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ABSTRACT
This paper presents the architecture and the preliminary
evaluation of a request routing DNS server that decouples
server selection from the rest of DNS functionality. Our DNS
server, which we refer to as MyXDNS, exposes well-defined
APIs for uploading an externally computed server selection
policy and for interacting with an external network proxim-
ity service. With MyXDNS, researchers can explore their
own network proximity metrics and request routing algo-
rithms without having to worry about DNS internals. Fur-
thermore, MyXDNS is based on open-source MyDNS and
is available to public. Stress-testing of MyXDNS indicated
that it achieves its flexibility at an acceptable cost: a sin-
gle MyXDNS running on a low-level server can process 3000
req/sec with sub-millisecond response even in the presence
of continuous updates to server selection policy.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design; C.2.4 [Computer-Communication
Networks]: Distributed Systems; C.4 [Performance of
Systems]

General Terms
Design, Performance

Keywords
DNS, Request Routing, Load Balancing, Network Proximity

1. INTRODUCTION
The domain name system (DNS) is a vital part of the In-

ternet infrastructure that provides mapping between human-
readable host names (such as “case.edu”) and numerical In-
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ternet addresses used for packet routing. Since it can re-
solve the same hostname to different IP addresses for differ-
ent queries, DNS represents a convenient mechanism to dis-
tribute client requests among multiple server replicas. Con-
sequently, the DNS infrastructure has been used extensively
in providing scalability to Internet platforms. It is the basis
for Web request routing in content delivery networks, for
load balancing on a server farm, and for proximity-based
request routing to geographically distributed data centers.
While the mechanism for using DNS for these purposes is
well understood, the algorithms and policies involved in re-
quest routing and load balancing are still a subject of active
research [4, 5, 11, 19, 3]. In fact, these algorithms and poli-
cies represent the ”secret sauce” of various content delivery
networks such as Akamai [2], SAVVIS [21], Limelight [13],
Rapid Edge [20], and AT&T [10].

Unfortunately, the progress in this research area is ham-
pered because DNS servers capable of request routing are
either available as black-box appliances from network gear
vendors [6, 8, 1, 22] or as complex systems with algorithms
already built-in [16, 9]. Thus, researchers have to either
modify complex software or base their research on simula-
tion, which does not always produce reliable conclusions.

In this paper, we present the architecture and the pre-
liminary evaluation of a DNS server that decouples request
routing algorithms from the rest of DNS functionality. Our
DNS server, which we refer to as MyXDNS1, exports a well-
defined interface that can be used to install an arbitrary re-
quest routing policy. Thus, researchers can implement their
own algorithms and not be concerned with the rest of the
extensive software comprising a full-featured DNS server.
However, should they desire to modify the DNS server it-
self they can: we built it by modifying MyDNS (an existing
open source DNS server implementation) [16] and made our
sources available [17].

To demonstrate the flexibility of MyXDNS in implement-
ing request routing policies, we coupled MyXDNS with an
external off-the-shelf proximity service. We then used the
proximity notion provided by this service to implement two
existing request distribution algorithms. We then used these
instantiations of MyXDNS to compare the performance of
these algorithms in a real testbed rather than simulation.

The flexibility does not come without costs, and MyXDNS
introduces some performance overhead compared to original
MyDNS. However, our stress-testing shows that this over-

1The name, pronounced “mix-DNS”, stands for “My eXten-
sible DNS” and reflects the fact that our system is derived
from MyDNS.



head is small, and MyXDNS achieves more than adequate
performance. Our instantiation of MyXDNS running on a
low-end server was able to sustain 4000 DNS queries per
second with sub-millisecond response time in the absence of
updates to the request routing policy, and 3000 queries/sec
while processing hundreds of updates per second.

2. MYXDNS ARCHITECTURE
A high level architecture of MyXDNS is shown in Figure

1. MyXDNS comprises three major components: a DNS
server, a proximity service, and the control process.

Generic Components
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Figure 1: Architecture of MyXDNS.

The DNS server is responsible for receiving and answering
external DNS queries. It concentrates the standard func-
tionality of a traditional DNS server. In fact, it is by it-
self a fully functional load-balancing DNS server: in the ab-
sence of the other components it distributes requests among
servers according to statically configured server selection
probabilities (or uniformly if the probabilities are not sup-
plied). The DNS server stores hostname-to-IP mappings in
a database system. If a hostname maps to multiple servers,
the database will contain multiple records for this hostname,
one for each server.

