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ABSTRACT
This paper describes our implementation of and initial ex-
periences with DipZoom (for “Deep Internet Performance
Zoom”), a novel approach to provide focused, on-demand
Internet measurements. Unlike existing approaches that
face a difficult challenge of building a measurement platform
with sufficiently diverse measurements and measuring hosts,
DipZoom implements a matchmaking service instead, using
P2P concepts to bring together experimenters in need of
measurements with external measurement providers. Dip-
Zoom offers the following two main contributions. First,
since it is just a facilitator for an open community of par-
ticipants, it promises unprecedented availability of diverse
measurements and measuring points. Second, by offering
programmatic access to the entire platform from the exper-
imenter’s local computer, DipZoom simplifies staging and
execution of complex measurement experiments and lowers
the bar for obtaining high-quality measurements.

Categories and Subject Descriptors
C.2.3 [Computer Systems Organization]: Network Op-
erations—Network Monitoring ; C.4 [Computer Systems
Organization]: performance of systems—Measurement tech-
niques

General Terms
Measurement, Experimentation, Performance
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1. INTRODUCTION
Network measurements play fundamental role in network

design and management. Examples of measurements in-
clude a network distance between a given pair of hosts ac-
cording to some metric, packet loss on the path between
them, bottleneck bandwidth of the path, a Web page down-
load time from a given site to a given client, to name just
a few. A number of measurement platforms are available
to fulfil the need for network measurements. They fall into
two broad categories. A-priori platforms, such as Skitter [3],
AMP [1], IDMaps [10], Surveyor [20], Network Weather Ser-
vice [40], and M-Coop [35], collect generic measurements
irrespective of any specific requests. Other platforms and
tools offer on-demand measurements [26, 34, 25, 16]. How-
ever, the scale and diversity of the Internet make obtaining
accurate and representative measurements extremely chal-
lenging. For example, most research platforms are deployed
on PlanetLab nodes [28] or other well-connected servers. At
the same time, Internet-connected devices are increasingly
diverse, both in their connectivity (e.g., DSL, dial-up, ca-
ble modem, satellite, cellular broadband, Wi-Fi, Wi-Max)
and in the device types. Measurements obtained from well-
connected servers may not represent this diversity well [2].
Furthermore, with the geographical scale of the Internet, any
measurement platform would be hard-pressed to provide a
representative sample of the entire Internet. Keynote Sys-
tems [21], a commercial measurements provider, attempts to
select carefully the location and connectivity of their mea-
suring hosts to reflect typical connectivity of clients, and is
rapidly expanding its measurement platform. However, it is
a closed system that itself decides what locations, connec-
tivity, and device types constitute a representative sample of
the Internet, and which measurements are important to of-
fer. Besides, the cost of Keynote measurements make them
inaccessible for researchers.

Another issue is measurement staging. Network measure-
ments are often complex and involve multiple steps. For
example, to measure the quality of the server selection of
a Web content delivery network (CDN), one might first
launch nslookup measurements from a number of measure-
ment points to discover a set of CDN servers and the server
selected by the CDN for each given measuring point; then



a series of wget measurements from each measuring point
could be used to compare page download time from the
CDN-selected server and from the other discovered servers
[36]. In many cases, staging a complex measurement ex-
periment requires an out-of-band discovery of suitable mea-
suring points, negotiating with operators of measurement
points involved, and installing measurement scripts at the
measurement points. This requires high sophistication on
the part of the experimenter, and in many cases professional
connections to measuring point operators. As a result, there
is a high bar for obtaining high-quality measurements.

This paper proposes an approach to overcome these chal-
lenges, concentrating on providing on-demand measurements.
Our basic idea is to address the challenge of Internet scale
and diversity by utilizing the capacity of Internet users them-
selves, and to address the challenge of measurement staging
by providing a coherent interface for interacting with the re-
sulting (and ever-changing, due to intermittent availability
of user hosts) measuring platform. In short, instead of a dif-
ficult task of building and maintaining a measurement plat-
form, we implement a matchmaking service, which brings
together experimenters in need of measurements and exter-
nal measurement providers.

By making Internet users perform measurements for each
other, we in essence implement a peer-to-peer system for
network measurements. Our current implementation is in
fact analogous to the early Napster approach, with a central
index facilitating the discovery of measurement providers.

Our system, which we called DipZoom (for “Deep internet
Performance Zoom”) supports focused (or “zoomed-in”), on-
demand measurements, where an experimenter can query
the system for the measurement points satisfying her specific
needs and then perform the measurement from those points.
The system also supports an explorative mode, where the
experimenter initially executes measurements from a small
number of measuring points across a large area and then
zooms in on more measuring points from a specific area of
interest. DipZoom makes the following main contributions.

• DipZoom drastically lowers the bar for the creation
of new measuring points and hence simplifies the re-
cruiting of new MPs. For instance, the developers
of the NIMI measurement platform [26] shipped pre-
configured measuring hosts to recruit measuring points.
DipZoom’s MPs are installed by downloading a file and
a self-extracting installation script from a Web server.
By simplifying the creation of MPs and making them
maintenance-free, we hope to be able to attract di-
verse measuring points and facilitate more accurate
measurements than are currently possible.

• DipZoom makes measurements accessible to a casual
experimenter. By offering a coherent simple interface
to the entire platform, DipZoom makes it possible for
the user to discover and request measurements from
suitable MPs, using either a graphical DipZoom client
or directly from a Java program.

• DipZoom’s programmatic access to the system makes
it simple to stage complex measurements. A complex
measurement is just a Java program, which uses API
calls defined by a DipZoom client library to interact
with the system. During the experiment, the mea-
surement is coordinated from the program running on

the experimenter’s computer, which can go through ar-
bitrarily complex steps of discovering MPs, obtaining
measurements from them, and obtaining more mea-
surements based on the analysis of the results.

