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Abstract This paper studies the conditions under which
peer-to-peer (P2P) technology may be beneficial in pro-
viding IPTV services over typical network architectures.
It has three major contributions. First, we contrast two
network models used to study the performance of such a
system: a commonly used logical “Internet as a cloud”
model and a “physical” model that reflects the char-
acteristics of the underlying network. Specifically, we
show that the cloud model overlooks important archi-
tectural aspects of the network and may drastically
overstate the benefits of P2P technology by a factor of 3
or more. Second, we propose an algorithm called Zebra
that pre-stripes content across multiple peers during
idle hours to speed up P2P content delivery in an IPTV
environment with limited upload bandwidth. We also
perform simulations to measure Zebra’s effectiveness at
reducing load on the content server during peek hours.
Third, we provide a cost-benefit analysis of P2P video
content delivery, focusing on the profit trade-offs for
different pricing/incentive models rather than purely
on capacity maximization. In particular, we find that
under high volume of video demand, a P2P built-in in-
centive model performs better than any other model,
while the conventional no-P2P model generates more
profits when the request rate is low. The flat-reward
model generally falls in between the usage-based model
and the built-in model in terms of profitability except
for low request rates. We also find that built-in and
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flat-reward models are more profitable than the usage-
based model for a wide range of subscriber community
sizes.
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1 Introduction

Internet protocol TV (IPTV) promises to offer view-
ers an innovative set of choices and control over their
TV content. Two major U.S. telecommunication com-
panies, AT&T and Verizon, have invested significantly
to replace the copper lines in their networks with fiber
optic cables for delivering many IPTV channels to res-
idential customers.

A viewer can receive IPTV videos in good quality
if the available bandwidth satisfies the need of video
encoding rate for the target resolution and frame rate.
To provide sufficient bandwidth for IPTV services, In-
ternet service providers use high speed xDSL networks
to deliver video content to viewers’ set-top boxes. As
an example, the AT&T architecture for the U-Verse
IPTV service uses Fiber-to-the-Neighborhood (FTTN)
Networks. Its architecture consists of a small number
of national super head-ends (SHE) and a large num-
ber of local video hub offices (VHO). The super head-
ends serve as the national content aggregation points
for broadcast and video on demand encoding. The lo-
cal video hub offices provide aggregation and storage of
local content. Each video hub office serves as a Video-
On-Demand (VoD) library and distributes video con-
tent through local access switches to the customers.
We refer to this network hierarchy as the “physical”
model throughout the paper. FTTN networks can pro-
vide 20-25Mbps bandwidth to each household, which
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Fig. 1 Cloud Model Fig. 2 Physical Model for IPTV Service

is typically enough to support several high quality TV
streams as well as high speed Internet and Voice over
IP (VoIP) services.

A potential challenge in providing IPTV services is
to scale VoD delivery without incurring high deploy-
ment and maintenance cost. The video servers can quickly
become a bottleneck as the number and frequency of
VoD requests continue to rise. One solution to alleviate
the load on servers is to use peer-to-peer (P2P) systems
like BitTorrent [31] or Kontiki [19]. While early P2P
systems were mostly used for file downloading, recently
there have been several efforts on using the peer-to-peer
approach to support live streaming [28][29][9][4][5][20]
and VoD streaming[25][12][24][11]. Existing research stud-
ies that evaluate the benefits of P2P video content de-
livery typically do not consider the constraints of the
underlying service infrastructure (e.g. [23][30]). Rather,
they view the network as a “cloud”. Researchers, how-
ever, are increasingly aware of the need to reduce cross-
ISP P2P traffic, while maintaining satisfactory P2P
performance[6][32][17]. In this paper, we reveal the de-
ficiency of this cloud model and investigate when P2P
streaming can be beneficial in an IPTV environment.
As we will see, P2P video sharing can be harmful under
certain network conditions.

Another challenge for P2P streaming in an IPTV
environment is the pricing strategy [8]. Most broadband
ISPs today charge a flat fee for providing bandwidth.
Usage-based pricing has emerged in some markets but
even in those cases it is limited to volume-based pricing.
Among the limited early work on pricing strategies for
P2P, Adler, et al. [3] provided a comprehensive model
applicable to a variety of P2P resource economies. Im-
plementation of peer selection algorithms in realistic
networking models like the IPTV environment was not
addressed. Hefeeda et al. presented a cost-profit analy-
sis of a P2P streaming service for heterogeneous peers
with limited capacity [13]. The analysis shows that the

service provider can achieve more profit by providing
the appropriate incentives for participating peers. How-
ever, their analysis did not consider the bandwidth con-
straints of the underlying infrastructure and hence can-
not be easily extended to our IPTV environment.

We make the following contributions in this paper:

– We compare two network models (the “cloud” model
and the “physical” model) and show that the cloud
model can dramatically overestimate P2P benefits.

– We propose an algorithm called Zebra that pre-
stripes content across multiple peers during idle hours
to speed up P2P content delivery in an IPTV en-
vironment with limited upload bandwidth. We also
perform simulations to measure the effectiveness of
the algorithm in offloading the content server during
peak hours.

– We couple three P2P pricing models (flat-fee, usage-
based, and built-in) with a “physical” model and
study their trade-offs from a service provider’s per-
spective.

The rest of the paper is organized as follows. We de-
scribe the physical network model and constraints for
the IPTV system in section 2. Section 2.2 provides the
insights as to why a more accurate physical network
model is necessary to realize a profitable IPTV system.
Section 3 describes the design considerations behind the
Zebra algorithm and the simulations that validate the
effectiveness of the algorithm. Three different pricing
models are analyzed and simulated in section 4. Sec-
tion 5 discusses related work and Section 6 provides the
conclusion.

