
1

Internet with Transient Destination-Controlled
Addressing

Zakaria Al-Qudah, Eamon Johnson, Michael Rabinovich, and Oliver Spatscheck

Abstract—Today’s Internet makes hosts and individual net-
works inherently insecure because permanent addresses turn
destinations into permanent attack targets. This paper describes
an Evasive Internet Protocol (EIP), a change to the data plane
of the Internet that (a) prevents senders from forging their
identities while preserving the current Internet privacy paradigm,
(b) gives recipients full control over who can communicate with
them and for how long, (c) achieves the above features without
requiring global signaling protocols, and (d) allows coexistence
with and graceful introduction into the current Internet. We
motivate our approach, present the architectural design, and
evaluate it through trace-driven and synthetic simulations as well
as prototype testing.

Keywords—Internet protocol, Internet architecture, network se-
curity.

I. INTRODUCTION
As the Internet permeates through every aspect of our lives,

the stakes are rising in ensuring its continued viability. The
Internet is assaulted from multiple fronts. Spam has already
changed the social norms of using email, reflecting a new
reality that legitimate mail may never be read due to being
entangled in spam filters. Malware dogs peer-to-peer networks
and open source software distribution. Denial of service attacks
against network infrastructures and Web sites have become
routine. Computer break-ins and hijacking are wide-spread.
Identity theft through phishing or break-ins is on the rise. The
importance of these issues has been well recognized and is one
of the main reasons behind the recent push by the networking
community to re-engineer the Internet [1].
A fundamental challenge in designing a more secure Internet

is to satisfy the competing demands of security, openness, and
user privacy. Indeed, preventing bad actors in an open envi-
ronment seems to entail being able to hold actors accountable
for their actions, which in turn suggests being able to attribute
the actions to particular users, which undermines user privacy.
The goal of the proposed approach is to address this challenge,
and to do so not by selecting a particular tradeoff point in this
tussle space but by providing the tools that would give users
the flexibility to select their own tradeoffs between openness
and security, while at the same time not affect the privacy
paradigm of the overall network architecture within which our
approach is used (e.g., the current Internet).

Al-Qudah is with Yarmouk University, Jordan. He did this work while
visiting Case Western Reserve University. Johnson and Rabinovich are with
Case Western Reserve University. Spatscheck is with AT&T Labs – Research
Contact author: M. Rabinovich, michael.rabinovich@case.edu.
This work was supported in part by NSF under Grants CNS-0831821 and

CNS-0916407.

By design, our approach is not a new overarching architec-
ture for the Internet. Rather, we strive for a minimal change in
the current Internet that would (a) prevent senders from forging
their identities while preserving the current privacy paradigm
(which is useful in itself but, more importantly, enables the
next feature), (b) give recipients full control over who can
communicate with them and for how long, and (c) achieve the
above features without requiring global signaling protocols.
We argue that these capabilities would eliminate a wide range
of attack vectors and provide a foundation for addressing other
attacks at a higher level.
Our approach is based on a general notion of network capa-

bility [2], [3], which represents authorization to communicate
with a host, and which is valid only for a specific sender
and for a limited amount of time. While capabilities are well
known (although our flavor of the capability is different) our
approach incorporates three key new ideas. First, capabilities
are the only means for hosts to be reached; in particular,
hosts do not handle capability requests and thus are not
vulnerable to the denial of capability attack [4]. This removes
a major obstacle in capability systems, which had to employ
complex router mechanisms such as per-path hierarchical fair
queuing in TVA [5] (which as we show in Section VII-C may
still fall short of providing enough protection) or proof-of-
work in Portcullis [6] and Speak-up [7] (which can delay
communication and drain batteries in user devices). Second,
capabilities are distributed by the name system (e.g., DNS)
rather than recipient hosts or distinct infrastructure. The DNS
servers are themselves protected through capabilities, except
for the root servers, which are widely replicated and protected
by anycast addresses. Finally, a capability in our approach
can be independently constructed by the destination network
and authenticated by any point in the network, in contrast to
existing approaches where the routers on the path between the
sender and destination contribute pre-capabilities to capability
construction. Although regular IP addresses are still used for
routing, hosts in our approach can only be reached through
capabilities, which are transient due to their limited validity.
We named our approach Evasive Internet Protocol (EIP) to
reflect its lack of permanent means of reaching a host.
While we have paid careful attention to factoring EIP into

today’s Internet, we hope it will also prove useful to the efforts
in re-architecting the Internet currently underway in both the
US and Europe [1], [8]. As an approach to enhancing network-
layer security, EIP explores a point in the design space that
should inform these ongoing efforts.
We presented preliminary ideas behind this work in a

position paper [9]. The present work fleshes out and evaluates
these ideas.

2

II. VISION

Given the tussle space between security, openness, and
privacy, our goal is to empower the Internet end-points (the
end-hosts and their access networks) to impose their own
policies in this regard. At the extreme, a host can allow
incoming traffic only from a known set of destinations, and EIP
will prevent other destinations from forging their IP addresses
to bypass this policy. Short of this extreme, the recipient
can dynamically adjust traffic constraints imposed on various
external destinations based on their prior behavior, the recipi-
ent’s current load, or any other factors as deemed appropriate.
Furthermore, we strive for a minimal change in the current
Internet architecture that would allow this empowerment. Our
vision rests on the following main components.
T-address We envision Internet destinations to be represented
by two distinct concepts – IP addresses and capabilities. The
IP addresses would still be used in routing algorithms for
route computation and forwarding table indexing. This allows
us to inherit existing routing protocols (e.g., BGP) and to
retain their scalability properties that stem from the topological
information embedded in IP addresses. In fact, EIP can benefit
from recent proposals to improve aggregation and provider
independence of IP addresses by splitting them into identifiers
and locators [10], [11], [12].
Although IP addresses are used for route computation and

forwarding tables, the host IP address in our architecture
cannot be used to communicate with the host: a compliant
router will only forward a packet with a valid destination
capability. Thus, from the perspective of senders, the capability
in effect becomes a transient destination address – referred
to as a t-address below. Furthermore, a capability can only
be issued by an authorized entity, such as the name server
acting on behalf of the host, and the chain of authority is
cryptographically enforced, as are the credentials of the sender.
The authorization enforcement prevents a sender from tricking
routers to forward a packet with a forged capability.
Incremental deployment We design the t-address to include
all the information needed to verify its validity, which can
thus be done at any point in the network, and in the worst
case by the recipient itself. Further, we envision EIP to be
(at least initially) implemented as a shim over the current
Internet. Together, these aspects will allow EIP to coexist
with the current Internet when incrementally deployed. In fact,
two EIP subnets can communicate over EIP even if they are
connected entirely through the legacy Internet; EIP behavior
in this scenario reduces to having two “firewalls on steroids”
in front of the subnets.
Preservation of privacy paradigm. Because EIP uses IP
addresses to identify communicating parties, it in itself does
not undermine user privacy – the privacy is as preserved (or
violated) as in today’s Internet. All EIP does is remove the
ability for a sender to lie about its IP address and empower
a recipient to control how much traffic it is willing to receive
from which IP addresses and for how long. A consequence of
this design decision is that any such traffic policies apply at
the granularity of IP addresses, which may not correspond to
individual hosts as some hosts can be multi-homed or fronted

by a network address translating (NAT) device. Again, this
is similar to today’s Internet where blacklists are commonly
keyed by IP addresses except EIP provides a systematic
framework to support these, as well as richer, policies. If
our vision is incorporated into future Internet architectures
with stronger notions of identities, then of course the privacy
implications of these identities would carry over. But we leave
these design decisions outside EIP itself.
Assumptions EIP assumes support from ICANN (to bootstrap
certificates attesting the ownership of IP addresses) and DNS
roots (to offer EIP protection to lower-level authoritative DNS
servers), which existing capability systems do not require.
While ICANN already provides the needed support through the
RPKI mechanism [13], support from DNS roots would require
their buy-in. Given that EIP eliminates the need for costly
mechanisms to protect against the denial of capability attacks,
we believe this represents a beneficial tradeoff and makes EIP
a realistic direction for adopting network capabilities into the
Internet architecture.
To benefit from EIP, a destination network would need to

implement changes to its DNS servers (the authoritative servers
in the case of Web sites and resolvers in the case of client
access networks) and either externally accessible hosts or an
appliance (a firewall, a router, or a switch) in front of the
hosts. The host modification for EIP support is limited to
the IP layer of the kernel’s network stack. Modern network
appliances, such as those with OpenFlow support, offer an
interesting alternative (to modification in end-hosts) for EIP
implementation which we leave for future work.
Finally, routers throughout the Internet can optionally be

modified to support EIP, which allows them to independently
police the traffic flowing through them. This involves extra
logic to verify incoming datagrams and maintain the flow
records cache. The rest of the router functionality, including the
routing protocols and forwarding logic, remains unchanged.
EIP support is especially useful in edge routers that connect
destination networks to the Internet, and this paper assumes
that, while legacy networks may connect to legacy routers,
an EIP subnet is connected to the Internet through an EIP-
compliant router.

III. SIGNIFICANCE
To highlight the benefits of our vision, we show how it

helps defend against some specific high-profile attacks that
dog today’s Internet.
Spoofing Attacks In spoofing attacks, an attacker injects into
the network packets with forged source IP addresses. Currently
deployed1 anti-spoofing defenses rely mostly on ingress ad-
dress filtering [14] and unicast reverse path forwarding [15] but
their effectiveness is reduced by multihoming and asymmetric
routes [16]. Thus, spoofing-based attacks continue to occur and
exert damage. These attacks range from old SYN-flood attacks
[17] to DNS poison attacks using spoofed DNS responses
[18] to reflected denial of service attacks with spoofed DNS
requests [19], to TCP session disruption through injected
spoofed TCP reset segments [20]. Specific mechanisms have
1See Section IX for research approaches.