The other two components are supplied by the user to im-
plement customized server selection. The proximity service
is used to classify requesters’ IP addresses into user-defined
regions, which provide the basis for the request routing pol-
icy. The regions are abstract classes of IP addresses and may
use any metrics to differentiate requesters. Our instantia-
tion of the proximity service uses geographical regions; other
metrics such as network proximity or any other properties
of the requesters are also possible. The control process is
responsible for periodically recalculating the request rout-
ing policy according to a custom server selection algorithm,
and for installing this policy at the DNS server. The control
process may run on the same host as the DNS server or on
a different host.

These three components interacts with each other through
interfaces that generic MyXDNS provides.

To implement a custom server selection mechanism, users
need to (a) provide their own Find IP Region function, which
might interact with an external proximity service or it might
compute the IP’s region directly, and (b) implement their
own control process, which periodically recomputes the re-
quest routing policy and locally calls functions Add Region,
Remove Region, and Update Prob to install this policy at
the DNS server. These functions encapsulate communica-
tion details between the control process and DNS server;
these details are transparent to the user since the functions
are supplied by MyXDNS. (In fact these functions commu-
nicate directly with the database of the DNS server.) Note
that because the proximity service and control process are
provided by the user, they can in principle communicate
with each other, in addition to the interactions discussed
here. In fact, our MyXDNS instantiation includes such a
communication channel through a shared configuration file
(see Section 5).

We will discuss the MyXDNS interfaces in more detail in
Section 3.

3. THE API
This section discusses the interactions between the generic

components of MyXDNS and the components that imple-
ment custom server selection. We will also describe the
general process of implementing a custom server selection
algorithm.

3.1 IP Regions
The MyXDNS application programming interfaces (APIs)

are based on the notion of regions - groups of requester IP
addresses that are treated similarly by the system for the
purpose of request routing. A user can use any properties
of the requesters (depending on the system sophistication
in what properties it can obtain) to define regions. For ex-
ample, our instantiation of the proximity service defines re-
gions based on the geographical location of the requesters.
Other instantiations could use network proximity metrics,
or non-proximity metrics such as the number of clients be-
hind the requesters if this information is available (note that
requesters that send DNS queries are client DNS servers).

Regions do not necessarily have to be classified as of ge-
ographic or network proximity metrics. A region is a class
for which a group of IP addresses belongs to according to
the user definition. In other words, Regions is a notion for
classifying clients into predefined sets. The Classification
could be based on any user defined criteria –depending on
the data and the capabilities available– for the user.

The specific definition is abstracted by the proximity ser-
vice through a function call Find IP Region, which takes an
IP address and returns a region number.

Regions form the basis for the description of the routing
policy, which is computed by the control process and up-
loaded to the DNS server. For a host name h mapping to
a set of servers s1, . . . , sn, the routing policy is expressed as a
record (h, (s1, (P11, TTL11), . . . , (P1m, TTL1m), (D1, TTL1)),
. . . , (sn, (Pn1, TTLn1) . . . , (Pnm, TTLnm) , (Dn, TTLn)))
where m is the number of regions, Pij is the probability of
using server si for a requester from region j, TTLij is the
time-to-live of the corresponding DNS response, Di is the
default probability of using server i for a requester that can-



not be classified into any region (i.e., for whom no region is
defined), and TTLi is the TTL of the corresponding DNS
response to such a requester. In the rest of this paper, we
refer to value Pij as region probability of server si.

3.2 Interfaces
MyXDNS interfaces include the following five function

calls:

• Find IP Region().

• Connect DB().

• Add Region().

• Remove Region().

• Update Prob().

Function Find IP Region is a hook called by DNS Server
for every DNS query to find the region of the query origi-
nator. This function takes the IP address as a string and
returns the corresponding region ID as an integer, or zero
if no region is defined for the IP address given. The region
ID is then used to select the server for the request and to
assign time-to-live to the resulting DNS response, according
to the corresponding region probabilities. (See Section 3.1.)

