
1

Mega Data Center for Elastic Internet Applications
Hangwei Qian Michael Rabinovich

VMWare Case Western Reserve University
qianhangwei@gmail.com misha@case.edu

Abstract—This paper outlines a scalable architecture that sup-
ports datacenter-wide resource management for elastic Internet
applications in a mega data center. Our architecture includes
a scalable load-balancing fabric and provides effective knobs to
balance load among the applications, servers, access links, as
well as the load-balancing components themselves – the low-level
resource managers and switches in the load-balancing fabric.

I. INTRODUCTION

Modern cloud providers are building data centers with
hundreds of thousands of servers, knowns as mega data
centers. For example, Microsoft’s data center in Chicago
can potentially pack up to 300,000 servers [1]. Mega data
centers are especially attractive to host elastic clouds, which
dynamically adjust resources allocated to applications based
on the demand and which are particularly valuable for Internet
applications where the demand is often hard to predict in
advance. In this environment, mega data centers not only
reduce the overall operating costs because of the economy
of scale, but also promise better resource utilization through
the statistical multiplexing of resource usage among the hosted
applications.

However, to fully utilize this promise requires global re-
source management across the entire data center. While
efficient dynamic resource management is relatively well un-
derstood for traditional data centers, the scale of mega data
centers brings new challenges. This position paper describes
these challenges and sketches a novel data center architecture
capable of meeting them. In particular, we concentrate on
supporting elastic Internet applications where demand is driven
by external client requests.

A. Challenges

With qualitative increase in scale of mega data centers,
many traditional solutions in data center management and
architectures no longer apply. We formulate some of these
new challenges below.
Scalability of resource provisioning algorithms The re-
source management in the data center aims to balance load
among servers and other elements, minimize application place-
ment changes, and increase utilization of the servers (e.g.,
to conserve energy). As shown in [23], this is an NP hard
problem. A number of heuristic algorithms have been proposed
but they do not work at the mega data center scale. For
example, in the scheme in [23], the algorithm execution time
increases exponentially with the increase of the number of
managed machines and needs about half minute to create
provisioning decisions for only about 7,000 servers and 17,500

applications. Also, in [25], it takes about 30s to manage 1500
virtual machines.

One way to address this problem is to distribute these tasks
among multiple agents, either at the host level or application
cluster level, as proposed in [10], [26]. However, distributed
approaches improve scalability at the expense of the quality of
their solutions (except for some restricted settings, e.g., in the
case of content delivery networks that cache static files [24]).
Limitations of load-balancing elements Traditional data
centers commonly deploy load-balancing switches (called LB
switches here) to achieve fine-grained load balancing and
fail-over among replicated servers. According to [6], 10%
of devices in the studied data centers were load-balancing
switches. However, these switches do not scale to the demands
of a mega data center. For example, the maximum number
of external IP addresses for applications (known as virtual IP
addresses, or VIPs) and real internal IP addresses for replicated
servers (known as real IP addresses or RIPs; these can be
taken from a private address space such as the 10.0.0.0/8
block) supported by Cisco Catalyst switches are 4,000 and
16,000 respectively [12]. A naive way to support a greater
number of applications or their replicated instances is to par-
tition the applications among multiple switches; this however,
compartmentalizes the data center resources and diminishes
the benefits of statistical multiplexing.
Variety of load-balanced resources A traditional data center
typically has a small number of access links to the Internet, of-
ten a single default link and a backup, and a fairly streamlined
internal network organization. Thus, resource provisioning
traditionally has concentrated on server load. However, a mega
data center typically has multiple Internet access links and
border routers as well as complex internal network topology,
necessitating load balancing among these components. In
particular, in this paper, given recent advances in intra-data
center network organization [2], [8], [17], we address the
issues of load balancing among Internet access links as well
as among LB switches that received less attention.

