
Client-Centric Content Delivery Network
Sipat Triukose

International School of Engineering (ISE)
Chulalongkorn University
Bangkok, Thailand

Email: sipat.t@chula.ac.th

Michael Rabinovich
EECS Department

Case Western Reserve University
Cleveland, USA

Email: michael.rabinovich@case.edu

Abstract—Content delivery networks (CDNs) carry a large
portion of today’s web traffic. Any improvement in their perfor-
mance would have a direct impact on Internet users’ experience.
We propose a client-centric approach to improve the content
delivery performance of CDNs with minimal alteration of the
current CDN platform. A preliminary evaluation of our approach
based on traffic traces from a large organization network
shows significant promise, with around 22%-36% performance
improvement for HTTP object downloads.

I. INTRODUCTION

Content delivery networks have become an integral part
of the Internet infrastructure. Just the leading CDN provider
– Akamai – claims to be delivering 15-30% of all Web
traffic [8], and there are dozens other CDNs as well. CDNs are
content-provider centric: they provide service to subscribing
content providers and they answer to their subscribers for the
performance of the outsourced content delivery. In particular,
as part of this business relationship, the CDN and a subscriber
agree on a subset of edge servers and locations to be used
for delivering the subscriber’s content. Because different sub-
scribers may be assigned to different edge servers, and due to
load balancing, users from the same organizational network, or
even the same user, may be directed to different edge servers
for different downloads.
This work explores a somewhat different operation model,

where instead of allocating edge servers to groups of content
providers, the CDN “assigns” edge servers to (groups of)
organizational or metropolitan networks to which the users –
the consumers of the content – belong. This brings the usage
of an edge server closer to that of a client-side forward proxy,
except that the edge server is still utilized only for the content
from subscribers and is physically part of the CDN platform.
In other words, users from a given organizational network
would be directed to the same edge server to download content
from all the CDN subscribers, while at the same time content-
provider centric nature of the CDN does not change.
Our idea is inspired by an observation from our previous

work that a client can download any CDN-outsourced object
from any edge server, whether or not this edge server is
assigned to the object’s content provider, and that this edge
server will cache the object for future use [13]. We further
show in the present work that a server that provides good
download performance to a given client is likely to continue
to be a good choice for an extended period of time. With

these observations, clients in a given organizational network
can be “pinned” to the same edge server for all downloads of
CDN-accelerated content, opening up a number of possibilities
for performance improvement including (a) reduction of the
overhead from frequent DNS queries to remote DNS servers;
(b) better reuse of existing TCP connections hence a reduction
of TCP connection start-up overheads; and (c) improved TCP
connection utilization, with consequent improvement in TCP
throughput due to more effective bandwidth probing and less
chance of a congestion window reset after a long idle period.
This paper quantifies, and sketches architectural approaches
that could realize, these benefits.
A potential concern with this approach is that prolonged

pinning of clients to the same edge server may hamper CDN’s
ability to quickly react to edge server failures or sudden
overloads and other changes. As discussed in the paper, this
concern is effectively addressed by periodic polling of the edge
server to check its responsiveness; by selecting the polling
period to be equal to the time-to-live returned by CDN’s DNS
responses, the agility of our approach remains the same as in
a traditional CDN.

II. RELATED WORK

Our approach is related to several past ideas that blurred the
boundaries between forward proxies and CDNs, such as the
Content Bridge Alliance [5] and an Akamai patent disclosing
a possibility of deploying an edge server inside an enterprise
intranet [9]. Unlike these efforts, we propose to improve
CDN performance simply by changing the way edge servers
are selected. Poese et al [11] proposed a solution where a
CDN interacts with client ISPs to obtain distance information
between clients and edge servers only available to the ISP.
In contrast, our approach improves performance by avoiding
excessive edge server churn.
Our approach tries to increase efficiency of content delivery

by reducing DNS resolution, TCP start-up overheads, and
increasing TCP connection reuse. One could also mask DNS
resolution and some TCP start-up overheads through prefetch-
ing. Implications of DNS prefetching, and to less extent TCP
connection pre-opening, have been studied [3], [12], [4] and
many web browsers today offer the DNS prefetching as their
standard feature. Our approach differs from prefetching in that
it does not run the risk of unnecessary work.