2 Network Models

This section contrasts two network models that can be
used in studying the performance of P2P video content
delivery.



3

2.1 Cloud Model

Research in P2P streaming typically considers Internet
at a logical level[23][30]: it represents the Internet at
large as an abstract cloud and only considers the ca-
pacity of the content server and the characteristics of
the access links to related hosts. We refer this view of
the Internet as the “cloud model” as shown in Figure
1.

2.2 Physical Model

In contrast to the cloud model, the physical model con-
siders the network architecture and bandwidth constraints
of the underlying links and network devices. In [14], we
described and analyzed the physical model of FTTN
access networks for IPTV services. The model and anal-
ysis can also be applied to xDSL connections.

As shown in Figure 2, video streaming servers are
organized in two levels - a local video hub office (VHO),
which consists of a cluster of streaming servers or prox-
ies to serve viewers directly, and national super head
end (SHE) offices, which can distribute videos to local
serving offices based on existing policies or on demand.
We concentrate on video on demand (VoD) in this pa-
per. Each local VHO office (often referred to as “lo-
cal office” below) connects to a set of access switches
such as FTTN switches through optical fiber cables.
Each switch connects a community of IPTV service cus-
tomers through twisted-pair copper wires or fibers. A
community consists of all homes which are connected
to the same access (xDSL) switch. A local VHO also
includes a service router to connect to a national SHE
office. These uplinks (or “north-bound links”) of local
offices are implemented over high-speed optical fiber
networks.

The following parameters are used throughout the
paper:

– B0D: Download bandwidth into a home.
– B0U : Upload bandwidth out of a home.
– B1S : Total capacity of south-bound links (down-

links) of a local access switch.
– B1N : Capacity of the north-bound link (uplink) of

an access switch determined by the total bandwidth
of north-bound fibers from a switch to a local VHO
and the switching capacity of the service router in
the VHO.

– B2S : Maximum throughput in a local VHO deter-
mined by capacities of service routers, optical net-
work cables and/or streaming servers in the VHO.

– u: Average streaming bit rate for a video.

– Nc: Maximum number of concurrent viewers sup-
ported by a local VHO.

As an example, the network for the U-Verse service
allocates 20 to 25Mbps download bandwidth (B0D ≤
25Mbps) and 1Mbps upload bandwidth (B0U ≤ 1Mbps)
to each home. The AT&T network under U-Verse uses
an FTTN switch which has a maximum of 24Gbps
downlink (or “south-side”) switching capacity (B1S ≤
24Gbps). Each FTTN switch can connect an OC-24
fiber to a service router in a local VHO (B1N ≤ 1.244Gbps).
The service router in a local VHO could then con-
nect an OC-192 fiber to national SHE offices. Each
high-definition (HD) channel uses 6Mbps bandwidth
and each standard-definition (SD) channel uses 2Mbps
bandwidth.

2.3 Network Constraints under Physical Model

In a physical network environment, all P2P upload traf-
fic has to traverse the access switches and service routers
that connect the peers. P2P streaming will increase the
load of access switches, local offices and national offices;
in particular, inter-neighborhood sharing creates traffic
that traverses the link from the sending peer to the lo-
cal VHO and then the link from the local VHO to the
receiving peer.

Compared with the conventional IPTV services, P2P
sharing within a community may not be beneficial if the
south-bound link bandwidth of an access switch is the
bottleneck. However, P2P sharing within a community
decreases the load on the north-bound link of an access
switch. Therefore, P2P sharing within a community will
have the most benefit if the infrastructure bottleneck is
on the north-bound link bandwidth of an access switch.

Similarly, P2P sharing among peers across commu-
nities increases the traffic on both the north-bound links
and the south-bound links of access switches. If the net-
work bottleneck is in either B1N or B1S , P2P sharing
among peers in all communities creates more conges-
tion for the switches and decreases the number of con-
current viewers which can be served by a local office. In
this case, P2P sharing across communities is not benefi-
cial for IPTV service providers. Also, if an IPTV service
provider can apply content distribution network (CDN)
technologies such as caching and replication to reduce
the workload in SHE, the benefit of P2P sharing across
communities in a VHO is very limited. The detailed
analysis of network constraints for P2P IPTV services
can be found in [14].

A key insight of this paper is that using the “cloud
model” for P2P streaming is overly simplistic. More
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Fig. 3 Concurrent capacity vs. number of users
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Fig. 4 Concurrent capacity vs. bandwidth of the office-to-access-
switch link
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Fig. 5 Concurrent capacity vs. server capacity

realistic results can be obtained by considering the net-
work at the physical infrastructure level. To demon-
strate our point, consider the following simple P2P al-
gorithm. The content server receives a request for a
video, identifies candidate peers with that video and
spare upload capacity, and selects a random set among
them to collectively serve the video. If not enough can-
didates are available to serve the video at its encoding
rate, the server tries to serve the remaining portion it-
self, or denies the request if it cannot.