3

been proposed to counter some of these of these attacks, e.g.,
TCP SYN cookies to protect against SYN floods, or DNSSec
against DNS poison attack. EIP will make spoofing attacks
organically impossible: since a t-address of the destination is
source-specific, any packet with a spoofed source IP address
will be dropped by the first EIP-compliant router.
Multistep (Fast-Flux) Attacks Multistep attacks use botnets
to evade detection. These attacks employ so-called fast-flux
networks [21] of compromised hosts used as front-end Web
servers. In the simplest form, the attacker directs clients to
these Web servers by using a public DNS service to map
the hostname of a spam URL to a rotating set of compro-
mised hosts’ IP addresses. The front-end Web servers then
communicate with the users and act as reverse proxies for
a back-end fraudulent Web site, so that the latter is hidden
from detection. These attacks have become widely spread, e.g.,
Holtz et al. [22] found that almost 30% of all domains used
in spam URLs are hosted by fast-flux networks. Clark and
Landau consider multistep attacks “the most challenging set
of attacks to investigate and deter” [23].
Much effort has been spent in trying to detect fast-flux

networks (e.g., [22], [24]). By enforcing a requirement that
authoritative DNS servers only map host names to IP addresses
with the authorization from the hosts’ network providers, EIP
makes any fast-flux-hosted attacks impossible.
Denial of Service Attacks Denial of service (DoS) attacks,
including distributed DoS (DDoS) attacks, on the Internet have
unfortunately become commonplace. These attacks differ in
sophistication – some are harder to detect than others. The big
problem, however, is that they are often hard to block even
after detection. Indeed, even if fraudulent packets are dropped
by an ingress firewall at a site, they still consume bandwidth
of the site’s connection to the Internet. And if these packets
are dropped by the end-host (typically server), they further
consume server resources for receiving and recognizing them.
EIP equips system administrators with necessary tools to

counter DoS attacks. Attack packets with fake source addresses
become impossible as discussed earlier. Packets with genuine
source addresses can be blocked by the destination long before
they reach the destination network. This is true even for sophis-
ticated attacks where a botnet targets different hosts within the
destination network. Indeed, security alerts against malicious
senders can be made available to both the authoritative DNS
server and the interested hosts within the site, so that they can
deny or not renew capabilities to these senders.
Application-Level Attacks As a network architecture, EIP by
definition cannot in itself eliminate application-level attacks.
No network architecture can prevent a user from submitting
their private data to a phishing site, or clicking on a fraudulent
URL and downloading malware, or installing a trojan along
with some free software. EIP does not supplant research
into hardening hosts against viruses and break-ins. Rather, it
provides a foundation for addressing these attacks at a higher
level. For example, consider a Web server under a password-
guessing attack at the HTTP level. Network-layer mechanisms
are unlikely to detect it but the HTTP server application can.
With EIP, the Web server can stop renewing the capabilities
for the offending host(s) and instruct its authoritative DNS

server to do the same. This is more efficient than discarding
these packets at the host’s or ingress firewall, which must
match every incoming packet against its filtering rules. Similar
considerations apply to other application-level services such as
email and ftp servers.
Application-level attacks are also frequently employed as

a denial of service weapon. For example, an attacker may
bombard a Web service with well-formed HTTP requests to
a devastating effect [25]. Current proposals to protect against
this threat are mostly concentrated within the Web server itself
[26], [27] or through a layer of shielding nodes in an overlay
network [28], [29]. EIP enables fine-grained capability-issuing
policies that can help the site to protect against this threat at
the network level. If the attacking hosts are identified, the site
can stop their flows before they hit the site network Otherwise,
the site can employ fine-grained traffic control. For example,
new senders might initially receive authorization to send only
a small amount of traffic, with subsequent authorizations be-
coming more generous depending on the sender’s behavior and
the overal load at the site. Basically, the goal is to apportion
authorizations among senders in a way that would not saturate
the site’s resources while factoring in senders’ past behavior
in making these decisions. Investigating appropriate policies
is outside the scope of this paper, but the EIP architecture
provides the necessary mechanism to enact them.

IV. THE ARCHITECTURE
We now sketch the main architectural components behind

EIP. This section presents an ideal design assuming jumbo
frames2 In practice, EIP can fit into the currently prevalent
MTU of 1500 bytes as shown in Section VI.

A. Delegation of Authority
Any entity issuing a destination’s t-address to another party

must provide evidence that the issuer is authorized to issue
the address. Otherwise, a rogue entity can issue a t-address
to a destination without the destination’s consent, thus taking
control from the destination over incoming traffic. Similarly, an
entity requesting a t-address must provide proper credentials to
the issuer, to allow the issuer to make a reasoned policy deci-
sion on granting the request, and also to grant the permission
to the response to reach the requester (indeed, the response
represents incoming traffic for the requester).
Leveraging the RPKI framework [13] that is already being

deployed on the Internet, we assume that whenever an entity
obtains a block of IP addresses from a provider, the entity
also obtains from the provider a certificate chain verifying the
right to use this block. The certificate chain reflects the network
provider hierarchy and emanates from ICANN. While RPKI
hierarchy typically stops at ISPs, it allows a provider to further
issue self-published certificates to its customers—the feature
2Most core networks utilizing 10GETH and OC3-768 technologies already

support jumbo Ethernet frames with an MTU of 9000 Bytes. For access net-
works, the only thing that prevents jumbo frames is relatively low bandwidth:
assuming Cisco’s rule of thumb of keeping frame transmission within 10ms,
roughly 10Mbps is needed to serialize a jumbo frame within this limit. Access
networks are moving beyond this limit in both uplink and downlink speeds.

4

leveraged in EIP. These certificates are small – under 300 bytes
(256 bytes for the signature and the rest for the IP block, the
hash of the recipient’s public key, and the key expiration time).
Furthermore, an end-host in EIP also obtains its certificate
along with its IP address, presumably through DHCP.3 Then,
the issuer of a t-address can attest to its authority by including
appropriate certificates as discussed later.
There are two types of entities that can issue a t-address for

a destination to another party: the authoritative name servers
and the destination hosts themselves.
Name servers. We envision that authoritative name servers
(ADNS) will be the primary entry points to the destinations
whose names they maintain: these name servers will be issuing
the initial t-addresses to these destinations in response to the
DNS queries for the destinations. Even when a host already
knows the destination’s IP address (as, e.g., in BitTorrent),
the host must still obtain the destination’s t-address using a
reverse DNS query before initiating communication. To issue
t-addresses, as part of the DNS service setup, for each block of
IP addresses the name server will be handling, it must obtain
a certificate from the corresponding ISP, which signs the IP
address block. In most cases, the authoritative name server
will belong to the same ISP as the destinations whose names
it is resolving. In other cases, e.g., in some content delivery
networks such as Akamai or when a domain name is handled
by an external DNS service, the authoritative DNS server will
map a name to destinations in different autonomous systems; in
these cases, the name server would obtain a separate certificate
for each address block from its corresponding provider.
End-hosts. A host can always issue its own t-address to an-
other party. Because the end-host can only be reached through
a valid t-address to begin with, this ability is utilized only in
two scenarios. First, when the host initiates communication
with another party (i.e., acts as a client), it issues its source t-
address so that the other party will be able to respond. Second,
to ensure continued communication, the host can issue its new
t-address to the other party during an ongoing communication
before the old t-address expires (a continuation t-address).
Authority revocation.A practical deployment of our approach
would require a mechanism for key revocation. Instead of
developing a separate control protocol, we rely on implicit re-
vocation through certificate expiration. Each certificate autho-
rizing a key-pair includes the issuance timestamp (expressed
as 8 byte absolute UNIX time) and the time-to-live (two-byte
number of seconds) after which the certificate must be re-
acquired by the recipient.

B. Addressing
As mentioned before, the sole means of reaching a des-

tination is through its t-address. The t-address contains the

3Note that our approach is not affected by well-known DHCP vulnerabilities
even if they are not addressed through relay agents [30] or DHCP authenti-
cation [31]. Indeed, cryptographic properties of a certificate chain ensure it
cannot be forged by a rogue DHCP server, and a simple use of self-generated
public key by the hosts (sending the key to the DHCT server and having
DHCP server return the certificate encrypted with this key) can ensure than a
rogue host does not sniff a certificate chain from another host.

destination IP address (16 bytes – enough for IPv6 addresses),
the validity constraint (4 bytes), and the issuance timestamp
(9 bytes – 8 bytes for the UNIX timestamp in seconds plus an
extra byte for finer granularity time ticks, allowing 4ms incre-
ments, which is less than prevalent wide area network delays).
The timestamp provides the basis for the time validity of this
t-address (see below) and also allows the discarding, with high
probability, of replayed packets, that might be issued in man-
in-the-middle attacks. The t-address binds this information
with the sender, by including either sender’s IP address or, as
discussed in Sec. IV-D, a 16-byte hash of sender’s client group
ID and public key. To ensure the uniqueness of t-address in the
presence of duplicate DNS queries or multiple senders sharing
a common IP address behind a NAT box, the t-address includes
a 2-byte counter that either counts the number of t-addresses
generated within a time-tick (if this t-address was generated by
an ADNS in response to a DNS query, the counter size being
sufficient for 16M queries per second) or simply provides a
unique label for the sender (if this t-address is generated by the
receiver as a continuation t-address, the counter size allowing
to enumerate 64K concurrent clients - the maximum that can
share a NAT). The t-address also includes a signature over
the above information (256 bytes), the corresponding public
key needed to verify the signature (256 bytes) and a certificate
attesting to the authority of the issuer to issue the t-address.
The latter signs the issuer’s public key and the IP range with
the destination provider’s private key and includes the hash of
the provider’s public key. We assume that the providers’ public
keys and certificates are widely cached, or can be obtained as
needed from RPKI repositories [13]. This hash can be small
(4 bytes) because it is only used to locate the corresponding
certificate in the cache and not for any crypto operations.
The validity constraint includes one byte for a timing

constraint and three bytes for the bytes constraint. The former
tells for how many seconds since the issuance timestamp this
t-address remains valid. The latter represents the maximum
amount of traffic in KB that can be sent in this time. This
leaves us with a 846-byte t-address, resulting in datagrams
that would not fit into MTUs of many of today’s networks.
We discuss this and a related issue of header overhead below
in Section IV-C and VI.