B. Approach

In this position paper, we introduce a novel data center
architecture capable of addressing these challenges. First, to
address the scalability limitations of research provisioning
algorithms, servers in the data center are divided into groups,
which we call pods. Existing solutions [23], [28] are applied
to efficiently allocate server resources to applications within
each pod. Meanwhile, to avoid compartmentalization of the
data center resources, we introduce new control knobs to
dynamically reallocate resources among the pods. This results

2

in a hierarchical approach that is scalable and yet we believe
capable of approaching global optimality.

Second, we present control knobs to balance the load of
the access links and LB switches, which in addition to limited
numbers of VIPs and RIPs have a finite throughput capacity.
Finally, we sketch an architecture that ties together all the
control knobs in a coherent platform.

II. SYSTEM ENVIRONMENT

We consider a mega data center that houses a multi-tenant
cloud platform. We assume applications that implement client-
facing Internet services and that each hosted application runs
in its own virtual machine (VM); in other words, our appli-
cations roughly correspond to websites. A popular application
can be represented by multiple VM instances, in which case
the application instances are fronted by a load balancing (LB)
switch that distributes client demand among the application
instances. Each application is represented by an external
virtual IP address (VIP) that maps to the LB switch and a
set of real IP addresses (RIPs) representing all VM instances
of the application. Incoming client communication sessions are
addressed to the application’s VIP, and these sessions therefore
arrive at the switch on which the application’s VIP is config-
ured; the switch then chooses a RIP to service this session.
For specificity, we assume the following load-balancing switch
parameters: 4,000 VIPs, 16,000 RIPs and 4 Gbps throughout
the discussion. These parameters are characteristic of Cisco
Catalyst switches [12], but our approach equally applies
to switches with other parameters. We target the mega data
centers with around 300,000 servers and 300,000 applications,
and we assume on average 20 VM instances per application.
Thus, the entire data center requires at least 300,000 VIPs
and 6M RIPs. Websites are typically structured in a multi-tier
fashion, where client-facing application servers (which could
be application servers such as Websphere or JBoss, or HTTP
servers such as Apache) communicate with backend databases
and other services. For simplicity, we focus on independent
scaling of virtual machines in this position paper. Other
research addresses co-placement of VMs that communicate
with each other [29], [13], [15], [22], [3]; our architecture can
also incorporate these ideas.

III. ARCHITECTURE

Our proposed architecture is shown in Figure 1. In this
architecture, the access network of the data center consists
of the access connection layer and the load-balancing layer.
The former provides Internet connectivity to the data center
and consists of border routers that are connected through the
access links to the access routers (ARs) belonging to the ISPs
from which the data center obtains its connectivity. The latter
consists of LB switches that are connected to the border routers
on one side and to the servers on the other. The LB switches
are connected to the servers though an existing L2/L3 switch
fabric, so that each switch can in principle (and as we will
see in Section III-B, in practice) include any server into its
load-balancing groups. Greenberg et al. [7] pointed out that
address translation most switches use to reach physical servers

across subnet boundaries sometimes conflicts with application
requirements. Patel et al. [19] address this issue by using
packet encapsulation in place of address translation, an option
offered by some products (e.g., MidoNet [16]) and readily
implementable in any OpenFlow-compliant switch. The border
routers and the LB switches are fully interconnected (most
likely through a thin layer of L2 switches) to enhance the
platform reliability. The rest of this section discusses key
aspects of this architecture in more detail.

A. Hierarchical Resource Management

In order to scale resource management to the mega datacen-
ter dimensions, we propose a two-level hierarchical resource
management architecture where physical servers are divided
logically into groups, which we call pods1. A server pod
manager only knows the servers and applications of its pod,
and dynamically provisions resources to applications within
its pod. For example, when detecting that the load of the
some application is increasing, it can increase the capacity of
some VMs running an instance of the application (reducing
the capacity of other applications if needed), or create more
active instances of this application on lightly loaded servers
in the same pod. Existing resource allocation algorithms, e.g.,
as proposed in [23], [28], can be applied here. The size
of a pod (the number of hosts and deployed applications)
should be small enough so that these algorithms can cope
with the pod’s scale. In our architecture, given the reported
scalability of existing resource managers [23], [28], we target
each pod to be limited to about 5,000 servers and 10,000 VMs
(whichever comes first). We say a VIP covers a pod when the
pod contains a VM whose RIP maps to this VIP. Similarly, an
application covers a pod when the pod contains an instance of
the application.

