
The Anatomy of LDNS Clusters: Findings and Implications
for Web Content Delivery

Hussein A. Alzoubi
EECS Department

Case Western Reserve Univ.

Michael Rabinovich
EECS Department

Case Western Reserve Univ.

Oliver Spatscheck
AT&T Research Labs

ABSTRACT
We present a large-scale measurement of clusters of hosts
sharing the same local DNS servers. We analyze properties
of these “LDNS clusters” from the perspective of content de-
livery networks, which commonly use DNS for load distribu-
tion. We found that not only LDNS clusters differ widely in
terms of their size and geographical compactness but that
the largest clusters are actually extremely compact. This
suggests potential benefits of a load distribution strategy
with nuanced treatment of different LDNS clusters based on
the combination of their size and compactness. We further
observed interesting variations in LDNS setups including a
wide use of “LDNS pools” (which as we explain in the pa-
per are different from setups where end-hosts simply utilize
multiple resolvers).

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distrib-
uted Systems—Distributed applications; C.4 [Performance
of Systems]: Reliability, availability, and serviceability

General Terms
Measurement, Performance

Keywords
DNS, Request Routing, Content Delivery Networks

1. INTRODUCTION
Domain Name System (DNS) is a key component of the

today’s Internet apparatus. Its primary goal is to resolve
human-readable host names, such as “cnn.com” to hosts IP
addresses. In particular, HTTP clients send queries for these
resolutions to their local DNS servers (LDNS), which route
these queries through the DNS infrastructure and ultimately
send them to authoritative DNS servers (ADNS) that main-
tain the needed mapping information. The ADNS servers
then return the corresponding IP addresses back to LDNS,
which forward them to the clients, who then can proceed
with their HTTP interactions. By returning different IP ad-
dresses to different queries, ADNS can direct different HTTP
requests to different servers. This commonly forms the ba-
sis for transparent client request routing in replicated web

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink
to the author’s site if the Material is used in electronic media.
WWW, 2013 Rio de Janeiro, Brazil
ACM 978-1-4503-2035-1/13/05.

sites, content delivery networks (CDNs), and – more recently
– cloud computing platforms.

When selecting an IP address to reply to a DNS query,
ADNS only know the identity of the requesting LDNS and
not the client that originated the query. Thus, the LDNS
acts as the proxy for all its clients. We call the group of
clients “hiding” behind a common LDNS server an “LDNS
cluster”. DNS-based network control can only distribute
client demand among data centers or servers at the granular-
ity of the entire LDNS clusters, leading to two fundamental
problems, hidden load problem [6], which is that a single load
balancing decision may lead to unforeseen amount of load
shift, and the originator problem [21], which is that when the
request routing apparatus attempts to route clients to the
nearest data center, the apparatus only consider the location
of the LDNS and not the clients behind.

This paper studies properties of LDNS clusters from the
perspective of their effect on client request routing. Vari-
ous proposals were put forward to include the identity of
the client into the LDNS queries but they have not been
adopted, presumably because these proposals are incompat-
ible with shared LDNS caching, where the same response can
be reused by multiple clients. There is another such proposal
currently underway, spearheaded by Google [8]. Our work
will be useful in informing these efforts.

The key findings in our study are the following:

• An overwhelming majority of the clusters, even as seen
from a very high-volume web site, are very small, pos-
ing no issue with respect to hidden load. However,
despite recent trends transforming busy resolvers into
complex distributed infrastructures (e.g. anycast based
platforms such as [17, 9]) there remain a few“elephant”
clusters 1). Thus, a DNS-based request routing system
may benefit by tracking the elephant LDNS clusters
and treating them differently.

• LDNS clusters differ widely in terms of their geograph-
ical and autonomous system (AS) span. Furthermore,
the extent of this span does not correlate with cluster
size: the busiest clusters are very compact geograph-
ically but not in terms of AS-sharing. Thus, a DNS-
based request routing system can benefit by treating
LDNS clusters differently depending on a combination
of their size and compactness: when there is a need

1Note that our measurement setup is able to distinguish
clients behind individual resolver nodes in these platforms
as distinct clusters, so we do not conflate these platforms
into an elephant cluster.

Instrumented

ADNS/HTTP

server

(1
)

 d
n
s-

re
se

ar
ch

.c
o
m

?

(2/3) dns-research.com?

1.2.3.4

5.6.7.8

5.6.7.8

(4
)

 5
.6

.7
.8

(5/6) G
ET special.jpg

302 Moved to 1_2_3_4.sub1.dns-re
search.com/special.jpg

(7
)

 1
_

2
_

3
_

4
.s

u
b

.d
n
s-

re
se

ar
ch

.c
o
m

 ?

(8/9) 1_2_3_4.sub1.dns-research.com ?
CNAME 1_2_3_4.sub2.dns-research.com/special.jpg

(1
2
)

 5
.6

.7
.8

(13/14) GET special.jpg to 5.6.7.8
200 OK

Client Side

(10/11) 1_2_3_4.sub2.dbs-research.com ?

5.6.7.8

Internet Measurement Side

Figure 1: Measurement Setup.

to rebalance server load, the system may re-route re-
quests from non-compact clusters first because they
benefit less from proximity-sensitive routing anyway.

• A large number of IPs act as bothWeb clients and their
own LDNSs. We find evidence that much of this phe-
nomenon is explained by the presence of middleboxes
(NATs, firewalls, and web proxies). However, although
they aggregate traffic from multiple hosts, these clus-
ters exhibit, if anything, lower activity. Hence this as-
pect by itself does not appear to warrant special treat-
ment from the request routing system.

• We find strong evidence of LDNS pools with shared
cache, where a set of “worker servers” shares work for
resolving clients’ queries. While the implications of
this behavior for network control remain unclear, the
prevalence of this LDNS behavior warrants a careful
future study.

We stress that our characterization is done from the van-
tage point of a busy web site, i.e., based on the activity seen
by this site. For instance, when we consider an LDNS clus-
ter size, this size reflects the clients that visited our Web site
over the duration of our study. There may be other hosts
behind this LDNS that we would not have seen. Our van-
tage point, however, is an example of what a busy web site
may face when performing request routing.

2. SYSTEM INSTRUMENTATION
To characterize LDNS clusters (i.e., sets of hosts behind a

given LDNS), we need to associate hosts with their LDNSs.
We used an enhanced approach from our prior work [15] to
gather our measurements. As shown in Figure 1, we deploy a
measurement machine that runs both a custom authoritative
DNS server for a domain we registered for the purpose of this
experiment (dns-research.com) and a custom Web server.
The Web server hosts a special image URL, dns-research.
com/special.jpg.