We simulated the performance of the system un-
der the two models. For the physical model, we used
a slice of the infrastructure of Figure 2 corresponding
to one local office with 20 communities and considered
the situation where the content server in the local office
distributes video content to the viewers in these com-
munities. For the cloud model, we assume the same
content server and viewers are connected via the Inter-
net cloud. We assume the same behavior for every node
in the community: an idle user (i.e. the user not viewing
a stream already) requests a stream with probability of
2% every time tick. A time tick occurs every minute. A
peer may download only one stream at a time. There
are 1000 video programs available for viewing. When
a peer issues a request, it selects a program according
to Zipf’s popularity distribution. The request will be
rejected in case of insufficient server bandwidth and in-
sufficient peer upload bandwidth. Each stream lasts 120
minutes and has a data rate of 6 Mbps.1 Once down-
loaded, the program remains available at the peer for
a period called the stream time-to-live (stream TTL)
with a default value of 1000 minutes. A peer may be
turned off and on by its user. For simplicity, we assume
that an operational peer is turned off with a fixed prob-
ability 0.1% on every time tick, and a non-operational
peer is turned on with a fixed probability 0.5% on ev-
ery tick. This means that on average every peer stays
on five times longer than it stays off. This also means
that an operational peer goes down at some point in
any given 2-hour interval (our stream duration) with
probability 11.4%. Note that these probabilities refer
to the events of peers going up or down. Thus, they do
not contradict previous studies showed that users only
complete viewing a movie 10–20% of the time [1,2] (in-
deed, a settop box online status is independent of user
viewing habits). We further assume that B1N = 0.622
Gbps (OC-12), and B2S = 10 Gbps. Each data point in
the graphs throughout the paper is obtained by running
the simulation program over 5000 time ticks and tak-
ing the average over the last 2500 time ticks (when the
system reached a steady state in all the simulations).

1 The HD stream encoding rate is constantly improving and
we expect it to reach 6 Mbps soon.
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The results for the cloud and physical models are
shown in Figure 345. The figures also include curves
for the system that does not use P2P delivery under
the physical model. Figure 3 shows the average num-
ber of concurrent viewers the system can support as
the number of peers grows for fixed network and server
capacities. The cloud model indicates that P2P deliv-
ery allows the system to serve more concurrent viewers
and to scale to the growing number of viewers. However,
the result is drastically different when the limitations
of the physical infrastructure are brought into the pic-
ture. In fact, the cloud model could overestimate the
benefit by mote than the factor of 2 when the num-
ber of peers in a community approachs 800 peers as
shown in Figure 3. Not only does the P2P system serve
fewer users, it does not scale with a growing number of
users and has only a slight capacity advantage over the
much simpler centralized delivery (which in fact turns
to slight disadvantage for other parameter settings as
seen in Figures 4 and 5). The reason behind this dras-
tic change is the limitations of B1N , the links between
the local office and individual access switches. When
P2P delivery occurs across different communities, two
of these links are traversed: one upstream from the serv-
ing peer to the local office, and the other downstream
from the local office to the receiving peer. Overall, these
links are more heavily utilized under P2P delivery and
more requests are denied.

Now consider the number of concurrent viewers un-
der varying capacity of the office-to-access-switch link
(Figure 4), when the community size is fixed at 500
viewers. The results for the cloud model are not af-
fected by this link since the model does not consider
it. However, the physical model reveals an important
trend: the centralized delivery becomes quickly bottle-
necked at the server and stops responding to the grow-
ing bandwidth of the office-to-access-switch link. On
the other hand, with P2P delivery, improvement in this
link’s capacity produces a roughly linear growth in the
number of concurrent viewers served, at least within
the bandwidth range studied.

More differences are seen when we increase the server
capacity instead (Figure 5). In this case, the cloud model
quickly reaches the point where it serves all requested
streams and stops being affected by the increase in
server capacity. In particular, this result might indicate
that it is highly beneficial to increase the server capacity
from 10 Gbps to 20 Gbps. Under physical model, how-
ever, the number of concurrent viewers is unaffected
by this change. Thus, the above investment would be
useless under the simple algorithm we are considering.
Comparing the P2P and centralized delivery under the
physical model, the centralized delivery benefits from

increased server capacity until it reaches 20 Gbps, after
which the bottleneck shifts to the office-to-access-switch
link. However, this bottleneck transpires later than in
the P2P case. Overall, Figure 3 4 5 show that depend-
ing on whether or not the network operator plans to
use P2P delivery, they should focus their investment on
the office-to-access-switch link bandwidth or spread it
between both server and office-to-access-switch link ca-
pacities. These trade-offs cannot be revealed under the
conventional cloud model. Broadband speeds to homes
are increasing. As fiber-to-the-home is deployed there
will be an abundance of bandwidth (both uplink and
downlink) in the future for p2p delivery. In a service
provider market, we believe that the physical model
will still hold true given the current technological and
commercial trends.

3 Zebra - Scaling VoD Services with
Pre-striped Content

As discussed in the previous section, a general P2P sys-
tem does not scale well in a physical network (see figure
3). In this section, we present the design of Zebra, a
P2P system that is designed to help scale VoD services
in a typical IPTV architecture (such as the one from
AT&T). Zebra exploits the application-specific proper-
ties of an IPTV-based VoD service to achieve optimiza-
tions not available to general P2P systems:

– Small number of peers (200-500) within the same
local community

– Bounded latency between peers
– Frequent access to popular movies/TV shows
– Central server with a backup copy of all video files
– Access to peer (set-top box) availability character-

istics
– Focus on meeting streaming video’s bandwidth re-

quirement rather than raw download speed
– Known peak and idle hours of VoD requests based

on users’ viewing habits and external events such as
a local sports event

We elaborate on these application-specific proper-
ties and resulting design considerations in the following
sections.