Generic MyXDNS provides a stub implementation of func-
tion Find IP Region that always returns region 0, which
means the default server probabilities will be used for server
selection. In particular, if no control process exists to update
the default probabilities, MyXDNS reduces to a simple load-
balancing DNS server that selects servers for all requests, no
matter where they come from, with a pre-defined probabil-
ity (or selects servers randomly if no default probabilities
are defined).

For performance reasons, Find IP Region in this studey
is implemented as a module of the DNS server. This means
that changing to a new proximity service requires MyXDNS
to be recompiled. We have also implemented the proximity
service as a separate process that interacts with MyXDNS
through TCP connections. This new version of MyXDNS
(available on [17] along with the original version) does not
require the user to recompile MyXDNS to change to a new
proximity service. MyXDNS now reads the proximity server
IP from the configuration file at startup and communicates
with the proximity service accordingly. We plan to explore
performance implications of the new implementation of the
proximity service as part of our future work.

The remaining four functions are called by the control
process to communicate with the DNS server. Function
Connect DB initializes the connection of the control process
with the database. It is invoked once at the start of the
control process.

Function Add Region defines a new region. It takes no ar-
guments and returns an integer that is the ID of the newly
created region. This function creates new columns in the
database schema, so that the routing policy can include cor-
responding entries. (See Section4 for the database schema
details). This function is typically called only at the DNS
configuration time when regions are usually defined. How-
ever, the control process can use it to add a new region def-
inition dynamically, or to update region definitions without
bringing the DNS service down.

Function Remove Region reverses the above action. It
takes the region ID and removes that region’s entries from

the database schema. Function Update Prob takes a new
routing policy description (as defined in Section 3.1 and in-
stalls it into the DNS server. This function is called by the
control process when it computes a new routing policy ac-
cording to the server selection algorithm it implements.

3.3 Decoupled Server Selection
MyXDNS provides the user the flexibility of implementing

his own server selection policy based on whatever informa-
tion is available to him, without worrying about DNS server
internals. Users may divide IP address space into arbitrary
regions using their domain expertise about Internet topol-
ogy, any policy considerations, or input from their network
performance monitoring infrastructure. Users may change
this regions definition dynamically, as the conditions and
policies change, and may also leave portions (or all) of the
IP address space unassigned to any regions.

Users can implement arbitrary server selection algorithms
through uploading region-specific server selection probabili-
ties and corresponding time-to-live values, which define how
long the returned result will remain valid.

As an extreme example, the user may implement a pure
proximity-based server selection as follows:

• Provide the proximity service (through a custom built
Find IP Region function) that defines one region for
each server so that each region groups IP addresses for
which the corresponding server is the closest (accord-
ing to the chosen proximity metric). This proximity
service is the “magic source” reflecting the domain ex-
pertise of the operator.

• Provide the control process that assigns region proba-
bility of 100% for each server’s own region and 0% for
all other regions.

As the result, MyXDNS will always resolve a DNS query
using the “closest” server to the query originator.

As another extreme, the user may implement purely load-
based server selection as follows:

• Make Find IP Region function always return zero (use
the generic MyXDNS stub).

• Provide the control process that periodically uploads
default server selection probabilities based on mea-
sured server load.

The user can obviously also implement an algorithm that
takes a mixture of these considerations in the account. We
implemented two such algorithms that were previously de-
scribed [3, 19]. The algorithm may also assign different
TTLs to responses with different servers or returned to re-
questers from different regions (allowing for example the im-
plementation of algorithms similar to [7]).

Finally, regions may be defined based on arbitrary con-
siderations completely unrelated to proximity. For example,
if a content delivery network knows (somehow) that certain
client DNS servers are used mostly by dial-up users, the
CDN can assign these servers to a separate region and use
requests from these clients to balance the load of edge servers
with no consideration for edge server proximity. Indeed, the
dial-up clients will see little difference from using a nearby
server anyway, so they can be used to even out the server
load without reducing their expedience.



4. INTERNALS
This section describes the implementation of MyXDNS’s

DNS server in more detail. We begin with the description
of the database schema and operation, and then present the
DNS server details.

4.1 Database
A significant factor in our decision to use MyDNS as

the base for our work is that it stores DNS mappings in a
database management system. Dealing with DNS records
through SQL queries eliminates conflicts that may occur
when the Control Process and DNS server are simultane-
ously accessing the database.