C. Datagrams
EIP assumes loosely synchronized clocks among hosts and

routers on the Internet. A host can obtain an initial time reading
from a number of sources, such as a GPS receiver (especially
for mobile devices where these receivers are now ubiquitous),
a periodic time signal broadcast on a LAN (especially for
institutional LANs where these signals are common), from
DHCP, from a layer-2 tunnel to an NTP server, or through
manual setup. Having obtained the initial time, the hosts can
maintain it using either the above mechanisms or regular NTP.
Our current design calls for two types of datagrams as shown

in Figure 1, with several format variations in each type (all
distinguished by different values of the Type field). Type-1
datagrams are the initial datagrams that open a communication
between two hosts. Their header (we discuss only addressing-
related fields) includes the source and destination t-addresses

5

Source t-addr
Dest t-addr Delegation

token
Payload

533B

Source IP addr OR
H(Client Group ID +
 requester’s pub. key)

Dest. IP addr Time validity
constraint

(Fields 1-7)
Signature

Slim
Certificate

16B 16B 1B 256B 287B

Type 1 EIP datagram. (*Flow ID may be empty in the destination t-addr).

Type

1B

H(Dest. t-addr) Payload

16B

Type 2 EIP datagram

Type

1B

Issuer�s
Pub. Key

256B

Byte validity
constraint

3B

Query OR
Client
counter

2B

Timestamp

9B

IP Range CA Pub. Key
 Hash

(IP range, Recipient’s pub. key,
Timestamp, Seconds valid) Signature

4B 17B 256B

Source t addr
Dest t addr e

Timestamp

8B

Seconds
 Valid

2B

Client
counter

�

�
�

�

�
�

2B

Fig. 1. Datagam structure.

and an optional delegation token, whose purpose will become
clear in Sec. IV-D. To reduce the header size, we note that
the destination IP address is embedded in both source and
destination t-address; we include it only once, in a sense
overlapping the two t-addresses in the EIP header.
Type-1 datagrams still have a large header – over two KB.

We borrow the approach from TVA [5] to amortize the header
overhead over subsequent communication by including only a
flow ID in the subsequent packets, and we use a 16-byte hash
of the destination t-address as the flow ID. In fact, our current
design follows TVA in assuming these FIDs are sent unsigned
for efficiency, relying on short lifetime of these FIDs for a
“good enough” protection against fraudulent packets reusing
the same FID. This design choice reflects our view on the
current costs/risks landscape; we discuss it further in Sec. V.
Accordingly, the subsequent communication uses type-2

datagrams. When the corresponding destination t-address does
not identify a flow from an individual sender, type-2 datagrams
also include the client counter, which allows the destination to
keep track of the amount of bytes transmitted by individual
senders and issue further continuation t-address to the senders
as needed. The address-related header size of type-2 datagram
is only 17-19 bytes; Sec. VII-A shows that these datagrams
will carry most of traffic.
Finally, before its t-address becomes invalid, a host may

choose to include a continuation t-address with its next
packet to the other party, if it is willing to continue the
communication. This is done with an optional header field
in type-2 datagrams, adding 846B (t-address size) to the
header. To continue being able to track the volume of traffic
coming from the other side, the host includes a unique (among
sources with the same IP address holding an unexpired t-
address for this host) client counter into its continuation t-
address. The continuation t-address enables the source to have
a long-running communication with the destination without re-
acquiring a new t-address from the name service.

D. Obtaining a Destination T-Address
To communicate with other hosts on the Internet, a host must

first establish the ability to communicate with its local DNS
server (LDNS), which in EIP means obtaining the LDNS’s t-
address. The host obtains it either from its DHCP along with
the LDNS’s IP address or, if the host wishes to use a third-party

resolver (such as Google’s Public DNS), through a reverse
DNS query on the resolver’s IP address4. As today, the host
can also act as its own LDNS if it is willing to forgo the
benefits of a shared DNS cache and if its ISP allows it.
Then, to communicate with another host, the source sends

a DNS query with the destination hostname to the source’s
local name server (LDNS), which routes the query through
name service infrastructure to the destination’s authoritative
DNS server. Because the destination t-address is bound to the
sender, the LDNS would seem to have to forward the client’s
IP address along with the query. However, this would make
the received t-address usable by this client only and prevent
cross-client DNS response caching at LDNS. Consequently,
the LDNS submits with its query a client group ID, which has
the same format as a regular IP address but may or may not
represent a real client5 so that the received t-address will be
bound to the group ID (and not the client’s IP address).
Of course, when the source now sends a type-1 datagram

opening the communication with the destination, the IP address
from the source t-address (which embeds the source host’s IP
address) will no longer match the source IP address embedded
into the destination t-address (which is the group ID). We
bridge this gap with the help of a delegation token that LDNS
returns to the host along with the destination t-address, and
the host then includes into its type-1 datagrams. First, the
delegation token binds the client IP address to group ID.
Second, it apportions the byte constraint obtained for the whole
client group among individual clients, by including a byte sub-
constraint for the given client. The sub-constraints given to
all the clients sharing this t-address must add up to no more
than the byte contraint from the t-address (and a cheating
LDNS that violates this rule will not undermine EIP security
properties - see Sec. V). Third, to distinguish clients fronted
by a NAT and thus sharing an IP address, the delegation token
includes a client counter which is incremented for each query
from a given IP address for a given domain name. Thus, the
delegation token occupies 533 bytes: 2 bytes for the client
counter (enough to enumerate 64K clients – the most that can

4In the latter case, the host would itself interact with the DNS infrastructure
to resolve the reverse query; the host can do this because if its provider blocked
direct DNS traffic the host would be unable to use an external resolver anyway.
5For IPv4, it could be an unroutable address, e.g., from the 10.0.0.0/8 block,

and is thus unaffected by address shortage.

6

share a NAT), 3 bytes for the byte sub-constraint, 16 bytes
for the group ID, 256 bytes for the signature (which signs
the above fields plus the client IP address, which need not
be included since it appears elsewhere in the packet), and
256 bytes for the LDNS’s public key. Any router receiving
a packet with this delegation token can verify that (a) the
sender’s source address was properly bound to the group ID
by the owner of the public key from the delegation token, by
verifying the delegation token signature, and (b) this public
key owner is the same LDNS that obtained the t-address from
the destination, by computing the hash of the group ID and
public key from the delegation token and comparing the result
with the corresponding hash from the t-address.
Once the source has the destination’s t-address, it can send

packets to the destination, and it may include its own t-address
granting the destination a permission to communicate back.
This t-address is bound to the destination’s IP address directly
and not hashed with the destination’s public key (which is
unknown to the sender and not needed since there is no
delegation token to be verified). All continuation t-addresses
are also bound directly to end-hosts’ IP addresses as well as
the client counters, which in this case appear in place of the
query counter as shown in Fig. 1. Type-1 datagrams in this case
carry no delegation token, and the subsequent type-2 datagrams
have no client counter (since it is already embedded into the
destination t-address).
This mechanism allows LDNS caching despite destination t-

addresses being client-specific. However, the validity constraint
in the destination t-address is now shared among all clients
using the corresponding group ID. Thus, the destination’s
policy for validity constraint assignment becomes coarser
grained – it applies to all clients in the group. While this
issue deserves a separate investigation, we note that studies
have shown that most benefits of shared DNS caching are
achieved with small client populations [32], [33], with the
cache shared by ten clients exhibiting virtually the same hit
rate as the cache shared by thousands of clients. This limits
the policy granularity coarsening effect to small client groups.
Furthermore, the LDNS has its discretion in choosing which
clients to put into the same group ID, e.g., grouping clients
on the same subnet. In this way, the clients that share validity
constraints may in fact be equally affected by the presence of
a malicious host on the subnet and should be treated similarly
(and often are, being quarantined as a group by sysadmins).
ADNS servers are in turn protected by their own t-addresses,

which are given by the higher-level DNS servers in the DNS
hierarchy. We expect that these t-addresses would have long
TTL (to allow caching of NS records) but low byte limits. This
limits the amount of load each querier can impose using one t-
address, and new t-addresses can be denied by the higher-level
DNS server to a misbehaving querier.
In this arrangement, each DNS server is protected by a

higher-level DNS server in the DNS hierarchy. This leaves
root name servers exposed since they must be well-known
and permanently reachable just as in today’s Internet 6. Some

6A simple way to achieve the universal reachability of roots is to make their
“private” keys well-known, allowing any host to mint a valid root t-address.

sort of residual vulnerability is inevitable in any system for
bootstrapping security. However, the scope of this vulnerability
in our architecture is limited to just a few well-administered
and widely replicated addresses. To our knowledge, after major
ISPs started using anycast to access root DNS servers, they
have not seen any outages due to security issues at root servers.
(See [34] for a recent analysis of root resiliency to DoS
attacks.) Thus, we believe narrowing the scope of vulnerability
to the root DNS servers is a sensible design choice.