3.1 Zebra - Design Considerations

3.1.1 Insufficient Peer Bandwidth

One serious problem with using a conventional P2P so-
lution, at least in the current technological landscape,
is the limited upload bandwidth of each peer. As an
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example, AT&T architecture under the U-verse service
allocates 1 Mbps for the upload bandwidth as default.
If we limit the contribution of each peer to be no more
than 50% of its upload bandwidth, then an HDTV re-
quest (at the rate of 6 Mbps) would require finding 12
peers that have already downloaded that movie, which
is unlikely in a small neighborhood. Note that the up-
load bandwidth in broadband home environments is
constantly improving, and we are beginning to see up
to 4 Mbps upload bandwidth available in certain situ-
ations. In fact, right now ISPs tend to artificially limit
the amount of upload bandwidth because they have no
incentive to let their customers use that bandwidth for
unrelated, bandwidth intensive applications, such as file
sharing in BitTorrent-like systems. However, ISPs have
the option of increasing the uplink bandwidth at the
modem to allow faster intra-neighborhood communica-
tion for P2P VoD distribution, while still capping up-
load traffic to the Internet. Indeed, this step would be
highly recommended for a viable P2P-based distribu-
tion system of HDTV content.

3.1.2 Prefetching and Striping

Since movies and TV shows are characterized by high
degree of predictability in what will be watched, we
can prefetch the most popular TV shows and movies
to peers during off-peak hours at less than the speed
necessary for live streaming.

In addition, we can break the pre-fetched movies
into many small pieces that are evenly distributed (striped)
throughout the P2P network. Even though each peer
can only afford to contribute limited upload bandwidth,
the aggregate is sufficient to support HDTV delivery.

For example, ten peers with pre-cached content can
serve blocks at a steady rate of 200 Kbps (20% of the
upload bandwidth) to satisfy an SDTV request from a
peer, or 30 peers with 200 Kbps for HDTV delivery.
The choice on the number of peers reflects a trade-off
between the desire to avoid disruption to users’ nor-
mal Internet experience and the management overhead.
Spreading the required upload bandwidth over more
peers results in less bandwidth demand on each peer,
and hence reduces the potential degradation a user might
experience during a normal Internet surfing session. It
also increases the robustness of the system due to peer
departure and failures. On the other hand, the man-
agement of a large number of peers incurs overhead,
especially when the peer selection algorithm needs to
run relatively frequently.

We can also modify the scheme to take into account
that some movies are more popular than others; multi-
ple copies of the stripe set may be used to ensure that

one single group of peers is not responsible for handling
all requests of a popular movie while another group re-
mains idle waiting for a request of an unpopular movie.

3.1.3 Indexing and Lookup

In order to retrieve a desired file from a P2P system,
the client must perform a lookup of some sort to deter-
mine which peer(s) has the file. To support this lookup,
P2P systems either broadcast the search query by flood-
ing or implement a distributed hash table (DHT) [22].
DHTs are designed to scale well to many nodes. How-
ever, we have a small number of nodes and could easily
afford to keep track of which files each node has. In this
initial design, we assume that the central server for the
neighborhood receives every movie request and selects
the set of peers to satisfy the movie request. In particu-
lar, the server has knowledge of the currently available
spare upload capacity of every peer. In other words, due
to the small, fixed membership in our network and the
use of error-correction to obviate the need for shuffling
block ownership, we have eliminated all lookup costs.

3.1.4 Profiling by Central Server

The central server maintains certain state information
about the peers on the network. It keeps track of which
peers are currently up, which peers stripe which movies,
and the current spare upload capacity of each peer. The
server uses this information to select a necessary set of
peers to satisfy a given movie request. If a server peer
goes down unexpectedly, the fixed inter-peer latency al-
lows quick detection of this condition; the peer responds
by issuing an update message and a high-priority block
fetch to the central server.

Long-term historical information about which peers
are up at which times in every FTTN neighborhood
might be collected and used in tailoring the amount of
error correction used in encoding pre-fetched movies.

3.1.5 Dealing with Peer Failures

As some peers may fail, redundancy is necessary to
guarantee smooth delivery. Rather than storing entire
extra copies, we can obtain fault tolerance by lever-
aging the fact that our movie data is being stored on
many machines, rather than just one: before breaking
the movie into pieces, we can use an error-correcting
code (ECC), like an erasure code with a threshold (say
80%) [21]. The file can be recovered if any subset of 80%
can be fetched. Such an encoding scheme has much less
overhead than using entire copies.
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With erasure coding, the movie file is broken into
segments. Each segment is encoded as, say, 12 blocks,
and any ten of which are sufficient to reconstruct the
segment. Because segment reconstruction can occur only
when 10 blocks are downloaded in their entirety, buffer-
ing is essential in our approach: a downloading peer
delays movie rendering until the first segment is down-
loaded and reconstructed, and then downloads the blocks
of the future segments while the current segment is be-
ing rendered. The buffering, and the initial viewing de-
lay that stems from it, is also employed in the current
Internet streaming delivery, except that today it is used
mostly for jitter reduction. Companies like Vudu [33]
preload the initial blocks of the most popular movies
on their set-top boxes to give users instant access to
these movies while downloading other blocks through
their P2P network.

Because of buffering, when a downloading peer de-
tects failure of a peer used for movie delivery, there is
usually significant time left until the interrupted block
will be needed for viewing. The downloading peer can
use this time to contact the server and obtain the iden-
tity of an alternative peer for the interrupted block, or
obtain this block from the central server directly.

We can use as much error-correction as is efficient
from a storage/bandwidth standpoint, but since we have
a central server that has all the data and can bridge the
gap in the event that the P2P network “fails” to fetch
the data, we do not need to be forced into using enough
correction for the worst-case scenario.

3.1.6 Conceptual Similarities to RAID

In essence, we are distributing data across many nodes
in order to get higher bandwidth and using error-correction
to handle failed nodes. There is a strong analogy to a
very large RAID array. However, it is more than just
a disk array, because the individual peers also actively
request data from each other. Rather, this system re-
sults also from the P2P design principle of scalability.
The more nodes you add to a neighborhood, the higher
the demand on the bottleneck link and the servers on
the remote side. By letting the network itself shoulder
some of that load, the system as a whole scales better.

