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Abstract— was to design it on top of a connection-oriented transport pro-

Today's HTTP carries Web interactions over client-initiated TCP con-  tgcol such as TCP. At the same time, the current Web workload
nections. An important implication of using this transport method is that s . .
interception cachei the network violate the end-to-end principle of the In- exhibits a Iarge number of short page transfers and lnteractlons
ternet, which severely limits deployment options of these caches. Further- for control purposes rather than data transfers. For example, in
more, while an increasing number of Web interactions are short, indeed g trace of a large number of modem users [15], 26% of all inter-
frequently carrying only control information and no data, TCP is often in- actions were cache validations that resulted in a “not-modified”
efficient for short interactions. . .

We propose a new transfer protocol for the Web, called Dual-transport  f€sponse. Arlitt et al. observed that even for high-speed ca-
HTTP (DHTTP), which splits the traffic between UDP and TCP channels. ble modem users (who intuitively would be more likely to ac-
‘é"hek” Chr?OSilr,‘g theTT]CP Cﬂa””e'v it i_s,thedse“’Ef who opens tThTePCO”EeEiO” cess larger objects) and even considering only responses that did

ack to the client. Through server-initiated connections, upholds “ ” .

the Internet end-to-end Srinciple in the presence of interception (?aches, Ca”Y data ( SucceS_SfUI re;ponses with 200 reSponse code), the

thereby allowing unrestricted caching within backbones. Moreover, the Mmedian response size was just 3,450 bytes [4]. Median response

Cer?ar_ative perflcl)fmanCG_ StUdy|O|:$THPTTPdaSgTHTTPTP using tLace-tériver_l sizes of 1.5-3KB were also reported in numerous earlier studies,

simulation as well as testing rea an servers showed a sig- P

nificant performance advantage of DHTTP when the bottleneck is at the eg., [1]’ [23]’ [5] _SUCh behavior is not always_ served V\{E" by

server and comparable performance when the bottleneck is in the network. 1 CP because of high overhead of TCP connection establishment
and because of the strain connection maintenance places on the

servers.
I. INTRODUCTION In HTTP 0.9, each Web download paid a TCP connection es-

This paper addresses two important issues in the currgi"f?l'Shment overhead. Later versions of HTTP address these

HTTP protocol: the violation of the end-to-end principle of thé)verheads by introducingersistent connectionand pipelin-

Internet by interception caches and performance implications"(?g [17]. Persistent connections allow a client to fetch multi-

using client-initiated TCP as the transport protocol. pi€ pages from the same server over the_ same TcP conne_ction,
Interception caches [31] intercept client requests on their p&Wortmng the TCP set-up overhead. P|peI|n|n_g Iets_ the Cl'er.]t
- ; g?_nd multiple requests over the same connection without wait-

ception caching is attractive to Internet Service Providers (IS for responses. The server will send a stream of responses

because it occurs transparently to clients and thus relieves Ié’ gk. )
of the administrative burden of configuring client browsers; in 1hese features have been shown to reduce client latency and

fact, ISPs often do not even know or have control over the erfdtwork traffic [28]. However, they do not eliminate all over-
users, as their immediate clients may actually be other ISPd'§2dSs of TCP, and in fact may introduce new performance penal-
corporate networks. On the other hand, interception caches [1¢& especially when the bottleneck is at the server [7]. Persis-

servers’ IP addresses when responding to clients thereby impRt connections increase the number of open connections at the
sonating the origin servers and violating ted-to-end princi- S€rver, which can have a significant negative effect on server

ple of the Internet [33]. One particular implication of this violathroughput. In fact, a study of 500 top Web sites showed that a
tion is that an interception cache can disrupt a Web intercatiofflijarter of them did not support persistent connections in the Fall
some client packets bypass the interception cache on their #9000 and that the number of such sites dropped only from 29
to the server (see Section IV-A). As a result, interception cacH@<5% during the preceding 18 months of study [21]. We spec-
can only be deployed safely if there is a point in the network thdgte that server throughput concerns play an important role in
is guaranteed to see all packets from a given client. This impli&4s phenomenon.
significant deployment limitations for interception caches. In Pipelining has a limitation that servers must send responsesin
general, because of its violation of the end-to-end principle, iiteir entirety and in the same order as the order of the requests
terception caching gave rise to much controversy in the Interfi@the pipeline. This constraint causesad of linedelays when
community! a slow response holds up all other responses in the pipeline. To
With regard to performance, HTTP was conceived as ess@¥0id head of line delays, browsers often open multiple simul-

tially a protocol for transferring files. A logical consequencineous connections to the same server, further increasing the
number of open connections and degrading the throughput of a

A preliminary version of this paper appeared at INFOCOM'01. busy server (see [7] and Section VI-B).

1See the email discussion in http://www.wrec.org/archive/, especially theT limit th b N ti |
threads “Recommendation against publication of draft-cerpa-necp-02.txt" and 0 limit thé number or open connectons, servers close con-

“Interception proxies” in April, 2000. nections that remain idle forgersistent connection timeopi-



riod. Busy sites often use short connection timeouts, which re- Il. RELATED WORK

duces the number of open connections but at the same time inSeveraI performance enhancements to TCP address TCP set-
creases the number of requests that pay the connection sefillRosts. The TCP Fast Start technique [29] allows caching
costs (see Section VI-A). Moreover, persistent connections t congestion window size, avoiding the slow-start overhead
servers do maintain are often underutilized, which wastes SeNYEI consecutive connections from the same client. The shared
resources and hurts thg connec_tion’s ability to transmit at ProR&Xp ontrol blocks optimization (S-TCP) [40] shares slow-start
rate (since well-behaving TCP implementations shut down thg,mation across concurrent connections between a pair of