E. Routing
As mentioned earlier, EIP routers inherit the current routing

protocols such as BGP for route computation. However, packet
forwarding changes: no EIP router will forward a packet
addressed with an IP address – the valid t-address is required.
When processing a type-1 datagram, a router verifies the

validity of the destination t-address and that the source IP
address from the source t-address matches the one from the
destination t-address (using the delegation token if present as
a bridge). The router forwards the packet that passes these
checks according to the routing entry for the destination’s IP
address, otherwise it drops the packet. For a valid packet,
the router creates a cache entry for its destination t-address
indexed by the hash of the destination t-address – unless the
entry for this t-address already exists in which case the router
increments byte count in the existing entry. The router can
follow the elegant mechanism from [5] to keep up with the
line speed with a fixed cache size (see [5] for details), although
our evaluation in Sec. VII-B indicates this may not be needed
in practice as the router state is manageable regardless.
Type-2 datagrams are only processed if there is a cached

entry for this flow – otherwise the router drops the datagram. In
particular, any route change during an ongoing communication
will result in a dropped packet, which would presumably be
retransmitted by the end-host using type-1 datagram. However,
beyond routing pathologies and intra-network routing, routes
are generally stable in practice [35], [36].
The processing of type-2 datagram types involves simply

updating the byte count for the flow and forwarding the packet.
While processing type-1, most traffic will be carried by type-
2 datagrams, which require trivial processing. Furthermore, if
two peering EIP routers trust each other, the downstream router
may choose to blindly forward packets arriving on this peering
link without validating them, assuming that the upstream peer
already has done so.
Note that the router creates a flow entry keyed to the

information provided exclusively by the flow destination. Thus,
a malicious sender cannot manipulate its packets to create
spurious router state. Note also that flows in our approach
are uni-directional, and so asymmetric routing is supported
naturally: the flows in either direction would simply be cached
by the routers on the corresponding path.

F. Scalability Implications
EIP’s reliance on asymmetric keys brings a potential concern

about router scalability, especially that an attacker may attempt

7

to overwhelm a router with malformed type-1 datagrams, with
the goal of forcing the router to perform a large number
of signature verifications. However, modern security chips
make our approach feasible. For example a Nitrox adapter
CNN35XX-NHB4-G [37] is capable of 1 million RSA-1024
ops/sec. This translates into 4-6Gbps of type-1 EIP datagrams
per card – enough to sustain a significant attack (and certainly
more than plenty for legitimate traffic as only a small fraction
of packets are verified as Sec. VII-A indicates). Further, since
the attack traffic will be dropped at the first router, the rest of
the routing fabric will not be affected, complicating an attempt
to target a router from a large botnet.
Another potential concern is the load on DNS servers.

First, communication using bare IP addresses, which does not
require a DNS lookup today, would now need to generate a
DNS query to obtain a t-address from the appropriate ADNS.
We believe these extra queries are an acceptable cost for
the EIP benefits. A more significant issue is the burden of
maintaining the policy rules for assigning validity constraints
to various senders on the authoritative DNS servers. While
details on how to organize this state are left for future work,
our straw-man solution is based on the following idea. The
policies would be defined in terms of a certain number of
“levels of service”, one of which being a default. Each level
will have a corresponding counting Bloom filter providing a
compact representation of all the external requesters assigned
to the given policy level. When processing a DNS query, the
server will apply the highest policy level whose filter contains
the requester’s IP address (thus not penalizing the requester
for an occasional false positive in the Bloom filters) – or the
default level. If needed, the number of service levels and their
corresponding validity constraints can be changed dynamically
to reflect current network conditions at the site. Note that
because EIP forces senders to use their true IP addresses, they
cannot pollute these Bloom filters with spurious entries.

V. SECURITY
Repeated DNS Queries. A sender whose traffic is restricted
by a destination host may attempt to subvert the restriction by
reacquiring fresh t-addressed with repeated DNS queries. EIP
counters such attempts through cooperation between Internet
servers (or other externally reachable hosts) and their authori-
tative DNS servers: repeated DNS queries from an undesirable
sender will be denied or throttled.
DDoS Attacks Against DNS. Since DNS servers become
“gatekeepers” for Internet servers, an attacker may attempt
a (distributed) DoS attack by bombarding the authoritative
DNS server with DNS queries; even if the DNS server refuses
these queries to protect the host, the DNS server itself – and
hence the hosts it serves – would be (D)DoSed. However, as
discussed in Section IV-D, DNS servers are also reachable only
through their own t-addresses, leaving only well-replicated
and anycasted root DNS servers exposed. Further, access
networks increasingly restrict cross-border DNS traffic to their
designated resolvers for security reasons, making large-scale
attempts of this kind less likely in the future.
ADNS Server Break-in. Any security component – be it a
firewall or intrusion detection system or a spam filter – only

works insofar as its integrity is intact. Authoritative DNS in
EIP is no exception. A compromised authoritative DNS server
will leave all hosts in its zone unprotected; a compromised
higher-level DNS would affect all the zones beneath it. While
EIP does not supplant the need to properly harden DNS
servers, it facilitates their protection by controlling the traffic
that reaches them. In particular, the EIP extension discussed in
the previous paragraph would only allow ISP-authorized traffic
to ever reach DNS servers.
Malicious LDNS. A malicious resolver may attempt to bypass
EIP traffic controls by issuing spurious delegation tokens to
clients, with byte sub-constraints exceeding in total the overall
constraint in the destination t-address. However, since the
routers police traffic based on the overall byte constraint, as
the traffic from these clients converges towards the target, the
aggregate validity constraint from the traget t-address will be
imposed. In the meantime, if the destination receives initial
type-1 datagrams with delegation sub-constraints totaling more
than the overall constraint, the LDNS’s misbehavior will be
detected and the LDNS blacklisted. Any other deviations from
proper delegation tokens (e.g., failure to increment the client
counter or signing an incorrect client group) will only affect
LDNS’s own clients. A malfunctioning LDNS can obviously
always disrupt its clients’ operation.
Identity Faking and Reuse. An attacker cannot fake its
identity: such a packet will be discarded at the first router.
Moreover, the attacker cannot “amplify” its identity by sharing
it with multiple hosts: as the traffic from these hosts converges
towards the target, the aggregate validity constraint from the
traget t-address will be imposed. If the attacker gains network
eavesdropping capability, it can attempt a replay attack, by
resending type-2 packets observed on the network, which do
not carry a timestamp, or simply use a snooped FID to send
its own payload. Similar to existing capability systems with
unprotected FIDs [5], we consciously accept this weakness
for the sake of efficiency and simply narrow the scope of
these attacks through enforced validity constraints. However,
with hardware-implemented signature generators becoming
increasingly mainstream, in the future type-2 datagrams may
include signed timestamps (and actually include the rest of the
packet into the signed content for good measure), which would
limit any replay opportunity to within the clock skew window.
Collusion Attacks. The attacker may obtain large capabilities
from a colluding host inside the destination site and then try
to saturate either the site’s resources (e.g., the Internet link)
or an upstream core link. While the latter can be protected
in a standard way by using per-destination fair queuing at
routers [5], EIP by itself does not prevent the former. Still,
by forcing both ends of this communication to use their true
identities, EIP makes it simpler for the site to detect and isolate
its compromised hosts.

VI. INCREMENTAL DEPLOYMENT
Deploying EIP requires a centralized decision by root DNS

servers to add the support required by EIP as described above.
After that, EIP can be introduced incrementally within the
current Internet as individual providers decide to add EIP

8

support. An obvious approach is to use a technique similar
to existing technologies for migration from IPv4 to IPv6, such
as Microsoft’s Teredo, which combine overlay and tunneling
techniques to enable coexistence of the two Internet version.
However, an elegant alternative is possible, avoiding the need
for the overlay network altogether and allowing mixing and
matching current IP and EIP routers at will.
Assume for a moment we can squeeze EIP datagrams into

current MTU. Then, EIP can be implemented as a shim be-
tween IP and the transport layer. In the “protocol number” field
of the IPv4 datagram, or the “next header” field of the IPv6
datagram, the sender will record a new number assigned to EIP.
Current routers forward these datagrams normally (we verified
that a new protocol header value does not affect forwarding).
However, if a datagram encounters an EIP-compliant router, it
will process it according to the EIP protocol. If no such router
is encountered on the way to the destination, then the EIP
datagram will be processed at the entrance to the destination
network, or in the worst case by the destination itself.
Discovering whether or not the destination supports EIP

would be done in the same way as currently with IPv6:
the sender’s local DNS server can request both a regular A
record from the authoritative server and new record type for
a t-address. The EIP-compliant authoritative server may only
respond with a t-address, while legacy servers would respond
with a legacy A-type record.
The transition sketched above allows coexistence of EIP

and legacy IP infrastructure, so that EIP end-hosts would
obtain end-to-end connectivity when crossing legacy sections
of the network paths. Further, every EIP-compliant component,
including destinations, their edge routers, and transit routers,
relegate legacy traffic to low-priority handling so that it never
infringes on protected EIP traffic. The preferential treatment of
EIP traffic also provides incentives for end-hosts and access
networks to transition to EIP. Core networks may decide to
adopt EIP since it allows them to drop malicious or unwanted
traffic at ingress points - although adoption at access networks
is already sufficient for EIP to achieve its effect.
What remains is to reduce the size of type-1 EIP datagram to

below 1440 bytes (the 1500 MTU minus IP header – which is
40 bytes in IPv6 – and TCP headers). To achieve this, we first
reduce the key length of end-hosts and DNS servers from 2048
to 1024 bits; the corresponding security strength reduction is
not critical because these keys protect only a single destination
network and can be frequently changed (the more valuable
keys from the ISPs remain full-length). This brings the type-
1 datagram header to 1442 bytes – just over our limit. As
a final trick, we note that the t-addresses include source and
destination IP addresses in the clear, and in the embedded
datagrams they are duplicated in the IP header. Thus, we can
drop them from the t-addresses saving further 32 bytes and
bringing our header within the limit with a few bytes to spare.