HTTP/2 [7] has introduced a number of measures to im-
prove performance of Web downloads, including those aimed
at increasing TCP connection utilization. Our approach re-
quires no changes to HTTP. Its evaluation in the context of
HTTP/2 is a topic for future work.

III. THE APPROACH

CDN subscribers outsource their content delivery to the
CDN by replacing hostnames in their URLs with hostnames
belonging to the CDN domain, typically by means of DNS
redirection or URL re-writing. (We refer to these hostnames
as “CDN-outsourced” hostnames.) Then, users’ DNS queries
for the outsourced hostnames arrive to the CDN’s authoritative
DNS servers, which select edge servers for each query and
return their IP addresses to the users.
Our basic approach is for an organizational network to, most

of the time, direct all its users to the same edge server, for
all content served by a given CDN. We describe and evaluate
our approach using Akamai, the leading CDN provider, as an
example.
To follow our approach, an organization would modify its

local DNS server (LDNS) to maintain a list of a few Akamai
edge servers, which the LDNS can do by periodic DNS queries
for Akamai-outsourced hostnames. When processing DNS
queries from the users, the LDNS would recognize queries
for Akamai-outsourced hostnames and, instead of forwarding
these queries in a usual way, simply respond with the IP
address of an edge server of its own choosing, regardless of
the specific hostname being resolved. Normally the same edge
server would be returned for all queries unless its performance
degrades or it becomes unavailable. The LDNS can detect any
such issues by periodically probing the chosen edge server,
e.g., by requesting a small HTTP object from it. In fact, as
explained in Section III-B, by choosing the probing interval
to be equal to the TTL of DNS responses from the CDN, this
approach retains the agility of the current CDN in reacting to
unforeseen changes in the edge server operation.

A. Deployment Alternatives

There are two ways to realize this approach. One alternative
is for the organizational network to simply override the CDN’s
edge server selection with its own mechanism, and we verified
that existing CDNs allow such user-imposed edge server selec-
tion [13]. However, CDNs can fairly easily implement mech-
anisms to block the selection of an unintended edge server.
Instead, the other alternative is for the CDN itself to embrace
this approach and make the modified LDNS software available
to organizations. Using this LDNS would be beneficial for both
the the organizations and the CDN: the organization’s users
will experience better download performance when accessing
content from the CDN’s subscribers, and the CDN will deliver
better performance to their subscribing content providers.

B. Edge Server Selection

While we leave detailed investigation of LDNS behavior
regarding edge server selection for future work, as a starting

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-1.5 -1 -0.5 0 0.5 1 1.5

P
(X

<
=

x)

x (relative difference)

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

Trial 6

Fig. 1. Relative throughput difference. If Tr and Ta are throughput of reused
and Akamai-selected servers, the relative difference is calculated as (Tr −
Ta)/max(Tr , Ta)

point, we envision the following scheme. The LDNS would
maintain a list of candidate edge servers. For that, LDNS can
perform DNS resolution of one Akamai-outsourced hostname
from each of a few Akamai’s customer sites known to be
mapped to a large number of edge servers. Presumably Akamai
will return the best server among the servers allocated to each
of these customers, and the LDNS server can now fetch a
small number of bytes using an HTTP range request from each
of these servers to select the best among them (there would
be only few to check — one for each customer site). The
candidate list can be refreshed and re-ranked periodically, and
the results of the next section suggest this can be done very
infrequently, with periodicity in the order of hours. The LDNS
will then use this edge server for all client requests for any
Akamai-accelerated content, while periodically monitoring the
edge server performance. If a degradation of this server
performance is detected, or re-ranking of the candidate list
finds a better server, the LDNS will switch to another edge
server.
Akamai’s current practice bounds Akamai’s responsiveness

to edge server outage or overload by the TTL it assigns to
its DNS responses, currently 20s; indeed, these responses will
be cached and reused for the TTL period by the LDNS and
browsers no matter the change in the edge server status. By
using the same TTL for its responses to clients and for re-
probing the selected edge server, the LDNS in our scheme
will have the same agility.