transmission windows of idle connections [37]). hosts, helping the connections learn the appropriate window size
The Dual-Transport HTTP protocol (DHTTP) described ifaster. The Transactional TCP (T/TCP) extension piggybacks
this paper incorporates two main ideas. First, it splits Web traffiata on the handshake control segments, thus avoiding the la-
between UDP and TCP. A DHTTP client typically sends all raency penalty for performing the handshake prior to page down-
quests by UDP. The server sends its response over UDP or TIoRd. Still, none of these approaches relieves the server from the
depending on the size of the response and the network coralierhead of initializing and maintaining open connections, nor
tions. By using UDP for short responses, DHTTP redum#th  do they address the violation of the end-to-end principle by in-
the number of open connections at the searaithe number of terception caches. We provide a detailed comparison of DHTTP
TCP connection set-ups. In this way, DHTTP improves cliemtith T/TCP later in Section VI-B.3.
latency, since fewer Web interactions wait for the connectionThe TPOT approach by Rodriguez et al. [32] addresses the
set-ups, and increases server capacity by reducing the nuname-to-end issue of interception caches at the TCP layer, by
of open connections servers must manage. Also, the utilizatiswitching to the true IP address of the interception cache dur-
of the remaining TCP connections increases because theyiage TCP hand-shake. Unlike our approach, TPOT requires a
reserved for larger objects. Finally, DHTTP does not have tbhange to the TCP stack and does not address its performance
ordering constraints of pipelining. implications.

The second idea behind DHTTP is that, when choosing TCP,The HTTP-ng initiative [35] proposes to multiplex multiple
a DHTTP server establishes the connection back to the clieiPlication-level protocol sessions over the same TCP connec-
reversing in a sense the client/server roles in the interactiéi@n- It allows fragmenting and re-ordering of multiplexed re-
While having some implications with firewalls (see Section I\EPONSes and, similar to persistent connections, amortizes TCP
C), this role reversal brings major benefits. Most importantly, onnection set-up over multiple fetches. However, it duplicates
allows interception caches to use their true IP addresses in tBHch functionality of the TCP at the application level, thus in-
communication with clients. Thus, DHTTP retains the end-t4:0ducing unnecessary overhead. For instance, the application
end principle of the Internet even with interception proxies. I§ve! performs its own flow control and its own packet order-
particular, DHTTP would allow interception proxies to be del'd- There is also an extra level of buffering and copying. To be
ployed in arbitrary points in the network and hence enablef@". the primary goal of HTTP-ng is not performance but such
wide integration of caches into the Internet fabric. FurthermofEN€fits as “easier evolution of the protocol standard, interface
as we will see in Section IlI, server-initiated TCP avoids an if¢chnology that would facilitate Web automation, easier appli-
crease (compared to the current HTTP) in the number of m&&ion building, and so on” [19].
sage round-trips before the client starts receiving the data ovefl "€ Proposal of this paper is different from all of these ap-
the TCP channel, even though TCP set-up is preceded by an ‘@5aches in that it asserts that a TCP pipe is not always an ap-
tra” UDP request message from the client. (Of course, when foPriate transport for Web traffic. Consequently, our proposal

server uses UDP, the number of message round-trips decrea?élé’.i's the parties to choose and go back and forth between the

Finally, it removes a bottleneck process at the server that acc and TCP channels. _ _
all TCP connections. In independent work, Cidon et al. proposed using a hybrid

o , , ) TCP-UDP transport for HTTP traffic [12]. This proposal also

Many application-level prot_oc_ols split their traff!c bet"f’ee'éplits the HTTP traffic between UDP and TCP. A client sends
TCP and UDP channels. This includes DNS, which switchgs ;pp request. The server replies by UDP if the response is
from UDP to TCP when responses exceed 512 bytes [37] agfly1. otherwise, the server sends back a special UDP response
RTSP, which uses TCP for control commands and UDP fgrying the client to resubmit request over TCP. The client also
stream data [34]. Further, in the active mode of the FTP prosq hmits the request over TCP if no response arrived within a
tocol, FTP servers open TCP connections back to FTP cliefifeout. Our proposal is similar in its basic premise but differs
for data transfers [37]. We argue that similar approaches gf§m cidon et al. in two major ways. First, unlike Cidon et al.,
appropriate for Web traffic. DHTTP servers initiate connections back to the clients, which

Obviously, DHTTP represents a significant deviation frorallows interception caches to not violate the Internet’s end-to-
existing practice. However, it can be introduced incrementaliynd principle and brings other important benefits already men-
while co-existing with current HTTP in the transitional periodioned in the Introduction. Second, our mechanism for choosing
(see Section IV-E). We evaluated the performance of DHTTietween TCP and UDP channels explicitly addresses the issue
by conducting a simulation study as well as by implementirgf network congestion. Furthermore, by not prototyping their
and testing a real DHTTP server, built as a modification of théea, Cidon et al. could not quantify its affect on server perfor-
Apache 1.3.6 Web server [3]. The source code of our DHTTRance.
implementation is available [14]. A proposal to split Web traffic between TCP and UDP was



of an Ethernet maximum transfer unit (MTU) datagram, is sent
Client ServerClient ServerClient Server  over UDP. Virtually all HTTP requests fall into this category
[23], [8]. For conceptual cleanness, the client itself initiates the
TCP connections to send requests instead of reusing connections
initiated by the server for data transfer.

When the server receives the request, it chooses between the
UDP and TCP channels for its response. It sends control mes-
sages (responses with no data), as well as short (below 1460
bytes, the payload of one Ethernet MTU, by default) data mes-
(a) Current (b) DHTTP over (c) DHTTP over sages, over UDP even if there is an open TCP connection to the
HTTP. UDP. TCP. client. This avoids the overhead of enforcing unnecessary re-
sponse ordering at the TCP layer. A UDP response is sent in
a single UDP packet since our default size threshold practically
ensures that the packet will not be fragmented. Dividing a re-
also described by Brown in his Master’'s Thesis [10]. Howevegponse among several UDP packets would likely allow higher
this proposal does not address the network congestion isstige thresholds and is a promising enhancement for the future.
which we found can cause severe performance degradatiofrdf long data messages (over 1460 bytes by default), the server
traffic is split regardless of network conditions. Another differopens a TCP connection to the client, or re-uses an open one if
ence with our protocol is that [10] achieves reliability throughvailable. If the server receives a request over a TCP connection
client acknowledgments and server re-transmissions. This &nd chooses to respond by TCP, the server sends its response
creases the network overhead for packet acks and server ooger the client-initiated TCP connectidn.
head for keeping unacknowledged packets in the buffers andrigure 1 shows the message exchange of a current HTTP in-
managing per-packet timeouts and retransmissions. Also, whieaction and a DHTTP interaction with the response sent over
proposing that servers open TCP connections to clients, [A0DP and TCP. It is important that even when choosing TCP,
does not make a connection with unconstrained deployment@fiTTP does not introduce any extra round-trip delays com-
interception caches that this arrangement allows, which is a ksgred to the current Web interactions. While it may appear
insight of the current paper. Finally, by choosing a Perl ingounter-intuitive because in DHTTP, TCP establishment is pre-
plementation (with unrealistically low server throughput of urceded by an “extra” UDP request, the comparison of Figure 1a
der 10 requests per second) and not considering persistent @t 1¢ shows that data start arriving at the client after two round-
nections and pipelining of existing HTTP in their experimentatip times (RTTs) in both cases. In fact, a possible significant
study, [10] does not make a convincing case for splitting the trgbut unexplored in this paper) advantage of DHTTP over current
fic. We base our experiments on a production Apache server &ibTP in this case is that the server can overlap page generation
we include persistent connections with pipelining in our expesith TCP connection establishment.
ments. Since responses may arrive on different channels and out of