VII. EVALUATION
In this section, we first describe trace-driven simulations

to assess the traffic overhead due to EIP headers and the
router state size. We then compare EIP with existing capability-
based approaches, in particular using a synthetic Internet-scale

 0.068

 0.07

 0.072

 0.074

 0.076

 0.078

 0.08

 0.082

 10 15 20 25 30 35 40

O
v
e
r
h
e
a
d

TTL (sec)

All
Attack Excluded

(a) 32 KB byte constraint

 0.05

 0.052

 0.054

 0.056

 0.058

 0.06

 0.062

 0.064

 0.066

 10 15 20 25 30 35 40

O
v
e
r
h
e
a
d

TTL (sec)

All
Attack Excluded

(b) 64 KB byte constraint

 0.05

 0.052

 0.054

 0.056

 0.058

 0.06

 0.062

 0.064

 0.066

 10 15 20 25 30 35 40

O
v
e
r
h
e
a
d

TTL (sec)

All
Attack Excluded

(c) Byte constraint increased
from 32 KB to 64 KB at first
renewal

 0.036

 0.038

 0.04

 0.042

 0.044

 0.046

 0.048

 0.05

 10 15 20 25 30 35 40

O
v
e
r
h
e
a
d

TTL (sec)

All
Attack Excluded

(d) Byte constraint is doubled at
every renewal

Fig. 2. EIP bandwidth overhead with various time and byte constraint policies

simulation to compare EIP with TVA. Finally, we describe our
experience with the EIP prototype implementation.

A. Traffic Overhead
We estimate the traffic overhead imposed by EIP. We use a

packet-level trace captured at the edge of a mid-sized (around
16K students, faculty, and staff) university campus on April 27,
2012. The trace represents about 5 hours of traffic exchanged
between the campus network and the Internet, resulting in
about 500G of captured data, which includes IP and transport-
layer headers and 100 bytes of payload of each packet. We
used a Dell PowerEdge 2950 server with 15K RPM hard drives
and a 4-port 1Gbps Endace DAG7.5 network card for trace
collection, with two ports mirroring the two utilized links on
the edge router. The card counters showed no packet loss for
packets reaching our instrumentation. However, router netflow
statistics did show one traffic spike to 960Mbps on one of
the links, and because these statistics represented 5-minute
averages, it is likely that traffic exceeded our port-spanning
capacity for brief intervals during this episode. We do not
believe this materially affected our results.
We evaluate the traffic overhead assuming the EIP de-

ployment as described in Section VI: each new flow in the
trace incurs 1410 bytes overhead (type-1 header); subsequent
packets in this flow incur 17–19 bytes (type-2 header) until the
capability approaches its validity, which requires the receiver
to add a continuation t-address (558 bytes with Section VI
optimizations) and the sender to include this t-address in
the next packet, resulting in extra 1116 bytes overhead for
this connection. Our trace includes seemingly attack traffic
containing isolated TCP packets to a given IP address (e.g.,

9

SYN floods). We calculate the EIP overhead with and without
this traffic because if these packets involve fake source IP
addresses, they will dropped by the first EIP-complaint router.
Figure 2 shows the overhead simulated over all traffic and

over only what we consider a legitimate traffic for various
capability time and byte constraints. As can be seen, increasing
the byte constraint from 32 KB to 64 KB reduces the overhead
significantly, from 7-8% to 5-6%, while the time constraint
seems to affect the overhead somewhat less significantly.
The sensitivity of overhead to byte constraint suggests more
elaborate constraint provisioning. For example, a destination
may choose to increase the byte constraint for a host as it
builds trust about that host. This might significantly reduce the
bandwidth overhead imposed by EIP. For example, Figure 2(c)
shows the overhead when capability byte constraint is started
with 32 KB and is increased to 64 KB upon the first renewal
of the capability. Its overhead is virtually the same as when
using the straight 64 KB constraint but with a better recipient
control over incoming traffic. As another example, Figure 2(d)
shows the overhead when the capability byte constraint is
doubled every time the capability is renewed, resulting in
further overhead reduction. A more careful study of constraint
provisioning policies is one of the directions for future work.

B. Router State Estimation
We now estimate the state that EIP routers need to maintain.

We use the same trace discussed in SectionVII-A for this
purpose. Thus, our results will be indicative for edge routers,
which represent the “front lines” in Internet security.
We simulate the router behavior when it is presented with

the packets from our trace and evaluate the number of flow
records stored at the router assuming a naive approach where
each new flow creates a record, which is discarded when the
flow’s capability constraint is reached. Figure 3 shows how the
number of flow records at the router changes in the course of
the 5-hour trace. Figure 3 shows that the state requirements at
the edge router of a sizable intranet are manageable, e.g., they
generally stay within 50K records at 20 second TTL. Given
the record size of 61 bytes (16B for flow ID, 32B for the IP
address pair, 9 bytes for the timestamp and 4B for the validity
constraints) our edge router needs about 3MB of state – a quite
manageable amount for today’s line cards. From this finding,
it appears that the clever trick from [5] to keep the router state
below a constant, while fully applicable to EIP, might not be
needed in practice, at least in the case of edge routers.
In addition, the router state overhead is affected strongly

by the time constraint and is virtually independent of the byte
constraint. This is understandable as a lower byte constraint for
a continued flow simply replaces one flow record with another
while a longer time constraint makes records linger after the
communication stops.

C. Comparative Internet Scale Simulation
We compare EIP to other approaches to controlling un-

wanted traffic on the Internet. Previously, TVA [5] was found
to offer more effective protection than SIFF [3], in which

 0

 20

 40

 60

 80

 100

 4000 8000 12000 16000

N
o
.

o
f

r
e
c
o
r
d
s
(
x
1
0
0
0
)

Time (sec)

TTL = 5 sec
TTL = 10 sec
TTL = 20 sec
TTL = 40 sec

(a) 32K Byte constraint

 0

 20

 40

 60

 80

 100

 4000 8000 12000 16000

N
o
.

o
f

r
e
c
o
r
d
s
(
x
1
0
0
0
)

Time (sec)

TTL = 5 sec
TTL = 10 sec
TTL = 20 sec
TTL = 40 sec

(b) 64K Byte constraint

Fig. 3. Estimated router state for various time and byte constraints. These
graphs are best viewed in color. In greyscale, the lines corresponding to smaller
TTLs are closer to the X-axis indicating smaller state.

each router on the path contributes two bits to the capability
construction, and Pushback [38], where routers reactively rate-
limit excessive flows and propagate these limits upstream.
Portcullis [6] was proposed as an answer to the denial of
capability attack against an earlier version of TVA, and was
shown to be advantageous compared to Speak-up [7] and
TVA. EIP is not directly comparable to Portcullis or Speak-up
because these two schemes require the sender to perform more
work (puzzle-solving in the Portcullis case and bandwidth
consumption in the case of Speak-up) than the attackers to get
through to the receiver. This can cause significant delays in
communication and excessive energy drainage from battery-
based devices. Meanwhile, TVA answered Portcullis with
an enhanced protection against denial of capability attacks
through hierarchical fair queuing (HFQ) of capability requests
at the routers. Consequently, the rest of this section focuses
on comparing EIP with the new version of TVA as presented
in [5]. The results below show that EIP offers better overall
protection against large-scale attacks and requires lower level
of incremental deployment to be effective.
1) Methodology: To evaluate the effectiveness of EIP in

combating DoS attacks when compared to TVA, we build
a discrete time event-based simulator implementing both EIP
and the enhanced version of TVA [5]. We follow the general
methodology from the Portcullis study [6], with most model
parameters adopted from the TVA study [5]. We feed our
simulator with a skitter topology [39], which represents a
realistic router-level Internet scale topology as observed from
a particular vantage point. It has about 115K routers. We con-
sider the vantage point as a victim and assume for simplicity
that the shortest paths spanning tree determines the routes from
all the routers to the victim. While actual routes often deviate
from the shortest paths, we believe this simplification does not
affect our findings because at the root of these findings is a tree
structure of routers rooted at the victim. To associate routers to
their autonomous system number, we use the Team Cymru IP
to ASN Lookup service [40]. About 3% of the routers could
not be mapped to a particular ASN. We assign them the ASN
of their parent in the shortest path tree.
The the victim connects to the first router with a 120Mbps

link which, as in the TVA study, equals 10% of the aggregate
attack bandwidth when the attack density is 80% (i.e., 80% of