When a user accesses this URL, the following steps occur:

• The user’s browser sends a DNS query to its local
DNS server to resolve dns-research.com. We call dns-
research.com a “base domain” and a query for it “base
query” (step 1 in the figure).

• The LDNS recursively resolves this query, ultimately
our DNS server (steps 2 and 3) and returns the result
(the IP address of our measurement machine) to the
client (step 4).

• The client sends the HTTP request for special.jpg to
our Web server (step 5). Our server responds with
an HTTP redirect (“302 Moved”) specifying another
URL in the dns-research.com domain (step 6). Our
server constructs this new URL dynamically by em-
bedding the client’s IP address into the hostname of
the URL. For example, when our Web server receives a
request for special.jpg from client 206.196.164.138, the
Web server replies to the client with the following redi-
rection link: 206_196_164_138.sub1.dns-research.

com/special.jpg.

• Following the redirection, the client issues another DNS
request to its LDNS - for hostname that embeds its
own IP address, in the example above (step 7) the re-
quest URL is 206_196_164_138.sub1.dns-research.
com. The LDNS eventually sends this request to our
DNS server (step 8), which can now record both the
IP address of the LDNS that sent the query and the
IP address of its associated client that had been em-
bedded in the hostname. Thus, the association of the
client and its LDNS is accomplished.

In the original approach of [15], ADNS server would now
complete the interaction by resolving the query to the IP of
our Web server, which would respond to the client’s HTTP
request with a 1-pixel image. We augmented this approach
as follows. Our ADNS responds to a query for *.sub1.dns-
research.com with the corresponding CNAME *.sub2.dns-
research.com, where * denotes the same string representing
client’s IP address (step 9), forcing the client to perform
another DNS resolution for the latter name. Moreover, our
DNS server includes its own IP address in the authority
section of its reply to the “sub1” query, which ensures that
the LDNS sends the second request (“sub2” request) directly
to our DNS server. We added this functionality to discover
LDNS pools (Section 8.2). Upon receiving the “sub2” query
(step 10), our ADNS returns its own IP address (steps 11-
12), which is also the IP address of our Web server, and
the client performs the final HTTP download of our special
image (steps 13-14).

We have partnered with a high-volume consumer-oriented
Web site2, which embedded the base URL for our special
image into their home page. This allowed us to collect a
large amount of measurement data as discussed below. To
obtain repeated measurements from a given client

”
we used

a low 10 seconds TTL for our DNS records – lower than any
CDN we are aware of – and added a“cache-control:no-cache”
HTTP header field to our HTTP responses.

3. THE DATASET
The measurement data included the DNS and HTTP logs

collected at our measurement host. The DNS logs contained
the timestamp of the query, the IP address of the requesting
LDNS, query type, and query string, and the HTTP logs

2Part of the conditions for this collaboration is that we are
unable to name the site.

Table 1: High-level dataset characterization
Unique LDNS IPs 278,559
Unique Client IPs 11,378,020
Unique Client/LDNS IP Pairs 21,432,181

contained the request time and User-Agent and Host head-
ers. We conducted our measurements over 28 days, from Jan
5th, 2011 to Feb 1st. During this period, we collected the
total of over 67.7 million sub1 and sub2 DNS requests and
around 56 million of the HTTP requests for the final image
(steps 13/14 in Figure 1; we refer to these final HTTP re-
quests as simply HTTP requests in the rest of the paper, but
stress that we do not include the initial redirected HTTP re-
quests in steps 5-6 of the setup into any of the results). The
higher number of HTTP requests compared to DNS queries
(indeed, as Figure 1 shows, a client access should generate
a sub1 and sub2 DNS request for a final HTTP request) is
due to the well known fact that clients and LDNSs reuse
DNS responses much longer than the TTL values assigned
by the ADNS [18]. We verified that some HTTP accesses
occur long past the 10s (our TTL) since the preceding sub1
and sub2 queries.

Table 1 shows the overall statistics of our dataset. Our
measurements include over 11.3M clients and almost 280K
LDNS resolvers representing, respectively, 17,778 and 14,627
autonomous systems (ASs). We have obtained over 21M
unique associations between these clients and LDNSs, where
an association (or pair) connects a client and the LDNS used
by this client for a DNS resolution.

We refer to all clients that used a given LDNS as the LDNS
cluster. Thus, an LDNS cluster contains one LDNS IP and
all clients that used that LDNS in our experiment. Note
that the same client can belong to multiple LDNS clusters
if it used more than one LDNS during our experiment.

4. CLUSTER SIZE
We begin by characterizing LDNS clusters in terms of

their size. This is important to DNS-based server selec-
tion because of the hidden load problem [6]: a single DNS
response to an LDNS will direct HTTP load to the selected
server from all clients behind this LDNS for the TTL dura-
tion. Uneven hidden loads may lead to unexpected results
from the load balancing perspective. On the other hand,
knowing activity characteristics of different clusters would
allow one to take hidden loads into account during server
selection process. For example, dynamic adjustments of the
TTL in DNS responses to different LDNSs can be used to
compensate for different hidden loads [5, 6].

We characterize LDNS cluster sizes from two perspectives
- the number of clients behind a given LDNS and the amount
of activity originated from all clients in the cluster. We
should stress that the former is done purely based on IP
addresses, and our use of the term “client” is simply a short-
hand for “client IP address”. It has been shown that IP ad-
dresses may not be a good representation of individual hosts
due to the presence of network address translation boxes and
dynamic IP addresses [14, 4]. We characterize cluster sizes
from the perspectives of the number of clients in a cluster
and the amount of access activity originated from a cluster.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 100000 1e+06

C
D

F

Clients associated with a LDNS

 1000

 10000

 100000

 1e+06

 0 200 400 600 800 1000

Top 1000 LDNSs

#
 A

ss
o

ci
a

te
d

 C
lie

n
ts

Figure 2: Distribution of LDNS cluster sizes.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 100000 1e+06

C
D

F

LDNS cluster size (# Clients)

% of LDNS-Client pairs
% of Sub1 requests

Figure 3: Distribution of sub1 requests and
client/LDNS pairs attributed to LDNS clusters of
different sizes

