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ABSTRACT
This paper describes a simple and efficient approach to es-
timate the network latency between arbitrary Internet hosts.
We use three landmark hosts forming a triangle in two-dimensional
space to estimate the distance between arbitrary hosts with
simple trigonometrical calculations. To improve the accu-
racy of estimation, we dynamically choose the "best" tri-
angle for a given pair of hosts using a heuristic algorithm.
Experiments using several data sets of measured host-pair
latencies, as well as a live Internet study, demonstrate the
accuracy and efficiency of our approach.

1. INTRODUCTION
The modern Internet is experiencing a rapid growth

in large-scale distributed applications utilizing overlay
and peer-to-peer networks. The performance and scal-
ing properties of these applications crucially depend
on exercising communication paths according to net-
work distances between hosts. Furthermore, the high
scale of these systems often stipulates hierarchical de-
sign, which typically relies on host clustering based on
network proximity. For example, content delivery net-
works, such as Akamai and ICDS by AT&T, use dis-
tance estimation to direct clients to the closest edge
servers for content download. In peer-to-peer file shar-
ing applications like BitTorrent or Gnutella, each peer
can benefit by selecting the closest peers to itself. Net-
work clustering is fundamental to hierarchical P2P sys-
tems, such as Gnutella 2, where super peers represent
clusters of neighboring hosts, and to large-scale Internet
characterizations and monitoring [2, 12, 13]. Unfortu-
nately, the scale of these systems often makes direct
on-demand distance measurements between hosts im-
practical.

A number of approaches have been proposed to han-
dle this problem by predicting the distance rather than
measuring it directly. Different approaches are tailored
for different applications. In particular, IDMaps [7]
aims at mapping inter-host distances on the global In-
∗This work is supported by the National Science Foundation
under Grant No. 0721890. The approach of the present
paper was initially outlined in a position paper [33].

ternet scale. King [9] has a unique ability to estimate
distance between uncooperative hosts, even if they do
not respond to probes. Coordinate-based techniques
[26, 25, 28, 19, 31, 3, 4] map hosts to points in a met-
ric space. These techniques are especially well-suited
in applications that reuse host coordinates for multiple
tasks since these tasks can be accomplished without fur-
ther costs. Meridian [35] addresses the problems related
to server selection, approaching them not through pre-
diction but through actual measurements between the
target host and exponentially narrowing set of server
candidates.

In this paper, we propose an approach that targets
applications that do not require full network position-
ing of hosts but only inter-host distances. This includes
a wide range of applications such as overlay topology
formation, server selection, and node clustering men-
tioned earlier. Our approach is extremely simple but,
as we show through extensive experiments, is accurate
and efficient at this task. Unlike full network position-
ing techniques, we employ only three landmarks, form-
ing a triangle in a two-dimensional Euclidean space, to
estimate the distance between a pair of end hosts using
simple trigonometrical calculations. However, we use a
relatively large number of potential landmarks and care-
fully select only three of them for any given prediction.
Having a large number of potential landmarks allows
us to select the landmarks for each prediction that pro-
duce high accuracy estimates. Using a small number
of landmarks for actual probing and computations keep
the overheads low. Thus, our approach represents a
tradeoff of achieving high accuracy and low overhead
at the expense of having to deploy a relatively large
number of well-dispersed potential landmarks.

Our estimation involves two rounds of probes. In
the first round, we use a general, big triangle to ob-
tain a rough distance estimates between each end host
and the landmark candidates. We then use these rough
estimates as the basis for selecting another landmark
triangle, which is likely to obtain a high accuracy dis-
tance estimation for the current end hosts. This second
triangle produces the final distance estimation in the
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second round of probing.
We used a three-pronged approach to evaluate our

method and compare it with existing techniques. First,
we evaluate it from the general prediction accuracy per-
spective. Second, we study its performance in the con-
text of some specific overlay applications - host cluster-
ing and server selection. Third, we performed a a live
Internet study comparing the quality of server selection
in the Akamai content delivery network [1] using our
approach and GNP, which was previously proposed for
a similar task [30].

Our results indicate that our simple technique is ac-
curate and efficient at the tasks it targets. For instance,
in the live Akamai study, our approach showed a bet-
ter selection quality than GNP with 1/7-th less probing
traffic. Thus, while different approaches are best-suited
for different applications, we believe our method will be
a valuable addition to the arsenal of overlay application
designers.

2. RELATED WORK
A number of approaches to inter-host distance esti-

mation have been proposed, with different approaches
better suited for different applications. The King util-
ity [9] estimates the distance between two arbitrary
hosts by the distance between their authoritative DNS
servers. It is more accurate for well-connected hosts
than residential hosts, which typically have high latency
to their DNS servers [34]. The IDMaps [7] platform
utilized a large number of tracer hosts at strategic loca-
tions in the Internet and estimated the distance between
two end hosts as the sum of the distance between each
host and its nearest tracer plus the distance between the
two tracers. IDMaps’s goal was to map rough inter-host
distances on the global Internet scale within a factor of
two of the real distances. The approach by Hotz [10] ex-
ploits the observation that if triangle inequalities held
on the Internet, then the distance between two end-
hosts would be bounded between the difference of the
distances from the end-hosts to a common landmark
and the sum of these distances. We discuss the IDMaps
and Hotz’s approaches further in Section 5.3.

Starting with the pioneering Global Network Posi-
tioning (GNP) approach [26], a number of current tech-
niques are based on embedding hosts into a multidimen-
sional metric space. Their key advantage is that once
a host’s coordinates are computed, they can be reused
for distance estimation to any other mapped hosts with
no additional overhead. GNP assigns coordinates to a
node based on the measured distance from this node
to a fixed set of well known hosts called landmarks.
GNP is considerably more accurate than IDMaps and
King. However, owing to its use of simplex downhill to
solve a multidimensional nonlinear minimization prob-
lem for error minimization, GNP incurs high compu-

tational overhead unless an application can effectively
amortize it. Subsequent approaches [3, 25, 28] have
dealt with a number of important issues such as secu-
rity and landmark load but used the same underlying
estimation principle.

Some approaches, including Virtual Landmarks [31]
and the Internet Coordinate System [19], utilize Lip-
schitz embedding of hosts into a Euclidean space and
replace simplex downhill with an efficient linear approx-
imation based on the principal component analysis. In
particular, the Virtual Landmarks study [31] reported
similar accuracy to GNP, although on our data sets,
this approach achieved its speedup at the expense of
accuracy loss.

Vivaldi [4] is a coordinates-based approach that re-
quires no fixed landmarks. Instead, each node con-
stantly adjusts its own coordinates by communicating
with other peers and following a mass-spring relaxation
model whose minimum energy state determines the node
coordinates. Vivaldi incurs no probing cost in its tar-
geted peer-to-peer applications since it derives its mea-
surements from regular P2P communication. We in-
clude Vivaldi in our performance study. Big Bang Simu-
lation (BBS) [29] is a somewhat similar approach which
models the network as a set of particles under the effect
of the potential force field to determine node positions.

Recently, the suitability of Euclidean embedding for
distance prediction has been questioned. In particular,
Lua et al. [20] showed that these schemes appear to
have poor accuracy under a new relative rank loss met-
ric, which the authors introduced as more meaningful
to a number of applications. Lee et al. [16] attributed
this issue to a large incidence of violations of triangle
inequality on the Internet. We include relative rank loss
as one of the general evaluation criteria of our approach.

Unlike coordinate-based approaches, Meridian [35] does
not employ distance estimates but targets the server se-
lection applications through direct measurements. Each
node in Meridian organizes other nodes into rings of
different radius, with a fixed number k of nodes in
each ring. To find the closest node to a given tar-
get host, Meridian starts from a random node, and
explores a small set of nodes that are in the current
node’s rings and at about the same distance from the
current node as the target. The query is then for-
warded to the closest node to the target, and the search
terminates when the current node is the closest. Ac-
cording to the Meridian study [35], its server selection
is an order of magnitude more accurate than that of
coordinate schemes such GNP or Vivaldi. However,
the query process takes O(logN) sequential forward-
ing steps and O(klogN) probes, where N is the total
number of servers. According to [35], a system with
2000 servers and k = 16 required just over 10K probing
traffic per query on average, or over a hundred probes.
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Two recent studies report on the experiences with
utilizing network distance estimations in real applica-
tions. Ledlie et al [14] analyze the implementation of
the Vivaldi algorithm in Azureus, a popular Bit-Torrent
client, and Szymaniak et al [30] report on utilizing GNP
in the Google content delivery network. We return to
the latter paper in Section 7.2.