Previously, Almeroth et al. proposed to use a UDP multicastder with respect to requests, the client must be able to match
for delivery of the most popular Web pages [2]. Using multicasequests with responses. Consequently, a client assigns a ran-
to deliver popular Web pages to proxies has been proposeddaynly chosen request ID to each request. The request ID is
Touch [41]. In contrast to these works, we propose to use UDéflected by the server in the response and allows the client to
for much of routine Web traffic. assign the response to the proper request.

Analytical models for HTTP performance over TCP and The request ID must be unique only to a given client and only
ARDP, an alternative connection-oriented protocol built oveicross the outstanding requests that await their responses. We
UDP, are provided and validated in [18]. Unlike our approachllocate eight bytes for the request ID, sufficient to safely as-
this work does not consider using raw UDP or switching b&ume no possibility of a collision [25]
tween connection and connectionless transport. The client must also let the server know which ports it lis-

tens to on both channels. To save on the overhead, we note that
lll. DHTTP PROTOCOL source port number of the channel used by the request is in-

In DHTTP, both Web clients and servers listen on two portsluded in the IP headers already. So, the request must include
a UDP and a TCP, except that servers use well-known ports {loe port number of the other channel only. Consequently, our
ports specified in the URLSs) and clients use so-called ephemeaegjuest message has a port number field, which contains client’s
ports, that is, ports selected anew for a given download. Thad&gP port number if the request is sent over UDP and UDP port
two communication channels exist between a client and a sermamber if the request is sent over TCP.

- a UDP channel and a TCP channel. The client usually sendsrigure 2 summarizes the DHTTP message formats. In ad-
its requests over UDP. Even if an open TCP connection to thigion to the request ID and port number, the request message
server is available, the client uses UDP because it cannot be sure

the server still keeps the TCP connection on its end. Only whefNote that our current prototype does not implement the portion of the proto-
uploading a large amount of data (e.g., using a PUT reque%‘ﬁ}that concerns sending requests over TCP.

and in other special cases discussed later would the client n fact, our DHTTP prototype uses only two-byte sequence numbers for re-

H%t IDs, which we later realized is not adequate given fast improvements in
TCP. By default, a request below 1460 bytes, the payload sixeb proxy performance and some security issues discussed in Section IV-C.

Fig. 1. Message exchange for a Web interaction.



0 64 80 88 There are two ways to delegate non-idempotent requests to

Request ID Port  |Flag | HTTP Request... TCP. In one method, the protocol portion of a URL would pre-
scribe the transport protocol to be used by clients. (This is the

() Request approach used previously by the RTSP protocol [34].) For in-

. o stance, we can have a convention that, for URLs of the form

“dhttpt://<rest-of-URL>", a client must send requests by TCP,
Request ID HTTP Response ... while for URLSs that start with “dhttp:”, it can use UDP. Then,
all non-idempotent URLs would be given the “dhttpt:” prefix.
Alternatively, the protocol can define a special server re-
Fig. 2. DHTTP message formats. sponse that instructs the client to resend its request over TCP.
This method does not require the Web site to use special URLs
for non-idempotent resources but adds a round-trip delay to the
includes a byte worth of flags. The only currently used flag ifesponse time when these resources are accessed. As discussed
“resend” flag that indicates a duplicate request. Thus, DHTT#Section VI-B.3, this response is also useful to improve server
adds eleven bytes to every request. The response includes egdjlience to denial of service attacks.
the request ID, for an eight-byte overhead.

(b) Response

B. Congestion Control

A. Reliability and Non-ldempotent Requests . .
DHTTP servers must avoid flooding a congested network

Given the best-effort nature of the UDP channel, we must P@ith UDP messages. Instead of imp|ementing its own conges-
vide a reliability mechanism. A straightforward way to provid@on control, DHTTP again leverages TCP by requiring that re-
reliability would be to make clients acknowledge every UDBponses to any resent requests be sent over TCP. So, any time a
packet received and servers resend unacknowledged UDP pagleket loss occurs, the server switches to TCP with its conges-
ets. This, however, would increase network traffic for acknowgon control for this interaction. An HTTP server using MTU
edgments and server overhead for storing unacknowledged Uii§covery [27] sends packets with payload of 1460 bytes over
packets and for managing per-packet timeouts and retransigiig Internet and has the initial TCP window for data transfer
sions. These overheads would be paid whether or not a pagkglial to two packets. Thus, DHTTP server could in principle
loss occurs. send up to 2920 bytes by UDP without relaxing TCP’s conges-

We believe this approach is never optimal. When packet logsn control. Our current default threshold of 1460 bytes makes
is low, itimposes the unnecessary overheads. When itis highHTTP servers even more conservative than HTTP servers in
implementation would be hard-pressed to compete with hightfms of congestion control within one Web download.
optimized TCP. So, instead of trying to build reliability into  One could argue that DHTTP servers may still create traffic
the UDP channel, the DHTTP protocol simply stipulates thgfrsts by sending a large number of UDP packets belonging to
a client may resend a UDP request if the response does notdtinct parallel downloads. However, short parallel TCP con-
rive for a timeout period, with the resent flag set. A large rerections will create similar bursts in existing HTTP due to SYN
quest timeout (we use 5 and 10 seconds) with a limited numigyd the first data packets. So, it is only in the case of multi-
of resends ensures that clients do not overwhelm a server Wil short downloads to theameclient reusing a persistent TCP
repeated resends. In principle, clients could use more soplkignnection in existing HTTP, where DHTTP may be more ag-
ticated strategies such as smaller initial timeouts followed lyyessive. Even in this case, when the fraction of resent requests
exponential backoff [26]". becomes noticeable (indicating possible congestion), DHTTP