4.1 Number of Clients
Figure 2 shows the CDF of LDNS cluster sizes while the

cut-in subfigure shows the sizes of the 1000 largest LDNS
clusters (in the increasing order of size). We found that a
vast majority of LDNS clusters are small - over 90% of LDNS
clusters contain fewer than 10 clients. This means that most
clusters do not provide much benefit of shared DNS cache to
their clients when they access our partner Web site. To see
the potential impact on clients, Figure 3 shows the cumula-
tive percentage of sub1 requests issued by LDNSs represent-
ing clusters of different sizes as well as cumulative percent-
ages of their client/LDNS associations. More precisely, for a
given cluster size X, the corresponding points on the curves
show the percentage of sub1 requests issued by LDNS clus-
ters of size up to X, and the percentage of all client/LDNS
associations belonging to these clusters. As seen on the fig-
ure, small clusters, with less than 10 clients, only contribute
less than 10% of all sub1 requests and comprise less than 1%
of all client/LDNS associations. Thus, even though these
small clusters represent over 90% of all LDNS clusters, an
overwhelming majority of clients belong to larger clusters,
which are also responsible for most of the activity. THus,
most clients are not affected by limited shared DNS caching
in small clusters.

Moreover, despite the prevalence of DHCP-driven DNS
configuration of end-hosts and – more recently – anycasted
resolvers, both facilitating distributed resolver infrastruc-
tures, we still observed a few“elephant”clusters. The largest

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 100000 1e+06

C
D

F

LDNS activity (# requests)

Sub1 requests
HTTP requests

Figure 4: LDNSs Activity in terms of DNS and
HTTP requests.

cluster (with LDNS IP 167.206.254.14) comprised 129,720
clients and it alone was responsible for almost 1% of all sub1
requests. Elephant clusters may affect dramatically load dis-
tribution, and their small number suggests that it might be
warranted and feasible to identify and handle them sepa-
rately from the rest of the LDNS population. Overall, the
size of LDNS clusters ranged from 1 to 129,720 clients, with
the average size being 76.94 clients. We further consider
top-10 elephant LDNS clusters in Section 7.

4.2 Cluster Activity
We now turn to characterizing the activity of LDNS clus-

ters. We characterize it by the number of their sub1 requests
as well as by the number of the final HTTP requests. Since
a client may belong to multiple LDNS clusters (e.g., when
it used a different LDNS at different times), we associate
an HTTP request with the last LDNS that was used by the
client prior to the HTTP request in question.

Figure 4 shows the CDF of the number of sub1 queries is-
sued by LDNSs, as well as the CDF of the number of HTTP
requests issued by clients behind each LDNS during our ex-
periment. Again, both curves in the figure indicate that
there are only a small number of high-activity clusters. In-
deed, 35% of LDNSs issued only one sub1 request, and 96%
of all LDNSs issued less than 100 sub1 requests over the en-
tire experiment duration. Yet the most active LDNS sent
303,042 sub1 requests. The HTTP activity presents similar
trends although we do observe some hidden load effects even
among low-activity clusters: whereas 35% of LDNSs issued
a single DNS query, only less than 20% of their clusters is-
sued a single HTTP request. This is due to DNS caching,
which often extends beyond our low TTL of 10s.

Overall, our observations of LDNS cluster sizes, both from
the number of clients and activity perspectives, confirm that
platforms using DNS-based server selection may benefit from
treating different LDNSs differently.

At the same time, they may only need to concentrate on a
relatively small number of “elephant”LDNSs for such special
treatment.

5. TTL EFFECTS
The above analysis considered the LDNS cluster activity

over the duration of the experiment. However, platforms
that use DNS-based server selection, such as CDNs, usually
assign relatively small TTL to their DNS responses to retain

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100

C
D

F

Client IPs per LDNS per TTL

Clients in 20s TTL
Clients in 120s TTL
Clients in 350s TTL

Figure 5: LDNS cluster sizes within TTL windows
(all windows).

an opportunity for further network control. In this section,
we investigate the hidden loads of LDNS clusters observed
within typical TTL windows utilized by CDNs, specifically
20s (used by Akamai), 120s (AT&T’s ICDS content delivery
network) and 350s (Limelight).

In order to get the above numbers, we use our DNS and
HTTP traces to emulate the clients’ activity under a given
TTL. The starting idea behind this simulation is simple:
the initial sub1 query from an LDNS starts a TTL window,
and then all subsequent HTTP activity associated with this
LDNS (using the procedure described in Section 4.2) is
“charged” to this window; the next sub1 request beyond the
current window starts a new window. However, two subtle
points complicate this procedure.

First, if after the initial sub1 query to one LDNS, the same
client sends another DNS query through a different LDNS
within the emulated TTL window (which can happen since
the actual TTL in our experiments was only 10s) we“charge”
these subsequent queries and their associated HTTP activity
to the TTL window of the first LDNS. This is because with
the longer TTL, these subsequent queries would not have
occurred since the client would have reused the initial DNS
response from its cache.

Second, confirming the phenomenon previously measured
in [18], we have encountered a considerable number of re-
quests that violated TTL values, with violations sometimes
exceeding the largest TTL values we simulated (350s). Con-
sequently, in reporting the hidden loads per TTL, we use
two lines for each TTL value. The lines labeled “strict” re-
flect only the HTTP requests that actually fell into the TTL
window3 Thus, these results ignore requests that violate the
TTL value. The “non-strict” lines include these violating
HTTP requests and count them towards the hidden load of
the TTL window to which the associated DNS query was
assigned.

Figure 5 shows the CDF of the LDNS cluster sizes ob-
served for each LDNS in each TTL window, i.e., each LDNS
contributed a separate data point to the CDF for each win-
dow (the full paper [2] also considers average cluster sizes ob-

3For simplicity of implementation with also counted HTTP
requests whose corresponding sub* queries were within the
window but the HTTP requests themselves were within our
real TTL of 10s past the window. There were very small
number of such requests (a few thousand out of 56M total)
thus this does not materially affect our results.

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1 10 100

C
D

F

Avg # Client IPs per LDNS

Clients in 20s TTL
Clients in 120s TTL
Clients in 350s TTL

Figure 6: Average LDNS cluster sizes within a
TTL window (averaged over all windows for a given
LDNS)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 100000 1e+06

C
D

F

HTTP requests per LDNS per TTL

Strict TTL 20
Strict TTL 120
Strict TTL 350

UN-Strict TTL 20
UN-Strict TTL 120
UN-Strict TTL 350

Figure 7: HTTP requests within TTL windows (all
windows).

served in all TTL windows for given clusters). The majority
of windows, across all LDNSs, contained only one client. As
expected, in larger the TTL windows, the number of clients
an LDNS serves increases. Still, only around 10% of TTL
intervals had more than 10 clients under TTL of 350s, and
less than 2% of the intervals had more than 10 clients with
TTL of 120s.