3.1.7 Caching

Although we have so far focused on the striped pre-
fetching system, peers also maintain a cache of movies
they watch. This is necessary for simple things like
rewinding, as well as allowing customers to rent movies
(in which they can watch the movie as many times
as they wish during a certain time period). Since the

ISP knows which movies a customer has watched, it
may be able to predict which movies the customer will
watch in the future with the help of a recommendation
system that will cater for customers with predictable
viewing habits. Given the growing availability of low-
cost storage, it is now feasible to prefetch entire movies
to some customers’ set-top boxes. This is particularly
cheap since it can be multicast to many homes simul-
taneously during off-peak hours. We are currently in-
vestigating how the bandwidth savings vary depending
on how storage is allocated between peer caches and
striped pre-fetching.

3.1.8 Connection Overhead

Note that it may not be necessary to have a large num-
ber of open TCP connections (which might be a strain).
Error-correction is already present at a higher level and
the video software keeps its own re-order buffer, over a
much larger window, so there is no point in TCP dupli-
cating that. Furthermore, tight control from the central
server over the P2P delivery process obviates the need
for TCP congestion and flow control. The communica-
tion is more efficiently done over UDP.

3.2 Zebra Simulation Model

To study how Zebra system helps to reduce the server
workload and increase the VoD service capacity, we use
the simulation model which is similar to the one used in
Section 2.2. We use the following peer failure model: ev-
ery time-tick an operational peer goes down with prob-
ability 1% and a failed peer repairs with probability
5%.

We assume that once a day, the server decides on the
set of movies to be made available and on the number
of copies of each movie. We assume prefetching is done
during off-hours when bandwidth is plentiful. We do
not model the bandwidth consumption or content dis-
tribution in the prefetching process. For simplicity, we
assume that only prefetched striped movies are used for
peer-to-peer delivery. The movies acquired as the result
of prior viewing are not used for this purpose.

The following parameters are used in describing the
Zebra model (in addition to those specified in Section
2.2):

– ZN : total number of videos in the VoD library
– Zn: number of striped videos; the rest in the library

is not striped
– Zp: number of required serving peers for each copy

of a striped video
– Zc: number of copies of each striped video
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– Zr: rate of erasure coding; for example, a rate value
of 5

6 means 5
6 of the total number of stripes is needed

to recover the original video
– Zs: number of stripes for each copy of the video:

Zs = Zp/Zr.
– Zg: size of the peer storage (in GB) reserved for

P2P content delivery; a 5GB storage on each peer in
a 300-member community would allow roughly 800
SD movies at 1.5GB each (and striped with Zr =
4
5 ) to be stored in the local community.

We enumerate below some of the default parameter
values used in the simulation model.

1. Rp: Request probability of 5% for a new download
if a peer is inactive

2. Zipf’s popularity distribution of videos in the VoD
library with parameter 1.

3. N : Total number of subscribers per community =
300

4. Number of communities = 1
5. ZN = 500
6. Server capacity = 500 Mbps
7. B0D = 20 Mbps, B0U = 1 Mbps
8. Stream TTL = 100 ticks

The movie popularity is modeled according to the
Zipf’s distribution with parapmeter 1. The resulting cu-
mulative probability function for 500 movies is shown
in Figure 6. We observe that the top 50 movies (10%)
accounts for 60% of the requests. The popularity distri-
bution is dependent on the size of the movie database
and the number of requests. We observe a conservative
estimate for the popularity distribution of VoDs. We
experiment on one community with 300 peers and a lo-
cal VoD server capacity of 500 Mbps. We are mainly
interested in understanding the amount of server ca-
pacity savings at the expense of using peer assistance
within a community for a wide range of parameters.

In the following, we discuss some of the simulation
results based on the above default parameter space.
Any deviation from the default parameter space is de-
tailed within each experiment. Movies are striped across
peers at the beginning of each simulation. In experi-
ments detailed below, the number of peers per stripe
and the number of copies per movie are varied within
a community. The average capacity/bandwidth of the
server at steady state is computed over a simulation
length of 5000 ticks. Normally, each peer provides a
stripe at 200 Kbps for a length of 100 ticks. A request-
ing peer is therefore supplied by 10 peers in collection
at a playout rate of 2 Mbps in a given tick. Using a peer-
first approach, we exhaust peers’ uplink bandwidth first
before requesting the local server to supplement any re-
maining needs.
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Fig. 6 VoD simulated popularity - Zipf distribution
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Fig. 7 Server bandwidth utilization (Mbps) vs number of striped
movies among peers in the community Zn: ZN = 500, Zp = 10,
Zr = 5/6, Zc = 5, Rp = 0.05

Figure 7 plots the utilized server capacity vs the
number of movies that are striped among the peers
in the community. On the one extreme, no movies are
striped (Zn = 0) and hence the server is always uti-
lized to supply any requests. On the other extreme, all
movies are striped (Zn = ZN ) and hence available at
local peers. Only the top Zn movies out of the 500 are
striped and each movie is striped across 12 peers with
a total of five copies per movie in the community. It is
observed that as more movies are striped locally, the de-
pendence on the server is reduced by about 11%. Note
that the server capacity does not asymptotically ap-
proach zero, since not all peers can be available for up-
loading to requesting peers at a given point in time. Any
overflow has to be accommodated by the local server.

Figure 8 shows the active number of peers down-
loading a movie as a function of simulation tick itera-
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tions. There is an initial ramp-up procedure after which
it stabilizes to an average value. With increasing re-
quest rates (from 0.25% to 5%), the average number of
active peers also grow. This simulation uses one copy
per movie of the entire VoD database.