MyDNS uses a database with two tables: Start of Author-
ity records table (SOA) and Resource Records table (RR).
The SOA table list DNS zones for which the current server
is the authoritative DNS server; it is immaterial for request
routing and is not discussed further here. The RR table con-
tains DNS resource records, including hostname-to-IP map-
pings (“type A records”) that concern request routing. For
each hostname, the RR table includes one record for every
server to which this hostname maps.

MyXDNS expands the schema for the RR table as shown
in Figure 2. The top part is the original RR table schema.
Field name lists the the hostname, while the data field con-
tains the IP address of the corresponding server. The other
two relevant fields, ttl and aux, although inherited from
MyDNS, are used differently in MyXDNS. The ttl field
specifies the default TTL, i.e., the time-to-live value MyXDNS
will assign to its reply to a requester from an undefined re-
gion (i.e., for whom the Find IP Region function returns
zero) when this server is selected. The aux field contains
the default probability of selecting this server (among other
servers with the same the hostname) if the requester comes
from an undefined region.

MyXDNS also adds two new fields for every region i,
named Ri and TTLi. These fields are created or removed
dynamically by the Add Region and Remove Region func-
tions. Ri stores the region probability for this server and
TTLi specifies the TTL to be returned to requesters from
this region when this server is selected.

The TTL values in DNS responses determine the time pe-
riod for requester to cache the response. Thus, MyXDNS
can assign to responses the TTL that is specific for the
chosen server and for the requester’s region. For example,
if requesters known to be used by a large number of Web
clients are grouped together in a region, MyXDNS may im-
plement a server selection algorithm that assigns low TTL
to responses to these requesters. Or, when a hostname is
mapped to heterogeneous servers, the routing policy may
assign lower TTL to less powerful servers [4]. When not
specified in the database, MyXDNS returns the default TTL
value of 360 seconds.

4.2 DNS Server
The DNS server in MyXDNS is a modified version of

MyDNS [16]. When MyXDNS receives a new request it
tries to determine the requester’s region by consulting the
proximity service through Find IP Region . It then uses
the region ID to select the server, among all servers with
the given hostname, according to their region probabilities.

MyDNS uses internal caching to reduce the access rate to
the database. A cache entry stores all the RR records match-

ing a given hostname. To keep the size of cache entries small
despite expanded database records, MyXDNS stores cached
entries in the same format as MyDNS but replaces their aux
values and default TTLs with the appropriate region prob-
abilities and region-specific TTLs. Thus, cache entries in
MyXDNS are different for different regions. Consequently,
MyXDNS adds the region ID to cache keys that identify
cached entries. Whenever the cache is searched for an en-
try, both the cached hostname and region ID must match
the requested hostname and requester’s region. Otherwise
MyXDNS will issue a database query, add a new entry to
the cache, and use this entry to compute its reply to the
requester. This technique avoids spending cache space for
information about regions from where requests rarely arrive.

Since DNS protocol allows responses to contain multiple
answers, MyDNS includes all servers matching the hostname
in its response. A load balancing function uses the aux value
associated with each RR record to sort the answers in the
response’s addresses.The order of the answers determines
the server that will be used by the client: the client uses the
first operational server from the list.

In MyDNS, a low aux value increases the likelihood of the
corresponding server to be placed high in the list. However,
the exact relationship between the aux values and proba-
bilities of a server being selected is difficult to express or
compute.

Algorithm 1 Reply sorting function in MyXDNS

1: Input: Requester region j, requested hostname h
2: Output: Response List
3: for Every server si corresponding to requested hostname

do
4: if j = 0 then
5: Prob(si) = aux(si)
6: else
7: Prob(si) = Rj(si)
8: end if
9: end for

10: Let S be the set of all servers corresponding to h
11: Let Response List = ∅
12: while S 6= ∅ do
13: Let Total Prob be the total probability of all servers

in S
14: if Total Prob = 0 then
15: Response List = Concatenate(Response List ,

RandomPermutation(S))
16: else
17: for Each server si ∈ S do
18: Normalized Prob(si) = Prob(si)/Total Prob
19: end for
20: Select next server according to

Normalized Prob(si)
21: Concatenate(Response List,next server)
22: S = S – { next server }
23: end if
24: end while

MyXDNS modified the reply sorting function so that the
aux and the region probability values (Rx) directly spec-
ify probabilities of the corresponding server being selected.
Specifically, the reply sorting function in MyXDNS follows
the algorithm shown above. The function is invoked with the
appropriate region probabilities or aux values for requesters



Figure 2: The RR table schema.

from an undefined region. It recursively puts the next server
on the list according to its normalized region probability. If
all probabilities for the servers that remain to be sorted are
zero, they are all put into the list in random order.