Besides pod managers, there is a datacenter-scale resource
manager (referred to later as global manager below, although
one must realize that resource management can also occur at
yet higher level – across multiple data centers) that monitors
resource utilization of all the pods and balances the load
among them. A pod can be overloaded for several reasons. It
may be overloaded due to approaching its processing capacity
limits, e.g., its servers may be overloaded with no spare
capacity within the pod for the server pod manager to resolve
the issue. A more subtle issue is that the server pod manager
itself may become “overloaded” due to too many servers and
applications in the pod, which increases the decision space
for the pod manager and slows down its resource allocation
algorithms beyond acceptable levels.

The global manager performs three key functions in our
architecture. First, as just discussed, it implements the top level
in our hierarchical resource management scheme to avoid over-
load of server pods. Second, it monitors and manages other
datacenter-scale resources, such as LB switches and access
links. Third, it contains the VIP/RIP manager component as
described in Section III-C.

1These server pods should not be confused with pods and racks in a
traditional datacenter network topology. In fact, as discussed later, we assume
more advanced recently proposed topologies.

3

 A
c
c
e
s
s

 N

e
tw

o
rk

Internet

AR2 Access Routers

Load-balancing

Layer

Servers

AR3 AR1

LB

VIP1 VIP2

Pod 1

Existing

Interconnection

Border Router

Access

Connection Layer

LB LB

 L2/L3 Switch Fabric

VIP1 VIP2

a b

Pod K

Pod N

(L4 LB Switches)‏

 www.foo.com: VIP1, VIP2

Pod Manager 1 Pod Manager K Pod Manager N

VIP/RIP Requests

Border Router

Access Link Load

Balancer

LB Switch Load

Balancer

Inter-Pod Load

Balancer

G
lo

b
a

l

M
a

n
a

g
e

r

Fig. 1. Data Center Architecture. The dashed arrows represent both control and monitoring connections.

B. Positioning the LB Switch Fabric

In this section, we provide rationale for the placement of LB
switching layers in our architecture. In traditional data centers,
LB switches are placed close, or directly connected, to servers,
which limits the number of servers they are able to reach,
increases the number of LB switches required, and compart-
mentalizes data center resources. The traditional architectures
accept this drawback because if an LB switch connects to a
remote server, the traffic between the switch and the remote
server will compete with other intra-datacenter traffic, and the
amount of bandwidth available for traffic between the switch
and the server will be unpredictable.

However, recent advances in data center topologies [2], [8],
[17] guarantee bandwidth between any host-pair within the
data center and provide flat address space to all the hosts.
Thus, we place LB switches close to the border and connect
them to servers through the L2/L3 switching fabric, which
we assume implements one of these modern topologies. As a
result, the LB switches can reach any host in the data center
thus providing flexibility in forming load-balancing groups. In
particular, this allows our architecture to support logical pods
for the purpose of application instance management, which are
independent of server location in datacenter network topology
structures such as racks or physical pods.

One question is whether the LB switches would become
communication bottleneck when placed at the access network.
In this regard, we first note that the LB switches just need
to process the traffic entering/leaving the data centers, which
is only about 20% of total amount of traffic according to
[8]: all intra-DC traffic flows below the load-balancing fabric.
Furthermore, the LB switches are very powerful to offer high
bandwidth capacity. For example, according to [12], Cisco LB
switches are able to process 1.25 million packets per second,
maintain 1 million concurrent TCP connections and provide 4

Gbps bandwidth when switching at layer 4. Suppose there are
300,000 applications. Even when each application is assigned
only two VIPs, the number of required LB switches is at least
300, 000∗2/4, 000 = 150, which can provide about 600 Gbps
aggregate external bandwidth. Thus this layer will not be a
bottleneck.