Most distance estimation systems collect their mea-
surements by repeated probes between each pair of hosts
and use the median or minimum value[26, 4] as the true
network distance. Ledlie et al. [15] introduce techniques
to reduce the necessary probing traffic between pairs of
hosts. Our approach can also benefit from their tech-
niques.

3. LANDMARK TRIANGLES
Our method estimates the distance between a pair

of hosts using their distance to three landmark hosts,
and improves the accuracy of this estimate by selecting
the most appropriate landmarks for the given hosts. As
all distance prediction techniques, our method uses a
round-trip latency as the distance metric, which could
be obtained using direct probes, such as ping or tcp-
ping, or through passive measurements. Depending on
the application, the distances could be measured from
a host to landmark or in the other direction. We con-
sider these and other architectural details (e.g., who and
when computes the distance estimates) when we discuss
specific applications but simply assume the availability
of RTT measurements in the general algorithm.

3.1 Basic Algorithm
Our basic idea is illustrated in Figures 1 and 2. Con-

sider for a moment that hosts are mapped to a two-
dimensional Euclidean space, and we can measure true
deterministic distances between the hosts. Assume we
know the distance from two fixed points L1 and L2 to
a point A. This limits point A to only two possible lo-
cations, A′ and A′′, situated symmetrically around line
(L1,L2) as shown in Figure 1. Hence, for two points A
and B, the known distance from each of them to points
L1 and L2 limits the distance between A and B to only
two possible values, depending on whether A and B are
situated across or on the same side of line (L1,L2). We
can use simple trigonometric calculations, described in
the Appendix, to compute these distances.

Considering Figure 2 now, we can differentiate be-
tween these two possibilities with the help of a witness
point L3 located off the (L1,L2) line. Indeed, by com-
paring the known distance from L3 to either point with
the distances to the point’s two possible locations, we
can tell if either point and L3 are across or on the same
side of line (L1,L2). If the two points are both on the
same side with L3, or both on the opposite side from
L3, the two points are on the same side with each other;

L1

L2

A

B

A

B

Figure 1: Possible locations of points A and B
given the distance to landmarks L1 and L2.

L2

A

B

B

A

L1

L3

Figure 2: Using a witness landmark (L3) to dis-
ambiguate possible locations of points A and B.

otherwise (if one point is on the same side with L3 and
the other on the opposite side) the two points are across
line (L1,L2).

Thus, we can unambiguously compute the distance
between points A and B from the distances from A and
B to the fixed points L1, L2, and L3. We call points
L1 and L2 calculation landmarks and point L3 witness
landmark.

Unfortunately, Internet hosts do not map precisely to
a Euclidean space. We deal with one major consequence
of the imperfect mapping, which is triangle inequality
violations, in the next subsection. Another consequence
is that the measured distance from the witness L3 to,
say, point A is unlikely to match either of the two pos-
sible values, given by the length of segments (L3,A’)
and (L3,A”). Fortunately, we are only using L3 to dis-
tinguish between two discrete possibilities and not to
compute the distance estimate; thus, we simply choose
between the two possible positions of point A depend-
ing on which of the two possible values is closer to the
measured distance from L3 to A. In order to improve
the accuracy, we repeat our calculation by using land-
marks L1 and L2, L2 and L3, and L1 and L3, as cal-
culation landmarks, with the remaining landmark used
as the witness. We then take the average of the three
estimates as the final value.

3.2 Triangle Inequality Violations
Several previous studies observed that hosts on the

Internet can violate the triangle inequality [37, 36, 21].
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These violations may lead to a situation when the mea-
sured distances between hosts and landmarks allow no
possible mapping of hosts into the Euclidean plane.

Recall that a given landmark triangle generates three
combinations of calculation and witness landmarks, and
we normally use the average of the three corresponding
distance results as the final distance estimate. When
some pairs of the calculation landmarks yield no con-
sistent host mappings, we simply consider only the re-
maining pairs that do produce such mappings. In the
extreme case, when all three pairs of calculation land-
marks exhibit triangle inequality violation with one of
the end hosts, we use the minimum of the three mea-
sured indirect paths between the end hosts through each
of the three landmarks as the estimated distance. The
degree of the triangle inequality violations and its effect
on distance estimation accuracy is analyzed in Section
5.

It might appear that a more natural way to handle
the above case is to pick another landmark triangle, in
the hope it would not violate the triangle inequality.
However, this would cost another round of network la-
tency measurements between the new landmarks and
each end-host, which would be detrimental in a real
time distance estimation system that our approach tar-
gets.

4. DYNAMIC TRIANGLE SELECTION
It might appear natural to improve the triangles-

based approach by increasing the number of landmarks
and using random selection of possible triangles to ob-
tain a number of estimates, which could then be pro-
cessed with standard statistical methods. However, we
found that this actually had a detrimental effect on ac-
curacy. The reason is that the prediction error in differ-
ent triangles is not random: some triangles are “good”,
i.e., they produce highly accurate predictions and some
are “bad”. Adding more random triangles does not nec-
essarily improve the quality of the mix. It turns out that
one can characterize triangles in terms of the likely ac-
curacy of their predictions. The next section examines
these heuristics and uses them to develop an algorithm
for dynamic triangle selection.

Our general approach to improve accuracy of distance
estimation is to have a large set of landmarks that could
potentially be used in a landmark triangle and to select
a specific triangle for a particular pair of hosts. Our
goal then is to develop a heuristic to dynamically select
a landmark that is likely to produce a high-accuracy
estimate.

4.1 Intuition
We develop our heuristic for dynamic triangle selec-

tion based on the following intuition. Consider Fig-
ures 3(a), 3(b), and 3(c), where L1, L2 and L3 form a

big triangle, L1′, L2′ and L3′ form a small triangle, and
we want to estimate the distance between point A and
B. On Figure 3(a), the points A and B are far apart
and both are far away from the small triangle. Then,
from the position of points A and B, the three land-
marks L1′, L2′ and L3′ approximate one single point.
Thus, the accuracy of this small triangle is very poor.
For the big triangle of L1,L2 and L3, the distances be-
tween the landmarks themselves and between points A
and B are comparable, so using big triangle in such a
case can generate a relatively good estimate.

Turning to Figure 3(b), both points A and B are
close to the small triangle and hence close to each other.
From the view point of landmarks L1,L2 and L3, point
A and point B look like a single point, so the accuracy
using the big triangle is relatively poor in this case. But
for the small triangle of landmarks L1′, L2′ and L3′, the
inter-landmark distances are comparable to the distance
between points A and B. Thus, using the small triangle
in this case can generate a better estimate.

Finally, on Figure 3(c), the points A and B are far
apart but one of the points (point A) is close to the small
triangle. The big triangle in this case can generate rel-
atively good estimates similar to Figure 3(a). However,
using the small triangle can also generate good results
in this situation. Indeed, although its landmarks L1′,
L2′ and L3′ all look like one point to B, since point A
is very close to this small triangle, the triangle estima-
tion in this case essentially approximates the distance
between points A and B by the distance between point
B and the landmarks L1′, L2′ and L3′. Because these
landmarks and point A are all close to each other, the
accuracy of this estimation is high. By selecting a small
enough triangle that is close enough to one of the end-
hosts, we can obtain a better estimate than the estimate
produced by the big triangle.

Interestingly, in the last case, the small triangle might
be so close to point A that one could accurately ap-
proximate the distance between A and B directly by
the distance between B and the triangle’s vertex clos-
est to A, without using the other two vertexes at all.
This would save probing from the other two vertexes as
well as trigonometric calculations. We leave this opti-
mization (including a tricky part, which is a heuristic
to decide when using a single landmark is acceptable)
to future work.