We leave it to the servers to efficiently deal with resent reervers starts using TCP almost exclusively (see Section I1I-C).
quests. They may re-generate responses, or cache UDP|fgur experiment over congested Internet, only 6% of responses
sponses in the buffers so that they can be re-transmitted quickiire sent over UDP. Thus, native TCP congestion control was in
However, DHTTP stipulates that a response to a resent requsigte for 94% of interactions. Finally, Feldmann et al. showed
be sent over TCP for congestion control (see Section IlI-B). that although most Web transfers are short, a majority of the

A related issue is support for non-idempotent requests, whigftes and packets belong to long transfers [16], and DHTTP
should not be re-executed. Examples of such requests includes TCP with its native congestion control for them.
some e-commerce transactions, such as an order to buy or sell

stocks. Following its general minimalist approach, DHTTP cuG. Choosing a Channel

rently deals with non-idempotent requests by delegating them tQI_
. - . . The server must choose between TCP and UDP based on the
TCP transport, in f providin ial r h li- ) i )
CP transport, instead of providing special support at the app ponse size and network conditions. When the network is not

cation level. Since non-idempotent resources are by definitigr

not cacheable, this will not reduce the friendliness of DHTTP Foongested and packet loss is low, then the best strategy for the

interception caches. Building native support for non-idempotedt ¥ - would be to maintain no state for sent responses. This

requests is also possible but would be premature at this Stagg.trategy opt|m|;es for the common case of no packet loss, at the
expense of having to re-generate the response after a loss does

4While nothing would prevent the client to disregard this requirement and f@CCUT.
send requests in quick succession, this problem is exactly the same with today’s
Web clients. Fighting these so callei@nial of serviceattacks is outside the 5The initial window size is 1 but most implementations increase it after re-
scope of this paper. ceiving the TCP SYN-ACK packet.



However, when the network is congested, this strategy is ex-
tremely poor. Not only do the UDP responses have to be re-
regenerated and re-transmitted often, but even TCP responses
may arrive at clients so slowly that clients send duplicate re-
quests for them. The result is that the server sends many du-
plicate responses, further aggravating network congestion. The
same situation may occur with compute-intensive responses
which may take a long time to reach the client.

To address this issue, our server maintains a “fresh requests
counter”, incremented any time the server sends a responseyayk. At this point, we only note that if a UDP response to the
UDP to a request with unset resend flag, and a “resent requegjggested client is lost, the client will resend its request with the
counter”, which counts the number of resent requests receivegsentflag set, forcing the server to use TCP for this interaction.

Our algorithm for choosing a channel use®ss threshold  choosing the size threshold presents another interesting
parameter/, (currently 1%) and aize thresholgparametelS  tradeoff. A large value will reduce the number of TCP connec-
(1460 bytes by default). All responses exceeding the size threghns py sending more responses over UDP; however, if it ex-
old as well as those in reply to resent requests, are sent over T¢gR2ds one MTU (1500 raw bytes or 1460 payload bytes), some
The choice for the remaining responses depends on the ratig@fponses in the current version of DHTTP will be fragmented.
resent request counter to fresh request counter. If this ratigg,gmentation degrades router performance [20]; also, the loss
below L, these responses use UDP. The ratio aliowedicates of any fragment will entail resending the entire packet, increas-
high packet loss and would suggest sending all responsesiy response latency and bandwidth consumption. Thus, in a
TCP. However, the server must still send a small number of iggh |oss environment such as Interngtshould be limited to
sponses over UDP to monitor the loss rate, since losses in g MTU. In a low loss network such as a LAN or intranet a
TCP channel are masked by the TCP layer. Therefore, we ch@gher value ofS may be appropriate. Moreover, DHTTP could
rather arbitrarily to send — L fraction (or 99%) of small re- pe extended to allow large responses to be sent over multiple
sponses over TCP and the remaining small responses over Uithpb packets. This would avoid fragmentation and allow clients

Fig. 3. Problematic deployment of interception cache.

in the high loss condition.. . _ to issuerange requestgl 7] to obtain just the missing portions of
In summary, the algorithm for choosing a channel is as fahe response in the aftermath of a packet loss. Exploring this ex-
lows: tension and the dynamic policies for choosing the size threshold

1. Choose TCP for all large responses, i.e., whose size @gxanother promising direction for future research.

ceedsS, as well as for all resent requests.

2. If the ratio of resent request counter to fresh request IV. IMPLICATIONS OFDHTTP

ﬁg\ljvnﬁots?xrﬁizg_& enter a *high loss” mode, else enter . DHTTP and Interception Caches

3. Inthe low loss mode, choose UDP for all small responses,Interception cachindnas been an enticing idea for ISPs since

i.e., those below the size threshdld it allows them to cache Web content in the network transparently
4. In the high loss mode, choose TCP for the L fraction to clients. With interception caching, routers or switches on the

of small responses and UDP for the remainingmall re- request path to the server divert the request to a proxy cache,

sponses. which accepts the connection and send the response as if it were

There is still a race condition mentioned earlier, where a clieffite origin server. To impersonate the origin server, the cache
may time out and resend a request before the TCP responseses the IP address of the origin server as the source IP address
this request arrives. To address this race condition, our seroéthe response packets. Since this breaks the end-to-end princi-
maintains a circular buffer of global request IDs (which is ple of the Internet, interception caching has raised much contro-
combination of the client IP address and request ID from a resrsy. The main concerns are the possibility that an interception
guest) that have been responded to by TCP. The buffer has ramnhe may disrupt TCP connections and that it deceives clients
for 10000 global request IDs. When a resent request arrives, ithi® assuming they interact with end servers, so that the clients
master process ignores it if it is found in the buffer, since thday neglect adding appropriate cache control headers into their
response was already sent by TCP that has reliable delivery.requests.