Figure 6 shows the CFP of the average in-TTL cluster
sizes for LDNSs across all their TTL intervals. That is, each
LDNS contributes only one data point to the CDF, reflect-
ing its average cluster size for all its TTL intervals4. The
average in-TTL cluster sizes are even smaller, with virtually
all LDNSs exhibiting average in-TTL cluster size below 10
clients under all TTL values. The difference between the
two figures is explained by the fact that busier LDNSs (i.e.,
those showing up with more clients within a TTL) tend to
appear more frequently in the trace, thus contributing more
data points in Figure 5.

To assess how the hidden load of LDNSs depends on TTL,
Figures 7 and 8 show, respectively, the CDFs of the number
of HTTP requests in all TTL windows and average in-TTL
number of HTTP requests for all LDNS across all their TTL
intervals. A few observations are noteworthy. First, the dif-

4The average in-TTL cluster sizes per-LDNS may reflect
better the kind of input data available to a request routing
algorithm.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 100000

C
D

F

Avg number of HTTP requests per LDNS

Strict TTL 20
Strict TTL 120

Strict TTL 350
UN-Strict TTL 20

UN-Strict TTL 120
UN-Strict TTL 350

Figure 8: Average number of HTTP requests per
LDNS within a TTL window (averaged over all win-
dows for a given LDNS).

ference between strict and non-string lines in Figure 7 indi-
cate violations of the TTL we considered; as expected, these
violations decrease for larger TTL and, importantly, all but
disappear for TTL of 350 sec. This shows that at these
TTL levels, a CDN might not need to be concerned about
unforeseen affect of these violations on hidden load. Second,
while there re sizable differences in hidden loads among some
LDNSs for some TTL values are significant, their absolute
values are small overall - virtually all windows contain fewer
than 100 requests even for the largest TTL of 350s (Fig-
ure 7). Thus, low TTL values are important not for proper
load-balancing granularity in routine operations but mostly
to react quickly to unforeseen flash crowds. It is obviously
undesirable to have to pay overhead on routine operation
while using it only for extraordinary scenarios. A better
knob would be desirable and should be given consideration
in future Internet architectures.

6. CLIENT-TO-LDNS PROXIMITY
We consider the proximity of clients to their LDNS servers,

which determines the severity of the originator problem and
can have other implications for proximity-based request rout-
ing. Prior studies [23, 15] looked at several proximity met-
rics, including TCP traceroute divergence, network delay
difference as seen from a given external vantage point, and
autonomous system sharing - how many clients reside in the
same AS as their LDNS servers. We revisit the AS-sharing
metric, but instead of the other metrics, which are vantage-
point dependent, we consider the air-mile distance between
clients and their LDNSs. Ideally we would also have liked to
know the network delay between these parties but we have
no visibility into this metric from our vantage point.

6.1 Air-Miles Between Client and LDNS
We utilized the GeoIP city database from Maxmind [16],

which provides the geographic location information for IP
addresses, to study geographical properties of LDNS clus-
ters. Using the database dated from February 1, 2011 (so
that our analysis would reflect the GeoIP map at the time
of experiment), we mapped the IP addresses of the clients
and their associated LDNSs and calculated the geographical
distance (“air-miles”) between them.

Figure 9 shows the cumulative distribution function (CDF)
of air-miles of all client/LDNS pairs. The figure shows that

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000 4000 6000 8000 10000 12000

C
D

F

AirMiles between Clients and their LDNSs

Figure 9: Air miles for all client/LDNS pairs

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 5000 10000 15000 20000 25000
 1

 10

 100

 1000

 10000

 100000

 1e+06

A
v
g

 A
ir
M

il
e

s

#
 C

li
e

n
ts

 a
s
s
o

c
ia

te
d

 w
it
h

 a
 L

D
N

S

LDNSs

Avg AirMiles for a LDNS
Clients associated with a LDNS

Figure 10: Avg client/LDNS distance in top LDNS
clusters

clients are sometimes situated surprisingly far from their
LDNS servers. Only around 25% of all client/LDNS pairs
were less than 100 miles apart while 30% were over 1000
miles apart. This suggests an inherent limitation to how
accurate, in terms of proximity, DNS-based server selection
can be. We note that our measurements show significantly
greater distances than previously measured in [11] (see Sec-
tion 10 for more details).

6.2 Geographical Span
We are also interested in the geographical span of LDNS

clusters. Geographically compact clusters are more amenable
to proximity routing than the spread-out ones. If a con-
tent platform can distinguish between these kinds of clus-
ters, it could treat them differently: requests from an LDNS
representing concentrated cluster could be preferentially re-
solved to a highly proximal content server, while requests
from LDNSs representing spread-out clusters could be used
to even out load with less regard for proximity. This would
result in more requests resolving to proximal content servers
when it actually counts.

For space consideration, we focus on the LDNSs with more
than 10 clients, which represent almost 10% of all LDNSs
in the data set (see the full paper for the results on small
clusters [2]). Figure 10 plots, for each such LDNS server,
the average airmiles from this server to all its clients and
the number of clients for the same LDNS. The X-axis shows
LDNSs sorted by the size of their client cluster, and within
LDNSs of equal cluster size, by the average air miles dis-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

C
D

F

% of associated Clients (LDNSs) outside the

 LDNS’s (Client’s) AS

% LDNSs outside a Client's AS
% Clients outside a LDNS's AS

Figure 11: CDF of LDNS clusters with a given %
of clients/LDNSs outside their LDNS’s/Client’s au-
tonomous system.

Table 2: Client activity attributed to client-LDNS
associations sharing the same AS

DNS requests HTTP requests
73.79% 81.97%

tance. shows the average air-miles and the number of clients
for these top LDNS clusters. The “teeth” in the graph are
due to the above sorting of LDNSs: each “tooth” represents
a set of all LDNS clusters with the same number of clients,
and the tooth-like shape reflects the fact that each such set,
except for the sets comprising the largest clusters, contains
clusters with the average geographical span ranging from 0
to up to 10,000 miles.

As the number of clients increases, the variation of ge-
ographical span among clusters narrows but still remains
significant, with an order of magnitude differences between
clusters. This provides evidence in support of differential
treatment of LDNSs not just with respect to their differ-
ences in size and activity as we saw in Sections 4 and 4.2
but also with respect to proximity-based server selection.