10

the senders are attackers). Following the Portcullis study, we
assume that routers in the topology are connected with 2Gbps
links and traffic senders are connected to the edge routers
with 20Mbps links. The bandwidth of the capability request
channel is set to 5% of the link bandwidth for TVA whereas
full bandwidth is available for EIP’s t-address requests.
We randomly distribute a total of 1500 good and attack

senders over the set of edge routers in our topology. As in
TVA, all of the experiments in this section involve attackers
sending capability requests at a rate of 1 Mbps. A good sender
sends a fresh request for a t-address every second. Meanwhile,
dropped requests are retransmitted with an exponential back-
off starting from 200ms. We use a request size of 1000 bits
for TVA and 1500 bytes for EIP. Like in TVA, we use an
application timeout of 10 seconds, after which we assume that
the application will give up resulting in communication failure.
The simulation runs for 60 seconds.
We adopt the “imprecise authorization policy” from TVA

in our experiment: the destination cannot reliably detect an
attacker at the time of the first contact and thus grants the first
capability. However, subsequent capability requests from the
attacking IP address will be denied. Denying the additional
t-address requests would totally stop the attackers in the EIP
case since they cannot spoof their IP addresses and they cannot
reach the victim’s ADNS with a proper t-address from upper-
level DNS servers. In the TVA case, denying the capability
requests cannot prevent the attacker from reaching the victim
with additional requests. By the time the victim drops these
additional requests, they have already exerted the damage.
Our simulation setup differs from that of TVA in three

aspects. First, we use the entire skitter topology rather than
random sub-topology slices for simulation. Second, an AS in
our setup can carry both access and transit traffic while in
the TVA setup traffic senders can be attached only to terminal
ASes. Our setup reflects the fact that most transit ISPs also
offer access services. Third, an AS can host both legitimate
and attack users in our setup while in TVA’s setup, a terminal
AS can represent either a legitimate sender or an attacker. The
latter restriction is problematic because attackers and legitimate
users originating from the same AS would have the same path
IDs in TVA, and therefore, will share the same queues, making
the legitimate users vulnerable to starvation.
2) Results: As in the Portcullis study, we measure the degree

of protection from attack traffic by the time for a legitimate
user to acquire a capability request in TVA and t-address in
EIP. In EIP, t-addresses are issued by victim’s authoritative
DNS (ADNS) server, which we assume is co-located with the
victim destination, while in TVA capabilities are issued by the
victim host itself. In TVA the capability requests are limited
to 5% of each hop’s bandwidth while in EIP the ADNS is
itself protected by t-addresses, so the same attacker can only
send repeated requests until they exceed the byte constraint of
the ADNS’s t-address: according to the imprecise authorization
policy, the upper-level DNS will not issue another t-address for
the attacker to contact the target ADNS. Note that in EIP, the
attacker cannot spoof its IP address to bypass this protection.
In accordance with the enhanced version of TVA, every

compliant router in our simulator executes hierarchical fair

queuing (HFQ) to protect the capability channel: every TVA
router marks each request packet with a tag and every TVA
router performs HFQ on the last few tags in the request. To
ensure that our model is favorable to TVA, our TVA simulator
allows up to 5 path tags in a packet (an increase from up to
4 in the TVA study given that studies have shown that over
95% of the Internet paths are within five AS hops but a sizable
minority of paths exceeds 4 hops [41]), unlimited number of
queues, and ten slots in each queue (the largest number among
the four queue levels in TVA). Furthermore, we assume that
no attackers spoof their IP addresses or path tags (the latter
being an additional attack avenue in TVA but not in EIP). We
first run an experiment similar to the TVA’s setup to verify the
correct operation of our simulator. We obtained results similar
to the results they obtained (these are omitted due to space
limitation). Next, we start experimenting with our setup, which
we believe is more realistic.
The first experiment examines the resiliency of EIP and TVA

to an increasingly massive attack assuming full deployment –
every router has adopted the EIP (resp. TVA) mechanism. We
set the percentage of attackers to 20%, 40%, and 80%. Figure
4 shows the results when the capability byte constraint for
communicating with the ADNS is set to 32 KB.
As can be seen, TVA struggles to grant legitimate users

capabilities as the attacker density increases. With only 20%
attackers, less than 60% of legitimate capability requests were
granted within 10 second period. This percentage drops to
about 35% when the attackers’s density is 80%. On the other
hand, EIP persistently succeeded in granting all legitimate
capability requests. One reason for TVA performing worse in
our experiments than in the TVA study is that we consider the
full Internet topology rather than a random sub-topology. The
Portcullis study pointed out previously that the full topology
reduced the benefits of the original TVA; our study indicates
this also holds for the enhanced TVA. Since a sub-topology
in the TVA study reduces the width of the router tree, it also
reduces the diversity of path IDs and hence enhances the effec-
tiveness of HFQ. Another reason is that by allowing traffic to
enter only at the leaf ASes, the attackers in the TVA study tend
to have longer path IDs. When attackers can enter at an internal
AS (as in our setup), they tend to have fewer tags, diminishing
the effectiveness of the HFQ enhancement. Finally, unlike the
TVA study, our setup models a very real possibility that both
attackers and good senders may originate from the same AS.
As mentioned earlier, TVA cannot distinguish these senders,
making the good capability requests vulnerable to being out-
crowded by the attackers. In fact, further investigation of the
TVA results of our experiment shows a noticeable trend of a
good user either persistently succeeding or persistently failing
in obtaining capabilities throughout the simulation time: for
example, in the 80% attackers case, while over 30% of requests
are successful overall, 67% of the good users consistently
failed over 90% of the time. This suggests that the consistently
failing users might be sharing queues with attackers.
The second experiment examines the performance of TVA

and EIP under partial deployment scenarios. This experiment
uses similar setup as in the previous experiment except that
various percentages of the ASes in the system are assumed to

11

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.0001 0.001 0.01 0.1 1 10
C
D
F

time (sec)

EIP
TVA

(a) 20% attackers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.0001 0.001 0.01 0.1 1 10

C
D
F

time (sec)

EIP
TVA

(b) 40% attackers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1 1 10

C
D
F

time (sec)

EIP
TVA

(c) 80% attackers

Fig. 4. Capability request flood with byte constraint of 32 KByte.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.0001 0.001 0.01 0.1 1 10

C
D
F

time (sec)

EIP
TVA

(a) 20% deployment

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.0001 0.001 0.01 0.1 1 10

C
D
F

time (sec)

EIP
TVA

(b) 50% deployment

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.0001 0.001 0.01 0.1 1 10

C
D
F

time (sec)

EIP
TVA

(c) 80% deployment

Fig. 5. Capability request flood with byte constraint of 32 KB under partial deployment with 40% attackers.

have not deployed EIP or TVA. In particular, we assume that
the victim’s AS has deployed the scheme (TVA or EIP). In
addition, 20%, 50%, or 80% of the remaining ASes chosen
randomly deploy the scheme. This experiment features 40%
of senders being attackers and an ADNS capability byte
constraint of 32 KB. Figure 5 shows the results, which indicate
that TVA requires wide-spread deployment to achieve tangible
protection. This behavior is expected since non-complaint
routers do not contribute to the path ID as required by
TVA, which results into a larger group users (legitimate and
attackers) sharing queues. With EIP, legitimate users achieve
100% request satisfaction even with modest deployment.

D. Prototype Implementation
We prototyped7 the EIP host and router using the Linux

netfilter framework [42] to intercept and process packets, with
packet processing done in user space, resulting in a network
layer that could support unmodified TCP applications at the
end hosts. The main goal was to verify our design and have
a preliminary assessment of the performance at the end-hosts
(since our user-space software implementation of the router is
not indicative of a realistic router). This in particular yielded
useful insights for end-host system design that interacts better
with the TCP layer above. Specifically, to avoid interaction
with TCP’s RTO estimation, a host maintains an asynchronous
thread that ensures there is a continuation t-address for ready
delivery when needed; further, the continuation t-address is

7Our datagram description in Section IV-C reflects minor fine-tuning after
the implementation of the prototype, including a switch from the absolute
to relative expiration times and elimination of flow TTL. These changes are
inconsequential to our prototype evaluation.

sent once the flow reaches a certain threshold in terms of
incoming bytes, again in advance of the immediate need. In
real deployment, selection of threshold values would be an-
other policy decision. In our experiments, we select threshold
values that avoid triggering TCP retransmission. The prototype
involved 1542 new lines of C code for the end-hosts and 1090
for the routers.
Our testbed is a host-router-host configuration of three

commodity Dell R610 machines8 running 3.2.0-23-generic ker-
nel with Broadcom NetXtreme-2 gigabit NICs. Cryptographic
operations are performed using the OpenSSL 1.0.1 library
[43]. All signatures are 1024-bit RSA, which represents a
compromise between key length, data size, and algorithm
speed. The t-addresses in these experiments have validity
constraints of 10 sec. and 1MB.
We evaluate throughput using unmodified legacy TCP ap-

plications, curl and Apache, running on the end-hosts. Given a
9000 byte jumbo MTU in our setup, our host implementation
decreases it to 6500 bytes, thereby allowing a maximum of
2500 bytes for the addition of EIP headers. For comparison,
we use a “vanilla” implementation that processes identical file
transfers. Our vanilla implementation utilizes the same MSS
modification to allow for fair comparison. Figure 6 shows
throughput as reported by curl when downloading files of
different size. EIP overhead is higher for small transfers such
as a DNS query or ad download but is amortized over large or
long-running transfers such as streaming media or pipelined
HTTP. In Figure 6 we see EIP throughput is just over 32%
of vanilla throughput for transfers of 10KB but gradually
8Two of the machines – the router and one of the hosts – were 4-core Xeon

2.0GHz CPU with 6GB 1333 MHz memory and the third machine was 2x8
Xeon 2.40GHz CPU with 8GB 1066 MHz memory.

12

20

40

60

80

100

120

10kB 100kB 1MB 10MB 100MB

Th
ro

u
gh

p
u

t
(M

B
/s

)

Transfer Size

eip

vanilla

Fig. 6. EIP Throughput

TABLE I. EIP ROUTER PROCESSING OVERHEAD

min mean median
type-1 161µs 198µs 200µs
type-2 11ns 74ns 61ns

increases to 97% of vanilla throughput for transfers of 100MB.
The low RTT (<1ms) in our testbed exaggerates the impact
of the cryptographic processing delay on throughput – in real
deployment, this delay would be masked by higher RTTs as
well as by hardware-implemented verification at the routers.
We evaluate processing overhead at the router for both types

of EIP datagram. We run file transfers through our router
to generate thousands of each datagram type. We count the
instruction cycles used to process each datagram in accordance
with Intel recommendations for benchmarking C in Linux [44].
Our user-space code is subject to interrupts, so we present the
minimum (indicative of inherent processing costs), mean, and
median processing time for each datagram.
Table I shows the results. Type-2 processing incurs only

11ns of inherent processing, which is important because these
datagrams carry most of data transfers and also because it
bears more similarity with a real implementation since it does
not involve crypto operations. Type-1 processing, at 160µs is
impractically high, but we verified that it is virtually entirely
due to OpenSSL calls for four RSA verifications per packet. A
hardware implementation in a real router should greatly reduce
this overhead.