A potential limitation of the above algorithm is that the server Connections can be disrupted when different packets from the
maintains aggregate packet loss statistics. While the aggregdient choose different paths to the server. For instance, in Fig-
statistics reflect well the congestion of the server link to the Inre 3, assume that half way through the download of a page from
ternet, congestion of network paths to individual clients mafpe cache, TCP acknowledgments from the client will choose
vary. Thus, enough clients with congested links can make ttfee upper path and start arriving at the origin server, which will
server use TCP even for clients with uncongested links. Cattiscard them since it does not recognize the connection. In the
versely, the server may use UDP for an occasional congesteelantime, the cache will not receive any acknowledgments and
client if its connection to the rest of the clients is uncongestewlill eventually timeout the connection.

The investigation of finer grained algorithms, which would track These problems may occur even without route changes, e.g.,
network conditions at at the client autonomous system or ewshen OSPF routers forward packets using round-robin load bal-
subnet granularity, is an interesting direction for future futuncing over multiple shortest path routes. In fact, with route load



balancing, an inappropriate placement of interception cachecird all data that it has received but has not yet acknowledged
the network may disruptveryWeb interaction going through back to the server. The connection will have to be re-established,
the ISP. In any case, most ISPs are not willing to add extra camd the discarded data requested and sent again.
nection failures, however few. Thus, they limit deployment of DHTTP allows either the client or the server to unilaterally
interception caches to only network points traversedlibgack- close the TCP connection and at the same ensure that the con-
ets from clients. In particular, they typically avoid interceptionection has no in-transit data. A client can close a connection to
caches in transit backbones and turn off caching for requestsaagerver when there are no outstanding requests to this server. A
riving from another ISP or from clients known to obtain Interneerver can close a connection to a client at will after sending the
connectivity from multiple ISPs. current response, since new requests from the client would ar-
DHTTP retains the end-to-end principle even with intercepive on the UDP channel or a different TCP connection. While
tion caching. A DHTTP interception cache will intercept onlyan HTTP server can also address this problem by keeping the
requests sent over UDP and pass through any requests usgagiving part of the connection open [28], DHTTP allows a
TCP. As already mentioned, these requests will be either dal@aner solution since it avoids in-transit requests altogether.
uploads to servers or requests for non-idempotent resources, the
kinds of requests that usually cannot benefit from caches a@y- Firewalls and Security

way. So, restricting interception caches to UDP requests W'”DHTTP imposes similar requirements on firewalls as many

not reduce cache effectiveness. other protocols. In particular, the firewall must open a limited-
When a DHTTP cache intercept a UDP request, it will either P - np ! P

) . me “hole” to the client UDP and TCP ports specified in a
respond by a UDP packet, or establish a connection back to
. 4 o . TTP request, so that the DHTTP response can get through.
client. In either case, it will use its true source IP address (reter

to Section IV-C for security considerations). At the transpO{tpdem ﬂlrewa_lls, such as widely used FireWall-1 [11], provuje
t}'ls functionality for other protocols and are capable for main-

layer, no IP impersonation occurs and all packets will arrive . .
each end regardless of routing path properties. Thus, DHT ing the necessary_state from previous requests. For exar_nple,
' § or RTSP protocol, FireWall-1 opens a temporary hole for in-

would enablg a vy|de mtegratlon_ oF |nt_ercept|on _caches_ |_nto tcoming UDP packets to the client’s port specified in the client’s
Internet fabric, without any consideration of routing policies. ETUP request. To subport ETP in active mode. FireWall-1
Further, the clientis aware it speaks with the cache and not t%e -quest. pport * L
) . ogens a similar hole for incoming TCP connections to the port
end server since the response comes from a different IP addrg Scified in the client's PORT command
A configuration option can thus be easily added to clients th"j{%DHTTP shares with active FTP the vuilnerability to an attack
would allow them to bypass all interception caches or selectiv?E/

allow or exclude interception caches on certain subnets or mlgljilcj:?ohu:sriTtlsltlaCrI](t)ingatlzglifi:r?tst%”\?iggilg \[ligg) I: Eahl\?vr?itct:icckc‘)nef
requests to certain Web sites. page,

tains an applet that generates an FTP request with the sole goal
B. Addressing Limitations of HTTP over TCP of opening the hole to incoming TCP connections to a vital port,
_ ) such as port 23 used by telnet, giving the attacker an opportu-
B_usy HTTP servers face a qnemmamther_a large numbe_r nity to try a login password. By the same token, the remedy
of simultaneous open connections (when using a long persistggcriped in [24] and implemented in Firewall-1, which is to

connection timeoutpr a large number of of client requests thagohibit clients from using low port numbers used by telnet and
pay TCP set-up costs (when using short timeouts). By perforgyner entry points, also applies to DHTTP.
ing short downloads over UDP, DHTTP reduces the number c)fFurther, if interception proxies are allowed to use their true IP

TCP connection set-ugmdat the same time reduces the NUMsjresses; the firewall must let packets with an arbitrary source
ber of open TCP connections at the server. Furthermore, {Be,j4ress through the hole to the client ports. This is a devi-
TCP connections that DHTTP does open transfer larger objeg{ge from existing firewalls that only allow incoming packets
increasing connection utilization. . from the IP address matching the destination IP address of the
DHTTP also eliminates the head-of-line delay problem of st packet that opened the hole. Since learning this IP ad-

pipelining in existing HTTP. Since it provides the means fQjress requires an attacker to have the ability to intercept request
explicitly matching of requests and responses, DHTTP has §g.yats, removing this requirement may seem as if lowering the
need for imposing any ordering constraints on server responges- for the attacker.