C. VIP/RIP Management

Many resource management mechanisms discussed below
involve reconfiguration of the LB switches to add or delete a
VIP or RIP address. In fact, given that each switch can handle
a limited number of VIPs and RIPs, such reconfiguration
is also needed to balance the number of VIPs and RIPs
configured on each switch.

To utilize LB switches (an expensive resource) to the
fullest, our architecture makes all the LB switches available
as globally shared resources for all applications. Consequently,
various control elements such as individual server pod man-
agers, as well as the global manager, can have independent
and potentially competing needs for VIP/RIP configuration.
In order to mediate and serialize all requests for VIP/RIP
(re)configuration, we assign the responsibility to process any
such requests to the global manager. Any component that
needs to update the VIP/RIP configuration at any switch
sends a request to the global manager. The global manager
processes the requests sequentially according to their priority.
For each request for a new VIP, the manager identifies an
underloaded switch (i.e., one with few already-configured
VIPs and a low data throughput being handled), allocates an
unused IP address, and configures the switch with this IP
address as a new VIP. For each request for an additional RIP,
the manager considers the switches that host one of the VIPs
of the corresponding application, selects the most appropriate
switch with spare RIP capacity (according to some policy that

4

is orthogonal to the architecture we discuss here; e.g., the
policy may take into account the current data throughput of
the switches, the number of RIPs the switch handles already,
and load on the access links carrying traffic to and from
the corresponding VIP), and configures the extra RIP on this
switch. VIP and RIP deletion is handled in a straightforward
way.

IV. CONTROL KNOBS

In this section, we describe the mechanisms available to
control load at various platform components – servers, server
pods, LB switches, and access links. As we will see, our
architecture makes a large number of control knobs available
to both local server pod managers and the global resource
manager to manage resources across the data center. The sheer
number of these knobs increases the decision space and makes
computing proper policies more challenging. In fact, most of
the knobs affect each other, further complicating the issue. We
are investigating algorithms involved in our ongoing work.

A. Selective VIP Exposure

Data centers are connected to the access routers (ARs) of
ISPs through border routers with access links. Even traditional
data centers are often connected to multiple ISPs for the
reliability and economic concerns, and one can certainly
expect this to be the case with mega data centers – not just for
the above reasons but also to procure appropriate bandwidth.
Here, traffic engineering is necessary to: (i) avoid overloading
of any access link and (ii) control the traffic among the
different access ISPs according to the business requirements
(e.g., different link usage costs).

A naive way to implement such traffic engineering is VIP
transfer between access links: we could withdraw the routes
for some VIPs from the access routers associated with the
overloaded access links and re-advertise them at other access
routers with lightly-loaded access links. To avoid service
disruption during the transition period, we could advertise
padded autonomous system paths through the old routers
before withdrawing these routes, and only withdraw them once
no new connections come through the old routers. However,
the load balancing based on such dynamic VIP advertising is
slow and increases the number of route updates.

Instead, we propose a knob we refer to as selective VIP
exposing, which works as follows. When advertising the VIPs
to the access routers at ISPs, each VIP is only advertised
selectively to certain access routers (typically only one). Then,
the global manager can control which access router to use
for each application by dynamically configuring the platform’s
authoritative DNS system to selectively reply to DNS queries
from external clients with appropriate VIPs. For example,
referring to Figure 1, suppose a website foo.com is assigned
VIP1 and VIP2, which are advertised, respectively, at access
router AR1 through access link a and at AR3 through link
b. If link a is overloaded, the platform’s DNS can resolve
client queries for foo.com to VIP2 more frequently, causing
more traffic to go through link b. Meanwhile, the platform
can periodically withdraw blocks of unused VIPs from the

old access routers and re-advertise them through lightly loaded
access links.