VIII. FUTURE WORK: POLICIES
An important direction for future work is policies and

mechanisms for setting dynamic validity constraints for t-
addresses. This includes the design of a flexible rule language
to express the policies, the protocol between destinations and
their authoritative DNS servers to communicate the policies,
and the techniques for derivation of the policies themselves.
A sender can be assigned a t-address with varied validity

constraints (or be rejected altogether) depending on its past
behavior. If past extends beyond the immediate interaction, this
involves maintaining client ratings, which is somewhat similar
to reputation in reputation systems except its scope is limited
to the destination site. Because of that, it is free from typical is-
sues in reputation systems, such as data pollution, privacy, and
trust. In principle, we could envision client ratings to be shared
among authoritative DNS servers, or further disseminated from
authoritative name servers up the registration path, all the way
to the root servers. In this case, client ratings would no longer

be local to the destination site as the higher level name servers
would coalesce these ratings from multiple destination sites.
Client ratings would then converge to a traditional reputation
system and would have to address the typical issues above.

IX. RELATED WORK

Our transient addresses are in essence capabilities. Existing
capability systems [5], [6], [3], [45] include an unprotected
communication channel to hosts for initial capability requests;
these requests reach hosts using their IP addresses. In EIP,
DNS (itself protected by EIP except for the roots that are
defended by anycast) is used to distribute capabilities, thus
end-hosts are never exposed. Consequently, EIP provides bet-
ter protection at the cost of requiring certain support from
ICANN and root DNS servers. The SANE architecture [46]
uses separate network components to issue capabilities in
the context of enterprise networks. By operating at a higher
layer, EIP offers less hard-and-fast protection but targets public
Internet and does not require separate components. In fact,
our approach does not preclude a SANE deployment within
an enterprise. Several proposals design capability systems for
wireless networks [47], [48]. In particular, the DIPLOMA
system [47] never sends capability requests to the destinations
but—similar to SANE—requires the sender to obtain the initial
authorization token from a new infrastructure component; we
leverage DNS for this purpose. A survey and taxonomy of
capability systems can be found in [49].
Filtering approaches ([50], [51]) improve network security

by allowing hosts to install remote filters blocking identified
malicious senders. They rely on a separate filtering mechanism,
which itself needs to be carefully protected [50]. Pushback
(e.g., [38], [52], [53]) is another filtering approach where
routers propagate rate-limiting rules from recipients towards
sources of heavy traffic. OffByDefault [54] extends this notion
further by propagating arbitrary filtering rules proactively. EIP
does not require a new signaling or rule propagation protocol
or filtering rules maintenance by the routers.
There has been a lively debate in the research community

on the relative merits of filter-based and capability-based
approaches to network security. Argyraki and Cheriton pointed
out the vulnerability of capability systems to the denial of
capability attack, where the attackers exhaust the unprotected
capability request channel [4]. Parno et al. countered with an
elegant scheme using proof-of-work to ensure that legitimate
capability requests will eventually get through [6]. On the other
hand, Liu et al. proposed a filter-based approach that protects
the filter infrastructure by using a separate closed-control plane
for filter requests [50]. By relegating capability assignment to
DNS, our approach narrows the scope of vulnerability to the
root DNS servers, which are protected through Internet-wide
anycast deployment.
A number of overlay approaches leverage the capacity of

overlay nodes to protect hosts from DDoS attacks (e.g., [55],
[28], [29], [56]). In contrast, EIP attempts to build generic
security protections at the IP layer.
Several approaches improve security through separate ren-

dezvous points [57], [58], a name-routed signaling infrastruc-
ture [59], or by isolating client and server address spaces

13

[60]. EIP involves less significant architectural changes; in-
stead of introducing an extra indirection point, it leverages
already existing indirection stemming from name resolution.
The Host Identity Protocol [11] separates host identifiers from
IP addresses and distributes the former through DNS. EIP goes
beyond this as it distributes capabilities as transient addresses
and enables in-network host authentication. Shue et al. [61]
proposed to rotate through a set of IP addresses for a host,
of which only a small subset of addresses are valid at any
given time, and selectively resolving DNS queries to currently
valid IP addresses thus controlling access to the host. Phatak
et al. [62] extend this idea to the client side, thereby providing
a degree of anonymity to the clients. EIP shares with these
approaches their reliance on DNS but allows for finer-grained,
volume-limited, and cryptographically enforced traffic control.
Several approaches address network security by enabling

packet source attribution and accountability [63], [64], [65].
In particular, IPa+ [65] offers an alternative to RPKI for IP
address authentication. At the same time, Clark and Landau
[23] question the utility of stronger attribution than what
is already possible with IP addresses in the face of multi-
step attacks. Our approach does not introduce a new privacy
paradigm but inherits the paradigm of the overall network
architecture. In particular, as described here, EIP preserves
the privacy characteristics of the current Internet. Seehra et
al. provide a general argument for the desirability of allowing
recipient’s control over incoming communication [66]. EIP
studies a design that would achieve this goal yet be able to
coexist with the current Internet.

X. CONCLUSION
Security and privacy are perennial challenges in network

design, and are often at contradiction with each other. This
paper offers a new approach to addressing these challenges. It
affords destination networks full control over the traffic that
is to reach them and makes it possible to drop other traffic
early on its journey (“pushing the firewall into the network”
[67]). While the desirability of these functions has been well
established, our approach achieves them without introducing
any new signaling protocols, without requiring routers to main-
tain and propagate through the network complex filtering rules,
and without affecting the privacy properties of the network. In
particular, as described here, it preserves the privacy properties
of today’s Internet. Thus, our approach explores the minimal
intervention into today’s Internet architecture that would allow
it to support the above functions, and in fact of its mechanisms
are deployable within today’s Internet. We further hope that the
results of this research will impact the parallel efforts on future
Internet architectures [1].
The code developed for this project is available at [68]. We

thank Xiaowei Yang of Duke University for great tips on fast
flow cache lookups and Linux cycle counting.

REFERENCES
[1] “NSF Future Internet Architecture project,” http://www.nets-fia.net/.
[2] T. Anderson, T. Roscoe, and D. Wetherall, “Preventing Internet denial

of service attacks with capabilities,” in HotNets-II, 2003.

[3] A. Yaar, A. Perrig, and D. X. Song, “SIFF: A stateless Internet flow
filter to mitigate DDoS flooding attacks,” in IEEE Symp. on Security
and Privacy, 2004.

[4] K. Argyraki and D. Cheriton, “Network capabilities: The good, the bad
and the ugly,” in HotNets-IV, 2005.

[5] X. Yang, D. Wetherall, and T. Anderson, “TVA: a DoS-limiting network
architecture,” IEEE/ACM ToN, vol. 16, no. 6, pp. 1267–1280, 2008.

[6] B. Parno, D. Wendlandt, E. Shi, A. Perrig, B. Maggs, and Y.-C.
Hu, “Portcullis: protecting connection setup from denial-of-capability
attacks,” in SIGCOMM, 2007.

[7] M. Walfish, M. Vutukuru, H. Balakrishnan, D. Karger, and S. Shenker,
“DDoS defense by offense,” in SIGCOMM, 2006.

[8] “European Future Internet Portal,” www.future-internet.eu.
[9] M. Rabinovich and O. Spatscheck, “Evasive internet: Reducing internet

vulnerability through transient addressing,” in IEEE Global Internet
Symp., 2010.

[10] D. Meyer, “The locator identifier separation protocol (LISP),” The
Internet Protocol Journal, vol. 11, no. 1, March 2008.

[11] R. Moskowitz and P. Nikander, “Host identity protocol (HIP) architec-
ture,” Request for Comments 4423.

[12] E. Nordmark and M. Bagnulo, “Shim6: Level 3 multihoming shim
protocol for IPv6,” Request for Comments 5533.

[13] M. Lepinski and S. Kent, “An infrastructure to support secure internet
routing,” Request for Comments 6480, 2012.

[14] P. Ferguson and D. Senie, “Network ingress filtering: Defeating denial
of service attacks which employ ip source address spoofing,” RFC 2827,
May 2000.

[15] F. Baker and P. Savola, “Ingress filtering for multihomed networks,”
RFC 3704, March 2004.

[16] R. Beverly, A. Berger, Y. Hyun, and k. claffy, “Understanding the
efficacy of deployed Internet source address validation filtering,” in
SIGCOMM IMC, 2009.

[17] S. M. Bellovin, “Security problems in the TCP/IP protocol suite,”
SIGCOMM Comput. Commun. Rev., vol. 19, pp. 32–48, April 1989.

[18] U. C. E. R. Team, “Vulnerability note VU#800113. multiple
DNS implementations vulnerable to cache poisoning,”
http://www.kb.cert.org/vuls/id/800113.

[19] V. Paxson, “An analysis of using reflectors for distributed denial-of-
service attacks,” CCR, vol. 31, no. 3, pp. 38–47, 2001.