Overall, a small triangle is likely to generate poor ac-
curacy when it is far removed from both end-hosts and
high accuracy when it is close to at least one of the end-
hosts, regardless of the distance between the end hosts.
For hosts that are far apart and without a nearby small
triangle, a big triangle is more likely to produce decent
accuracy. Thus, our heuristic for dynamic triangle se-
lection starts with a general big triangle (i.e., the same
for all host-pairs), and then progressively replaces it
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L1’

BA

L3L2

L1

L2’ L3’

(a) Both points A and B are far
away from the small triangle

B

L3L2

L1

L2’ L3’

L1’

A

(b) Both points A and B are
very close to the small triangle

A

B

L3L2

L1

L2’ L3’

L1’

(c) Point A is close to the small
triangle and B is far away from
the small triangle

Figure 3: The effect of the landmark triangle position and size on the accuracy of inter-host distance
estimation.

with triangles that are both smaller and closer to one of
the end-hosts.

4.2 Triangle Selection Algorithm
Following the above observations, we have designed a

heuristic algorithm for dynamic triangle landmark selec-
tion shown in pseudocode in Figure 4. For given hosts A
and B, the algorithm tries to find a small triangle close
to either of them and use it for distance estimation. If
it cannot find such a triangle, it resorts to the general
big triangle. The algorithm takes as input the distance
between both end-hosts and every potential landmark.
We discuss how to estimate these distances without ex-
tra measurements in Section 4.4.

The algorithm addresses two main issues. First, for
a given host pair, it needs to find the smallest triangle,
which is also the closest to either host. We combine
these two selection criteria by maintaining a single dy-
namic “quality threshold”. Once any small close trian-
gle is identified, we set the quality threshold to the max-
imum of the triangle size (measured as the maximum
edge) and its distance to the closest host (measured as
the distance from the host to the farthest vertex). We
then replace this triangle with another triangle only if
the latter is both smaller and closer than the current
threshold. Note that the new triangle might actually
be either bigger or more distant than the triangle it re-
places as long as it reduces the threshold that defines
the overall selection quality1.

Second, the algorithm must deal with a vast search
space. For example, 100 candidate landmarks can form
161700 triangles for each host pair. Thus, the algo-
rithm uses several optimizations to cut the number of
considered triangles dramatically. For example, if the
distances from both hosts A and B to a landmark vertex
i are already greater than the current threshold then,

1We currently do not consider triangle shape as part of the
selection criteria. Intuitively, an equilateral triangle would
be better than one with the three vertexes approaching a
straight line. We will attempt to further improve our algo-
rithm by accounting for triangle shapes in the future.

// N is the number of landmarks
// Di,j is the distance between landmarks i and j
// DA,i is the distance between host A and landmark i
// Ti,j,k is the triangle formed by landmarks i j, and k
// mT is the largest edge in triangle T
// dA,T is the max distance from host A to any vertex in
// triangle T
1 Selected Triangle = General Triangle;
2 Threshold = Threshold InitialV alue;
// Loop through all triangles but stop as soon as possible
3 for (i from 1 to N − 2){

// If the distance from both hosts to the current landmark
// already exceeds the threshold no need to proceed
// with the loop

4 if (DA,i > Threshold and DB,i > Threshold) continue;
5 for (j from (i + 1) to N − 1){
6 // If one edge of the current triangle already exceeds the
7 // threshold no need to proceed
8 if (Di,j > Threshold) continue;
9 if (DA,j > Threshold and DB,j > Threshold) continue;
10 for (k from (j + 1) to N){
11 if (DA,k > Threshold and DB,k > Threshold)

continue;
12 if (Di,k > Threshold or Dj,k > Threshold) continue;

// A new small triangle is found; Reset the threshold
13 mTi,j,k = max(Di,j , Di,k, Dj,k);
14 mTi,j,k = MAX(Di,j , Di,k, Dj,k);
15 dA,Ti,j,k = MAX(DA,i, DA,j , DA,k);
16 dB,Ti,j,k = MAX(DB,i, DB,j , DB,k);
17 Threshold = MIN(MAX(mTi,j,k , dA,Ti,j,k ),

MAX(mTi,j,k , dB,Ti,j,k));
18 Selected Triangle = Ti,j,k;

}
}

}
RETURN Estimate(A,B, Selected Triangle);

Figure 4: Triangle selection algorithm.

5



CDN server 1

L1

L2 L3

L1’’

L2’’ L3’’

L1’

L2’ L3’

L1’’’

L2’’’ L3’’’

Web Client

CDN server 3

CDN server 2

Figure 5: One-sided triangle selection in a CDN.

since we define the distance between a point and a tri-
angle as the distance from the point to the triangle’s
farthest vertex, we need not examine any triangle with
vertex i any more (line 4 in the algorithm). Similarly,
if the distance between two landmark vertexes i and j
is already greater than the current threshold, then we
need not to consider any triangle with edge (i, j) since
we use the maximum edge as the triangle size (line 8).
Finally (and most importantly), once we find a triangle
satisfying our requirement, i.e., with max edge and max
distance to at least one point below the current thresh-
old, we will use this triangle to set the threshold to
a smaller value (line 17), which progressively removes
further triangles from consideration. Even if the ini-
tial threshold is set to a very large value, it decreases
quickly, resulting in a small number of triangles that end
up being considered. For example, in our DZ-Gnutella
data set (see Section 5.1), the average number of exam-
ined triangles for each host-pair reduces from 161,700
to less than 1000.

The initial threshold value presents a tradeoff: the
smaller the value the lower the computational cost of
triangle selection but the less likelihood that a small
triangle will be found. We use a heuristic that attempts
to approximate the goal of finding a small triangle for
90% of the end-hosts. Since we do not know the end-
hosts in advance, we use the landmarks themselves in-
stead and identify the initial value such that for 90% of
landmarks, there exists a small triangle formed by the
other landmarks. We found that, compared with the
infinite initial threshold value, this heuristic results in
negligible increase in estimate errors for a wide range of
landmark numbers, while cutting significantly the com-
putational cost of triangle selection. For example, in the
DZ-Gnutella data set with 100 landmarks, the median
relative error increases from 0.053193 to 0.053495 but
the computation time to estimate the distances between
all host pairs drops from 27.517s to 13.059s.

4.3 One-Sided Triangle Selection
The above algorithm is geared towards a scenario

where one needs to estimate the distance between two
hosts. It could be used, for example, when the two hosts
respond to measurement probes such as pings or TCP

pings but are otherwise uncooperative. In many ap-
plications, however, one needs to estimate the distance
of an incoming host to a large set of exiting hosts. In
these cases, the above algorithm may select different tri-
angles for each new/existing host pair requiring a large
number of probes. For example, in Figure 5, the server
selection subsystem in a content delivery network might
need to probe the client from triangle (L1′, L2′, L3′) to
estimate the client’s distance to server 1, from triangle
(L1′′, L2′′, L3′′) to estimate its distance to server 2, and
so on. This can easily negate an advantage of using the
estimations over direct measurements.

Consequently, for these applications, we only choose
between the general triangle and small triangles that are
close to the new host. In the CDN example of Figure 5,
the closest smallest triangle to the client, (L1, L2, L3),
will be used to estimate the distance from the client to
all the servers. This obviously can lower the estimation
accuracy but allows one to obtain the distance between
the new and all existing hosts with only six probes –
three from the general triangle and three from the se-
lected client-specific triangle – regardless of the number
of existing hosts involved.

4.4 Obtaining Host-to-Triangle Distance
The triangle selection algorithm utilizes distances be-

tween each host and all the candidate landmarks. Ob-
taining these distances by direct measurements, how-
ever, can generate significant probing traffic. Instead,
we limit real measurements at the time of triangle se-
lection only to measure distances between the hosts and
the vertexes of the general big triangle. The distances to
other candidate landmarks are themselves estimations
using the big triangle.