• DipZoom explores two directions in providing incen-
tives for users to become measurement providers. Our
current prototype relies on the peer-to-peer approach
as an incentive: DipZoom client software is bundled
with the MP software, so in order to request measure-
ments from a computer, one must also provide mea-
surements from this computer to others1. In the fu-
ture, we also envision a marketplace of Internet mea-
surements, allowing participants to to charge for their
measurement services [7].

We previously presented our broad vision for an open In-
ternet measurements marketplace in a position paper [7].
The current paper describes our implementation of a key
aspect of this future marketplace, the matchmaking service
that facilitates on-demand measurements. In the rest of
the paper, we discuss the related work in more detail in Sec-
tion 2, describe a high-level architecture of the system in Sec-
tion 3 and the operation of the main components (measur-
ing points and clients) in Sections 4 and 5. We then present
our preliminary experiences with the system in Section 9,
first studying the scalability of the centralized core and then
presenting preliminary experiments to demonstrate poten-
tial benefits of DipZoom. Section 10 gives a summary and
outlines our future work.

2. RELATED WORK
Several existing systems leverage Internet users in achiev-

ing their goals. Seti@home [32] is a well-known project that
harvests CPU cycles from user desktops for a large scientific
computation task. DIMES and Lip6 projects (see [6, 39] and
papers listed therein) recruit Internet users to contribute
a particular measurement experiment conducted by these
projects. DipZoom facilitates on-demand measurements ini-
tiated and coordinated by any participant. A commercial
performance monitoring service utilizing users’ hosts is of-
fered by Gomez [29]. However, Gomez is a closed system,
which decides which measuring hosts to accept into the sys-
tem, which measurements to offer, and which hosts to select
for a particular measurement ordered by a customer. Dip-
Zoom is an open system that acts merely as a matchmaking
service and a facilitator between experimenters and mea-
surement providers. In particular, it allows experimenters
to access the totality of available MPs and execute complex
or long-running experiments programmatically from their
own computer.

A number of measurement platforms and tools support-
ing on-demand measurements are in operation. Examples of
research platforms include NIMI [27] and Scriptroute [34],
while Keynote Systems [21] is an example of a commercial
platform. By making it simple for end-users to become mea-
surement providers, DipZoom promises to offer greater di-
versity of measurements and measurement points. DipZoom
can also be used as a veneer on top of these systems, giv-
ing measurement requesters a convenient way of interacting

1Measurement points, however, can exist by themselves to
allow their deployment on servers and other devices without
direct access to end-users.



Figure 1: The high-level view of DipZoom architec-
ture

with the entire platform from their own computer using ei-
ther graphical or programmatic clients.

Many tools are available to measure a variety of metrics,
including hop-by-hop bandwidth [17], the bottleneck band-
width [18, 22, 4], TCP bandwidth [23, 19], latency [24],
packet loss [38, 31], and aggregate performance of higher-
level operations such as a web page download [12]. We in-
clude wget, ping, traceroute, and nslookup as part of the
standard MP download. We are currently implementing a
“measurement plug-in” mechanism that would allow Dip-
Zoom to incorporate arbitrary new measurement tools.

One technique to obtain diverse measurements from end-
user perspective is to instrument connections between the
client and the server whenever the client requests a ser-
vice. Specifically, a Web site can send a special Javascript
with its pages to run on the client, measure the user ex-
perience and send the result back to the server [37]. How-
ever, this approach has limited applicability as it can only be
used to measure Web page downloads by Javascript-enabled
browsers.

3. THE SYSTEM OVERVIEW
The DipZoom platform consists of measuring points (MPs),

clients, and the DipZoom core (see Figure 1). The mea-
suring points advertise to the core their capabilities (the
platform, the offered measurements, etc.), announce their
coming on-line, and perform measurements requested by
the core on behalf of the clients. The core maintains the
database of the MPs and keeps track of those MPs that are
currently on-line. The clients query the database for the
MPs that fit their requirements (based on such characteris-
tics as the geographical location, the autonomous system to
which the MPs belong, the MP’s operating system, the MP’s
connection bandwidth2), submit measurements requests for
selected MPs, and download the results.

Thus, DipZoom is in essence a peer-to-peer network for
Internet measurements. Our current implementation has a
centralized core, similar to Napster, except in our case the
core serves as both the central index of peers and the focal

2The bandwidth filter is not currently implemented. We
plan to adopt the mechanism implemented by Firefox to
support this function.

point for all communication between clients and MPs. Obvi-
ously the core could become a potential bottleneck. While
we plan to explore a distributed core architecture in the
future (and in fact our vision for DipZoom involves direct
interaction between the clients and the MPs [7]), our pre-
liminary scalability study in Section 9 indicates that even
the centralized core can serve a large number of DipZoom
participants.

To become a measuring point, a user must download and
install the DipZoom measuring software, which executes as a
daemon and by default starts automatically at boot time. It
is essential for some DipZoom applications (see Section 7) to
ensure that a host run only one MP instance at a time, and
to track individual MP instances for any misbehavior. To
this end, the core generates each MP executable instance dy-
namically for each download, assigning it a globally unique
ID (MPID) and embedding into it a unique secret key. All
subsequent interactions between the MP instance and the
core is encrypted using the instance’s secret key. During the
installation process, the MP queries for the network inter-
faces present on the host and invites the user to override the
default rate limiting parameters for each interface and each
measurement offered. The rate limiting information includes
three parameters: the time interval between successive mea-
surements, the bandwidth consumed by an individual mea-
surement (the measurement would be terminated and the
partial output returned upon reaching this limit), and the
number of outstanding measurement requests the core is al-
lowed to send to the MP. The rate limiting can be specified
individually for each measurement type and interface to re-
flect the fact that different measurements consume different
amount of resources, and different interfaces have different
capacities (and hence different tolerances for amount of re-
sources consumed by the background measurements).