[20] J. Touch, “Defending TCP against spoofing attacks.” RFC 4953, 2007.
[21] “The Honeynet Project. Know your enemy: Fast-Flux Service Net-

works,” http://www.honeynet.org/papers/ff/, July 2007.
[22] T. Holz, C. Gorecki, K. Rieck, and F. Freiling, “Measuring and detecting

fast-flux service networks,” in NDSS, 2008.
[23] D. Clark and S. Landau, “The problem isn’t attribution; it’s multi-stage

attacks,” in ReArch, 2010.
[24] M. Konte, N. Feamster, and J. Jung, “Dynamics of online scam hosting

infrastructure,” in PAM, 2009, pp. 219–228.
[25] K. Poulsen, “FBI busts alleged DDoS mafia. SecurityFocus.”

http://www.securityfocus.com/news/9411.
[26] J. Jung, B. Krishnamurthy, and M. Rabinovich, “Flash crowds and

denial of service attacks: characterization and implications for CDNs
and Web sites.” in WWW, 2002.

[27] S. Kandula, D. Katabi, M. Jacob, and A. Berger, “Botz-4-sale: Surviving
organized DDoS attacks that mimic flash crowds,” in NSDI, 2005.

[28] A. D. Keromytis, V. Misra, and D. Rubenstein, “SOS: secure overlay
services,” in SIGCOMM, 2002.

[29] D. G. Andersen, “Mayday: distributed filtering for Internet services,” in
USITS, 2003.

[30] M. Patrick, “DHCP relay agent information option,” RFC 3046, 2001.
[31] R. Droms and W. Arbaugh, “Authentication for DHCP messages,” RFC

3118, June 2001.

14

[32] J. Jung, E. Sit, H. Balakrishnan, and R. Morris, “DNS performance and
the effectiveness of caching,” Networking, IEEE/ACM Transactions on,
vol. 10, no. 5, pp. 589–603, 2002.

[33] H. Qian, M. Rabinovich, and Z. Al-Qudah, “Bringing local DNS servers
close to their clients,” in IEEE GLOBECOM, 2011, pp. 1–6.

[34] R. D. Graham, “No, #Anonymous can’t DDoS the root DNS servers,”
http://erratasec.blogspot.com/2012/02/no-anonymous-cant-ddos-root-
dns-servers.html.

[35] V. Paxson, “End-to-end routing behavior in the internet,” IEEE/ACM
Trans. Netw., vol. 5, no. 5, pp. 601–615, 1997.

[36] J. Rexford, J. Wang, Z. Xiao, and Y. Zhang, “BGP routing stability of
popular destinations,” in SIGCOMM IMW Workshop, 2002.

[37] “NITROX XL CNN35XX Security Adapter
Family,” http://www.cavium.com/pdfFiles/Nitrox-
XL CNN35XX Rev1.0.pdf?x=1.

[38] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and
S. Shenker, “Controlling high bandwidth aggregates in the network,”
SIGCOMM Comput. Commun. Rev., vol. 32, no. 3, pp. 62–73, 2002.

[39] CAIDA, “Skitter,” http://www.caida.org/tools/measurments/skitter/.
[40] “Team Cymru Community Services IP to ASN Mapping.”

http://www.team-cymru.org/Services/ip-to-asn.html.
[41] P. Mahadevan, D. Krioukov, M. Fomenkov, X. Dimitropoulos, k. c.

claffy, and A. Vahdat, “The Internet AS-level topology: three data
sources and one definitive metric,” SIGCOMM Comput. Commun. Rev.,
vol. 36, no. 1, pp. 17–26, Jan. 2006.

[42] “The netfilter.org project,” http://netfilter.org.
[43] “Welcome to the OpenSSL Project,” http://www.openssl.org.
[44] G. Paoloni, “How to benchmark code execution times on intel

ia-32 and ia-64 instruction set architectures. Intel White Paper,”
http://download.intel.com/embedded/software/IA/324264.pdf, 2010.

[45] X. Liu, X. Yang, and Y. Xia, “Netfence: preventing internet denial of
service from inside out,” in ACM SIGCOMM Conference, 2010.

[46] M. Casado, T. Garfinkel, A. Akella, M. J. Freedman, D. Boneh,
N. McKeown, and S. Shenker, “SANE: a protection architecture for
enterprise networks,” in USENIX Security Symposium, 2006.

[47] M. Alicherry and A. D. Keromytis, “Diploma: Distributed policy
enforcement architecture for MANETs,” in 4th IEEE Int. Conf. on
Network and System Security (NSS), 2010, pp. 89–98.

[48] E. Swankoski and S. Setia, “EPIC: Efficient path-independent capabil-
ities in mobile ad hoc networks,” in IEEE Int. Workshop on Security
and Privacy of Mobile, Wireless, and Sensor Networks (MWSN), 2013.

[49] V. Kambhampati, C. Papadopoulos, and D. Massey, “A taxonomy of
capabilities based DDoS defense architectures,” in 9th IEEE/ACS Int.
Conference on Computer Systems and Applications (AICCSA), 2011.

[50] X. Liu, X. Yang, and Y. Lu, “To filter or to authorize: Network-layer
DoS defense against multimillion-node botnets,” in SIGCOMM, 2008.

[51] K. Argyraki and D. Cheriton, “Scalable network-layer defense against
internet bandwidth-flooding attacks,” IEEE/ACM Trans. Netw., vol. 17,
pp. 1284–1297, August 2009.

[52] T. Peng, C. Leckie, and K. Ramamohanarao, “Defending against
distributed denial of service attack using selective pushback,” in IEEE
Int. Conf.on Telecomm., 2002.

[53] V. Foroushani and A. Zincir-Heywood, “TDFA: Traceback-based de-
fense against DDoS flooding attacks,” in IEEE 28th Int. Conf. on
Advanced Information Networking and Applications (AINA), May 2014.

[54] H. Ballani, Y. Chawathe, S. Ratnasamy, T. Roscoe, and S. Shenker,
“Off by Default!” in HotNets-IV, 2005.

[55] C. Dixon, T. Anderson, and A. Krishnamurthy, “Phalanx: Withstanding
multimillion-node botnets,” in USENIX/ACM NSDI, 2008.

[56] H. Wang, Q. Jia, D. Fleck, W. Powell, F. Li, and A. Stavrou, “A moving
target DDoS defense mechanism,” Comp. Comm., vol. 46, 2014.

[57] D. Adkins, K. Lakshminarayanan, A. Perrig, and I. Stoica,
“Towards a more functional and secure network infrastructure,”

http://i3.cs.berkeley.edu/publications/papers/csd-03-1242.pdf, UC
Berkeley, Tech. Rep. UCB/CSD-03-1242, 2003.

[58] A. Gurtov, D. Korzun, A. Lukyanenko, and P. Nikander, “Hi3: An
efficient and secure networking architecture for mobile hosts,” Comp.
Comm., vol. 31, no. 10, pp. 2457 – 2467, 2008.

[59] S. Guha and P. Francis, “An end-middle-end approach to connection
establishment,” in SIGCOMM, 2007.

[60] M. Handley and A. Greenhalgh, “Steps towards a DoS-resistant Internet
architecture,” in FDNA (ACM SIGCOMM Workshop), 2004.

[61] C. A. Shue, A. J. Kalafut, M. Allman, and C. R. Taylor, “On building
inexpensive network capabilities,” CCR, vol. 42, no. 2, pp. 72–79, 2012.

[62] D. Phatak, A. T. Sherman, N. Joshi, B. Sonawane, V. G. Relan, and
A. Dawalbhakta, “Spread Identity: A new dynamic address remapping
mechanism for anonymity and ddos defense,” Journal of Computer
Security, vol. 21, no. 2, pp. 233–281, 2013.

[63] D. Andersen, H. Balakrishnan, N. Feamster, T. Koponen, D. Moon, and
S. Shenker, “Accountable Internet protocol (AIP),” in SIGCOMM, 2008.

[64] A. C. Snoeren, T. Kohno, S. Savage, A. Vahdat, and G. M.
Voelker, “Privacy-preserving attribution and provenance,” www.nets-
find.net/Funded/Privacy.php.

[65] X. Yang and X. Liu, “Internet protocol made accountable,” ACM
HotNets-VIII, 2009.

[66] A. Seehra and J. Naous and M. Walfish and D. Mazieres and A.
Nicolosi and S. Shenker, “A policy framework for the future Internet,”
in HotNets–VIII, 2009.

[67] T. Anderson, K. Birman, R. Broberg, M. Caesar, D. Comer,
C. Cotton, M. Freedman, A. Haeberlen, Z. Ives, A. Krishnamurthy,
W. Lehr, B. Loo, D. Mazieres, A. Nicolosi, J. Smith, I.Stoica,
R. van Renesse, M. Walfish, H. Weatherspoon, and C.Yoo, “NEB-
ULA - a future Internet that supports trustworthy cloud computing,”
http://nebula.cis.upenn.edu/NEBULA-WP.

[68] “EIP code,” http://engr.case.edu/rabinovich michael/eip.html.

Zakaria Al-Qudah Zakaria Al-Qudah received his B.Sc. degree from
Yarmouk University, Jordan, and his M.Sc. and Ph.D. degrees in computer
engineering from Case Western Reserve University. He is currently an asso-
ciate professor of computer engineering at Yarmouk University. His research
interests are in the area of Internet systems, measurements, and security.

Eamon Johnson Eamon Johnson received the B.S. degree in computer science
from the University of Illinois at Urbana-Champaign in 2000 and the M.S.
degree in computer science from Case Western Reserve University in 2012,
where he is now candidate for the PhD degree. His research interests include
network security and text mining.

Michael Rabinovich Michael Rabinovich is a professor in the EECS depart-
ment at CWRU, which he joined in 2005 after spending 11 years at AT&T
Labs—Research. He holds a PhD from University of Washington. His research
revolves around Internet architectures, performance and security.

Oliver Spatscheck Dr. Oliver Spatscheck a researcher at AT&T Labs—
Research. He received his PhD in computer science from the University of
Arizona. His general interests are network-centric systems, network measure-
ments and network security.