Thus, the distance estimation between two hosts in-
volves two rounds of probes and is as follows. The
system maintains, asynchronously with distance esti-
mations, the pair-wise measured distances between all
the candidate landmarks. At the estimation time, we
first measure the distances between the host pair un-
der study and the general triangle vertexes. Second, we
select a landmark triangle for the given host pair uti-
lizing these distances to estimate the distance between
each host and potential triangles under consideration.
Third, we measure the distances between the selected
landmark triangle and either host and use these mea-
surements to estimate the distance between the hosts.

5. ACCURACY EVALUATION
This section presents the evaluation of the dynamic

triangles approach from the general accuracy and over-
head perspectives. We compare dynamic triangles with
representative existing distance estimation techniques:
GNP, Vivaldi, and Virtual Landmarks. When we ap-
ply our technique to server selection applications (Sec-
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tion 7.2) we add Meridian, an influential approach tar-
geting these applications but not general distance esti-
mations, into our analysis. We also briefly consider two
earlier approaches, IDMaps and the Hotz’s approach
(Section 5.3). As mentioned in Section 2, other landmark-
based schemes, while improving various aspects of GNP,
exhibit similar accuracy. Also, GNP and King were
compared previously in [34].

5.1 Methodology
We utilized four data sets in our study, one collected

by ourselves and three available externally.
The DZ-Gnutella data set (available from [6]) was

collected in June 2007 using DipZoom measurement in-
frastructure [5], which provides programmatic access to
a number of measuring points (MPs) around the world
from a locally run Java application. We asked almost
400 MPs across the globe to ping each other and a list of
around 1900 Gnutella peers. We repeated these mea-
surements until we collected over 22 million ping re-
sults. Similar to a number of previous studies [26], we
used the minimum measured ping latency as the real
distance between hosts. After removing hosts with few
successfully collected distances, we ended up with 320
MPs and 1202 Gnutella peers. Most of DipZoom MPs
ran on PlanetLab nodes but there were also 21 non-
PlanetLab and residential nodes. We used these non-
PlanetLab MPs separately in one of our experiments to
further validate our results. Moreover, in most of the
inter-host distances we study, one of the two hosts is an
external (non-DipZoom) host.

We obtained the next two data sets from [24]. The PL
data set contains the pair-wise latency distance among
226 PlanetLab nodes. It uses a median of several ping
RTTs as the distance metric. The PL-Azureus data set,
previously used in [14], contains the pair-wise distance
among 248 PlanetLab nodes as well as the distance
between these nodes and 2654 Azureus clients. This
dataset uses active measurements from application-level
communication, presumably over TCP. Finally, the Merid-
ian King data set, available from [23] and previously
used in [35], contains the distance between 2500 DNS
servers collected using the King method[9]. The metric
here is an estimated round-trip of UDP messages.

We now describe how we use these data sets to esti-
mate accuracy of various distance estimate techniques.

For dynamic triangles experiments, we set aside 100
hosts that have a complete collection of pair-wise dis-
tances in the data sets, as candidate landmarks. When
we find more than 100 such hosts, we select the 100 most
widely distributed ones by first using k-mean clustering
algorithm (based on inter-host distances) to partition
the candidates into 100 clusters and then choosing, in
each cluster, the closest host to its cluster center. We
select the general big triangle among these candidates

by partitioning them into three k-mean clusters and se-
lecting a centroid host in each cluster as a triangle ver-
tex. The remaining 97 candidates are available to form
dynamic triangles, although some candidates may not
participate in triangle selection for a given host-pair if
the data set misses the measured distance between these
candidates and either host.

For GNP, we used the software downloaded from [8]
utilizing the default configuration with 15 landmarks
and 8 dimension, denoted as GNP(15,8). Although the
study [26] used 7 dimension, we assume the software
reflects the latest recommendation of the GNP authors.
We further tried different GNP configurations on the
PL data set, including larger numbers of landmarks and
higher dimensions, and confirmed that GNP(15,8) pro-
duced the best accuracy [32]. In each data set, we ob-
tained the 15 GNP landmarks from the same 100 hosts
used as landmark candidates for dynamic triangles, by
first partitioning these hosts into 15 clusters with k-
mean clustering and then selecting from each cluster
the host closest to its center. We denote GNP with
n landmarks and m dimensions as GNP-(n,m) in this
paper.

For Vivaldi, we downloaded the Vivaldi simulator
from [24]. In all simulations, we set the neighbor count
to 100 and, according to the suggestions in [4], utilized
the height dimension. We ran each simulation until the
coordinates of each node stabilize.

For Virtual Landmark (VL) experiments, in every
data set, we used 20 landmarks and used PCA to re-
duce the number of dimensions from 20 to 8 – the same
configuration as used in the original VL paper [31] to
compare this approach with GNP. We again utilized our
clustering approach to select the 20 landmarks.

We used the following metrics to evaluate the accu-
racy of estimates. Following the original studies of all
the alternative techniques we consider, we used rela-
tive error to quantify the accuracy of our distance esti-
mates defined as the difference between the predicted
and measured distance divided by the smaller value
among the two:

|predicteddistance−measureddistance|
min(measureddistance, predicteddistance)

Many applications, such as those involving server se-
lection or overlay topology construction, depend not on
the absolute accuracy of distance estimates but on the
accurate ranking of hosts with respect to their distances
to a given host. To assess the suitability of our approach
to these applications, we use the common closest peers
and relative rank loss, two rank preservation metrics in-
troduced by Lua et al. [20]. Given a set of hosts S, the
former measures the percent of the overlap between the
k closest hosts from S to a given external host accord-
ing to estimated and measured distances. The latter
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(a) DZ-Gnutella data set.
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(b) The PL data set.
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(c) PL-Azureus data set.
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(d) Meridian King data set.

Figure 6: Accuracy of distance estimates using dynamic landmark triangles.

measures the overall order preservation and is defined
as a percentage of all host pairs in S that are ordered
differently according to their estimated and measured
distances to a given target host.

5.2 Relative Error of Distance Estimation
Figure 6 shows the cumulative distribution functions

of the relative error of distance predictions using the
estimated triangle selection (see Sec. 4.4) as well as ex-
isting approaches. Table 1 summarizes these results by
listing median relative errors across all host-pairs. It
also lists the average probing cost per end-host incurred
in the experiments (not counting periodic landmark-to-
landmark measurements, which add trivial cost2) and
the total computational costs to obtain all estimates.
We should note that real overhead can only be mean-
ingfully discussed in the context of a particular ap-
plication. For instance, the table shows high probing
cost for Vivaldi while it incurs no such costs in its in-
tended application where these measurements are ob-
served passively. Similarly, the table shows high com-
putation costs for GNP, which in some applications can
be distributed to the end-hosts. At the same time, all
probing cost numbers in the table assume that probes
are reused for different estimates, which may not always
be possible. We thus revisit overheads in Section 7 and
only remark here that these general numbers indicate

2E.g., with 100 landmarks, the total number of probes in
one round of measurements is (100 99)/2 = 4950. Even
refreshing these measurements every 10 minute means each
landmark needs to send only one probe every 12 seconds.

the flexibility of different approaches to being utilized
in various contexts. Table 1 does not list computational
costs for Vivaldi as they depend on the number of iter-
ations one specifies and hence are not meaningful.

Focusing on accuracy, these results indicate that the
quality of the dynamic triangles estimates is appreciably
higher than existing approaches. Even with 25 candi-
date landmarks, when its general probing costs become
similar to GNP and VL, their accuracy never fell below
other techniques.

Another noteworthy observation is that the quality of
Vivaldi estimates is much higher on PlanetLab data set
than on the data sets involving Gnutella and AZureus
clients. We think the reason is that Vivaldi works best
on full matrix data set where each peer in the simulation
can randomly select neighbors from all other peers. In
the DZ-Gnutella and PL-AZureus data sets, a host can
only select peers from the relatively few DipZoom MPs
or PlanetLab nodes, respectively (because the data does
not include distances between two Gnutella or AZureus
clients). Thus, Vivaldi results on these two data sets
may not represent its performance in its intended P2P
applications where each client can measure the latency
to any peer as long as it can connect to it.