To become a DipZoom client, a user must download the
DipZoom client software, which includes a Java class library
and a graphical front-end. In the peer-to-peer spirit, the
client software is bundled with an MP instance, so that a
computer must serve as a measuring point in order to run a
DipZoom client. The client library exposes well-defined ap-
plication programming interface that the user can utilize to
perform complex or long-running measurements program-
matically. This ability to script arbitrarily complex mea-
surement experiments is somewhat similar to Scriptroute
[34] but with a major difference: while Scriptroute allows the
experimenter to specify her own measurement and submit it
to a known Scriptroute node, DipZoom allows measurement
specifications that include discovering and exploring a num-
ber of measuring points in the course of the experiment. For
example, the scripted experiment may begin by querying for
MPs in Ohio and obtaining a certain measurement from a
small sample of the discovered MPs; then based on the re-
sults of the above measurement, the experiment may zoom
in on MPs in Cleveland and obtain more detailed measure-
ments from this focused MP set. The experimenter specifies
these complex experiments by implementing them as a Java
program and linking this program with the DipZoom client
library.

The graphical front-end is just one example of such a Java
program built on top of the DipZoom client library. It al-
lows the human user to actively interact with the system in
an explorative mode: discover MPs, select MPs for measure-
ments, analyze the results, and decide on the next steps.



4. THE MP OPERATION
The operation of a measuring point includes the following

main stages: the login, idling, and measurements. These
stages are discussed in the following subsections.

4.1 Login
The MP initiates the login protocol every time the MP

starts. The login process occurs over TCP. It begins with
Hello message to the core. The Hello message has two parts,
the clear text and the cipher text, encrypted using the 128-
bits Advanced Encryption Standard (AES) cipher [33][5].
The core uses the MPID sent in the clear to search for
the corresponding AES key from the database and to de-
crypt the rest of the message. The encrypted part includes
the MPID again, which the core compares with the clear-
text MPID to verify the integrity of the message, a random
number Rand1 generated by the MP (see below), the mes-
sage type (ONLINE NOTIFY for the Hello message), and the
protocol version.

The core responds to the MP with its own encrypted
Hello message, which has the format <MPID; Hello; Rand1;
Rand2>. Rand1 is included to prevent the message replay
by a malicious attacker: a replayed message, even if prop-
erly encrypted, would highly unlikely include the matching
Rand1. When MP receives the message, it decrypts and
checks the MPID and Rand1 to see if the message can be
trusted and if it belongs to the current authentication ses-
sion.

Assuming the above checks pass, the MP sends all the
necessary information to the core with the message <MPID;
REGISTER; Rand2; Rand3; MP-Info in XML>. This infor-
mation includes the operating system of the MP, the MAC
address of the current network interface, the IP address, the
offered measurement types, and for each measurement type,
the measurement rate limiting information for the current
interface. It may happen that the current network interface
has been added to the host after the MP has been installed.
In this case, the MP has no rate limiting information for
this interface. Then, as in the initial installation phase, the
MP would invite the user to override the rate limiting pa-
rameters for this interface before initiating the login process
with the core.

After the core receives the above message and checks using
Rand2 that it belongs to the current login session, the core
verifies the rest of the information in the message and re-
turns the authentication result, success or failure. Should
the authentication fail, the MP will keep retrying the au-
thentication every 5 minutes until success or until the MP
is terminated.

Finally, the login protocol ensures that only one instance
of any MP software is active at a time, and that every
host runs only one instance of the MP. While processing
the ONLINE NOTIFY message, the core checks if the MPID is
already listed among online MPs, and during the processing
of the REGISTER message, the core checks if the MAC address
included in this message has already been announced by an
online MP. In either case, the core sends the Self-Shutdown
message to the old MP (instructing it to go offline) and
purges it from the list of online MPs. Thus, in the case of a
duplicate login, DipZoom always replaces the old MP with
the new one and therefore enforces the single MP instance
and single host conditions at all times.

4.5: UDP notification
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Figure 2: The interaction flows in DipZoom

4.2 Idling
An authenticated MP sends periodic Keep-Alive UDP

messages to the core (every 60 seconds). The Keep-Alive
message serves two purposes. First, it notifies the core that
MP is still online and active. Second, if the MP operates
behind a firewall or a network address translation box, it
maintains the port mapping in the firewall so that the core
can communicate with the MP (see Section 8).

When the core misses three consecutive Keep-Alive mes-
sages from an authenticated MP, the core assumes that the
MP is no longer active. The core will remove this MP from
its list of online MPs and stop including this MP in its re-
sponses to client service queries.

Note that Keep-Alive messages may cease not because
the MP has terminated but because the network connectiv-
ity between the core and MP was lost (e.g., the host left a
wi-fi hot spot). In this case, the MP is not aware of the sit-
uation, so the messages are still sent but just cannot reach
the core. Then, once the network connection is restored, the
core will receive an unexpected Keep-Alive message from a
presumably off-line MP. To handle this situation, the core
responds to any unexpected Keep-Alive message with the
Re-authentication message to the MP, forcing the MP to
login anew.

4.3 Measurement
The MP-core interactions to perform a measurement are

illustrated on the left-hand side of Figure 2. Our general
design philosophy is to use UDP communication for core
scalability in the common best-effort case, but always have
a backup TCP mechanism for reliability and dependable
firewall traversal. When the core receives a measurement
request from a client (which may include a list of MPs, see
Section 5), the core generates separate measurement tickets
for every MP involved. A measurement ticket is a job assign-
ment for a single MP, e.g., ”ping foo.com 10 times from MP
with id 101”. The core notifies any MP with outstanding
tickets to pick up its tickets from the core. The notification
is done using a Measurement Req UDP message (step 2.5 in
figure 2). In response, the MP opens a TCP connection to
the core and obtains all the outstanding tickets (step 3).

In accordance with our general philosophy, the core uses
the Measurement Req UDP notification as purely performance
optimization to reduce measurement response time: the MP
will request any outstanding tickets from the core on its own
if it received no notifications for a certain period of time,
currently 5 minutes (hence the dashed line corresponding to



step 2.5 in Figure 2). However, by using inexpensive UDP
notification, we speed up ticket delivery and also reduce the
number of unnecessary TCP connections from the MP to
the core when there are no tickets to pick up.