6.3 AS Sharing
Another measure of proximity is the degree of AS sharing

between clients and their LDNSs.
Figure 11 shows this information from, respectively, LDNS

and client perspective. The LDNS perspective reflects, for a
given LDNS, the percentage of its associated clients that are
in the same AS as the LDNS itself. The clients’ perspective
considers, for a given client, the percentage of its associated
LDNSs that are in the same AS as the client itself.

While almost 77% of LDNSs have all their clients in the
same AS as they are, 15% of LDNSs have over half of their
clients outside their AS and 10% have all their clients in a
different AS. From the clients’ perspective, we found that
more than 9 million client have all the LDNSs in their AS
while nearly 2 million (almost 17%) have all their LDNSs in
a different AS. Only a small number of clients - over 180K
had a mix of some LDNSs within and some LDNSs outside
the client’s AS. Such a strong dichotomy (i.e., that clients
either had all or none of their LDNSs in their own AS) is
explained by the fact that most clients associate with only
a small number of LDNSs.

!"

!#"

!##"

!###"

!####"

!#####"

!######"

$%
&
'!
"

$%
&
'(
"

$%
&
')
"

$%
&
'*
"

$%
&
'+
"

$%
&
',
"

$%
&
'-
"

$%
&
'.
"

$%
&
'/
"

$%
&
'!
#
"

0&12'" 34512'" 67485"79"%:;"2'<=":8"34512'"

Figure 12: AS sharing of top-10 LDNSs and their
clients

Our discussion so far concerned the prevalence of AS shar-
ing in terms of client population. In other words, each client-
LDNS association is counted once in those statistics. How-
ever, different clients may have different activity levels, and
we now consider the prevalence of AS sharing from the per-
spective of clients’ accesses to the Web site. Table 2 shows
the fraction of client activity stemming from client-LDNS as-
sociations that share the same AS. The first column reports
the fraction of all sub1 and sub2 request pairs with both
the client and LDNS belonging to the same AS. This metric
reflects definitive information but it only approximates the
level of client activity because of the 10s TTL we use for
sub1 and sub2 responses: we do not expect the same client
to issue another DNS query for 10 seconds (or longer, if the
client violates TTLs) no matter how many HTTP requests
it issues within this time. The second column shows the
fraction of all HTTP requests such that the preceding DNS
query that originated from the same client used an LDNS
in the same AS as the client. This metric reflects definitive
activity levels but is not iron-clad in attributing the activity
to a given client/LDNS association.

First, we note that the prevalence of AS sharing measured
based on activity is somewhat lower than based on client
populations.

Second, these levels of AS sharing are still significantly
higher than those reported in the 10-year old study [15] (see
Table 5 there). This is an encouraging development for DNS-
based request distribution.

Overall, while the prevalence of AS sharing increased form
10 years ago, we found a sizable fraction (15 - 17%) of
client/LDNS associations where clients and LDNSs reside in
different ASs. One of the goals in server selection by CDNs,
especially those with a large number of locations such as
Akamai, is to find an edge server sharing the AS with the
originator of the request [20]. Our data shows fundamental
limits to the benefits from this approach.

7. TOP-10 LDNS CLUSTERS
We have investigated the top 10 LDNSs manually through

reverse DNS lookups, namely whois records, and MaxMind
ISP records for their IP addresses. The top-10 LDNSs in
fact all belong to just two ISPs, which we refer to as ISP1
(LDNSs ranked 10-4), and ISP2 (ranked 3-1). The top three
clusters of ISP2 contributed 1.6% of all unique client-LDNS
associations in our traces and 2.33% of all sub1 requests.

!"

!#"

!##"

!###"

!####"

$%
&
'!
"

$%
&
'(
"

$%
&
')
"

$%
&
'*
"

$%
&
'+
"

$%
&
',
"

$%
&
'-
"

$%
&
'.
"

$%
&
'/
"

$%
&
'!
#"

0123"04564789" 68:4;<"04564789" /+=>"?85@8<A78"04564789"

//=>"?85@8<A78"04564789" B"C748<=9"D"!##"64789"

Figure 13: Air miles between top-10 LDNSs and
their clients.

The extent of the AS sharing for these clusters is shown in
Figure 12. In the figure, the bars for each cluster represent
(from left to right) the number of clients sharing the AS
with the cluster’s LDNS, the number of clients in other ASs,
and for the latter clients, the number of different ASs they
represent. The figure shows very low degree of AS sharing
in the top clusters. Virtually all clients belong to a different
AS from the one where their LDNS resides, and each cluster
spans dozens of different ASs. We further verified that these
ASs belong to different organizations from those owning the
corresponding LDNSs. Interestingly, the AS sharing is very
similar between ISP1 and ISP2.

We also consider the geographical span of the top 10 clus-
ters using MaxMind GeoIP city database. Figure 13 shows
the average and median air-miles distance between the LDNS
and its clients, as well as the 95th and 99th percentiles for
these distances for each LDNS Cluster. The last bar shows
the percentage of clients in that cluster that are less than
100 Mile apart from the LDNS.

While figure 12 shows that top-10 LDNS clusters spans
dozens of ASs which suggests topologically distant pairs,
Figure 13 shows that these clusters are very compact, with
most clients less than 100 miles away from their LDNSs.
Further, although both ISPs exhibit similar trends, ISP2
clearly has more ubiquitous LDNS infrastructure and more
of their customers can expect better service from CDN-
accelerated Web sites. Indeed, ISP2’s LDNSs have more
than 99.9% of their clients within 100 AirMiles radius, with
the average range between 20 - 43 AirMiles.

8. CLIENT SITE CONFIGURATIONS
We now discuss some noteworthy client and LDNS behav-

iors we observed in our experiments.

8.1 Clients OR LDNSs?!
Our first observation is a wide-spread sharing of DNS and

HTTP behavior among clients. Out of 278,559 LDNS servers
in our trace, 170,137 or 61.08% also show up among the
HTTP clients. We refer to these LDNSs as the “Act-Like-
Clients” group.