IV. THE EFFECT OF INFREQUENT SERVER SELECTION

The potential downside of our scheme is that, because
the clients reuse the same edge server for a long time, the
client’s download performance could degrade if network con-
ditions change. To assess this effect, we conduct the following
experiment using the DipZoom measurement platform [6].
We choose a 47, 727 byte objectfrom buy.com outsourced
to Akamai. At the beginning, we request 260 DipZoom
measuring points (MPs) world-wide to perform domain name
resolution of ”ak.buy.com” to get Akamai selected edge server
IP addresses for each MP.
We then perform six trials spaced 30 minutes apart. In

each trial, we request each MP to download the object (using

the curl tool) from the edge server obtained a-priori (using
server IP address directly), and from the edge server selected
normally by Akamai at the time of the download (i.e., obtained
by a DNS query to Akamai just prior to the download). We
make sure (by pre-requesting the object) that the requesting
content is cached on both edge servers prior to both downloads
to avoid potential cache-misses skewing our results.
Figure 1 shows, for each trial, the cumulative distribution

function (CDF) of the relative difference of download speeds
(as reported by curl) between the a-priori selected server and
the server selected at the time of the test, across all 260 MPs.
There are six curves – one for each trial. The result shows no
discernible difference between reusing the server and selecting
the server at the time of measurement. The relative differences
are clustered around 0, and each scenario outperforms the
other in around 50% of the MPs; furthermore, this result
remains consistent throughout all the trials1, or 2.5 hours since
the selection of the a-priori server. In other words, content
delivery performance from the same edge server remains
consistent over the extended period of 2.5 hours.
Thus, while LDNS in our approach will probe the selected

edge server every 20s (which is the TTL of Akamai’s DNS
responses) to react to any sudden changes in the edge server
status with the same agility as Akamai today, one can expect
that most of the time, the clients will be able to remain pinned
to the same edge server for a long time. We leave detailed
investigation of LDNS behavior to future work.

V. PRELIMINARY EVALUATION

We conduct a preliminary evaluation of the impact of
our approach on HTTP download performance of Akamai-
delivered content. After describing our dataset, we first present
a simulation experiment to assess the amount of the reduc-
tion in remote DNS queries (i.e., the queries that miss in
LDNS cache and involve interaction with an authoritative DNS
server) and the increase of TCP connection reuse, the main
motivating factors of our approach. We then perform a replay
experiment to evaluate the actual performance improvement.
More details on our study can be found in [14].

A. Data Set

We use an HTTP packet trace collected at line speed from
the two border routers connecting the CWRU campus network
with the Internet. The trace spans 2.5 hours during the high
traffic period (in the afternoon) of September 14, 2010 and
comprises over 8.2 million HTTP downloads from 21,616
clients. Since we focus on performance impact to Akamai due
to our approach, we extract the Akamai traffic involving Case
local clients from this trace. The Akamai traffic includes 2.3
million HTTP downloads (around 28% of all HTTP requests,
in the line with Akamai’s claim of delivering 15–30% of
HTTP traffic) from 5,725 Case clients over 0.78 million TCP
connections.

1Across all the MPs and trials, median, average, and standard deviations
of the throuput ratios of a-priori over kamai-selected servers are 1, 1.17, and
0.05 respectively.

Akamai deploys edge servers locally within some enterprise
networks, and CWRU campus network is one of them. We
refer to such edge servers as ”local edge servers”. While local
edge servers are located within Case network, their traffic
fortunately traverses the border routers due to network organi-
zation and is captured in our trace. In our Akamai trace, traffic
to local edge servers represents 1.6 million requests over 0.52
million TCP connections, with the total downloaded content
size of 51 GB. Off-campus edge servers are responsible for
0.7 million requests, 0.26 million TCP connections, and 35
GB of total downloaded content.