After receiving tickets from the core, the MP executes the
measurements and sends the results back over a new TCP
connection. The MP does not reuse the TCP connection
that it utilized to obtain the tickets: the extra time to open a
new connection is negligible compared to the execution time
of most measurements, thus the delay reduction from the
reused connection would be insignificant. At the same time,
not maintaining the TCP connection while the measurement
takes place reduces the number of TCP connections at the
core and improves the core scalability.

When a client requests measurements of same target from
multiple MPs, a possible measurement burst may occur even
if the aggregate request rate is within the per-target limits
imposed by the core (see Section 7). This may skew mea-
surement results and cause a traffic burst at DipZoom core
when the MPs send the results to the core at about the same
time. To avoid such a situation, an MP adds a random de-
lay of up to 15 seconds between receiving a new request and
executing the measurement. Thus, users who want measure-
ments with coordinated time can only obtain coarse-grained
coordination by controlling the time when they send their
measurement requests. We plan to investigate options for
finer grained control over time of measurement in the future.

We should note that, since MPs are often run on end-user
devices, measurement results may be affected by concurrent
activities on the MP machine (e.g., due to CPU load or net-
work traffic). It’s up to the experimenter to interpret the
results carefully by sufficient sampling. Measurement results
may also be affected by different versions of the same mea-
surement tool or the version and type of the local operating
system. Users can obtain the information about measure-
ment tools and operating systems through DipZoom core
to classify the results. However, currently offered measure-
ments seem to be insensitive to measurement tool versions
and operating system types.

5. THE DIPZOOM CLIENT OPERATION
DipZoom client operation involves the same stages as the

operation of the MPs. The idling operation is similar to the
MPs and is not discussed further in this paper. The other
modes are discussed below.

5.1 Login
Unlike MPs, the DipZoom clients are allowed to run mul-

tiple instances on the same host or copy instances from one
computer to another. While running multiple MP instances
on a host may skew measurement results and complicate
MP cheating detection, multiple client instances do not cre-
ate these problems. Thus, we do not generate unique client
instances for each download: the client software obtained by
all users is identical. The main purpose of client login is to
authenticate the client (to make sure that the client can only
access its own information at the core, e.g., that it cannot
delete someone else’s measurement results), and to ensure
that all its messages are encrypted and cannot be replayed
(which is important for some of DipZoom applications that
fall outside the scope of this paper).

When a client logins for the very first time, it generates an
AES session key S and sands it to the core, encrypted with

the core’s well-known public key. In response, the core gen-
erates a unique client ID and a new AES client key C, and
returns this information, encrypted with the client’s session
key S, to the client. Subsequent communication in the first
client session is encrypted with the session key S and car-
ries the client ID, both in the clear and the encrypted part,
similar to MPIDs in MP messages.

In subsequent logins, the client also generates a new ses-
sion key every time for added security, but the login message
is encrypted by the client key C, and carries the client ID in
both clear and encrypted parts. This allows the core to use
the client-specific state previously accumulated from previ-
ous sessions in processing client messages such as checking
the status of previously submitted measurement requests, or
viewing the results from completed requests. Using client-
specific key prevents a different client from accessing this
state.

5.2 Measurement
The client-core interactions involved in a measurement are

shown on the right-hand side of Figure 2. All steps done over
TCP are marked in solid lines are those done using UDP are
marked in dashed lines. Again, any UDP communication
serves as purely performance optimization, and the system
will work correctly even if all the UDP messages are lost.

As a first step, the client opens a TCP connection and
sends a service query to the core to find available online
MPs that satisfy the client’s requirements, such as location,
measurement type, operating system, and autonomous sys-
tem (step 1 in Figure 2), as well as the number of mea-
surements the client desires from each MP. In response to
the service query, the core returns a list of MPs that satisfy
the requirements. In computing this list, the core considers
the currently online MPs that have enough spare capacity
(according to the measurement rate limiting parameters an-
nounced by the MPs at login).

The client then uses another TCP connection to send its
measurement request, which includes the subset of MPs se-
lected form the above list as well as the requested measure-
ment specification (the measurement type, i.e., ping, the
measurement target, i.e., cnn.com, the measurement param-
eters if any, and the number of measurements to be per-
formed). The measurement request uses a new TCP con-
nection because of a potentially long delay between the ser-
vice query and the measurement request: this delay could
be caused for example, by the human user deciding which
MPs from the service query response to select for the mea-
surement.

Upon receiving the measurement request, the core gen-
erates measurement tickets for individual MPs from the re-
quest. The core assigns a unique id to each ticket and returns
these ids to the client as the reply to the client’s measure-
ment request. The client can use these ticket ids to query
the status of submitted tickets and obtain the results in the
future.

After generating request tickets, the core executes the
measurement protocol with individual MPs involved (see
Section 4.3. As results from MPs become available, the core
sends a UDP notification to the client (step 4.5). This noti-
fication is, again, a pure performance optimization. In the
absence of these notifications, the client will periodically (ev-
ery five minutes) query the core for ticket status over TCP. If
any tickets have already been finished by the corresponding



MPs and returned to the core, the client can choose to ei-
ther wait for more tickets or open a new TCP connection to
download the measurements already available (step 6) and
thus complete the protocol.

6. DIPZOOM CLIENT APPLICATIONS
We implemented the MP client functionality described in

the previous section in a Java class library. The library ex-
poses a simple application programming interface one could
use to access DipZoom functionality from an arbitrary Java
application. The next subsection describes the DipZoom
client API, while the subsequent subsection presents a use-
ful application we ourselves built on top of it. This ap-
plication implements a graphical front-end to DipZoom, al-
lowing a user to interact with the system in an exploratory
mode.