5. INSTANTIATION
In this section, we describe an instantiation of MyXDNS

that we implemented to demonstrate its benefits and study
its performance. It is this instantiation that we tested in
Section 6.2. While representing just one instance of the pos-
sible server selection mechanism, it itself allows fairly flexible
variations of this mechanism as described below. From now
on, we mean this instantiation when referring to MyXDNS.

5.1 External Proximity Service (GeoIP)
Our MyXDNS instantiation classifies IP addresses to re-

gions according to their geographical location. It obtains the
geographical location using GeoIP Country Lite database
from MaxMind [15]. We used GeoIP to demonstrate the
ability for MyXDNS to be coupled with an external off-the-
shelf proximity service.

GeoIP provides geographical data including two-character
country codes for any IP addresses. We grouped neighbor-
ing countries into eight regions, thus defining IP-to-region
mapping for the resulting proximity service. Our proxim-
ity service defines these regions using a configuration file
named code-to-region, which lists country codes and re-
gion IDs to which these countries belong. The user creates
this configuration file manually. The control process reads
this file at the startup and calls the Add Region function
for each region defined, thereby adding the corresponding
Ri and TTLi fields into the database schema (see figure 2).
After each Add Region call, the control process modifies the
code-to-region file to ensure that the region IDs in this file
match the region IDs generated by the Add Region calls.

Each time a DNS request is received, the DNS Server
calls Find IP Region function, which employs GeoIP APIs
to determine the country code for the requester’s IP address
and then utilizes region definitions from the code-to-region
file to extract the region ID for that country code. The DNS
server then uses the region ID to load the appropriate region

probabilities of the servers and select the server for the query
right probabilities according to the current routing policy
that has been installed by the control process.

5.2 The Control Process
Our instantiation of the control process periodically mea-

sures the load of the servers, recomputes the routing policy
according to a given server selection algorithm, and installs
this policy at the DNS server using the Upload Prob func-
tion call. In our proof-of-concept instantiation, the control
process uses the UNIX uptime command to measure server
load. The control process is co-located with the DNS server
on the same machine, and remotely executes the uptime
command on each of the application servers. In real envi-
ronments, the control process would likely use a large num-
ber of load metrics, including network consumption, mem-
ory utilization, open socket descriptors, disk I/O, etc., each
with its own thresholds. To demonstrate the flexibility of
MyXDNS, we implemented two existing request routing al-
gorithms, one mentioned in [3] and the other proposed in
[19]. Both algorithms try to take the proximity and load
factors into account in their server selection.

Both algorithms use as input a table of IP region ranks
for each server, which specifies the server proximity to the
IP regions. Region ranks can vary between 1 (highest) and
n (lowest), where n is the number of regions defined in the
system. Region ranks for a server need not be unique: a
server that is equidistant to multiple regions will have the
same region rank for these regions.
Server Selection Algorithm I. The algorithm takes a
load threshold as a parameter and produces the probability
of selecting a given server for requests from each region. For
a given region R, it executes the following steps [3]:

• Eliminate all servers that are overloaded.

• From the remaining servers, keep those servers who
serve region best according to their ranking.

• For servers identified in step 2, distribute the load
among them according to any available information
about their capacity and load.



• In addition, we added an extra functionality to split
the load among all servers if all of them were over-
loaded.

Server Selection Algorithm II This algorithm uses two
load thresholds: high watermark, HW and low watermark,
LW. Given a region, the algorithm assigns server selection
probabilities in three passes over the servers as follows [19].

• The first pass assigns server weights based on load:
servers with load above HW receive zero weight; servers
below LW receive unity weight, and other servers re-
ceive a weight between zero and unity depending on
where the server load falls between the high and low
watermarks.

• The second pass adjusts the above weights to favor
higher-ranked servers.

• The third pass normalizes these weights and converts
them into selection probability by normalizing them to
sum up to one.