A vast majority of these LDNSs – 98% or 166,859 – have
themselves among their own associated clients. We will call
these LDNSs the Self-Served group. The other 3278 LDNS
IP addresses always used different LDNSs when acted as
HTTP clients. Within the Self-Served group, we found that
149,013 of these LDNSs, or 53% of all the LDNSs in our

!"#$%!"&'"()

+",+")

-./012)

034)

!"#$%!"&'"()

-5#6"+7,89:;!<)

=01=1)

-14)

!"#$%!"&'"()

,85#6"+7<)

-23=1)

14)

>"<7)?$)9:;!<)

-.3=,,)

0@4)

AB7%96C"%

5#6"+7<%;?7%

!"#$%!"&'"()

0,23)

-4)

Figure 14: Distribution of LDNS types

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 100000 1e+06

C
D

F

Clients associated with a LDNS (cluster size)

Self-Served
Act-Like-Clinet Not Self-Served

Not Act-Like-Clients
All LDNSs

Figure 15: Cluster size distribution of LDNS groups.

dataset, had themselves as their only client during our exper-
iment (“self-served-one-client”) while the remaining 17,846
LDNSs had other clients as well (“Self-Served-2+Clients”).
Moreover, 105,367 of the self-served-one-client client/LDNS
IP addresses never used any other LDNS. We call them the
“Self-Served-One2One” group. This leaves us with 43,646
LDNSs that had themselves as their only client but in their
client role, they also utilize other LDNSs. This group will be
called the “Self-Served-1Client2+LDNSs”. Figure 14 sum-
marizes the distribution of these types of LDNSs.

While a likely explanation for the Act-Like-Client Not-
Self-Served group is the reuse of dynamic IP addresses (so
that the same IP address is assigned to an HTTP client at
some point and to an LDNS host at another time), the Self-
Served behavior could be caused by sharing of a common
middle-box between the LDNS and its clients. In particular,
the following two cases are plausible.

• Both clients and their LDNS are behind a NAT or
firewall, which exposes a common IP address to the
public Internet. A particular case of this configura-
tion is when a home network configures its wireless
router to behave as LDNSs. Such configuration is eas-
ily enabled on popular wireless routers (e.g., Linksys),
although these routers often resolve their DNS queries
through ISP LDNS servers [22].

• Clients are behind a proxy that acts as both HTTP
proxy/cache and its own LDNS resolver.

We find support for the above explanation using an ap-
proach similar to [14]. We utilized the User-Agent headers
to identify hosts sharing the same middle-box based on the

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 100000 1e+06

C
D

F

Sub1 requests issued by a LDNS

Self-Served
Act-Like-Clients Not Self-Served

Not Act-Like-Clients
All LDNSs

Figure 16: The number of sub1 requests issued by
LDNSs of different types.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 100000 1e+06

C
D

F

Sub1 requests issued by a LDNS

All One2One
One2One Self-Served

One2One Not-Self-Served
All LDNSs

Figure 17: Number of sub1 requests issued by
One2One LDNSs.

operating system and browser footprints. We consider an
IP address as a possible middle-box if it shows two or more
operating systems or operating system versions, or three or
more different browsers or browser versions. Out of the total
11.7M clients, we have flagged only 686,651 (5.87%) clients
who fall into the above category.5 However, 51,864 clients
among them were from the Self-Served LDNS group, out of
the total of 166K such LDNSs. Thus, the multi-host be-
havior is much more prevalent among self-serving LDNSs
than the general client population even though our tech-
nique misses single-host NAT’ed networks (which constitute
a majority of NAT networks according to [4] although not
according to [14]) and NATs whose all hosts have the same
platform.

An important question from a CDN perspective is whether
these configurations deviate from the“regular”LDNS cluster
behavior, in which case they might need special treatment
in DNS-based demand distribution. For example, a proxy
acting as its own LDNS might show as a small single-client
cluster yet impose incommensurately high load on a CDN
node as a result of a single act of the CDN server selection.

Figure 15 compares the cluster sizes of self-served and
other LDNSs. It shows that self-served LDNS clusters are
much smaller than other clusters, in fact they overwhelm-

5Compared to previous studies of NAT usage, notably [14]
and [4], this finding is more in line with the latter. Note
that our vantage point - from the perspective of a Web site
- is also closer to [4] than [14].

ingly contain only one client IP address. This finding is in
conformance with the behavior expected from a middle-box
fronted network. A more revealing finding is displayed in
Figure 16, which compares the activity (in terms of sub1
requests) of the self-served LDNSs with other groups.

The figure shows that the self-served LDNS clusters ex-
hibit lower activity levels than the not-act-like-clients clus-
ters. Thus, while middleboxes aggregate demand from sev-
eral hosts behind a single IP address, these middleboxes
seem to predominantly front small networks - smaller than
other LDNS clusters.

To confirm the presence of demand aggregation in self-
served LDNS clusters, Figure 17 factors out the difference in
client sizes and compares the activity of Self-Served and Not-
Self-Served LDNSs only for One2One clusters.There were
105,367 LDNSs/clients in the One2One Self-Served group
and 27,640 in the One2One Not-Self-Served group. Figure
17 shows that the One2One self-served LDNSs in general
are indeed more active than Not-Self-Served LDNSs. For
instance, 66% of Not-Self-Served LDNSs issued a single re-
quest is vs. only 46% of the self-served ones. This increased
activity of self-served LDNSs is consistent with moderate
aggregation of hosts behind a middle-box.

In summary, we found a large number of LDNSs operat-
ing from within middle-box fronted networks - they are ei-
ther behind the middleboxes or operated by the middleboxes
themselves. However, while these LDNSs exhibit distinct de-
mand aggregation, their clusters are if anything less active
than other clusters. Thus, a middle-box fronted LDNS in it-
self does not seem to be an indication for separate treatment
in DNS-based request routing.

8.2 LDNS Pools
We now consider another interesting behavior. As a re-

minder, our sub* DNS interactions start with a sub1 request
issued by the LDNS to our setup, to which we reply with
a sub2 CNAME, forcing the LDNS to send another query,
this time for sub2. However, we observed occurrences in our
traces where these two consecutive queries (which we can
attribute to the same interaction because both embed the
same client IP address) came from different LDNS servers.
In other words, even though we sent our CNAME response
to one LDNS, we got the subsequent sub2 query from a dif-
ferent LDNS. Note that this phenomenon is distinct from
resolver clusters mentioned in [12]. Indeed those other sets
of resolvers occur when clients (ISPs on their behalf) load-
balance their original DNS queries among multiple resolvers
– the measurements mentioned do not consider which re-
solvers might handle CNAME redirections. In contrast,
in the behavior discussed here, CNAME redirections arrive
from different IP addresses.

