expires. Based on the effect on the upstream
loads, the HPoP can evaluate the tradeoff between the extent
of content gathering and the degree of its freshness. That is,
we can decrease the number of requests going to the Internet
by either reducing the scope of the content gathered (thus
reducing the volume of requests necessary to keep the content
fresh) or by decreasing the frequency of content pre-validation.
Deep Web Content: Dynamic and personal content—the so
called “deep web” [38], [39]—now plays a large role on



the Internet. Therefore, to truly copy a suitable version of
the Internet, the HPoP will hold user credentials so it can
copy deep web content, e.g., constantly collect comments on
user’s Facebook page to make them locally available whenever
needed, or content from websites that require subscription.
While divulging credentials for web mail or social networking
services to some generic web proxy would be unthinkable, pro-
viding these to a device in a user’s own house and ultimately
under their control is much more palatable.

We note that some Internet applications already implement
certain aspects of automatic client-side interactions, such as the
Calibre system for downloading news feeds and repackaging
them into an e-book [40]. HPoP’s deep web content gathering
will enrich these functionalities and support them in a generic
fashion across sites.
Leveraging the Data Attic: The Internet@home and data attic
aspects of HPoP can work synergistically, in that data attic
provides a rich source of information for HPoP’s decisions on
the portions of the Internet to maintain locally. For instance,
by gathering stock ticker symbols from tax documents the
HPoP can maintain fresh stock quotes that are germane to the
users. The HPoP will provide a generic modular framework
such that many forms of information within the data attic
can trigger data collection. As the amount of information
users concentrate in their data attic increases, its value to this
decision making grows.
Demand Smoothing: While aggressive content copying in-
creases the load upstream, it can also mitigate potential
bottlenecks upstream. Recall that by removing the last-mile
floodgates, FTTH may strain Internet servers and core net-
works, and aggressive content copying as sketched above can
exacerbate this effect. However, obtaining content ahead of
actual use also brings flexibility to schedule content acquisition
at an opportune time. This can smooth the demand on Internet
servers and core networks.
A Cooperative Cache: As sketched in § II one of the
aspects of FTTH is that other edge networks in topological
proximity will also have a wealth of capacity while the aggre-
gate connection from the neighborhood may be a bottleneck.
Therefore, neighboring HPoPs can link together to coordinate
their content gathering activities and avoid duplicate retrievals
and storage of content in an effort to save aggregate capacity
to the neighborhood. Content can then be shared by all hosts
within the community in a peer-to-peer manner. This is a
resurrection of cooperative Web caching popular in the late
1990s (see, e.g., [41] and reference therein), but extended with
coordinated content gathering.

V. RELATED WORK

We are not aware of prior work on the notion of centering
users’ digital lives around an appliance—such as the HPoP—
in their homes. In terms of the specific HPoP services we
plan to explore, our data attics address mainly the issue of
data control in the clouds and external applications. While
the problem has been well recognized [12], [42], [43], most
previous work addressing this issue focuses on data security

through cryptography [44], [45], auditing and accountability
[46], [47], access control [48], and security of the cloud
platform itself [43]. These approaches certainly raise the bar
for an attacker but leave the user tied to a given cloud provider
and unable to directly protect the data from inappropriate use
or accidental leak once the cloud’s security is breached. An
integral component of data attics is peer backup, which has
seen much prior research (e.g., [49]–[53]). Data attics can
benefit from many of these solutions.

The NoCDN service takes inspiration from peer-to-peer
distribution of streaming media (see the survey [54] and
references therein) and file sharing such as BitTorrent. Unlike
these approaches, NoCDN functions like a traditional CDN
with residential peers replacing the CDN servers. This ar-
rangement has the potential of creating a new marketplace
where any web site can recruit peers to help with their content
delivery using their own incentives. While a large amount
literature examines the possibility of incorporating residential
peers into a traditional CDN, we are exploring a possibility
of removing the CDN altogether for some content providers.
Our technique for ensuring data integrity is similar to Stickler
[55], although Stickler requires content providers to drastically
change content organization, by replacing regular embedded
objects with recursively nested JavaScript scripts. NoCDN
only adds wrapper meta-pages, leaving the actual content
intact.

Our Internet@home service draws on Web prefetching (with
related work too numerous to list) and deep web crawling
(e.g., [38], [39]). While leveraging existing technologies to the
extent possible, our new context and motivation will inevitably
require new techniques.

VI. CONCLUSION

Our over-arching thesis is that ultrabroadband opens am
opportunity to re-think and re-organize how networks, applica-
tions and information are handled in the Internet. We propose
a general direction for this re-thinking: the significant jump
in home network capacity warrants a corresponding shift in
the responsibility assumed by the home network in supporting
users’ Internet activities. Our model calls for assigning this
responsibility to a “home point of presence” (HPoP). The
HPoP is meant to be a hub around which much of users’
digital lives can revolve. While we discuss a number of
promising services the HPoP can provide, our intention is
that the HPoP be a generic device that can evolve and accrue
further responsibilities over time. Finally, note that while we
have adopted an approach based on an HPoP, we hope the
community will embrace the high-order question of how to
better use ultrabroadband residential networks.
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