6. PERFORMANCE OF MYXDNS
To evaluate the performance of MyXDNS, we performed

stress-testing of generic MyXDNS, original MyDNS, and our
instantiation of MyXDNS coupled with GeoIP-based exter-
nal proximity service. We considered two metrics in our
experiments: the percentage of successfully processed DNS
requests (out of the total requests submitted) and the av-
erage response time for DNS queries. Both metrics were
measured at the client side. Measuring the response time
at the client side introduces a slight overestimation of the
DNS processing time due to added network round-trip de-
lay. However, this overestimation is very small because we
used an isolated Gigabit Ethernet segment for our experi-
ments, and it affects equally all three server configurations
we compare.

6.1 Experiment Setup
Our test setup for stress-testing of MyXDNS included a

DNS server and a client machine that emitted DNS queries
with a given rate. To avoid possible effects of network con-
gestion, we connected both machines as an isolated Gigabit
Ethernet segment. Our DNS server is a low-end server (Sun
Fire x2100 with Opteron 175 CPU and 2G memory) running
Linux 2.4 kernel. The client machine is Dell Optiplex GX620
with 3.0GHz Pentium 4HT processor and 1 GB RAM. Both
machines are equipped with Gigabit network cards and are
interconnected via a Gigabit Ethernet switch.

In our experiments, the DNS server under study is config-
ured to be an authoritative DNS server for zone example.com.
The hostname example.com maps to six type A RR records
in the database. To mimic requests coming from around the
globe, our clients use raw sockets to generate DNS requests
with source IP addresses randomly selected from 8500 dif-
ferent IP addresses. The 8500 IP addresses are chosen to be
distributed among all regions we defined. There are around
1000 IP addresses for each region plus a few hundred ad-
dresses belonging to region zero, signifying clients whose re-
gion could not be determined (e.g., for which GeoIP returned
NULL country code, or whose countries are not listed in our
code-to-region file).

6.2 Performance with a Stable Request
Routing Policy

Our first experiment investigates the performance of the
DNS servers under study in the absence of updates to the
routing policy. Figure 3 shows the average response time
and Figure 4 shows query success rate for our MyXDNS in-
stantiation and original MyDNS servers for different request
rate, with and without internal caching at the DNS servers.
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Figure 3 indicates that MyXDNS and MyDNS are ca-
pable of processing around 4000 request per second at a
sub–millisecond response time. The difference between re-
sponse times for MyXDNS and MyDNS at request rates less
than 4000 is less than 0.2 milli-seconds when cache is dis-
abled. With enabled cache, MyDNS’s performance improves
markedly: it processed any request rate we offered with no
degradation in response time. At the same time, enabling
caching did not appreciably improve the performance of our
MyXDNS instantiation.
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Figure 4 shows that MyXDNS instantiation managed to
successfully process 100% of all incoming request up to the
request’s sending rate of 4000 request per second with or
without internal cache enabled. However, increases beyond
this rate lead to rapid degradation of the success rate. In
fact the plato in response time above 5000 requests per sec-
ond shown in Figure 3 is due to the fact that all additional



requests are simply dropped by the server. MyDNS exhib-
ited around 25% higher capacity without the cache; however
with the cache enabled, it kept processing 100% of the in-
coming requests even at 8000 request per second rate, the
highest rate we offered.

We can expect that the extra functionality offered by the
MyXDNS instantiation must cost some performance penalty,
but we were intrigued by its virtual negation of benefits
from caching. To investigate the reason for this behavior,
we tested the performance of the generic MyXDNS server,
which uses a stub Find IP Region function that always re-
turns 0. This experiment showed that the generic MyXDNS
server performance is virtually indistinguishable from MyDNS
server performance in terms of both response time and suc-
cess rate. In particular, MyXDNS with caching showed the
same flat 100% request processing rate at all the loads we of-
fered. We conclude that the performance difference between
MyXDNS and MyDNS is due to the off-the-shelf external
proximity service, GeoIP.