In DHTTP, responses may use UDP or TCP, they may reuse th%\

same .TCP _connectlon oruse new_cc_)nnectlor_13; in-any Case’stﬂgcessful attacker would still have to intercept request packets.
order in which responses are sentis |mmater|al.. First, the attacker still has to learn the correct client port number

DHTTP_ eﬁ_‘e_ctlvel_y addres_ses another pote_ntlal problem rf?)'get through the firewall, and it has only short time to guess the
lated to pipelining, first described by Frystyk Nielsen et al. [28&,0” before the hole closes. To complicate guessing port num-
Unilateral closing of a persistent connection by the server MB¥s a client using DHTTP in the clear can frequently change
occur when there are in-transit pipelined requests that the C"ftgtport numbers, every time choosing a different random port
has sent before receiving the FIN message indicating the ter kimbef. Second, even if the imposter guessed the port num-

nation of the connection. Pipelined requests that arrive o g, i time and passed through the firewall, its packets would be
server after it closed the connection will cause the “reset” mes-

sage unless the s.e_rver keeps the rece[V|ng half of the Con_ne‘-?t'@\W/hile many OS kernels seem to allocate smallest available port numbers,
open. Upon receiving the reset, the client’s TCP stack will dishanging it to random numbers is straightforward.

closer analysis, however, shows that even with DHTTP, a



D. Network Address Translation

with
pHTTP éesqe\ﬁ z:sadd'ess . . . ,
racke As is the case with firewalls, DHTTP’s traversal of NAT

Malicious

host (network address translation) devices imposes requirements on
Unsuspecting these boxes that are similar to many other protocols. A NAT
servers box hides IP addresses of hosts behind it by translating their
addresses and port numbers to distinct external addresses and
DHTTP responses port numbers. To allow unambiguous translation of incoming
packets back from external to internal addresses, the NAT box
Attacked ensures that no two hosts are mapped to the same external ad-
dress/port pair at the same time.
Fig. 4. Aninduced TCP SYN attack. To support DHTTP, the NAT box must also translate the

ephemeral TCP port in outgoing DHTTP requests, and trans-
late back incoming TCP packets accordingly. In other words,

discarded by the client because they will not match a valid e NAT box must be able to translate a new packet flow based
quest ID number (the likelihood of guessing an 8-byte randd?h the DHTTP request packet. The ability to consider packet
request ID can be safely dismissed [25]). Learning the corré@yload in address translation is caliegplication awareness
request ID would require intercepting the request_ In fact, qf\d the abl“ty to translate additional paCket flows based on a
is not inconceivable for a firewall to remove any poss|b|||ty d?reViOUS paCket is callestateful translation Both Capabilities
letting these requests through by making holes specific to € required for existing protocols and supported to varying ex-
request IDs. Recent proxy logs showed that over 20 thousdffid by most modern NAT devices. An indicative example is
well-connected users generated peak request rate of less Wg€e over IP [22], where a session starts using the Q.931 setup
300 requests per second [42]. Assuming on average it takdaratocol, which specifies ephemeral ports for subsequent flows
second for the HTTP response to arrive, this would requireo¥€r TCP (for the call setup) and UDP (for RTP packets that
firewall serving a 20,000 people enterprise network to maintefA!Ty the audio itself). Simpler examples include RTSP and ac-
a state about only a few hundred requests at a time. tive FTP protocols already mentioned in Section IV-C.

The attacker can also attempt a SYN attack against a DHTTFln summary, to support DHTTE’ a NAT box must be config-
server using third-party DHTTP servers. In this attack, i'éd to create a temporary mapping from the TCP port number
lustrated on Figure 4, the attacker sends DHTTP requests Fhe payload of a DHTTP request to the internal address of the

large objects to arbitrary other DHTTP servers with the attacké nt that se_nt the_ request. Fc_)r N.AT boxes that are not capable
server's IP address as the source address. The contacted DHFTE!CP configuration, an application-level gateway [36] can be
servers will attempt to respond by opening TCP connections$gnfigured on the NAT to implement this functionality.

the specified address and as a result, the attacked server will face

a large number of TCP SYN packets from these servers, which Incremental Deployment

unknowingly participate in the attack. Fortunately, the defensepgne cannot realistically assume that the world will switch to
used against the active FTP attack applies here as well. SpepiTTP at once. A simple incremental path to deployment is
ically, one must allocate non-overlapping port number ranggs follows. DHTTP clients and servers must be able to also use
to DHTTP servers and clients. Then, if the attacker specifiegsyTP in the transitional period. Further, in the transitional pe-
a low source port number in its requests, the contacted senvigggl, DHTTP clients should use existing HTTP for any requests
will recognize these requeStS as fraudulent and not act on th%@ht by TCP (SUCh as |arge or non_idempotent requests), even to
If the attacker specifies a high port number, the SYN packgjesumably a DHTTP server, so that legacy HTTP servers never
reaching the attacked server will be addressed to an unexpegie@ive DHTTP requests on a TCP channel.
port and will be discarded by the server or its firewall. A URL naming convention would be established between
We stress that both DHTTP and existing HTTP are vulneDHTTP servers and clients, so that the latter will recognize
able to an imposter with a capability to intercept and examitn#RLs hosted by DHTTP serveia most cases For exam-
request packets. In particular, such imposter can substitute pihe, a convention can be that DHTTP URLs have the form
legitimate content with its own. In existing HTTP, it would do s@f “http://host-namedbihttp/remainder-of-URL". Legacy HTTP
by learning the intended Web server IP address, and in DHTEkRents will issue a normal HTTP request for these URLs while
by learning the client port number and request ID. Only an eBHTTP clients will use DHTTP for them, unless it is a request
crypted version of the protocol, be it HTTP or DHTTP, can prassing TCP. There is still a remote possibility that a legacy HTTP
tect against such an attack. Similar to non-idempotent requestsyver uses a URL of the same format, in which case a DHTTP
we assume that clients will choose the TCP channel to sendckent may issue a DHTTP request over UDP to this server (re-
quests for secure downloads. Because the cost of setting ugak that any request over TCP is sent using legacy HTTP for-
secure session dwarfs the cost of TCP handshake and becaws®. Unless this server also happens to use this UDP port for an
interception proxies do not handle encrypted traffic, there aparelated application and has no barrier to block an unexpected
pear to be no tangible benefits in using UDP for either reque&t®P message, the client will get back an ICMP “destination
or responses, and the current protocol for encrypted Web commreachable” message and immediately resend the request us-
munication, SSL, does not support UDP exchanges. ing HTTP.
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b= gL g9 | | [Livead g a worker process and the latter has an open connection to the
£ c ar | § client, the PipeRequest thread increments the pending request

counter (even though it does not know if the response will use
the connection or be sent over UDP). When a worker completes
sending the response, it decrements the pending request counter
for this client.