We used the two-sample Kolmogorov-Smirnov test
[11] to check statistical significance of the results in Fig-
ure 6. Given two empirical distributions, the K-S test
uses the maximum difference between the two empirical
CDFs for the same argument, D+ = maxx |F1(x)− F2(x)|
along with the size of each sample to produce the prob-
ability p of the hypothesis H0 that both samples come
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Methods Data Median Avg Comp.
Set rel. error probes time

Tri 100 5.3% 55 13s
Tri 25 7.4% 13.5 7s
GNP DZ-Gnu 9.6% 15 9m
VL 23.5% 20 4 sec

Vivaldi 17 % 100 NA
Tri 100 1.9 % 40 6s
Tri 25 4.2 % 14.4 5s
GNP PL 5.3% 15 8m
VL 15.1% 20 1s

Vivaldi 4.5 % 100 NA
Tri 100 11.4 % 59 106s
Tri 25 14.2 % 13.7 19s
GNP PL-Az 14.3% 15 8m
VL 26.3% 20 10s

Vivaldi 22.6 % 100 NA
Tri 100 13.8 % 51 228s
Tri 25 16.1 % 15.4 70s
GNP Meridian 21.9 % 15 504m
VL 28.6 % 20 42s

Vivaldi 17 % 100 NA

Table 1: Summary of estimation accuracy using
different approaches on different data sets.

Methods Data D+-value p-value
Set

Tri/GNP 0.1941 < 2.2e− 16
Tri/VL DZ-Gnu 0.4306 < 2.2e− 16

Tri/Vivaldi 0.3105 < 2.2e− 16
Tri/GNP 0.2571 < 2.2e− 16
Tri/VL PL 0.5367 < 2.2e− 16

Tri/Vivaldi 0.247 < 2.2e− 16
Tri/GNP 0.0685 < 2.2e− 16
Tri/VL PL-Az 0.2759 < 2.2e− 16

Tri/Vivaldi 0.2101 < 2.2e− 16
Tri/GNP 0.1297 < 2.2e− 16
Tri/VL Meridian 0.2614 < 2.2e− 16

Tri/Vivaldi 0.0786 < 2.2e− 16

Table 2: Statistical significance of the accuracy
differences.
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Figure 7: Estimate accuracy for non-PlanetLab
MPs.
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Figure 8: Accuracy of Hotz’s distance metrics.

from the same distribution, against the alternative hy-
pothesis that they come from distinct distributions.

Table 2 lists D+ and p values when testing empirical
distributions of triangle estimates vs. other estimates
for each data set. We used the implementation of the
K-S method in system R, where the smallest detected p
value is 2.2e− 16. As we see for all data sets, the prob-
ability that the distributions are the same is negligible
(below the minimum detection level). Thus, with very
high probability, the alternative hypothesis – that the
distributions are different – is true, which in turn means
that the accuracy advantage of dynamic triangles indi-
cated by these distributions is statistically significant in
each of the environments represented by our data sets.

Since three of our four datasets rely to varying ex-
tent on PlanetLab, we wished to validate our results by
focusing, in the DZ-Gnutella dataset, on the estimates
between the 21 non-PlanetLab MPs we had available
and the Gnutella peers. As shown in Figure 7, while ac-
curacy of the non-PlanetLab estimates decreases some-
what, it has similar trends. In particular, the median
error of the dynamic triangle estimates becomes 7.4%
as compared to 13.4% for GNP, 20% for Vivaldi and
23.4% for virtual landmarks.

5.3 Early Approaches
The GNP study [26] compared its accuracy to two

early approaches for distance estimation - IDMaps [7]
and the Hotz’s approach [10] and found that these ap-
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Error Tri GNP IDMaps Hotz’s U Hotz’s L Hotz’s (L + U)/2
Mean 15.9% 19.2% 29.5% 54.6% 60.3% 52.7%

Median 5.3% 9.6% 13.0% 8.8% 11.4% 8.5%

Table 3: Mean and median relative error of early methods.

proaches were less accurate than GNP3. We checked
this finding on the DZ-Gnutella dataset. Following the
methodology in [26], we used the same 15 landmarks
selected for GNP as Hotz’s landmarks so that both ap-
proaches have the same probing overhead. At the same
time, because IDMaps is an asynchronous approach, we
used all 100 landmarks we utilized for dynamic trian-
gles. In the Hotz’s method, for a given host-pair, we
computed the highest value of the lower-bound distance
estimate L and the lowest value of the upper-bound es-
timate U produced by all the landmarks:

L =
15

max
i=1
|d(A, hi)− d(B, hi)|

U =
15

max
i=1
|d(A, hi) + d(B, hi)|

where A and B are end-hosts, hi is the ith landmark,
and d(x, y) is the distance between hosts x and y. We
then considered values L, U , and (L+U)/2 as alterna-
tive distance estimates between the end-hosts.

Table 3 compares the accuracy of these estimates
with those of GNP and dynamic trianges. IDMaps
shows worse accuracy in terms of both median and
mean error. Hotz’s heuristics actually show a slight
advantage over GNP in median errors but significantly
lower overall average accuracy, indicating that it is vul-
nerable to particularly bad estimates. Indeed, as Fig-
ure 8, which depicts the CDF of the relative errors,
indicates, there is a significant loss of accuracy of all
three Hotz’s metrics for the worst 20% of the estimates.
These trends were confirmed in the other datasets: in
the PL dataset, Hotz’s metrics had slightly better me-
dian but worse average errors similar to the DZ-Gnutella
dataset above; in the PL-Azureous and Meridian datasets
both median and mean errors in the Hotz’s method
were worse that in GNP but the difference in the av-
erage error was much more pronounced. Furthermore,
all Hotz’s metrics showed lower accuracy than dynamic
triangles for all the data sets and all error percentiles.

Given these findings, we do not consider IDMaps and
Hotz metrics in the rest of our study.

5.4 Accuracy by Distance Ranges
Lee et al. [16] observed that coordinate approaches

do not work well for estimating short distances due to

3To be fair, IDMaps had a goal of asynchronously collecting
the distance maps of the entire Internet and assumed many
more tracers than are available in our experiments, so both
[26] and ours are not apple-to-apple comparisons.
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Figure 9: Relationship between estimates accu-
racy and inter-host distance.

large scale of triangle inequality violations. This section
considers how the accuracy of our approach depends
on the distance between the hosts. Figure 9 shows the
median relative errors for host-pairs that fall in several
real distance ranges, for dynamic triangles and existing
approaches. We only show results for the DZ-Gnutella
data set; other data sets had similar results.

This figure confirms the finding in [16], in that the
errors do increase significantly for estimating shorter
distances (note the logarithmic scale on Y-axis) for all
methods. For example, the median relative error of dis-
tance prediction of GNP for real distance between 100
and 1000 milliseconds is just under 10%, but it increases
to 68% for real distances below 10ms. (We also found
that usually these estimates are biased to exceeding the
real distance.) The median relative error of distance
estimation of Vivaldi for the 100 to 1000ms range is
only about 11% and increases to over 700% for real dis-
tances below 10 ms. Our approach also exhibits similar
behavior although to much less degree. The median
relative error of our approach for real distances under
10ms is only 17%, compared to GNP’s 68%. We be-
lieve the reason behind this behavior is that, for short
inter-host distances, our approach finds a local triangle
that is close to both hosts while the coordinate-based
approaches use the same host coordinates, derived from
the same set of landmarks or peers, for all estimates re-
gardless of the range. This, along with successful miti-
gation of triangle inequality violations (see Section 3.2)
limits the error produced by our approach.

Within a limit, a somewhat higher relative error for
very short distance estimation may not be significant
in practice (i.e., the difference between 2ms and 4ms
estimates might not be important as both indicate that
the two hosts are “close”). However, the dependence of
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estimation quality on distance ranges shown in Figure 9
is noteworthy.