With selective VIP exposing, overloaded links are relieved
as soon as DNS starts exposing new VIPs, and routing updates
are infrequent as they are decoupled from the load-balancing
decisions and occur at most once per period for each unused
VIP. The more VIPs are allocated to each application, the more
flexibility the system would have for load balancing over the
access links. However, too many VIPs per application increase
the number of LB switches due to the limited number of VIPs
a switch can handle, which translates into higher cost. In our
current work, we assign three VIPs per application on aver-
age (popular applications are assigned more than unpopular
applications) by default. The tradeoff between the flexibility
for load balancing and the number of LB switches will be
evaluated quantitatively in our ongoing work.

B. VIP Transfer Between LB Switches

Changes in demand for various applications can lead to a
situation where an LB switch hosting VIPs of newly popular
applications approaches its throughput limit (4Gbps). The
global manager must rectify this situation by balancing the
load among the LB switches. Selective VIP exposing men-
tioned above can also be applied here – the global manager
can instruct DNS to expose only the VIPs of the applications
configured at lightly-loaded LB switches and transfer the VIPs
from overloaded LB switches when detecting that clients no
longer are using them. In addition, our architecture allows
an internal reassignment of VIPs without external router re-
advertisements. Given that every LB switch connects to every
border router, a VIP can simply be moved from the overloaded
to an underloaded LB switch. Many LB switches (including
the Cisco units we are considering here) allow programmatic
reconfiguration to enact such transfers. The border router will
be notified of this change so that future packets will arrive at
the new LB switch, but no access routers are involved in the
transfer. We refer to this mechanism as dynamic VIP transfer.

Note that, similar to selective VIP exposure, a VIP cannot
be blindly transferred from one LB switch to another: while
the VIP is in use by ongoing TCP sessions, packets of the same
TCP session must arrive to the same RIP, and only the original
switch knows this RIP. The global manager can increase the
likelihood of a pause by using selective VIP exposing first
to stop directing new clients to it. Although some clients will
continue using this VIP in violation of time-to-live of old DNS
responses [18], [4], the overall subsided usage will increase the
likelihood of a pause to enact the transfer.

C. Server Transfer Between Pods

As mentioned above, pods are formed logically by the
configuration of IP address of the servers and their hosted
VMs, which enables a flexible knob for resource reallocation
among the pods.

When the global manager detects an overloaded pod due to
the pod’s processing capacity, the global manager can allocate
more resources to the pod by transferring servers from lightly
loaded pods. To this end, it requests the server pod managers in

5

the donor pods to vacate some servers (remove any application
instances running there). The vacated servers can then be
handed to the server pod manager of the recipient pod.

While applying this strategy, the global resource manager
must avoid ”elephant” pods. Some applications in a given pod
may become so popular that the global resource manager may
add a large number of servers to the pod. As discussed earlier,
this can hamper the operation of the server pod manager.
When the pod manager becomes the bottleneck, the global
manager can transfer servers – in this case along with its
deployed application instances – out of the pod thus reducing
the decision space for the pod manager to compute its local
resource allocation policy.

D. Dynamic Application Deployment

Besides adding more resources to busy pods, another way to
relieve a pod that is overloaded due to processing capacity con-
straints is to migrate or replicate applications to underloaded
pods. This knob is enabled by recent advances in efficient
virtual machine migration [25], [14] as well as the ability to
configure load-balancing switches programmatically with new
RIPs. Similarly, if an underutilized application covers many
pods, the global resource manager can remove unnecessary
instances of this application from the busier pods.

Again, the global resource manager must avoid elephant
pods here, since an underutilized pod can receive many
applications, which can overload and slow down the server pod
manager beyond acceptable levels. Yet another consideration
is that the number of application deployments and removals
must be minimized as these operations are resource-intensive
and can create turbulences in the platform operation.