When choosing a worker process for a new request, the
PipeRequest thread tries to efficiently reuse available TCP con-
nections and, at the same time, distribute the incoming requests
uniformly among all worker processes according to the follow-

In theory, an HTTP server that has a URL with DHTTP foring procedure:
matandand uses the DHTTP UDP port for an unrelated appli- 1. If there is an open idle TCP connection available to this
cationand does not block outside messages to this port could client and to the TCP port specified in the request message,
still receive an unexpected DHTTP request. However, the com- choose the worker process that has created this TCP con-
bination of all these conditions is so unlikely that we considerit nection.

Worker process

|
| | Timeout
| | thread

Maintenance
Thread

Fig. 5. DHTTP server architecture.

impossible for all practical purposes. 2. Otherwise, if the number of open TCP connections to this
client and the total number of open connections are below
V. SERVERDESIGN their respective limits, choose a worker process with the

We have implemented a DHTTP server by modifying Smallest total number of pending requests. _
Apache, today’s most popular Web server. We used Apache3- O.the!‘\mse,.choose a process Fhat has aTC!D connection to
1.3.6 [3] as the basis for our modifications. The structure of our  this client with the fewest pending requests; if there are no
DHTTP server inherits many aspects of Apache and is shown connections to this cllent_, choose a process with the small-
in Figure 5. The server has a master process that accepts in- €St total number of pending requests.
coming requests and worker processes, which execute individ-
ual requests and send the responses back to clients. The master
process has three threads. A ReadRequestThread thread read® performed a three-pronged performance study. First, we
incoming requests from the UDP port and copies them intocanducted a trace-driven simulation to study the number and uti-
global buffer. A PipeRequestThread thread takes the requéig@tion of TCP connections that the server experiences under
from the global buffer and pipes them to worker processes foif TP and DHTTP. Second, we benchmarked the Apache HTTP
execution. The global buffer is used to move requests out of th@rver and our DHTTP server with clients on the same LAN,
UDP port buffer as quickly as possible, so that the incoming ri® compare their peak performance and scalability. Finally, we
quests will not fill up the UDP port buffer and get dropped. Aested both servers in a WAN environment with a congested In-
better alternative, which we have not yet implemented, woulérnet connection.
have been to increase the size of the UDP port buffer and elim-
inate the extra copying of requests between the two buffers. £
nally, the Maintenance thread wakes up every second and checlk®ur simulation study uses the access log from the EasyWww
the status of the worker processes. If it finds too few idle workeveb server, which provides AT&T’s low-end hosting services.
processes, it forks some new ones. If there are too many idflee trace has the duration of three months and contains over 100
worker processes, it kills some, so that number of worker praiillion accesses with the average response size of 13K. Each
cesses would scale to the request rates. log record contains the client address, the URL requested, re-

A worker process reads an HTTP request from its pipe, gensponse code, size of the response and the timestamp. We add
ates the HTTP response, chooses between UDP and TCP clamnappropriate number of bytes to the size of the response for
nels and sends the response to the client. If the worker processponse and IP headers (the actual number depends on the re-
chose TCP and it already has an open TCP connection to $p@nse code).
client, it reuses this connection; otherwise it opens a new con-Our simulation assumes that the time to generate a response at
nection to the client. Thus, a worker process can have at mtis server is negligible compared to the value of persistent con-
one TCP connection to a client, although it may have severadction timeout. Thus, we measure the time between request
concurrent connections to different clients. arrivals for persistent connection timeouts. In reality, the server

Each worker process also contains a Timeout thread that isimeasures the time between the completion of one response gen-
voked periodically to close any TCP connections created by tiisation and the arrival of the next request. However, the infor-
process that have been idle for more than a timeout period. Thiation needed to compute this time interval is not available in

VI. PERFORMANCEANALYSIS

Simulation
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reused. Otherwise, a new connection is opened. After the access
attimet, the connectionis closed attime T I M EOUT unless () Max number of concur- (b Total number of TCP connec-

it is reused before that. rent connections. tions.
For the DHTTP case, the response is sent by UDP if the size
of the response is less than a threshold valu®therwise, it is Fig. 8. Number of TCP connections at a server with one connection per client.
sent by TCP, reusing existing connections if available. We use
two threshold values in our simulation - 4K and 1460 bytes. The .
former is an optimistic value based on multiple studies showirqglj'mber of connections at low epd.
.In the DHTTP case, the fraction of responses sent over UDP

that many Web responses_arg smaller than 4K bytes; the Iattev(/z'iss over 58% for the 4K threshold and over 40% for the 1460
a conservative value that fits into one Ethernet MTU.

. tes threshold. Since TCP is used only for large responses,
We are concerned with three performance measures: gig y 9 P

) . . TTP exhibits better utilization of TCP connections. As
maximum number of simultaneous connections observed at wn in Figure 7, the average number of bytes sent over one

server during the simulated period, the total number of CONNEGs. o tion can be over two times higher in DHTTP than in
tions used by the entire trace, and average connection utili TP for 4K size threshold and short timeout values

tion. The first metric indicates the scalability requirements o Figures 8 and 9 depict the results for the case where all clients

the server at peak demarid The second metric shows hOWonly use one connection. Figure 8a shows that while the max-

many requests paid an overhead of TCP connection establ| 1m number of simultaneous connections decreased for both

ment during the trace period. Connection utilization MeASUTES$Tp and DHTTP. the relative difference between the two can
th_e amount of data sent aver a T.CP conngcnon. TcP 'S ORlk) he significant, reaching almost the factor of two for 5 second
mized for large data transfers, which allow it to learn availab Bneout and 4K size threshold. Further Figure 8b shows that
bandwidth and a”_“’”'ze start-up costs. Overall, we would “!f e total number of connections opened by HTTP drops only for
low numbers of simultaneous and total connections and hIH h timeout values, where it was already low. Thus, DHTTP
conpechon utilization. . ) . retains a significant overall performance advantage over the en-
Figures 6 and 7 show the simulation results when clients Cgfi, range even under an unrealistically conservative assumption
open up to three parallel connections to the server. For Apach@ o clients open only one connection at a time to any server
default connection timeout of 15 seconds, our approach redug.eﬁiigure 9 shows that DHTTP's advantage in connection uti-
the maximum number of S|mult0aneous connections by a thigdaiion while still noticeable, is much smaller than in the case
for the 4KB threshold and by 20% for the 1460 bytes thresholgk ¢, e connections per client, except for short timeouts where
The difference can be reduced by decreasing the timeout Va'ﬁ?ITTP’s advantage remains practically the same.
which has in fact been recommended for servers under high load
[7], [13]. But that increases dramatically the total number &. Prototype Testing
connections (Figure 6b), meaning that more requests must pavv