5.5 Rank Preservation
As already mentioned, in many applications, accurate

ranking of hosts according to their distance to a given
host is more important than the accuracy of distance
estimations themselves. We now consider the two rank
preservation metrics [20] mentioned in Sec. 5.1 to study
the quality of dynamic triangle estimates in this respect.

The results for the common closest peers are shown
in Figure 10. To produce these plots, for each data set,
we first compute the percentage of overlap of the k clos-
est hosts to a given host X according to their estimated
and measured distances. The figure then plots the av-
erage overlap found for all hosts X. In the DZ-Gnutella
and PL-Azureus data sets, we use, respectively, non-
landmark DipZoom measurement points and PlanetLab
nodes as hosts X relative to which the ranking is done.
In the symmetrical PL and Meridian data sets, we use
all non-landmark hosts as hosts X.

With the DZ-Gnutella dataset, we additionally sepa-
rated our experiments in two groups. In one set of ex-
periments, we only consider DipZoom measuring points
as both the hosts to be ranked and the hosts relative
to which the ranking is done. In the other set, we con-
sider the ranking of all hosts (both MPs and Gnutella
peers) relative to the MPs. The reason is that MPs
are mostly deployed on well-connected PlanetLab nodes
while Gnutella peers typically have residential connec-
tivity. We included 220 available MPs in this study
beyond the 100 landmarks. However, some MPs lacked
measured distances to some hosts, and hence the num-
ber of hosts ranked relative to individual MPs may dif-
fer.

The results show that dynamic triangles have notice-
ably better rank preservation than the existing tech-
niques in all data sets we considered. For example, in
the DZ-Gnutella data set, we found that in the MP-only
group, 125 out of 220 MPs had the same closest peer
in both real and estimated distances, while this number
was 113 for GNP estimations, 86 for virtual landmarks
and only 8 for Vivaldi. (Thus, for k = 1, the graph gives
0.57 for dynamic triangles, 0.52 for GNP, 0.39 for VL,
and 0.036 for Vivaldi.) Considering the top-10 closest
MPs, on average, 7.29 out of 10 closest peers predicted
by dynamic triangles were among true top-10 closest
peers according to real distances; the same was true for
6.06 out of 10 closest peers for GNP, 4.76 out of 10 for
virtual landmarks, and 2.45 out for 10 for Vivaldi. In
the second group, where ranked hosts are dominated by
residential nodes, all methods showed accuracy degra-
dation, especially for very low k, but dynamic triangles
still retained an edge. We finally note that the rank
preservation of GNP according to the common closest

Method DZ-Gnutella DZ-Gnutella PL PL-AZ Meridian
(MP-only) (All hosts)

TRI 5.83% 11.19% 5% 13.9% 21%
GNP 9.35% 12.72% 8.4% 15.7% 24%
VL 17.52% 28.3% 10.2% 19.2% 35.2%

Vivaldi 19.28% 24.2% 5.5% 19.3% 24.9%

Table 4: Relative rank loss

peers metric in our all-hosts experiment is similar to
that reported in the GNP study [26].

Turning to the relative rank loss, Table 4 shows the
average value of this metric of different approaches in
our data sets. In each data set, we computed this metric
relative to each available host and took the overall av-
erage, for each approach. As seen from this table, while
the relative rank loss of the dynamic triangles varies in
different data sets, it is again always better than in the
existing approaches. Lua et al. [20] previously com-
pared the relative rank loss of Vivaldi and the virtual
landmarks and they found their mean relative rank loss
to be mostly between 15 and 20%.

In summary, our rank preservation study shows that,
in addition to lower relative error, dynamic triangles
achieve better ranking accuracy than existing approaches,
in many cases by a significant margin. Within the dy-
namic triangles approach, as seen from results from
the MP-only experiments on the DZ-Gnutella data set
as well as from the PL data set, the top-1 selection
works well when ranking well-connected hosts, pick-
ing the true best host more than half the time. At
the same time, the results from the from all-hosts in
the DZ-Gnutella data set and from PL-Azureous data
set indicate that top-1 selection performs much worse
for residential peers. However, the ranking accuracy
of residential hosts increases rapidly towards top-10 se-
lection. This behavior bodes well for peer-to-peer ap-
plications, where top-1 selection is typically limited to
well-connected super-peers while top-k selection often
includes other residential peers.

6. DESIGN ISSUES
We now examine the effect of several design and con-

figuration issues on the accuracy of the dynamic triangle
estimates. In particular, we consider the significance of
dynamic triangle selection (vs. using a common big tri-
angle for all host-pairs), the effect of the number of can-
didate landmarks on the accuracy of the approach, the
impact of triangle inequality violations, the impact of
using the estimated host-to-landmark distances in tri-
angle selection, and the effect of our heuristic for choos-
ing the initial value of the threshold described in Sec-
tion 3. We used the DZ-Gnutella data set for all the
experiments in this section.

6.1 Impact of Dynamic Triangle Selection
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(a) DZ-Gnutella data set.
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(b) The PL data set.
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(c) PL-Azureus data set.
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(d) Meridian King data set.

Figure 10: The overlap between estimated and real top-k closest peers.
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Figure 11: The significance of dynamic triangle
selection.

We begin by considering the significance of dynami-
cally selecting a landmark triangle for a given host-pair.
Figure 11 separates the accuracy of distance estimates
for the host-pairs that used dynamically selected small
triangles from the host-pairs for which a suitable small
triangle could not be identified and thus the general
static triangle had to be used. The figure also repro-
duces the curves for the combined accuracy in our ap-
proach and for the accuracy of of GNP (15,8). The fig-
ure shows that the accuracy suffers significantly when
no suitable small triangle is found. Fortunately, with
100 candidate landmarks, very few host pairs – only
10780 host-pairs out of a quarter million total – had to
resort to the general triangle so the overall accuracy was
not affected. However, the result of Figure 11 confirms
our intuition from Section 4.1 that dynamic selection
of an appropriate landmark triangle is essential to the
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Figure 12: The effect of the number of landmark
candidates on accuracy.

accuracy of our approach.

6.2 Number of Landmark Candidates
Our next question is how many landmark candidates

are needed in our approach. To address this question,
we have considered the accuracy of our approach us-
ing 15, 25, 50 and 100 landmark candidates. In each
experiment, we select a given number of landmark can-
didates from the original 100 landmarks in the same
way we chose the original 100 candidates from all suit-
able hosts. Specifically, we partition the 100 candidate
landmarks into 15, 25 and 50 clusters (using k-mean
clustering based on measured inter-host distances) and
choose hosts closest to each cluster center as the land-
mark candidates.

Figure 12 presents the effect of the number of land-
mark candidates on the accuracy of our approach. As
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Num. of violations 0 1 2 3
Prevalence 25.7% 34.3% 22.1% 17.8%

Median rel. error 4.2% 5.2% 5.7% 6.7%

Table 5: the degree of triangle inequality viola-
tions and its effect on accuracy.
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Figure 13: Estimated vs. measured triangle se-
lection.

we can see, both the average and median relative error
rate decrease as the number of candidate landmarks in-
creases from 15 to 100, as host-pairs are more likely to
find an acceptable small triangle. However, the decrease
is most significant for low numbers (15-25) of land-
marks. This result is encouraging because it suggests
that high-quality distance estimates can be achieved by
maintaining a relatively limited set of landmarks. Cer-
tainly 100 landmark candidates used in our study is ad-
equate, and fewer numbers can be sufficient depending
on the application.

6.3 Triangle Inequality Violations
Turning to the impact of triangle inequality viola-

tions, their effect on accuracy of our approach is shown
in Table5. For a given pair of end-hosts and the selected
dynamic triangle, the number of triangle violations in
our approach could range from 0 to 3 (Section 3.2), and
most host-pairs had at least some violations. As one
would expect, we found a direct dependence between
the number of violations and the inaccuracy of the dis-
tance estimation for a given host-pair. However, the
loss of accuracy is modest, ranging from 4.2% for no vi-
olations to 6.7% for three violations. We conclude that
our approach successfully mitigates the effect of triangle
inequality violations.