B. Simulation Experiment

1) DNS Queries: We first assess the performance improve-
ment from virtually eliminating remote DNS queries. To this
end, we need to estimate the number of LDNS cache misses
in the current Akamai approach and the time taken by each
query. Since our trace contains no DNS traffic, we use trace-
driven simulation to recreate the stream of DNS queries issued
by LDNS to the Akamai platform, by simulating LDNS cache
with 20 second TTL. Initially the LDNS cache is empty. For
each HTTP request from the trace, if the requested hostname
has been placed into the LDNS cache within the past 20
seconds, no query is issued, otherwise the query is generated
and the hostname is placed in the LDNS cache.2 As the result,
we estimate that the clients experienced 138,237 LDNS cache
misses. These misses occur over 2.3M HTTP requests and
0.78M TCP connections, showing high DNS cache hit rate
(over 93% for requests and 82% for connections occurred
without an external DNS lookup) for Akamai-delivered con-
tent despite short TTL.
We further separately measured the response time of these

misses by resolving hostnames from the trace from a machine
on the Case campus network. To exclude queries that hit in the
CWRU LDNS cache, we only consider queries that returned
responses with TTL 20s – the authoritative TTL assigned
by Akamai DNS, obtaining usable query times for 4,092
out of 5,218 Akamai-outsourced domain names in the trace3.
We found the average cost of a miss (weighted by relative
frequencies of name appearances in the trace) to be just over
22ms. Along with the low cache miss rate, the impact of these
misses appears minimal (the amortized cost per connection is
in low single milliseconds). In other words, the benefits of our
approach due to eliminating remote DNS queries is negligible.
2) TCP Connection Reuse: We now compare TCP con-

nection reuse in the current Akamai setup and our approach,
as measured in the number of HTTP requests delivered over
one connection. For this experiment, we removed all traffic to
Akamai that originated from the CWRU’s guest wifi gateway.
Traffic from this gateway appears to come from a single client,

2In practice, web browsers and LDNSs sometimes cache the DNS query
answers longer than assigned TTLs [10], although this practice seems to
become less prevalent [2]. Therefore, our simulation could be viewed as an
upper bound of DNS query overhead.
3In the hindsight, we should have repeated queries for the names resolved

from the LDNS cache, but we do not believe the missed queries affect our
findings.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 100000 1x106

P
(X

<
=

x)

x (requests per connection)

our approach

current approach

Fig. 2. Per-client connection reuse (requests/connection) in both approaches

while in fact coming from a large number of users behind
the gateway, and it can skew the results. After removing this
traffic, we are left with 1, 615, 150HTTP requests for Akamai-
outsourced content over 495, 213 connections in the current
approach.
For the current setup, we obtain connection reuse directly

from the trace. The reuse in our approach is simulated as
follows. In a separate study, we measured persistent connection
keep-alive in Akamai egde servers to be 500 seconds [15]
(which is notably longer than typical values on websites [1]).
Then, we consider a set of HTTP requests from the same client
with inter-request gap not exceeding 500 seconds, regardless
of which connection they belong to in the trace, to utilize the
same TCP connection in our simulation. Any gap of 500s or
more opens a new TCP connection. As a result, our approach
only requires 9, 435 to carry the 1.6 millions requests.
Figure 2 shows the CDF of the average connection reuse per

client in the current and our approach, measured in the average
number of requests per connection, for all connections from a
given client. It shows a dramatic increase in connection reuse
in our approach. Overall, one TCP connection in our approach
on average transfers 171.19 HTTP requests compared to only
3.26 or 3.82 requests in the current approach (depending on
whether or not we exclude connections that transfer no data
from the 495, 213 connections in the current approach). Next
section assesses how this improvement translates into the end-
to-end download performance.

C. Replay Experiment

We compare the end-to-end performance of the current
and our approaches by replaying actual Akamai traffic from
the trace. In particular, this quantifies the impact of higher
connection utilization on throughput of content downloads.
Since it is infeasible to replay the entire traffic from

our trace, we randomly select 30 clients accessing Akamai-
accelerated sites and extract the Akamai traffic trace generated
by these clients to use for our replay experiments. This subset
of the Akamai trace represents 4,717 HTTP requests over
1,852 TCP Connections and constitutes 549 MB of content;
There are 3,186 requests to local Akamai edge servers over
1,251 TCP connections and 1,531 requests to off-campus
Akamai edge servers over 601 TCP connections; The internal

and external requests constitutes 533 MB and 16 MB of
Akamai content respectively.