It is not the purpose of this research to justify the per-
formance of an external proximity service. Depending on
its implementation and functionality, it may cause lower or
higher overhead than what we observed in our instantia-
tion. However, we note that the 4000 requests per second at
a sub-millisecond response time is more than adequate for
most practical purposes. For instance, Wolman et al. report
that they observed a peak Web request rate of about 300 re-
quests/sec from a population of 23 thousand users [24]. Un-
der the extremely conservative assumption that every Web
request is preceded by a DNS query, our performance testing
indicates that the MyXDNS instantiation can serve 300,000
users with sub-millisecond delay. And if we assume (still
conservatively) a TTL of 30s for DNS responses, this user
population increases 30-fold, to roughly 9 million. Scaling
beyond this population requires a distributed two-level DNS
platform similar to the one used by Akamai [2].

6.3 Performance in the Presence of Routing
Policy Updates

We now turn to the effects of routing policy updates on
MyXDNS performance. Note that internal caching in the
DNS server would delay the effect of the policy update un-
til the cached entry expires. Thus, to see the effect of ex-
treme update rates on MyXDNS performance, we desabled
the cache for these experiments2. In practice, one can ex-
pect MyXDNS to execute with enabled cache, resulting in
higher performance than the performance observed in this
section.

Figure 5 shows both the response time and success rate of
our MyXDNS instantiation for various request rates in the
presence of one routing policy update per second. Because
internal cache would virtually negate the effect of the policy
update, we disabled the cache for these experiments. We
must mention here that caching was only disabled for this
experiment and not for general operation.

According to Figure 5, MyXDNS managed to process all
incoming requests up to the rate of 3000 req/sec. At this rate
MyXDNS processing time is still below 1ms. Beyond this

2Enabling the cache would negate the effect of policy up-
dates because the DNS server would not access the database
until the cached entries expire. The default expiration time
of cache entries in MyDNS is 60 seconds, much higher than
our update rate.
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Figure 5: MyXDNS Performance for one update per
second.

point, MyXDNS response time jumps rapidly passing the
30ms level for 4000 req/sec. The percentage of successfully
processed requests also starts degrading beyond the 3000
req/sec rate. We repeated this experiment for the generic
MyXDNS, and its performance was indistinguishable from
the MyXDNS instantiation for request rates of up to 3000
req/sec. We conclude that in the presence of one update
per second, the MyXDNS capacity becomes 3000 req/sec.
Thus, while decreasing from the 4000 req/sec capacity for
a stable policy, the MyXDNS capacity remains respectable.
We will use this rate for our next experiment, studying how
MyXDNS capacity is affected by an increasing update rate.

In Figure 6, we investigated the effects of different update
rates on the response time at request rate of 3000 request
per second. Again, caching is disabled in this experiment
and both MyXDNS instantiation and the generic MyXDNS
were tested.
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Figure 6 shows growing update rate results in a very small
increase in the response time: the difference in response
time is less than 0.1ms for up to 100 updates/sec. We also
tested the percentage of successfully processed requests for
the generic MyXDNS and MyXDNS instantiation under the
same workloads and found that both servers processed 100%
of the received requests in all experiments. Obviously, the
request routing policy cannot be expected to change nearly



as often as 100 updates/sec. Thus, we can confidently as-
sume the 3000 req/sec capacity for MyXDNS under chang-
ing request routing policies.

7. PERFORMANCE OF SERVER
SELECTION ALGORITHMS

Finally, we perform a preliminary experiment with the two
server selection algorithms we implemented in our instanti-
ation. This performance study is by no means intended to
be complete; it is merely meant to show the potential of
MyXDNS as a research tool. In contrast to [19] which stud-
ies these two algorithms using simulations, MyXDNS allows
us to compare them using a realistic testbed.

7.1 Experiment Setup
For this experiment, we configured an isolated Gigabit

Ethernet segment comprising a MyXDNS server, two Tom-
cat application servers and one client workload generator
that sends requests for a servlet hosted by both Tomcat
servers. We used the same Sun Fire server for MyXDNS
and Dell PowerEdge 1950 servers with dual Intel Xeon 5140
2.33GHz CPUs and 4G RAM for both the application servers
and the workload generator.

The workload generator is implemented to mimic clus-
ters of browser machines behind local DNS servers. Each
browser cluster issues one DNS query to MyXDNS every
TTL period, and then the associated browsers generate HTTP
requests to the returned IP address until the response to the
DNS query expires. To add realistic randomization to load
balancing, we staggered the starting times of different clus-
ters, so that they will send their DNS queries at different
times.