E. VM Capacity Adjustment

A lighter-weight alternative to cloning or migrating a VM
is to simply readjust VM capacity among the VMs co-located
on the same physical server. Common VM monitors, e.g.,
VMWare ESX, allow VMs to be allocated hard slices of phys-
ical resources such as CPU cores and capacity share, memory,
and bandwidth share. Further, these slices can be adjusted
programmatically and, for many guest operating systems, “on
the fly”—without needing a reboot [5]. By adjusting these
slices, a server pod manager can reallocate server resources
among the applications hosted within its pod.

F. RIP Weight Adjustment

Load-balancing switches also allow programmatic change
to the weights they use in their load-balancing algorithms
when they distribute the traffic coming to a VIP among the
corresponding RIPs. If a VIP covers multiple pods, the global
manager can adjust the load among the pods due to this VIP
by updating the weights of the corresponding RIPs at the
LB switch where the VIP is configured. For a VIP that has
multiple RIPs within one pod, this pod’s local manager can
adjust these RIPs’ weights to balance the load of servers within
the pod. In particular, such intra-pod RIP weight adjustment
is especially effective when employed in tandem with VM

capacity adjustment. Note that to use this knob, the pod
manager needs to be aware of which VIPs its RIPs are mapped
to, and enact weight adjustment through requests to the global
manager, which ensures that the total weight of the RIPs in
the pod remains the same and therefore the load on other pods
is not affected.

One advantage of this knob is that the resultant change can
occur quickly, leading to highly agile resource management.
Indeed, configuring the load balancing switches takes only
several seconds [20], [28]. At the same time, this knob can
redistribute the load among the pods only when they are
covered by a common VIP, and within a pod only when it
contains multiple RIPs mapped to the same VIP. We expect at
least the latter to be a common case.

V. DISCUSSION

In this section, we discuss some issues of the proposed
architecture and sketch the solutions at high-level.

A. Scalability of LB Switch Load Balancing

As described so far, our architecture assumes that the LB
switches are managed directly by the global manager. In
particular, the global manager must consider all the switches
whenever it allocates new or reallocates existing VIPs in order
to (i) balance the traffic among the LB switches and ensure that
the number of VIPs/RIPs allocated to every switch stays within
the switches’ limits. The rationale behind this design is that
our architecture keeps the number of LB switches small: given
our target of 300K applications with 3 VIPs and 20 RIPs per
application, we need only max(((300K×3)/4000), ((300K×
20)/16000)) = 375 LB switches.

However, given the large number of applications, the com-
plexity of the VIP allocation can still be high. Indeed, let
A be the number of applications hosted in the data center,
k the average number of VIPs assigned to each application,
L the number of LB switches and R the number of access
routers. Then the total number of possible ways to place the
applications among the LB switches is A ∗ Lk (note that a
switch may host multiple VIPs for the same application, and
the VIPs of the same application on the same switches are
not interchangeable), which translates to the order of 1013

states for 300K applications, 400 switches and three VIPs per
application. Depending on the allocation algorithm, managing
the load-balancing layer may potentially face a scalability
problem.

Should this become an issue, we could again resort to
a hierarchical approach to address it. We would divide LB
switches into logical pods, each managed by its own LB switch
pod manager. The global manager would allocate addresses to
LB switch pods (to be further allocated within the pod by the
pod manager) and also redistribute the switches among the
switch pods to balance their size and hence the work of the
switch pod managers.

B. Policy conflicts

Our architecture exposes a number of control knobs and
policy objectives, and different objectives may interfere with

6

each other. For example, to balance the load among the
access links, the DNS system might preferentially expose the
VIPs advertised over lightly-loaded access links. However, if
these VIPs are mapped to physical servers at pods with high
utilization, we would try to reduce the amount of traffic going
through these VIPs to avoid the overload of these pods. Thus
the policies for balancing the load among the access links
may conflict with the policies for balancing the load among
the pods.