1) The Replay Method: We perform two replays of the
clients’ requests, using our approach (our-replay) and under
the current Akamai practice (current-replay). For simplicity,
and because most browsers turn pipelining off for security
reasons, neither replay use HTTP pipelining. Thus, two over-
lapping downloads will be serialized as two successive back-
to-back requests in the order of their starting timestamps
in the trace. At the same time, consecutive non-overlapping
downloads in the trace are replayed while preserving the
original inter-request intervals in the trace, except if a request
during the replay does not finish before the designated time
of the next request, in which case we start the next request
right after the completion of the first one. During a replay,
we record the domain name resolution time, every connection
establishment time, and content transfer time.
In our-replay, we open a TCP connection to our designated

edge server and attempt to utilize this connection for requests
across all customer contents. If the connection is terminated
by the remote host, we re-open another connection to the same
edge server.
In current-replay, for each client, we group requests by

the TCP connection to which they belong. For each group
of requests, a client opens a TCP connection to the desig-
nated edge server and sends all these requests through this
connection, in a similar way to our-replay (no pipelining,
otherwise preserving inter-request time gaps). Once this group
of request is completed, the connection is closed and the
new connection, for the next group of requests, is opened in
immediate succession to the same edge server.
The above technique serializes HTTP requests while largely

retaining transfer timing within each TCP connection.
We account for DNS query overhead as follows. In our-

replay, for each client, we perform the domain name resolution
for the first Akamai-accelerated URL in the trace to record the
time of getting the designated edge server. However, current-
replay, distorts timing of the initiation of the TCP connections
and thus makes recreating and replaying DNS queries more
difficult. Therefore, in current-replay, instead of performing
the DNS query before every TCP connection, we replay the
DNS queries separately according to the original timing of the
starts of the TCP connections to ensure that the gaps between
all DNS queries are the same as in the real trace. Since we
replay these queries through production LDNS, their timing
reflects natural caching effects in LDNS at the time of the
experiment.
We evaluate our approach in two scenarios, in an or-

ganization that has local Akamai servers deployed and an
organization that does not. In the first first scenario, we use
a local Akamai edge server on Case campus as the selected
edge server in the replays, for both our-replay and current-
replay. In the second scenario, we choose the most popular
external Akamai edge server used by the Case community
as our selected edge server. We refer to two replays in each

Current Our % Our
Current

DNS time 24.81 0.41 1.67
TCP Handshake time 827.98 42.06 5.08
Transfer time 3267.67 3179.17 97.29
Total Download time 4120.47 3221.64 78.19

TABLE I
REPLAY TIMES (IN SECOND) OF int-our-replay AND int-current-replay.

Current Our % Our
Current

DNS time 18.08 0.24 1.33
TCP Handshake time 1192.31 63.38 5.32
Transfer time 3885.31 3200.21 82.37
Total Download time 5095.70 3263.83 64.05

TABLE II
REPLAY TIMES (IN SECOND) OF ext-our-replay AND ext-current-replay.

scenario as, respectively, int-our-replay, int-current-replay,
ext-our-replay and ext-current-replay.
We used a host on Case campus in all HTTP replays as

well as for DNS replays in int-current-replay. For ext-current-
replay, we cannot replay the DNS queries from the Case client
because there exists a local Akamai authoritative DNS server
on the Case network. Therefore, we perform this DNS replay
in another network, where Akamai has no presence, using the
PlanetLab node at the University of Chicago for this purpose.
2) Results: Tables I and II summarize the comparison

between total download time of the same contents in the cur-
rent network configuration and in our proposed configuration.
The tables also break down the total time into DNS query
time, TCP handshake time, and transfer time, showing the
contribution of each component to performance improvement.
Overall, as seen from Tables I and II, clients take around