Figure 9 shows the average number of active users
and the server bandwidth utilization vs varying request
probability. The request probability is the chance of
generating a new download if the peer is not download-
ing in a particular tick. As expected, the server utiliza-
tion is seen to increase with request probability. The
utilization of the server bandwidth fluctuates as pop-
ular VoD requests cannot be delivered by peers only.
We use a peer-first policy where requests are accommo-
dated by peers first, failing which the server is contacted
for the remaining bandwidth needs. There is a sharp
increase of about 28% in the server bandwidth utiliza-
tion as request probability increases from 1% to 10%.
Further increase in the request probability has a much
lower rate of increase. Similarly, note that as the request
probability increases from 0.25% to 20% the viewership
asymptotes to the maximum community size of 300.

Figure 10 shows the average server bandwidth uti-
lization as a function of increasing uplink bandwidth.
As more uplink bandwidth is provisioned per peer there
is very little use of server capacity. It is interesting to
note that increasing uplink bandwidth by a factor of
2 (from 1 Mbps to 2 Mbps), results in a 25% drop in
server utilization. Provisioning any further uplink band-
width does not result in such a dramatic savings. This
can be explained by the following simple calculations:
Given that the average number of active peers is 250,
Zs = 10, and the serving peer is giving 200 Kbps to
each receiving peer, in a 300-member community, the
average bandwidth required from each peer to satisfy
all peering activities is about 1.6 Mbps. The increase
of uplink bandwidth would certainly be welcomed for

0 5 10 15 20
50

100

150

200

250

300

Av
er

ag
e 

nu
m

be
r o

f a
ct

iv
e 

pe
er

s

Request probability (%)
0 5 10 15 20

0

50

100

150

200

250

Se
rv

er
 b

an
dw

id
th

 u
til

iz
at

io
n 

(M
bp

s)
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HDTV content as each peer would have to contribute
600 Kpbs with Zs = 10.

Figure 11 shows the server bandwidth utilization as
a function of the number of stripes per movie. This sim-
ulation used one copy per movie for the entire database.
As the number of stripes increase, there is less depen-
dency on the server. The aggregate playout rate is still
kept at 2 Mbps, hence, as the number of peers per stripe
increase, each peer uploads at a lower nominal rate. Zr

is kept fixed at a ratio of 5
6 .

Figure 12 shows the server bandwidth utilization
for SD and HD streams as a function of time. The
request probability was lowered to 1% to accommo-
date HD streams. SD streams were striped across 12
peers (requiring 10 peers to provide for 2 Mbps). HD
streams were similarly striped across 12 peers (requir-
ing 10 peers to provide for 6 Mbps). We observed that
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6 , Zc = 1

with a 500 Mbps server capacity, HD streams were
sometimes interrupted due to exceeding server capacity.
Average SD and HD server capacity utilizations were
96.4Mbps and 450.5Mbps respectively.

In our study so far, we have used a limited form
of the Zebra algorithm in that only the top movies are
striped with the same Zp, Zc, and Zr. In its more gen-
eral form, one would include a mapping table of videos
of the library vs. peers in the neighborhood. Each video
can have an arbitrary number of copies or stripes stored
in any subset of the peers. The optimal peer assignment
will be based on the available upload bandwidth from
each peer, which depends on both the distance of the
peer from the FTTN switch and observed behavior of
the upload activities from the peer.

4 Cost-Benefit Analysis

In order to encourage viewers to make their set-top
boxes available for P2P sharing, some incentive may
be given to peers who upload videos to other peers.
This section analyzes the cost and benefit of deploying
P2P technology on a physical network and compares
its maximum possible profit to that of a conventional
IPTV service.

4.1 Maximum Benefit for Conventional IPTV

Let r be the fee for a peer to download one movie and
s be the average subscription fee paid by an IPTV sub-
scriber, recalculated from the monthly period unit to
the average movie duration. In this section, we will con-
sider the average movie duration (120 minutes) as our

time unit. For example, the $99/month fee would be
recalculated to be $0.28 per time unit because there
are on the average 360 2-hour slots in a month. For
IPTV services, the maximum revenue in a local office
per time unit is Rmax = rN1 + sN2, where N1 repre-
sents the number of concurrent viewers per time unit
supported by a local office - with or without P2P incen-
tives, and N2 refers to the total number of subscribers
supported by a local office. The maximum profit per
time unit, Pnop2p, is

Pnop2p = maximum income − IPTV expenses

= rN1 + sN2 − Enop2p (1)

where rN1 represents VoD income, sN2 represents sub-
scription income, and Enop2p is the capital and opera-
tional expenses of the IPTV services per time unit.

4.2 P2P Incentive Models

To encourage P2P sharing among viewers, we consider
three incentive models: Built-in model, Flat-reward model
and Usage-based model.