To resolve this conflict, we can add another layer of
LB switches (which we call the demand-distribution layer)
between the access connection layer and the load-balancing
layer. In the resulting two-LB-layer architecture, the external
VIPs of each application are configured at the LB switches at
the demand distribution layer. Meanwhile, each external VIP
is mapped to several middle-layer VIPs (m-VIPs) configured
on LB switches of the load-balancing layer. To conserve m-
VIPs (recall that each switch can handle only a limited number
of VIPs), all external VIPs of a given application can map to
the same set of m-VIPs. Finally, each LB switch in the load-
balancing layer with an m-VIP maps this address to a group
of RIPs configured on the servers. Note that m-VIPs and RIPs
are both private.

The two-LB-layer architecture decouples load balancing of
the access links from that of the server pods: selective VIP
exposing now affects only the access links and the LB switches
at the demand distribution layer, while load balancing of server
pods affects only the LB switches at the load-balancing layer.
Unfortunately, this benefit comes at the expense of extra load
balancing switches at the demand distribution layer. Due to
the the high price of the LB switches, we are investigating
efficient algorithms and mechanisms based on the architecture
of Figure 1 in our ongoing work.

VI. RELATED WORK

Several new architectures for data centers have been pro-
posed [2], [17], [8]. These approaches concentrate on intra-
DC networks. By guaranteeing bandwidth between any host-
pair within the data center and providing flat address space to
all the hosts, these approaches provide a foundation for our
work. The approach in [9] suggests to use common servers as
load balancing elements. Our architecture assumes hardware
switches as they are typically more reliable and require less
maintenance.

Authors in [10], [26] propose distributed approaches to
address the scalability problem in data centers. In particular,
[10] mentions a hierarchical scaling method, which envisions a
layer on top of cluster-level resource managers, each managing
up to 32 hosts and 3000 VMs. Our pods are decoupled from
physical connectivity, facilitating logical pod formation; this
allows much larger pods and dynamic transfer of servers
among the pods. Further, unlike the above works, we consider
the scalability of load-balancing fabric itself as well as load
balancing among access links of the data centers.

In addition to maximizing utilization, energy is another
objective in resource management that has received significant
attention (e.g., [27], [11], [21]). Balancing energy and per-
formance considerations adds further complexity to resource

management algorithms; however our general architectural
framework fully applies to this resource management aspect.

VII. CONCLUSION

This paper outlines a scalable architecture that supports
datacenter-wide resource management for elastic Internet ap-
plications in a mega data center. Our architecture includes a
scalable load-balancing fabric and provides effective knobs to
balance load among the applications, servers, access links, as
well as the load-balancing components themselves – the pod
resource managers and switches in the load-balancing fabric.
In the future, we plan to investigate algorithms for the resource
management in this environment.

REFERENCES

[1] http://www.datacenterknowledge.com/archives/2008/
05/07/microsoft-300000-servers-in-container-farm.

[2] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data
center network architecture. In ACM SIGCOMM, 2008.

[3] O. Biran, A. Corradi, M. Fanelli, L. Foschini, A. Nus, D. Raz, and
E. Silvera. A stable network-aware VM placement for cloud systems.
In IEEE/ACM CCGrid, 2012.

[4] T. Callahan, M. Allman, and M. Rabinovich. On modern DNS behavior
and properties. CCR, 43(3):7–15, 2013.

[5] David Davis. Using vSphere hot-add to dynamically add CPU and RAM.
http://www.petri.co.il/vsphere-hot-add-memory-and-cpu.htm, SEP 2011.

[6] P. Gill, N. Jain, and N. Nagappan. Understanding network failures in data
centers: measurement, analysis, and implications. In ACM SIGCOMM,
2011.

[7] A. Greenberg, D. A. Hamilton, J.and Maltz, and P. Patel. The cost of
a cloud: research problems in data center networks. CCR, 39(1):68–73,
2008.

[8] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta. VL2: a scalable and flexible
data center network. In ACM SIGCOMM, 2009.

[9] A. Greenberg, P. Lahiri, D.A. Maltz, P. Patel, and S. Sengupta. Towards
a next generation data center architecture: scalability and commoditiza-
tion. In ACM PRESTO, 2008.