6.4 Using Estimated Distances in Triangle Se-
lection

Our approach selects the best landmark triangle for a
given host-pair based on the estimated distance between
these hosts and all landmark candidates. To consider
how much accuracy is lost due to using estimated dis-
tances in triangle selection, Figure 13 compares the ac-
curacy of the estimates produced by our triangle selec-

tion with the selection using measured distances. Recall
from Section 4.4 that the latter is an idealistic method
due to its prohibitive probing traffic. Fortunately, as
the figure shows, the use of estimated distances in tri-
angle selection does not lead to considerable accuracy
loss. The selection based on measured distances has the
median error of 4.7% compared to 5.3% in the selection
using estimated distances.

7. APPLICATIONS
While accuracy of distance estimates is important,

their true utility transpires in the context of specific
applications using them. In this section, we evaluate
our approach when used for two representative types
of applications - host clustering and content delivery
networks.

7.1 Host Clustering
An important application of distance estimation is

host clustering, which is used in a large variety of con-
texts, including peer-to-peer systems, scalable network
monitoring, and content dissemination. Pair-wise dis-
tance measurements between nodes would ideally drive
clustering algorithms but are often unavailable, either
due to the system size (since the number of measure-
ments grows quadratically with the number of nodes),
or because of the lack of control over the nodes. In
these cases, distance estimates provide a viable alter-
native, and have been used, e.g., by Chen et al. in
the context of network monitoring [2]. We evaluate dis-
tance estimation techniques with respect to clustering
by considering how clusters formed using estimates pro-
vided by the corresponding approach deviate from clus-
ters formed using true measured distances.

We again used DZ-Gnutella dataset for this exper-
iment. We selected 99 non-landmark MPs for which
we have the complete matrix of real (i.e., measured)
inter-MP distances and used the k-mean clustering algo-
rithm to group them into five clusters. To compare the
real-distance clustering with a given estimated-distance
clustering, we pair up clusters from each clustering that
have the largest number of nodes in common; we then
compute the total number of mismatched nodes across
all cluster pairs. We consider two dynamic triangle
configurations - with 100 and 25 landmark candidates.
Note that Vivaldi is intended for peer-to-peer applica-
tions; it would not be used for pure clustering and is
included in this study for completeness.

Table 6 shows the performance results. We see that
dynamic triangle estimates produce the highest quality
clusters, with only 5 out 99 nodes mismatched. This
followed by GNP, but dynamic triangle incurred dras-
tically lower computational cost to produce all the dis-
tance estimates than GNP. Virtual landmarks had the
lowest computational overhead (we measured it with a
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Method Computation mismatched Median Network
time nodes rel error probings

TRI 100 2 sec 5 2.2% 4546
TRI 25 1 sec 5 4.5% 1187
GNP 6 min 11 7.3% 1485
VL < 1 sec 20 29% 1980

Vivaldi NA 17 18.3% 9900

Table 6: Host clustering performance

second granularity and their overhead was below our
ability to measure).

To measure the probing overhead, we counted the
actual number of probes required in each approach to
produce all the distance estimates. As explained earlier,
we only count the number of probes between the land-
marks and hosts, because the periodic probes among
the landmarks are negligible. Dynamic triangles with
100 landmarks generate three times more probes than
GNP; the reason is that, although we use fewer probes
for each estimate, the same host may probe different
triangles for different estimates while a host in GNP
always reuses its probes.

Interestingly, our approach produced identical clus-
ters using 25 and 100 landmarks, although going from
100 to 25 landmarks doubled the median relative error
of inter-host distance estimates. With 25 probes, dy-
namic triangles actually generated slightly lower prob-
ing traffic than GNP. This shows that in some scenar-
ios, one can reduce the costs of the estimates without
sacrificing their value. Systematic ways to exploit this
potential for optimization is an interesting question for
future work.

Overall, while these results are based only on one set
of hosts and should be viewed as preliminary, dynamic
triangle estimations produced better-quality clusters than
GNP in this case.

7.2 CDN Server Selection
Another appealing application of network distance es-

timation is to use it for server selection in a content
delivery network (CDN). While even efficient estimates
would be too heavy-weight for online server selection
in the context of delivering small HTTP objects, CDNs
are increasingly used to deliver large files (such as soft-
ware packages and multimedia files) and long-running
streaming media. With dynamic triangles being able to
estimate 10,000 distances in single seconds (see Table 6)
this clearly makes it feasible to use online distance es-
timates in server selection in these contexts.

Recently, Szymaniak et al. [30] studied the applica-
tion of GNP estimates to select among ten servers in
the Google content delivery network and found them
quite effective. We consider the application of dynamic
triangle estimates to a large-scale CDN, using Akamai
with its thousands of servers as a target environment.

In this section, we first compare the performance of our
estimates in this application with existing approaches
using a simulation study on a data set employed in the
original Meridian study [35]. We then report the results
from a live Internet experiment that measures the qual-
ity of server selection in the Akamai platform by the
dynamic triangles and GNP.

7.2.1 Simulation Study
We now compare the quality of server selection us-

ing dynamic triangle estimates with several alternative
techniques that have been proposed for this purpose
– GNP, Vivaldi, and Meridian. We use the Meridian
King data set and follow the general methodology of
Meridian study in this experiment. In particular, we
are interested in the general quality of server selection
promised by each approach, thus assuming a specially
modified Web client. We use the absolute value of the
difference in distance from a client to its true closest
server and from the same client to the server selected
by a given approach, as the measure of quality of the
approach.

The Meridian King data set [23] contains the dis-
tance between 2500 local DNS servers collected using
King method. We randomly pick 500 nodes as CDN
clients and apply different techniques to select the clos-
est server among the remaining 2000 nodes. In the case
of dynamic triangles, we use one-sided triangle selection
as discussed in Section 4.3.

The original median absolute difference in our ap-
proach is 12.3ms, which is similar to the results us-
ing (15,8)-GNP and Vivaldi in the Meridian study [35]
and much higher than the Meridian system, i.e., about
1.3ms observed from Figure 8 in [35]. However, Merid-
ian’s accuracy comes with a high probing cost. Accord-
ing to [35], the average bandwidth cost for each closest
server discovery is 10.4KBytes with a probe packet size
of 50 bytes. This translates to 104 probes if we assume
each probe generates two packets. As mentioned in the
Meridian study, with this “budget” of active probes,
other techniques could improve their selection quality
by using distance estimates only to predict top-k can-
didate closest servers and actively probing all these k
servers to arrive at the final selection.

Figure 14 compares Meridian server selection with
that of GNP, Vivaldi and our approach with this op-
timization, for different sizes k of the candidate server
set. It shows that the median absolute difference drops
sharply as k increases for all three approaches using dis-
tance estimates, especially in our case. For k = 10, the
quality of our approach reaches the Meridian’s, while
our system only uses 6+10=16 probes and Meridian
uses over 100 probes on average. For higher values of k,
the quality of our approach improves beyond the Merid-
ian’s level while the total probing cost of our approach
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Figure 14: The absolute difference for closest
servers selection with active probings.

is still lower than Meridian.
The above cost analysis does not include maintenance

costs, but these costs are negligible (compared to the
cost of content delivery to clients) and similar in both
systems. For dynamic triangles, the full complement
of maintenance measurements includes pair-wise probes
between all landmarks as well as between landmarks
and servers. With 2000 servers and 100 landmarks, this
translates into 2000 ∗ 100 + 100 ∗ 99/2 = 204950 probes.
For Meridian, each server probes servers in its rings. In
the experiment of Figure 14, a server has nine rings and
up to 16 servers in each ring [35], for roughly 2000 ∗
(9 ∗ 16) = 288000 probes. Allowing for some probe
reuse and some rings having fewer servers, this results
in roughly similar maintenance costs.