Such behavior could be caused by an LDNS server with
multiple ethernet ports (in which case a server might select
different ports for different queries), or by a load-balancing
LDNS server farm with shared state. An example of such
configuration, hinted by Google in [9], is shown in Figure 18,
where two distinct layers of LDNS clusters face, respec-
tively, clients and ADNSs, and the ADNS-facing LDNSs are
not recursive. Here, client-facing servers load-balance their
queries among ADNS-facing servers based on a hash of the
queried hostname; ADNS-facing servers send CNAME re-
sponses back to the client-facing server, which forward the

End User

ADNS

ADNS Facing

LDNSs

LDNS Pool

Client Facing

LDNSs

Sub1CNAME

Sub2

Figure 18: LDNS Pool

subsequent query to a different ADNS-facing server due to
different hostname.

In this paper we will call such a behavior – for the lack of a
better term – the multiport behavior and LDNS IP addresses
showing together within the same interactions LDNS pools
to indicate that they belong to the same multiport host or
a server farm.

In an attempt to remove fringe scenarios involving rare
timeout combinations, we only considered LDNSs L1 and
L2 to be part of a pool if (1) the sub1 request for a given
client came from L1 while sub2 request for the same client
came from L2; and (2) the sub2 request from L2 came within
one second of the sub1 request from L1.

Using the above filter, we consider the prevalence of mul-
tiport behavior. We found 5,105,467 cases of such behav-
ior representing 407,303 unique LDNS multiport IP address
pairs and involving 36,485 unique LDNS IP addresses, or
13% of all LDNSs in our trace. Furthermore, 1,924,359
clients (17% of all clients) were found to be directly involved
in LDNS multi-port behavior (i.e., observed to have sub1
and sub2 requests within the same interaction coming from
different LDNS IP addresses), and over 10M clients – 90%
of all the clients in our trace – were associated at some point
with an LDNS belonging to a pool. Overall, the 13% of
LDNSs with multiport behavior were the busiest – they were
responsible for over 90% of both sub* queries and subsequent
HTTP requests. We conclude that multiport behavior is
rather common in today’s Internet.

Such significant occurrence of multiport behavior warrants
a closer look at this phenomenon as it may have impor-
tant implications for DNS-based request routing. Indeed,
if LDNS pools always pick a random LDNS server to for-
ward a given query, the entire pool and all clients associated
with any of its member LDNSs should be treated as a sin-
gle LDNS cluster. If, however, the LDNS pools attempt to
preserve client affinity when selecting LDNS servers (i.e., if
the same client tends to be assigned the same LDNS for the
same hostname resolution, as would be the case with hash-
based assignment sketched earlier) then individual LDNSs in
the pool and clients associated with these individual LDNSs
could be treated as separate LDNS clusters. A careful in-
vestigation of LDNS pools is an open issue for future work.

9. DISCUSSION: IMPLICATIONS FOR WEB
CONTENT DELIVERY

This section summarizes the implications of our findings
for Web platforms that employ DNS-based demand distri-
bution, such as CDNs. Obviously, these lessons were de-
rived from the study of one busy consumer-oriented Web
site. While we believe this Web site is typical of similar
informational sites, sites of different nature may need to re-
evaluate these lessons, in which case our study can serve as
a blueprint for such an assessment. The implications dis-
cussed here are necessarily qualitative; they follow logically
from our findings but each would have to be carefully evalu-
ated in a separate study in the specific target environment.

First, despite a long-held concern about the hidden load
problem of DNS-based demand distribution, this is not a se-
rious issue in practice for all but a small fraction of local DNS
servers. For most LDNSs, the amount of hidden load – while
different from one LDNS to the next – appears small enough
to provide sufficiently fine granularity for load distribution.
Thus, a proper request routing could achieve a desired load
distribution without elaborate specialized mechanisms for
dealing with hidden load such as [5, 6].

Second, due to their relatively small number, the excep-
tions to the above finding (“elephant”LDNS clusters) can be
identified, tracked and treated separately, perhaps even by
semi-automated policy configuration. This is especially true
for the very largest elephants as they appear to be geograph-
ically compact: even though these clusters contain tens of
thousands clients, their clients are mostly situated within a
hundred miles from their LDNS. Thus, these clusters both
benefit significantly from being served from a proximally op-
timal location in the platform and are not amenable to being
shifted between locations using DNS resolution, due to their
large hidden load. More fine-grained demand distribution
techniques, such as L4-7 load balancers or HTTP or RTP
redirection might be needed.

Third, there is a large variation in the compactness of
LDNS clusters, both in terms of geographical distribution
of their clients and autonomous system sharing between the
clients and the LDNS in the cluster. This provides rich
opportunities for improved request routing policies. For in-
stance, the ADNS of the platform can try to “pin” compact
LDNS clusters to be served from the respective optimal lo-
cations in the platform, while resolving any load imbalances
within the global platform by re-routing requests from non-
compact clusters to the extent possible. The specific poli-
cies must be worked out; however, the amount of diversity
in terms of cluster compactness at a large range of cluster
sizes makes this a promising avenue for improving efficiency
of a Web platform.

Finally, there has been a shift in client-side DNS setup.
The traditional model of a stub resolver at a client host
talking to a local recursive DNS server, which interacts with
the rest of the DS infrastructure, no longer applies to vast
numbers of clients. Many clients appear to be behind mid-
dleboxes, which masquerade as both a client and its LDNS
to the rest of the Internet. Also common are complex se-
tups involving layers of resolvers with shared state, which we
called“LDNS pools”. While we find no evidence that the for-
mer setup requires special treatment from a Web platform,
the implications of the wide deployment of LDNS pools is
another direction for further investigation.

10. RELATED WORK
This paper explores client-side DNS infrastructure. Among

the previous client-side DNS studies, Liston at al. [13] and
Ager et al. [1] measured LDNS by resolving a large number
of hostnames from a limited set of client vantage points (60
in one case and 75 in the other), Pang et al. [19] used access
logs from Akamai as well as active probes, and [7] based
their studies on large-scale scanning for open resolvers. Our
goal was a broad characterization of clients’ LDNS clusters
from the perspective of a busy Web site.

Both Ager et al. [1] and Huang et al. [11] compared
the performance implications of using public DNS resolvers,
such as Google DNS, with ISP-deployed resolvers and found
the former to be at significantly greater distances from clients.
Further, Huang et al. considered the geographical distance
distribution between clients and their LDNSs (Fig. 5 in
[11]). Our study found these distances to be significantly
greater: while they observed 80% of clients to be within
428km of their LDNS resolvers, over 50% of our clients were
over 500 miles (806km) away from their resolvers (cf. Fig.
9). Network proximity of clients to their LDNS was con-
sidered in [23] and [15]. Our measurement technique is an
extension of [15], which we augmented to allow measurement
of LDNS pools.