69 and 84 minutes to download all the contents in the current
configuration as opposed to around 53 and 54 minutes with
our approach, for the network with and without local Akamai
edge server deployed respectively. With 4,717 HTTP requests
in the trace, this translates into improvement of our approach
in average object download times from 0.87s to 0.68s in the
network with a local edge server and from 1.08s to 0.69s
without, 21.81% and 35.95% improvement.
The root cause for these gains is improved TCP connection

reuse in our approach. Table III compares the number of
connections and connection reuse in our and current approach.
Note that the number of connections in the current approach
slightly exceeds that in the trace because a few groups of
HTTP requests that were transferred over a single connection
in the trace required several connections during the replay. For
the clients studied, our approach achieves more than 20 and
24 times higher connection reuse than the current approach

With local edge server Current Our
of Connections 1856 91
Connection Reuse (average request/connection) 2.5 51.8

Without local edge server Current Our
of Connections 1857 77
Connection Reuse (average request/connection) 2.5 61.3

TABLE III
TCP CONNECTION REUSE IN THE NETWORK WITH AND WITHOUT A

LOCAL AKAMAI EDGE SERVER DEPLOYED.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 100000

P
(X

<
=

x)

ratio

With Local Edges

Without Local Edge

(a) Cur-to-our ratio (greater than 1 means our
approach is better)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-100 -50 0 50 100 150 200 250 300

P
(X

<
=

x)

difference (seconds)

With Local Edges

Without Local Edge

(b) Cur–our difference (positive means our ap-
proach is better)

Fig. 3. The comparison between per-client total TCP handshake time spent
in the current and our approach.

in the network with and without local Akamai edge server
respectively.
Turning to the components comprising the full object down-

load time, Tables I and II show that while our approach
virtually eliminates the overhead of remote DNS queries, their
impact on the overall performance is negligible. This confirms
the simulation results of Section V-B1. The contribution of the
TCP handshake savings and of the reduced transfer times are
more significant.
To show these impacts for individual clients, Figure 3

presents the CDFs of the ratios and absolute differences
between per-client total TCP handshake spent respectively in
the current approach and our approach. Figure 4 shows the
same graphs for the per-client total transfer times.
Figure 3a shows that our approach reduces TCP handshake

overhead for more than 90% of the clients, both with and
without local Akamai servers. In fact, 40% and 60% of the
clients in networks with and without local Akamai server
respectively spend at least 10 times more on handshake in
the current approach.
As for transfer times, Figure 4a demonstrates that most

clients (around 60% in the network with, and 80% without, a
local edge server) reduce their transfer time with our approach.
In fact, for many clients, the benefits are very significant: 50%
of clients without a local edge server, and 30% of clients with
a local edge server experience at least an order of magnitude
improvement. Why then the overall transfer time improvement
shown in Tables I and II is relatively modest? Figure 4b
provides the answer. It shows that the absolute difference in
the time they spend transferring objects is generally modest.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 1 10 100 1000 10000

P
(X

<
=

x)

ratio

With Local Edges

Without Local Edge

(a) Cur-to-our ratio (greater than 1 means our
approach is better)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-300 -200 -100 0 100 200 300

P
(X

<
=

x)

difference (seconds)

With Local Edges

Without Local Edge

(b) Cur–our difference (positive means our ap-
proach is better)

Fig. 4. The comparison between per-client total transfer time spent in the
current and our approach.

In other words, those clients that experience dramatic relative
performance improvement generally download small objects
and therefore, their absolute transfer times are generally small
and they contribute less to the total transfer time of all
clients. Meanwhile, clients that download large objects do not
benefit from improved connection reuse as much because large
downloads by themselves are able to utilize TCP connections
well and amortize the connection startup costs. Yet these
large downloads contribute a disproportional share to the total
transfer time.
To recap, in our replay experiment, our approach shows

around 36% improvement in average object download time for
a network where no Akamai edge server is deployed locally.
Even in a network where there is a local edge server deployed,
our approach still brings around 22% improvement in object
download times.