6.1 The Client API
The DipZoom client library provides the following func-

tions for the programmer. Developers can access these func-
tions in their applications by simply linking the applications
with the DipZoom library.

• Login. The login function can accept as arguments
the address and port of the DipZoom core and the login
information (the client ID and cipher key). The login
function can alternatively accept as the argument the
name of an XML file containing the above information,
or have no arguments in which case the default file
name of “login.xml” is assumed. If the login file does
not exist, the system will consider this call to be a first
time login, and process it according to Section 5.1.

• Logout. This function is called as the last interaction
with the core. Any further interaction would have to
be preceded with a login call.

• GetMPlist. The getMPlist function queries the Dip-
Zoom core for a list of MPs satisfying a filter infor-
mation specified as arguments. The filter information
may currently include MPs’ country, region, city, AS
(autonomous system) number, operating system, mea-
surement type and the number of measurements re-
quested.3 A successful getMplist call returns the list
of MPs that satisfy the filter requirement.

• Sendrequest The sendrequest function sends a mea-
surement request to the DipZoom core. The parame-
ters include the measurement type (e.g., “ping”) and
target (e.g., the hostname to be pinged), the parame-
ter string to be passed to the measurement tool (e.g.,
“-i 5 -D” for a ping), the number of measurements and
a list of selected MPIDs for executing these measure-
ments. These MPs are selected from those provided
by a prior getMPlist call. A sendrequest call will re-
turn a list of successfully generated measurement ticket
IDs, which the core has submitted to the corresponding
MPs. Note that tickets may not be generated for some
of the requested MPs because of per-MP or per-target

3We plan to add the bandwidth of MPs’ Internet connec-
tion in the near future. We will estimate the bandwidth
of MP’s network connection with the help of MPs’ built-in
wget measurement, which is similar to the technique used
by the Firefox browser for measuring its host bandwidth.

rate limits. The sendrequest may also fail altogether,
e.g., when the parameter string does not comply with
the predefined restrictions for the requested measure-
ment type.

• Getticketstatus. This function checks the status
of all outstanding requests associated with the client.
The getticketstatus function does not take any param-
eters and returns the ticket number and status for each
ticket.

• Sendpayment. The confusingly called sendpayment
function returns the measurement results of completed
tickets, for which a prior getticketstatus call returned
a “result received” status. The sendpayment function
takes as an argument the list of ticket numbers and
returns the list of the corresponding measurement re-
sults.

Using the DipZoom client library, an experimenter can
script complex and long-running measurements and execute
them programmatically. For example, we used this library
to implement all the experiments presented in Section 9.

6.2 A DipZoom Graphical Front-End
As an example of an application that can be built on top

of DipZoom client library, we have implemented a graphi-
cal DipZoom client from-end. It is an intuitive tool to find
qualified MPs and submit measurement requests. Figure 3
shows a screenshot of the graphical DipZoom client. In this
example, we requested MPs physically located in Cleveland,
OH, United States running on Linux and offering single ping
measurements. We have found three candidate MPs in Fig-
ure 3, and we can select any subset of them to send the
ping measurement request. We then can select the mea-
surement target for ping, e.g., google.com, and the mea-
surement parameters, e.g., “-l 1024” (1024 bytes data for
each packet). The final command looks just like “ping -l
1024”, although it will be run from remote MPs rather than
user’s local machine. After the request is submitted to core,
we can watch the progress of the requests and download
the results as they become available at the DipZoom core
side.

7. SECURITY
DipZoom is by design an open system: any host can join

as an MP, a client, or both. As in any open system, security
becomes an important issue. Table 1 lists the main security
threats in DipZoom environment, and our counter-measures.

The denial of service attacks against a measurement target
and an MP are dealt with in a straightforward way through
rate limiting. To prevent an induced distributed DoS at-
tack against a measurement target, DipZoom core uses a
leaky bucket algorithm to limit the aggregate rate of mea-
surement requests targeting any given Internet host. The
core enforces this aggregate limit across all the MPs by only
generating the measurements tickets within this limit. In
addition, when generating tickets for a particular MP, the
core enforces the limit on the number of outstanding tickets
specified by the MP at login. Finally, each MP protects it-
self by spacing repeated measurements requested in the same
ticket and by limiting per-request bandwidth consumption
according to the MP configuration file.



Figure 3: The Graphical DipZoom Client

Security threat Counter-measure

Induced DoS attack against measurement target Per-target rate limiting
DoS attack against an MP Per-MP rate limiting (MP-enforced)
Measurement side-effects “Trial” measurement by the core
Measurements pollution Enforcement of single MP instance per host
Fake measurements Individually generated MP instances with unique embedded keys
Replayed measurements Using nonce in DipZoom protocol

Table 1: Security threats in DipZoom and counter-measures

The measurement side effects is an interesting threat. As
an example, some devices use Web-based management inter-
faces, and can be configured by invoking a certain URL. An
attacker can reconfigure such a device (even if it is behind a
firewall!) by requesting an MP behind the same firewall to
“measure” the performance of the download of a configura-
tion URL. To prevent this, for wget measurement requests,
the DipZoom core will attempt to perform a measurement
itself once (using HTTP HEAD request to improve the per-
formance). As long as DipZoom can perform the measure-
ment from outside the MPs network, letting the MP do the
same does not increase the vulnerability.

An attacker may attempt to skew measurement results by
polluting the set of available MPs with a large number of MP
instances that run on a specially configured host that has
produces desirable measurement results. The core counters
this threat by enforcing at most one MP instance that can
login from any given IP and MAC address. Note that a
multihomed host can legitimately run multiple MP instances
because different interfaces may have different performance
characteristics.

A malicious MP may also fake measurement results or lie
to the core in announcing some of its characteristics such as
operating system. A definitive defense against this threat
can only be provided by a trusted computer supporting pro-
gram attestation that Microsoft and Intel are working on
[8]. In the meantime, we only raise the bar for implement-
ing this threat by embedding a unique secret key into each
downloaded MP instance, and encrypting all interactions
between the core and the MP using that key.