Bermudez et al. proposed a tool that combines a packet
sniffer and analyzer to associate content flows with DNS
queries [3]. This tool is targeted to operators of client-
side access networks, in particular to help them understand
which content comes from third-party platforms, while our
approach is website-centric, with the goal of characterizing
LDNS clusters to inform DNS-based request routing.

As an alternative to the Faster Internet initiative men-
tioned earlier [8], Huang et al. [10] recently proposed a dif-
ferent method to inform Web sites about the clients behind
the LDNS. This proposal does not require changes to DNS
and instead modifies client applications, which are presum-
ably more amenable to changes.

11. CONCLUSION
This paper investigates clusters of hosts sharing the same

local DNS server (“LDNS clusters”). Our study is done from
the vantage point of a busy consumer-oriented web site and
is based on a large-scale measurement over 28 day period,
during which our web page was accessed around 56 million
times by 11 million client IPs.

We found that among the two fundamental issues in DNS-
based network control - hidden load and client-LDNS dis-
tance, hidden load plays appreciable role only for a small
number of “elephant” LDNS servers while the client-LDNS
distance is significant in many cases. Further, LDNS clusters
vary widely in both characteristics, and the largest clusters
are actually more compact than others. Thus, a request
routing system such as a content delivery network can at-
tempt to balance load by reassigning non-compact LDNSs
first as their clients benefit less from proximity-sensitive
routing anyway. We also report on several other important
aspects of LDNS setups and in particular observed a wide
use of what we called “LDNS pools” that – unbeknown to
end-hosts – appear to load-balance DNS resolution tasks.
Acknowledgement. This work was supported in part by
NSF under grant CNS-0831821.

12. REFERENCES
[1] Bernhard Ager, Wolfgang Mühlbauer, Georgios

Smaragdakis, and Steve Uhlig. Comparing DNS
resolvers in the wild. In Proceedings of the 10th annual
conference on Internet measurement, IMC ’10, pages
15–21, 2010.

[2] H. Alzoubi, M. Rabinovich, and O. Spatscheck. The
anatomy of LDNS clusters: Findings and implications
for DNS-based network control.
http://engr.case.edu/rabinovich michael/LDNS full.pdf.

[3] I. Bermudez, M. Mellia, M.M. Munafò, R. Keralapura,
and A. Nucci. Dns to the rescue: Discerning content
and services in a tangled web. In Proceedings of the
12th ACM SIGCOMM Conference on Internet
Measurement, 2012.

[4] M. Casado and M.J. Freedman. Peering through the
shroud: The effect of edge opacity on IP-based client
identification. In Proceedings of the 4th USENIX
conference on Networked systems design &
implementation, pages 13–13. USENIX Association,
2007.

[5] Michele Colajanni and Philip S. Yu. A performance
study of robust load sharing strategies for distributed
heterogeneous web server systems. IEEE Trans.
Knowl. Data Eng., 14(2):398–414, 2002.

[6] Michele Colajanni, Philip S. Yu, and Valeria
Cardellini. Dynamic load balancing in geographically
distributed heterogeneous web servers. In ICDCS,
pages 295–302, 1998.

[7] D. Dagon, N. Provos, C.P. Lee, and W. Lee. Corrupted
DNS resolution paths: The rise of a malicious
resolution authority. In Proceedings of Network and
Distributed Security Symposium (NDSS), 2008.

[8] The global internet speedup.
http://www.afasterinternet.com/.

[9] Google Public DNS. Performance Benefits.
https://developers.google.com/speed/public-
dns/docs/performance.

[10] Cheng Huang, Ivan Batanov, and Jin Li. A practical
solution to the client-LDNS mismatch problem.
SIGCOMM Comput. Commun. Rev., 42(2):35–41,
April 2012.

[11] Cheng Huang, D.A. Maltz, Jin Li, and A. Greenberg.
Public DNS system and global traffic management. In
INFOCOM, 2011 Proceedings IEEE, pages 2615
–2623, 2011.

[12] Christian Kreibich, Nicholas Weaver, Boris Nechaev,
and Vern Paxson. Netalyzr: illuminating the edge
network. In Proceedings of the 10th Annual Conference
on Internet Measurement, IMC ’10, pages 246–259,
2010.

[13] R. Liston, S. Srinivasan, and E. Zegura. Diversity in
DNS performance measures. In Proceedings of the 2nd
ACM SIGCOMM Workshop on Internet measurment,
pages 19–31, 2002.

[14] G. Maier, F. Schneider, and A. Feldmann. NAT usage
in residential broadband networks. In 12th Passive
and Active Measurement Conf., pages 32–41, 2011.

[15] Zhuoqing Morley Mao, Charles D. Cranor, Fred
Douglis, Michael Rabinovich, Oliver Spatscheck, and
Jia Wang. A precise and efficient evaluation of the
proximity between web clients and their local DNS
servers. In USENIX Annual Technical Conference,
General Track, pages 229–242, 2002.

[16] Maxmind GeoIP city database.
http://www.maxmind.com/app/city.

[17] OpenDNS - A Technical Overview.
http://www.opendns.com/technology.

[18] J. Pang, A. Akella, A. Shaikh, B. Krishnamurthy, and
S. Seshan. On the responsiveness of DNS-based
network control. In Proceedings of the 4th ACM
SIGCOMM conference on Internet measurement,
pages 21–26, 2004.

[19] Jeffrey Pang, James Hendricks, Aditya Akella,
Roberto De Prisco, Bruce Maggs, and Srinivasan
Seshan. Availability, usage, and deployment
characteristics of the domain name system. In
Proceedings of the 4th ACM SIGCOMM Conference
on Internet measurement, IMC ’04, pages 1–14, 2004.

[20] I. Poese, B. Frank, B. Ager, G. Smaragdakis, and
A. Feldmann. Improving content delivery using
provider-aided distance information. In The 10th ACM
Internet Measurement Conf., pages 22–34, 2010.

[21] M. Rabinovich and O. Spatscheck. Web caching and
replication. Addison-Wesley, 2001.

[22] K. Schomp, T. Callahan, M. Rabinovich, and
M. Allman. Assessing the security of client-side DNS
infrastructure. Submitted for publication, 2012.

[23] Anees Shaikh, Renu Tewari, and Mukesh Agrawal. On
the effectiveness of DNS-based server selection. In
INFOCOM, pages 1801–1810, 2001.