VI. DISCUSSION AND FUTURE WORK

In this study, we identify optimization opportunities in the
current practice of co-location CDNs and propose a solution,
which requires very small changes to the client network, to
leverage these opportunities. Our experiments quantify perfor-
mance gains Akamai would have obtained if this approach
was deployed on the CWRU campus network. A limitation of
our study is that it is unable to account for possibly higher
hit rate at edge servers in Akamai’s current approach, due to
a limited set of servers used for a given website. We do not
believe this has a significant effect on our findings. According
to our study, from the client perspective, Akamai will achieve
significant performance benefits with our approach.

However, it raises important questions for further study.
Although our approach requires no change in the Akamai
platform, it affects how Akamai’s resources are utilizes. How
should Akamai adjust its internal system management if it is
to embrace our approach? A client site can unilaterally adopt
our approach today and gain benefits for its users. But how
would the performance of the platform as a whole be affected
if many clients adopt our approach? Finally, a proof-of-concept
implementation of our approach and live evaluation with actual
users would be the next step towards a wide adoption of our
approach. We leave this effort for future work.

VII. CONCLUSION

We propose a simple approach to improve the performance
of downloads of CDN-accelerated content from the user per-
spective, which client networks can adopt with or without
cooperation from the CDNs. By directing a client to the
same edge server for all content accelerated by this CDN,
our approach dramatically increases TCP connection reuse be-
tween the client and the CDN platform. While many questions
remain for future investigation, our preliminary study shows a
significant promise of our approach as a ”low hanging fruit” to
achieve a tangible performance improvement in the download
performance of CDN-accelerated content.
Acknowledgent: We are indebted to the CWRU ITS organi-
zation, especially Jim Nauer, Kevin Chen, Dan Matthews, and
Roger Bielefeld, for their help in procuring data for this study.

REFERENCES

[1] Z. Al-Qudah, M. Rabinovich, and M. Allman. Web timeouts and their
implications. In Conf. on Passive and Active Measurement, pages 211–
221, 2010.

[2] T. Callahan, M. Allman, and M. Rabinovich. On modern DNS behavior
and properties. ACM SIGCOMM Comp. Comm. Rev., 43(3):7–15, 2013.

[3] The Chromium projects – DNS Prefetching.
http://dev.chromium.org/developers/design-documents/dns-prefetching.

[4] E. Cohen and H. Kaplan. Prefetching the means for document transfer:
a new approach for reducing Web latency. Computer Networks,
39(4):437–455, 2002.

[5] Inktomi, Adero and America Online announce strategic content and tech-
nology distribution agreement. http://www.timewarner.com/corp/news-
room/pr/0,20812,666754,00.html.

[6] DipZoom - Deep Internet Performance Zoom. http://dipzoom.case.edu.
[7] M. Thomson M. Belshe, R. Peon. Hypertext Transfer Protocol Version

2 (HTTP/2). IETF Request for Comments 7540, May 2015.
[8] B. Maggs and R. Sitaraman. Algorithmic nuggets in content delivery.

ACM SIGCOMM Computer Communication Review, 45(3):52–66, 2015.
[9] Charles J. Neerdaels. Extending an Internet content delivery network

into an enterprise. Akamai Technologies U.S. Patent #7,096,266.
[10] Jeffrey Pang, Aditya Akella, Anees Shaikh, Balachander Krishnamurthy,

and Srinivasan Seshan. On the responsiveness of dns-based network
control. In IMC, pages 21–26, 2004.

[11] Ingmar Poese, Benjamin Frank, Bernhard Ager, Georgios Smaragdakis,
and Anja Feldmann. Improving content delivery using provider-aided
distance information. In IMC, pages 22–34, 2010.

[12] H. Shang and C. Wills. Piggybacking related domain names to improve
DNS performance. Computer Networks, 50(11):1733–1748, 2006.

[13] S. Triukose, Z. Al-Qudah, and M. Rabinovich. Content delivery
networks: Protection or threat? In ESORICS, pages 371–389, 2009.

[14] Sipat Triukose. A Peer-to-Peer Internet Measurement Platform and Its
Applications in Content Delivery Networks. PhD thesis, Case Western
Reserve University, 2014.

[15] Sipat Triukose, Zhihua Wen, and Michael Rabinovich. Measuring a
commercial content delivery network. In The 20th Int. Conf. on World
Wide Web, pages 467–476, 2011.