Finally, an attacker could replay its own or someone else’s
messages with measurement results to the core. DipZoom
uses a standard solution of including a nonce in every mes-
sage between the core and an MP and reflecting the received
nonce in the next message in the opposite direction (that is,
every message carries a reflected nonce received from the
other party and a new nonce).

8. FIREWALL AND NAT TRAVERSAL
DipZoom participants, both MPs and clients, are assumed

to typically run on end-user devices and other non-dedicated
hosts, which are often located behind network address trans-
lators (NATs) 4. NATs hide the IP addresses and port num-
bers of hosts behind them, and make these hosts unreach-
able for communication initiated by external hosts. Dip-
Zoom needs to be able to penetrate NATs when communi-
cating with the participants. In particular, the DipZoom
core needs to notify MPs of new measurement requests and
clients of the completed measurement results, while NATs
block all externally initiated communication.

A standard technique to address a similar problem in peer-
to-peer file sharing systems involves NAT-protected partici-
pants initiating and maintaining a full-time persistent TCP
connection to a non-firewalled host (which would be the core
in our case). However, this technique would create a scal-
ability problem for the centralized core. Instead, we take
advantage of recent studies [15, 9] that found most NATs
create a temporary port mapping for incoming UDP pack-
ets in response to a previous outgoing UDP packet. The
external host can send a packet back to the internal address
and port by sending the packet to the mapped address and
port created by the NAT [30].

Every DipZoom participant already sends periodic heart-
beat UDP messages to the core. Since the interval between
successive messages, one minute, is less than a typical du-
ration of the port mapping, these messages in effect main-
tain a full-time port mapping in the NAT5. The core takes

4The discussion in this section equally applies to firewalls
and pure NAT devices, and we use the term NAT to refer
to both of them.
5Note that, in the case of the firewalls, this port mapping
does not appreciably compromise the firewall protection be-
cause it only allows UDP messages from the host to which
the heartbeats are addressed, i.e., the core, and only to the
participant’s source port. Even if the attacker obtained the



advantage of this port mapping and sends its UDP notifica-
tions through it. Any subsequent data exchanges occur over
a TCP connection initiated by the participant from inside,
which NATs do not prevent. As a fallback mechanism, if
the participant does not receive any UDP notifications from
the core for a long time (5 minutes), it opens a TCP connec-
tion to the core to check for any missed notifications. This
mechanism allows efficient common case processing, where
the core does not maintain persistent TCP connections with
the participants, and yet in most cases immediately notifies
the participants of any action they may need to take, im-
proving the overall responsiveness of the system.

9. PERFORMANCE
This section describes our initial experiences with Dip-

Zoom. We first conduct scalability experiments to see how
many operations the core can support. We follow with some
measurements as examples of the application of the Dip-
Zoom system.

9.1 DipZoom Scalability
Our current implementation relies on a centralized core

as the tracking index of MPs that are currently online, and
as the focal point of communication between the MPs and
the clients. Obviously, the core can become the bottleneck.
While we have a design that involves a direct communication
between clients and MPs and plan in the future to explore a
distributed core implementation [7], our preliminary scala-
bility experiments indicate that the core, even when run by
a single low-end server, will be able to cope with the load
for a sizable number of participants. Our scalability exper-
iments were conducted using a Sun Fire X2100 server with
an Opteron 175 2.2GHz CPU and 2G memory. We used a
more powerful machine as the load generator (Penguin Altus
1400 server with Opteron 275 CPU and 4G memory) and
made sure it was not overloaded during the experiments.

9.1.1 Scalability with Respect to MPs
Our first set of tests concerns the number of MPs the core

can support. We study the rate of MP login operations and
the operations involved in a measurement the core can han-
dle. For these tests, we disabled the core feature that limits
each host to only one MP instance and started a number of
instances on the load-generating machine.

To study the login load the DipZoom core can handle,
we conducted two experiments, the burst test and contin-
uous test. The burst test examines the limit of concurrent
MPs that can login to the core. The continuous test consid-
ers the average sustained rate of MP login successes at the
core. The burst test is conducted by instructing a number
of MPs to login to the core simultaneously and counting the
percentage of successful logins and the time to complete the
last login operation. In all the experiments (with up to 1000
simultaneous logins), all logins succeeded. Figure 4 shows
the time it took the core to process all logins in the burst.
It shows that even a backlog of a 1000 logins is cleared in
less than 12 seconds, which seems acceptable because this is
not an overly time-sensitive operation.

core’s IP address and port number, the participant could
keep changing the source port number in its heartbeat mes-
sages (the feature we have not yet implemented) and could
always simply drop any UDP messages without compromis-
ing the correct operation as described in this section.
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Figure 5: The sustained rate of MP logins

For the continuous test, we start 350 MPs on the load
generating machine, with each MP logging in and out every
second. The test was run until 70,000 MP login successes
have been reached. Figure 5 plots the histogram showing
the number of login successes observed in each second of
the experiment. We see the sustained rate of around 150
logins/sec, with the tail showing the clearance of the back-
log of the extra operations. Note that each login recorded
in this test actually corresponds to two operations, a login
and a logout (we do not report them as separate operations
because login is twice more expensive). Thus, on average
the core can support around 300 logins and logouts per sec-
ond. Assume that on average a regular user turns on his
computer 3 times per day (once in the morning at work, an-
other time in the afternoon after lunch, and the last time at
home). Then 150 logins/sec could support up to 4.3 million
MPs assuming their logins are uniformly distributed over
a 24 hour period. Although uniform logins are unrealistic,
clearly the core can support a large number of logins.