4.2.1 Built-in Model

In this model, every set-top box includes P2P stream-
ing software by default. Hence, P2P sharing is hidden
from the viewers. The maximum profit per time unit is
Pb = rN1 + sN2 − Ep2p, where Ep2p is the total oper-
ation and capital expenses per time unit for providing
P2P IPTV services. It should be greater than Enop2p

because P2P software needs to be installed on servers
and clients and hence will increase the cost of the in-
frastructure. Let’s assume Ep2p = Enop2p +Ap2p, where
Ap2p includes the additional software license and main-
tenance fees paid for P2P software and additional hard-
ware (such as disk storage). In the built-in model, we
assume that the recurring software license and mainte-
nance fees and the amortization of additional hardware
result in each set-top box costing t dollars extra per
time unit. Therefore, Ap2p = tN2. Accordingly,

Pb = rN1 + sN2 − Enop2p − tN2 (2)

4.2.2 Flat-reward Model

In this model, a viewer signs up for the video sharing
feature for a flat reward. Assume a fraction w, (0 ≤ w ≤
1) of viewers in a community sign up for video sharing
and the reward is d dollars per time unit. The num-
ber of concurrent viewers per time unit supported by a
local office is denoted to be N1 and the total number
of users in communities is denoted to be N2 as before.
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Fig. 12 Comparison of server utilization of SD and HD as a function of time: Zr = 5
6 , Zc = 1, Rp = 0.01

The maximum cost of incentive per time unit for the
office is dwN2. Each peer who signs up for the sharing
needs to install and activate the P2P software on its
set-top box. We assume that a service operator incurs
the P2P software license fee only for those set-top boxes
where P2P software is activated. Therefore, Ep2p equals
Enop2p + twN2. The maximum profit per time unit in
this model is

Pf = total income − expenses − incentive

= rN1 + sN2 − Ep2p − dwN2

= rN1 + sN2 − Enop2p − twN2 − dwN2 (3)

In general, w depends on d: increasing d will increase
the percentage of viewers willing to share videos and
hence increase w. It should be noted that there is a
trade-off to specify d here. On the one hand, increasing
d could increase the number of concurrent viewers sup-
ported by a local office; i.e., it increases N1 and thus
could increase profit. On the other hand, increasing d
will increase the cost to reward the users who sign up

to allow P2P video sharing; i.e., it will increase dwN2.
We do not discuss how to achieve optimization in this
work since a small change of system configurations may
cause oscillation of the optimal point. Instead, we use
a constant value for w in our experiments.

4.2.3 Usage-based model

In this model, a user who signs up for P2P sharing will
get credit based on the number of bytes uploaded from
his set-top box. Again, assume a fraction w of viewers
in a community sign up for video sharing. Let q be the
credit per bit uploaded from a viewer’s set-top box.
The number of bits uploaded from peers for P2P IPTV
services in a time unit is u. The IPTV service provider
gives incentives to these supporting peers based on their
contributed bandwidth. In this model, the total reward
given by an IPTV service provider to peers in a local
office per time unit is qu. The maximum income per
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time unit in this model is

Ps = rN1 + sN2 − Ep2p − qu

= rN1 + sN2 − Enop2p − twN2 − qu (4)

As an example, to compare the maximum profit per
time unit under the conventional and the three incen-
tive models, we assume that each viewer pays 3 dollars
to watch a movie (r=3) and each movie lasts about 120
minutes. With download bandwidth B0D of 22 Mbps,
upload bandwidth B0U of 1 Mbps, and SDTV stream-
ing rate of 2 Mbps, each SD movie consumes 14.4Gb or
1.8GB. Note that this would require either 2 streams
of 1 Mbps, or in the case of Zebra, 10 streams of 200
Kbps if Zs = 10, from peers for P2P delivery. If we do
not consider the “push” cost of Zebra during idle hours,
then the total payout is the same in either case in the
usage-based model. We further assume that the capi-
tal/software/operational cost of each office is $1 million
per year ($22.83 per time unit), the average monthly
subscription fee is $99 ($0.229 per time unit), and the
additional cost of incorporating P2P software and hard-
ware (disk storage) on each set-top box per time unit is
$0.1. We assume that B2S = 50 Gbps. Note that B2S

is also constrained by the total streaming throughput
from the server, which is about 10 Gbps.

We can now plot the profit per unit time compar-
ing the conventional model and the incentive models
of VoD services with varying B1S (1-30Gbps) and B1N

(1-10Gbps) capacities, as shown in Figure 13. The max-
imum number of concurrent viewers are estimated ac-
cording to a linear optimization program as discussed
in [14]. In Figure 13, upper bounds for N1 are used to
illustrate the profit capacity surfaces. The profit num-
ber ramps up faster for the built-in model (smooth sur-
face) (with a given B1N ) compared to the no-P2P model
(striped surface) as we increase the bandwidth of B1S

until it reaches a plateau. Typical values of w = 0.5,
t = 0.1, q = 0.01 per Gb, and d = 0.05 were used
to estimate these capacities. The total number of sub-
scribers, N2 were 3000, made up of 10 communities with
300 peers per community.

4.3 Maximizing IPTV Service Provider Profit

To study the benefit of P2P technology for an IPTV
service provider under various incentive models, we per-
formed a simulation study using the Zebra algorithm.
Based on the analysis in section 2, which shows that the
benefit of P2P sharing among peers in different commu-
nities is very limited [14], we only consider P2P sharing
within a community and simulate a system comprised of
the local office and one community. We consider “peer-
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first” approach where peers are selected first if the re-
quested video can be severed by peers, and local office
will still have to serve the video if the requested video
can not be severed by peers.

We assume the same simulation model as described
in section 2.2, using the physical network model. We
assume that viewing each movie costs $3 (even if it is
viewed from the local cache), peer incentive in the flat-
reward model is $0.05 per time unit, and peer incentive
in the usage-based model is $0.01 per 1 Gb.