7.2.2 A Live Internet Experiment
To compare our approach with GNP in a realistic set-

ting, we implemented an AJAX application that, when
loaded by a client, performs server selection among Aka-
mai edge servers using dynamic triangles, GNP, and
Akamai itself, and reports to us the latency from the
client to each of the three servers. Following [30], we
used GNP(7,6) configuration in this study. We picked a
CNAME (a1694.g.akamai.net, utilized by pcworld.com)
which we found is mapped by Akamai to a large number
of edge servers, 979. We request a bogus URL from the
selected server in all cases, receiving a short “Bad Re-
quest” response. We verified through tcpdumps on our
own client that downloading this response involves two
round-trip times (RTTs) between the client and server.

We have maintained about 90 landmark servers on
the PlanetLab platform (we attempt to maintain up to
104 but the actual number varies due to the instability
of PlanetLab nodes). We keep the complete distance
matrix between all the landmarks as well as between
each landmark and each of the 979 Akamai server. We
select (through clustering as described in Section 5.1)
three of these landmarks as the general big triangle
for our approach, and seven landmarks for GNP(7,6).
Given the instability of PlanetLab nodes, we select, for

each of the above landmarks, a few nearby landmarks
as backups.

We implemented three Web pages, one for each server
selection. The Akamai page includes Javascript that
simply accesses a bogus URL with the above CNAME,
thus following the Akamai server selection, and reports
the response time to our server. To factor out DNS
resolution time, we perform the download twice and
report the second measurement.

The triangles page4 embeds three images with URLs
pointing to the landmarks at the vertexes of the big tri-
angle5. As the client establishes the TCP connections
to these landmarks, they passively measure RTT to the
client, select a small triangle based on these measure-
ments6, and then respond to the client with an HTTP
redirect to three URLs pointing to the vertexes of the
small triangle. The latter landmarks similarly measure
RTT to the client, estimate the distance from the client
to all 979 Akamai servers and select the best one. Fi-
nally, one of the landmarks returns a redirect to the
selected server using its raw IP address (and a bogus
URL) while the other two landmarks return an empty
image. The client follows the redirect and reports the
download time to our server.

The GNP page7 is implemented similarly but embeds
seven images (to measure RTT to the seven landmarks)
and involves one round of landmark communications
instead of two.

We asked a commercial company to embed zero-sizes
iframes with the above three pages, and we also embed-
ded them into our own Web pages. We have collected
24,079 measurements from 2,926 distinct client IP ad-
dresses, representing 47 US states and 43 foreign coun-
tries according to the GeoIP database from MaxMind
[22].

Figure 15 shows the CDF of the measured RTT from
clients to Akamai servers selected by the three methods,
and Table 7 lists their median and mean values. These
results show the performance of the dynamic triangles is
significantly better than GNP(7,6), with almost a factor
of two reduction in median client-to-server RTT (32ms
vs 62.4ms). It is well established that latency directly
affects TCP throughput (see, e.g., [27]) and hence this
latency reduction would translate directly into the re-
duction in web page download time as experienced by
the user. In fact, the server selection quality with our
simple technique is fairly close to that of Akamai it-
self, despite Akamai’s extensive Internet-wide measure-

4See http://haddock.case.edu:8000/triangle.
5This is a slight simplification. In fact, these URLs point to
our portal server which uses HTTP redirect to to send the
client to the landmarks. This level of indirection allows us
to replace failed landmarks with their backup dynamically.
6This and other actions requiring central computation are
done through a back-end server.
7See http://haddock.case.edu:8000/gnp.
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Method Median RTT (ms) Mean RTT(ms)
Akamai 24.8 52.4
Triangle 32 62.4

(7,6) GNP 62.4 88.5

Table 7: Performance of closest CDN server se-
lection for web clients.
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Figure 15: The quality of CDN server selection
in a live deployment.

ments and network topology expertise that go into its
server selection decisions [17, 18]. By adding a few ac-
tive probes to top-k servers as described in Section 7.2.1,
we hope to be able to close this gap in the future.

At the same time, dynamic triangles require 6 probes
for each server selection vs. 7 probes needed by GNP(7.6).
These 6 probes do come in two sequential rounds while
GNP sends all its probes in parallel. However, for large
downloads we are targeting, finding a better server is
likely to be worth this small initial delay.

8. CONCLUSION
This paper presents a simple and efficient approach

for estimating the network distance between Internet
hosts. Our approach uses a set of hosts that act as
landmark candidates, and dynamically selects a trian-
gle of landmarks for a given pair of hosts that are likely
to produce high-accuracy distance estimates. Once the
landmark triangle is selected, the estimate is computed
from a simple trigonometrical calculation. Through ex-
tensive testing we showed that our approach compares
favorably with representative existing methods for dis-
tance estimation, both from the general accuracy and
overhead perspective and in the context of some specific
applications.

We are currently implementing our approach in the
BitTorrent tracker and Vuze client. As future work,
we would like to investigate some optimizations to our
approach we mentioned throughout the paper, most no-
tably, accounting for triangle shape during dynamic tri-
angle selection and using a replacing the triangle with
a single landmark when it is particularly close to one of
the end hosts. We would also like to combine our ap-
proach with some orthogonal techniques that have been

proposed to enhance distance estimation and measure-
ment [15, 16].

Appendix A: Trigonometric Derivations
Assume we have 3 landmarks L1,L2 and L3 and two
points A and B. We also know the distance between
landmarks and their distance to points A and B, and we
need to find the distance between A and B. In the for-
mulas below, we use P1, P2 to denote the edge between
points P1 and P2 and |P1, P2| to denote its length. We
use ∠(P1, P2, P3) to denote the angle between edges
P1, P2 and P2, P3.

Points A and B each can have two possible positions,
A′, A′′, B′ and B′′ as illustrated in Figure 1 and 2. Since
we know the length of edges A,L1, A,L2, and L1, L2,
we can calculate the cosine of angle ∠(A,L1, L2) using
the following triangle function, regardless of whether A
is positioned at A′ or A′′:

cos∠(A,L1, L2) =
|A,L1|2 + |L1, L2|2 − |L2, A|2

2 ∗ |A,L1| ∗ |L1, L2|
(1)

We can obtain the cosine of angle ∠(B,L1, L2) using
the same method. As the next step, we would like to
find the cosine of ∠(A,L1, B). However, depending on
whether or not points A and B are on the same side on
line L1, L2, angle ∠(A,L1, B) can be the sum of two
angles ∠(A,L1, L2) and ∠(B,L1, L2), or the difference
between these angles. Thus, its cosine will be:

cos∠(A,L1, B) = cos(∠(A,L1, L2)± ∠(B,L1, L2))

= cos∠(A,L1, L2) ∗ cos∠(B,L1, L2)

∓ sin∠(A,L1, L2) ∗ sin∠(B,L1, L2) (2)

where we use the upper arithmetic operation if A and
B are on the same side on line L1, L2 and the lower
arithmetic operation otherwise.

In order to determine whether A and B are on the
same side of L1, L2, we utilize point L3 as a witness
point. First, we determine if A and L3 are on the same
side of line L1, L2 or not. To this end, we obtain the
cosines of angles ∠(A,L1, L2) and ∠(L3, L1, L2) using
the equation similar to 1, and use these cosine values to
compute the two possible cosine values of ∠(A,L1, L3)
using the equation similar to 2. We also obtain the
cosine of ∠(A,L1, L3) directly from the edges, using
equation similar to 1 and compare it to the two values
found from 2. Depending on which of these two values
are closer, we conclude whether A and L3 are on the
same side of line L1, L2 or not. We repeat the same
method to determine whether or not points B and L3
are on the same or opposite sides of L1, L2. We then
can answer our question on the post ion of points A
and B relative to L1, L2: if both A and B are on the
same side with L3, or both are on the opposite side from
L3, then both A and B are on the same side of L1, L2.
Otherwise, they will be on the opposite sides of L1, L2.
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Finally, we can use the above conclusion to chose be-
tween the two alternative values of cos∠(A,L1, B) and,
knowing now this cosine value, calculate the estimated
distance between A and B using the following equation
3:

|A,B|2 = |A,L1|2 + |B,L1|2 − 2|A,L1||B,L1| cos∠(A,L1, B)
(3)
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