Now let us turn to the interactions between the MP and
the core to perform a measurement. There are two oper-
ations involved: getting the tickets and sending back the
results. For this test, we start 250 “stub” MPs, which login,
wait for the core to generate a large number of tickets for all
the MPs, and then launch a loop in which they repeatedly
get a ticket and immediately respond with a pre-recorded
“result” without any delay between iterations. To maximize
the stress on the core, we modified it to always return a sin-
gle ticket in each iteration, although in reality outstanding
tickets to the same MP can be batched. We record, at the
core side, the timestamps of successful insertions of the mea-
surement “results” into the database. Each MP terminates
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Figure 6: The sustained rate of MP operations in-
volved in a measurement

after processing 300 tickets. Figure 6 shows the number of
operations completed in each second. It shows a sustained
rate of about 550 operations per second; the long tail in-
dicates clearing of the backlogged operations as a growing
number of MPs reach their processed ticket limit and termi-
nate.

9.1.2 Scalability with Respect to Clients
In order to examine the scalability of DipZoom core for

concurrent clients requests, we have conducted both burst
test and continuous test. In the first test, we let 500, 1000,
1500, 2000 and 2500 different clients login at the same time
and check how many clients succeeded. The results are
shown in table 2, we can see the success rate is 100% even
when we have 2000 clients login at the same time. We should
mention that this is a single-attempt login success rate; in
reality a DipZoom client will try several times before giving
up. This result shows that the DipZoom clients can login
successfully even at a very high concurrency rate.

No. of concurrent clients No. of success Success rate
500 500 100 %
750 750 100 %
1000 1000 100 %
1500 1500 100 %
2000 2000 100 %
2500 2493 99.72 %

Table 2: Number of concurrent client logins and suc-
cess rate

In the continuous test, we let 250 clients login, then re-
peatedly run getmplist and sendrequest functions for 200
times, sleeping for one second after each pair of operations,
and then logout. We recorded the finish time for each suc-
cessful getmplist and sendrequest operation at the core. Fig-
ure 7 shows the finished rate at each second. It indicates that
DipZoom core can finish client requests at a sustained rate
of at least 400 requests per second.

9.2 Demonstration Experiments
To show the capabilities of DipZoom, we conducted exper-

iments testing the accuracy of two recently proposed tools
for measuring the distance between a pair of hosts: King [16]
and GNP [25]. The evaluation reported in the respective
papers describing these tools was limited to well-connected
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Figure 7: Sustained rate of concurrent client opera-
tions involved in requesting a measurement

servers as one of the hosts in each pair, because the au-
thors only had publicly available traceroute servers at their
disposal. With DipZoom, we were able to use residential
measuring points that our colleagues downloaded at our re-
quest, thanks to the simplicity of joining the DipZoom plat-
form. Thus, we were able to test the accuracy of these tools
separately for well-connected servers (using MPs that we de-
ployed on PlanetLab nodes) and for residential hosts. We
implemented all the experiments as Java programs on top
of the DipZoom client library.

9.2.1 The Accuracy of King Measurements
King measures the distance between arbitrary pair of hosts

by cleverly tricking their respective DNS servers to query
each other and approximating the distance between the hosts
by the distance between their DNS servers. In our experi-
ments, we select one of the hosts in each pair to be a com-
puter running a DipZoom MP and then compare the dis-
tance from this computer to the other host with the mea-
sured distance from that MP to the other host. For the
well-connected MPs, we selected three PlanetLab nodes in
Italy, Ohio, and New York. For the residential MPs con-
nected by DSL lines, we used three hosts in Ohio, Texas,
and Michigan. We also performed this measurement us-
ing an MP connected via high-speed DSL (6Mbps), and an
MP using a recently introduced Verizon Broadband Cellu-
lar connection (advertised bandwidth of 500Kbps). For the
other host in the pairs, we selected over 1500 pingable nodes
from a set of 200,000 IP addresses from a Gnutella network
snapshot [13][14].

For each pair, we measure the distance using King four
times, and then directly using DipZoom’s ping measure-
ments 10 times. Following the format of the King paper,
we represent the accuracy of King measurements as a ratio
of the King result to DipZoom’s ping.

Figure 8 presents the CDF of the ratios for all MPs (All
Users), as well separate CDFs for the well-connected MPs,
residential DSL-connected MPs, and the MP using cellular
wireless. The more the CDF curves jump vertically along
the ratio = 1, the more accurate King estimates are. The
values of the CDF function left of x=1 point show the per-
centages of under-estimated results. Figure 8 shows that
considering all MPs together, over 80 percents of King re-
sults tend to underestimate the distance (matching closely
the corresponding result from the King study) and almost
half of all estimations have values less than half of the ac-
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tual latency. The latter result is significantly worse than
measured in the King study.

We find an explanation to the discrepancy by considering
individual classes of MP. The well-connected MPs show very
similar accuracy to that reported in King study. Thus, the
discrepancy is due to the slower-connected residential MPs.
At the extreme, the cellular MP shows extreme inaccuracy
(under-estimation) of King estimations.

We should mention that, during the experiment, we found
that King was unable to measure distances between many
pairs of IP. Approximately 20 percents of all residential MPs
we tried consistently could not be measured by King. In
particular, this problem was found among nodes in Europe
and East Asia.

In summary, our experiments confirm the accuracy of
King as the distance estimator for well-connected nodes.
DipZoom also allowed us to show the nuanced differences
in King accuracy for hosts with diverse connectivity.

9.2.2 The GNP Accuracy
Our other experiment considers the GNP system [25].

GNP selects a set of landmark hosts, which measure dis-
tances between each other and place themselves into a multi-
dimensional geometric coordinate space. Then, to estimate
the distance between two hosts, one measures the distance
from both hosts to each of the landmarks, uses these dis-
tances to place each host into the same coordinate space,
and computes the distance between the hosts as the Eu-
clidean distance between the two points. If we also have the
measured ping distance between these two hosts, we can use
compare it with the predicted distance to check the accuracy
of the GNP approach.