MyXDNS is configured to direct client requests to Tomcat
server 1 or server 2 according to the routing policy computed
by the server selection algorithm. All client clusters are as-
sumed to belong to one region, and the server ranks for this
region are configured to be 1 for server 1 and 2 for server
2. In other words, server 1 is closer to all the clients than
server 2. We used a dummy servlet that simply executes a
certain number of floating-point multiplications. In this ex-
periment, the workload generator was configured to emulate
20 browser clusters, the DNS TTL is 30 seconds, and each
cluster issues between 1 and 3 HTTP requests per second.
The policy recomputation occurs roughly every 10 seconds
(this interval varies slightly because it is affected by the
response time of sometimes overloaded Tomcat servers to
MyXDNS’s load probes). The load threshold for algorithm
1 is set to 0.5; for algorithm 2, the high-watermark is set
to 0.6 and low watermark to 0.4. (Recall our MyXDNS in-
stantiation measures server load as the output of the uptime
command.)

7.2 Results
The results are shown in Figure 7 for algorithm 1 and Fig-

ure 8 for algorithm 2. They show that, at least in this exper-
iment, both algorithms result in constantly oscillating rout-
ing policies. The more complex algorithm 2 exhibits oscilla-
tions that seem as severe as those produced by the simpler
algorithm 1. However, algorithm 1 results in virtually no
overall preference for the closest server (as indicated by the
close load curves in the bottom graph of Figure 7). Further,
neither algorithm shows distinct preference for the closest
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Figure 7: Performance of Algorithm I.

server in its request routing behavior. These results differ
markedly from the conclusions in the simulation study from
[19]. While our current preliminary experiment is clearly
far from being representative and implements an admittedly
artificial scenario, it still shows a concrete example that de-
viated from the behavior predicted by the simulation study.

8. RELATED WORK
Cardellini et al. [5] present a taxonomy of request dis-

tributed algorithms and discuss performance trade offs be-
tween them. They focus in particular on the interaction of
DNS-based global load balancing and what they refer to as
second-level dispatching at data centers.

NCSA Web site was among the first to utilize DNS load
balancing [11, 12], which they implemented using a simple
round-robin algorithm. Several studies examined the effec-
tiveness of DNS-based request routing [23, 14, 18].

A number of algorithms for DNS-based server selection
has been proposed [4, 7, 5, 11, 19]. MyXDNS will lower the
barrier for studying these and other algorithms and metrics.

Several publicly available DNS implementations, such as
MyDNS [16] and SuperSparrow [9], offer load balancing ca-
pability but they do not offer APIs to plug in one’s own
server selection algorithm. In particular, MyDNS allows
servers to be selected with pre-assigned probability, and Su-
perSparrow utilizes BGP routing information to select the
closest server.

MyXDNS stems from our previous work on IDNS, a spe-
cialized request-routing DNS server [3]. Unlike IDNS, our
MyXDNS is a general DNS server and exposes well-defined
APIs allowing it to be coupled with a custom proximity ser-
vice and server selection.

9. CONCLUSIONS
In this paper we presented the architecture and the pre-

liminary evaluation of a request routing DNS server that
decouples server selection algorithms from the rest of DNS
functionality. Our DNS server, which we refer to as MyXDNS,
exposes well-defined APIs for uploading an externally com-
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Figure 8: Performance of Algorithm II.

puted server selection policy and for interacting with an
external network proximity service. With MyXDNS, re-
searchers can explore their own network proximity metrics
and request routing algorithms without having to worry
about DNS internals. Furthermore, MyXDNS is based on
open-source MyDNS and is available to public.

To demonstrate the flexibility of MyXDNS, we imple-
mented an instance of a request routing DNS, which uses an
external off-the-shelf proximity service, GeoIP, to determine
the proximity of requesters to the servers. We then used
this externally provided notion of proximity as the basis for
implementing two previously described server selection al-
gorithms. Besides demonstrating MyXDNS flexibility, this
allowed us to compare the performance of these two algo-
rithms in a real testbed as opposed to simulations. Our
preliminary stress-testing of MyXDNS achieved over 3000
resolutions/sec with sub-millisecond response on a low-end
server. This is more than adequate for a DNS server: using
independently observed peak request rates from Web clients
[24], we can estimate that a single MyXDNS server we tested
can serve over six million Web users.
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