Figure 14 and 15 compare the profits among the
three incentive models: built-in, usage-based, and flat-
reward. Figure 14 shows how the profit changes with
request rate. Intuitively, with more user requests, there
is a greater opportunity for the service provider to make
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money (up to the capacity of the system). Indeed, the
unit time profit for all three incentive models increases
with request probability (albeit at a reduced rate). All
models come very close in the profit numbers when the
request is low for a community of 300 subscribers. The
conventional model yields more profit when the request
rate is very low and it plateaus after it reaches its max-
imum capacity of 50 concurrent viewers. The usage-
based model lags the built-in and flat-reward cases due
to its additional payout once the request rate is over
0.5%. Under high request rates, the built-in model suc-
ceeds in using the aggregated P2P delivery capacity
to support the most number of concurrent viewers (it
peeks at adding 150 additional SDTV viewers if all
300 subscribers in a community with 1 Mbps upload
limit all participate in P2P delivery). This can only be
achieved when the content is pre-striped using an al-
gorithm like Zebra to make sure that there are enough
peers to support most movie requests. Traditional P2P
algorithms do not guarantee enough peers with the re-
quested content and sufficient bandwidth to satisfy the
demand using only peers within local community.

Figure 15 shows how the profit changes with the
number of subscribers at a fixed request probability
(Rp = 0.01). Note that the linear growth of the conven-
tional model comes purely from the increase in subscrip-
tion revenue as it cannot add more concurrent viewers

at this request rate. The built-in and flat-reward mod-
els have the best overall profit. Note that a usage-based
model needs to compensate peers even when the server
has spare capacity, while the cost/benefit of the built-in
model depends on the utilization of the system needed
to amortize its investment on the additional hardware
and software. As we increase the number of subscribers,
the flat-reward model continues to gain additional peers
(w = 0.5)to help out with content delivery, but the
built-in model does not enjoy as much profit due to the
high deployment cost for 100% of the subscribers at this
request rate.

In summary, as the number of peers increases, all
P2P incentive models clearly generate more profit than
the no-P2P model, because of the increased system ca-
pacity due to P2P content delivery. However, we see
large differences among the incentive models as described
above.

5 Related Work

Peer-assisted video-on-demand has been studied in [32]
to provide users equal experience as traditional client-
server approach. Their study found that P2P can re-
duce server bandwidth requirement significantly, espe-
cially when prefetching is used during network idle time.
The work on how to improve VoD server efficiency can
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also be found at [16]. ISP friendly P2P techniques have
been studied in [6,18,32] where they identify possibility
to minimize cross-ISP traffic while still reaping most
of the benefits with P2P. User-generated content in
YouTube has been analyzed in [7] to review viewing
patterns, video life-cycles, request properties, content
aliasing, etc. The potential of using P2P techniques for
YouTube-like systems is also discussed.

The most related work is our previous conference
paper [15], from which this journal paper work is evolved.
The major additions are a new media management tech-
nique for P2P streaming and extended cost-benefit anal-
ysis. We first proposed the idea of striping media data
across peers (Zebra) and using error correcting code
to overcome transient failures at the AT&T Labs 2006
University Collaborations Symposium [8]. The authors
in a recent paper[27] proposed a similar peer-to-peer
system to push content to peers proactively and a load
balancing algorithm to select serving peers in a dis-
tributed fashion. Their focus has however been to de-
rive optimal placement strategies namely a full striping
scheme and a code-based scheme that handle determin-
istic and stochastic demand models. Our proposed algo-
rithm does not investigate data placement techniques,
rather quantifies the operator-attainable profit using
one such striping scheme. We also note that in a re-
alistic setting, an operator may have full knowledge of
each set-top box’s viewing behavior. A combination of a
recommendation system together with a suitable strip-
ing strategy may prove to be more useful.

One can conceive a P2P network as a large RAID
array. The server keeps track of the allocation of me-
dia streams to peers and schedule them intelligently
to provide the required sub-streams in real time. Incen-
tives and micropayment for peer participation have also
been discussed in the literature. The authors in [17] de-
sign a BitTorrent like protocol for P2P assisted VoD in
IP-enabled set-top boxes. It leverages the storage ca-
pacity of those boxes for improved viewing experience
and performs location aware content fetching to reduce
cross-AS traffic on the Internet. Erasure codes [21] were
used in [10] for peer assisted file delivery.

6 Conclusions

This paper studies the conditions under which P2P
technology may be beneficial in providing IPTV ser-
vices. We showed that the cloud model of the Inter-
net frequently used in simulation studies of peer-to-
peer systems may drastically overstate the benefits of
P2P video content delivery. In particular, in a service
provider model, P2P sharing across subscriber commu-
nities can increase the strain on the bottleneck elements

of the access network infrastructure. Thus, one must
consider physical network infrastructure to obtain more
reliable results.

We proposed an algorithm called Zebra that pre-
stripes content across multiple peers during idle hours
to speed up P2P content delivery in an IPTV environ-
ment with limited upload bandwidth. Using simulation
studies over a physical network model, we evaluated
Zebra’s behavior under various usage scenarios. In par-
ticular, we showed that it effectively offloads the VoD
server. Thus, with our approach, the system with simi-
lar resources can support a significantly larger number
of concurrent viewers in a community.

Finally, we provided a cost-benefit analysis for dif-
ferent pricing/incentive models. We considered three
plausible incentive models: usage-based, where subscribers
are compensated based on the bytes they upload to
other subscribers; flat-reward, where a subscriber re-
ceives a fixed discount on the subscription fee if it agrees
to participate in P2P delivery, and a built-in model,
where every settop box comes to subscribers with em-
bedded P2P functionality. We analyzed the profitability
tradeoffs among these models under different scenarios.
While specific results will depend on the particular price
and incentive values, our key finding is that the bene-
fits of P2P delivery depend crucially on the pricing and
incentive structure. Thus, these aspects must be con-
sidered along with capacity constraints in designing a
platform for VoD delivery. In summary, P2P may not
be beneficial for IPTV services unless we employ prop-
erly engineered algorithms and incentive strategies as
discussed in this paper.
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