In order to measure GNP accuracy, we let around 100
MPs each ping a list of about 1000 pingable IP addresses
selected from the Gnutella list using DipZoom client library.
To improve accuracy, we repeated the test several times and
obtained more than 4 million ping results. We used the
minimum ping result value between two hosts as their dis-
tance. Following the GNP study, we used 15 landmarks
and 8 dimensions. Because GNP requires the availability of
pings between each measured host and the 15 landmarks,
we limited our study to the US hosts. We chose 15 well con-
nected geographically distributed MPs on PlanetLab nodes
as landmarks; our landmarks are shown in table 3. We then
use the distances to these landmarks to compute the coor-
dinates for all the hosts using the tools obtained from the
GNP website [11]. We compare the measured ping distance

IP address State City
216.165.109.79 NY New York
128.114.63.14 CA Santa Cruz
141.213.4.201 MI Ann Arbor
128.193.33.7 OR Corvallis

164.107.127.13 OH Columbus
129.10.120.112 MA Tewksbury
128.135.11.152 IL Chicago

128.4.36.12 DE Newark
144.216.2.53 NE Kearney

128.220.247.28 MD Baltimore
128.112.139.97 NJ Princeton
198.133.224.145 WI Madison
156.56.103.62 IN Bloomington
128.83.122.179 TX Austin

152.3.138.2 NC Durham

Table 3: The IP addresses and locations of the land-
marks

IP address State City
71.231.18.182 WA Tacoma
67.186.35.152 PA Pittsburgh
70.238.242.222 OH Cleveland
68.40.208.255 MI Waterford
72.72.35.155 MA Rockland

71.157.135.213 OH Cleveland
75.10.128.127 MI Lansing
65.43.173.197 OH Cleveland
72.72.98.62 MA Rockland

70.239.25.197 OH Cleveland

Table 4: The IP addresses and locations of the US
residential MPs

and the distance predicted by GNP. As in the King exper-
iment, we separated the results into two groups, the dis-
tances from well-connected PlanetLab-based MPs and the
ones from residential MPs. We had 81 well-connected MPs
and 10 residential MPs. Our residential MPs are listed in
Table 4. Admittedly, the distribution of these MPs is skewed
towards Northeastern and Midwestern US, and Cleveland is
disproportionably represented. Thus, these results should
be viewed only as an indication of potential capabilities of
the DipZoom platform.

Following the GNP study [25], we used relative error to
quantify the accuracy of GNP estimates in this experiment:

|predicteddistance− measureddistance|
min(measureddistance, predicteddistance)

Figure 9 shows the cumulative probability distribution
functions of the relative error in distance predictions, sepa-
rately for the well-connected and residential MPs. We see
excellent results for both MP types. About 95 percent of all
the results have relative error less or qual than 50 percent,
and remarkably, there is little difference between the resi-
dential and well-connected MPs. In these experiments, the
distance between each landmark and each measured host
was computed as the minimum of four DipZoom measure-
ments on average, and each DipZoom measurement was a
minimum ping delay from 10 ping probes. Interestingly,
during the initial phase of our experiment, when we had
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Figure 9: Relative error of GNP distance estimates
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Figure 10: Relative error of GNP distance estimates
using the average of 2.5 measurements of landmark-
to-host delay

on average only 2.5 DipZoom measurements per landmark-
host pair, the quality of the results from residential MPs
was much worse while the well-connected hosts were much
less affected (see Figure 10). This indicates much higher
delay variability of DSL lines, and suggests the need for
higher number of repeated measurements when reasoning
about these connections.
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Figure 11: Measured vs. GNP-predicted distances
between well-connected MPs and Gnutella peers

Finally, because relative error does not indicate under
and over estimation, we plot the measured ping distance
between a host pair against GNP-predicted distance. In
ideal case, all the points should fall on the center 45 de-
gree line. Figure 11 presents the distances between well-
connected MPs and Gnutella peers, and Figure 12 shows the
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Figure 12: Measured vs. GNP-predicted distances
between residential MPs and Gnutella peers

distances between residential MPs and Gnutella peers. Both
graphs show that most points are close to the center line,
reflecting the the accuracy of GNP prediction. However,
we also see that the number of under-estimations (indicated
by the points below the 45-degree line) is much larger than
the number of over-estimations. Furthermore, most over-
estimations happen when the ping distance is small while
most under-estimations happen when the ping distance is
large.

Overall, we observe that GNP has higher accuracy than
King and most importantly, is much less sensitive to the con-
nectivity type of measured hosts. (Of course, King’s advan-
tage is much faster-produced results.) Both tools, however,
tend to under-estimate the inter-host distances.

10. CONCLUSION
This paper presents our implementation and initial ex-

periences with DipZoom, a system for facilitating diverse
on-demand network measurements. The system addresses
several key needs of networks researchers and designers, as
well as IT specialists. First, it addresses the challenge of
creating a measurement platform that would be representa-
tive of the scale and diversity of today’s Internet. Instead
of deploying its own platform, DipZoom makes it easy for
Internet users to join the network of measurement providers.
Second, it significantly lowers the bar for measurement re-
questers to stage an experiment. An experimenter has a
consistent view of the totality of all the measuring points
currently available and has a coherent interface to discover
the MPs that suits her needs. Further, she can script a com-
plex and long-running experiment, launch it, and collect the
results from her own computer using a general programming
language (Java). By simplifying the creation of measuring
points and improving accessibility of measurements, we hope
DipZoom will increase the use of sound measurements in the
networking arena and thus reduce the scope for decisions
based on guesswork and intuition.

Our immediate future plans include designing and imple-
menting an extensibility mechanism, so that new measuring
tools can be plugged in the exiting MPs. This would allow
third-party developers to incorporate their measurements
into the general DipZoom framework. In particular, it will
allow DipZoom to be used as a thin veneer on top of exist-
ing measurement platforms, and let these existing platforms
benefit from the improved accessibility to experimenters due
to DipZoom’s simple client interface. Longer term, we plan



to include incentives for measurement providers and incor-
porate a ranking and reputation system for measuring points.
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