[10] A. Gulati, G. Shanmuganathan, A. Holler, and I. Ahmad. Cloud-
scale resource management: Challenges and techniques. In USENIX
HotCloud, 2011.

[11] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma,
S. Banerjee, and N. McKeown. ElasticTree: saving energy in data center
networks. In USENIX NSDI, 2010.

[12] Cisco Systems Inc. Cisco Catalyst 6500 series content switching module.
[13] M. Korupolu, A. Singh, and B. Bamba. Coupled placement in modern

data centers. In IEEE IPDPS, pages 1–12, 2009.
[14] H. A. Lagar-Cavilla, J. A. Whitney, R. Bryant, P. Patchin, M. Brudno,

E. de Lara, S. M. Rumble, M. Satyanarayanan, and A. Scannell.
SnowFlock: Virtual machine cloning as a first-class cloud primitive.
ACM Trans. Comput. Syst., February 2011.

[15] X. Meng, V. Pappas, and L. Zhang. Improving the scalability of data
center networks with traffic-aware virtual machine placement. In IEEE
INFOCOM, pages 1–9, 2010.

[16] MidoNet: Rise above your physical network.
http://www.midokura.com/midonet/.

[17] R. N. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Rad-
hakrishnan, V. Subramanya, and A. Vahdat. Portland: a scalable fault-
tolerant layer 2 data center network fabric. In ACM SIGCOMM, 2009.

[18] J. Pang, A. Akella, A. Shaikh, B. Krishnamurthy, and S. Seshan. On the
Responsiveness of DNS-based Network Control. In ACM SIGCOMM
IMC, 2004.

[19] P. Patel, Deepak Bansal, L. Yuan, A. Murthy, A. Greenberg, D. A. Maltz,
R. Kern, H. Kumar, M. Zikos, H. Wu, C. Kim, and N. Karri. Ananta:
cloud scale load balancing. In ACM SIGCOMM, pages 207–218, 2013.

[20] H. Qian, E. Miller, W. Zhang, M. Rabinovich, and C. E. Wills. Agility
in virtualized utility computing. In VTDC, 2007.

[21] A. Qureshi, R. Weber, H. Balakrishnan, J. V. Guttag, and B. V. Maggs.
Cutting the electric bill for Internet-scale systems. In SIGCOMM, pages
123–134, 2009.

7

[22] V. Shrivastava, P. Zerfos, K.-W. Lee, H. Jamjoom, Y.-H. Liu, and
S. Banerjee. Application-aware virtual machine migration in data
centers. In IEEE INFOCOM, pages 66–70, 2011.

[23] C. Tang, M. Steinder, M. Spreitzer, and G. Pacifici. A scalable
application placement controller for enterprise data centers. In WWW,
2007.

[24] P. Wendell, J. W. Jiang, M. J. Freedman, and J. Rexford. DONAR:
decentralized server selection for cloud services. In ACM SIGCOMM,
2010.

[25] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif. Black-box and
gray-box strategies for virtual machine migration. In USENIX NSDI,
2007.

[26] Y. O. Yazir, C. Matthews, R. Farahbod, S. Neville, A. Guitouni, S. Ganti,
and Y. Coady. Dynamic resource allocation in computing clouds using
distributed multiple criteria decision analysis. In IEEE CLOUD, 2010.

[27] A.J. Younge, G. von Laszewski, Lizhe Wang, S. Lopez-Alarcon, and
W. Carithers. Efficient resource management for cloud computing
environments. In Green Computing Conf., pages 357–364, 2010.

[28] W. Zhang, H. Qian, C.E. Wills, and M. Rabinovich. Agile resource
management in a virtualized data center. In ACM WOSP/SIPEW, 2010.

[29] X. Zhu, C. Santos, D. Beyer, J. Ward, and S. Singhal. Automated
application component placement in data centers using mathematical
programming. Int. J. of Network Management, 18(6):467–483, 2008.