: : ) e tested the original Apache server and our modified ver-
the overhead of connection establishment and slow-start. Thu%’n that speaks DHTTP (referred to as DHTTP server) using

DHTTP has a significant advantage over HTTP over the entk e SURGE workload generator [6]. We found it to be the most

range of timeout values, with most benefits due to the number 0 rooriate workload generator for our bUrnose because it mod-
simultaneous connections at high end of the range and the 1&3pToP 9 purp

8The assumption is unrealistic because there are valid performance reasons,
“The maximum number of concurrent connections a server can support is eneh as the head-of-line delay in pipelining mentioned in Introduction, why
of main parameters provided by server vendors and tested by benchmarks. HTTP 1.1 clients open more than one connection to a server.



10

HTTP —+— 3
- 50000 DHTTP/4K --3-- - 60000 —T T 10 — T
S DHTTP/IMTU ---%-- 54000 |- Timeout=0 sec —+— _| 9l Timeout=0 sec —+— 7
8 L Timeout=1sec -->--- Timeout=1sec --%-- .
£ 40000 X g 48000 - Timeout=15sec --%--- g 8  Timeout=1Ssec -k —
8 = 42000 |- 4 § 7t o E
Z 30000 % 36000 | E g 6 1
% 20000 I o000 7 % 5 h
g E 24000 - 1 = af i
< 10000 £ 18000 |- S g 3 B
2 12000 J - Xmmm T XTI > | s 2}k N
% 5 10 15 20 6000 |- b 1y b
) 0 1 1 1 0 1 1 1
Timeout (sec) 1 2 3 4 5 1 2 3 4 5
Number of Client Machines Number of Client Machines
Fig. 9. Connection utilization with one connection per client.
(a) Throughput with three con- (b) Latency with three connec-
) ) ) ] ) ) nections per client. tions per client.
els the client idle times, allowing TCP connections to time out
in a realistic manner. Beside idle times, SURGE tries to match
empirical distributions of document sizes on the server, request T im0 —— | 0 Tmoose ]
sizes, document popularity, embedded object references, agdisu | Timeamtisse x| g 8 Timeeisee - il
temporal locality of reference. Also important for us is thatg ol 1§ o )
SURGE imitates HTTP1.1 clients, utilizing persistent connecs s - 1 & st x
tions and pipelining. ] B e L 3
SURGE forks several processes, each creating multiple woof==% "% 1 = 2f e 8
. . . .. 6000 - - 1 -
threads that simulate the behavior of individual users. We used ‘ ‘ ‘ e ‘ ‘
current SURGE to test Apache. We also modified SURGE t0 ' \ieaomvaine L Ot
use DHTTP and used this version to test our DHTTP server. All
experiments ran for two minutes. (c) Throughput with one connec-  (d) Latency with one connection
We chose Apache as the basis for our implementation becaus&on per client. per client.
it is by far the most popular Web server. Recently, more efficient _
event-based servers have been built (e.g., [39], [43]). We believe Fig. 10. Apache performance (bottleneck at the server).

our conclusions are not affected by the process-based implemen-

tation of Apache because our DHTTP server is also proce E’SOOMHZ PC with 128MB of memory running Linux RedHat

based and inherits the same overheads_. If anything, DH.T .3 and a variable number of SGI workstations running SURGE
is hurt more by the process-based architecture because it has

. . clients, all connected by a 100Mbps LAN. We ran 4 processes
higher throughput and therefore more context switches. . . .
s .on each client machine, with 50 threads per process for the total
To maximize the throughput of current Apache, we confi

. i i f up to 1000 user equivalents on 5 machines.
ured it to the maximum number of concurrent clients of 20 Figure 10 shows the throughput (reported as the number of
(the default is 150). Increasing the limit further did not lead to 9 gnp P

o X . requests served during the two-minute experiment) and latency
any additional performance gains since the server could not for, .
. of Apache, when the maximum number of parallel TCP connec-

any more worker processes anyway. Since each worker process Co L
d 1ions to a client is set to three and one. The latency in this and all
has at most one TCP connection and because standard L'QHEYJse uent experiments is client-perceived latency as measured
limits the total number of TCP connections that are in the prg- q b P Y

) . i n the client. To compensate for latency hiding due to pipelin-
cess of being established (the server sent the SYN-ACK ano&ay SURGE charges the overlapped latency to only one of the

waiting for ACK from the client to complete the handshake) Ol Swdloads. Eurther. our DHTTP-enabled SURGE issues UDP

are waiting to be accepted to 128, the total number of simulta- . .
; reguests for the page and all its embedded objects at once, thus
neous connections at the Apache server can be at most 328,

factor out the effect of this limit, we artificially limited the num-"" erestimating the latency to some extent. Because underest-

ber of concurrent TCP connections in the DHTTP server to tH(]aat'on affgcts only the |n|t|al_page download and IS amortized
?r all objects of the page, it should not affect noticeably our

same value. Since both servers share the same connection li : : 7
L Lo results. The figures show curves for persistent connection time-
setting it to another value should not significantly affect perfor-

mance trends. We note, however, that in reality DHTTP servé)rl“ltS of 0 (no persistent connections — the choice of many high-

do not have a bottleneck process that accepts all TCP con volume sites), 15 (the default value), and 1 second (which we

tions and therefore the number of TCP connections in DHT Bund to produc_e _the best performance). F|gure_ 11 shows the
. _ . same characteristics for the DHTTP server, for timeout values
is only limited by the maximum number of open sockets.

. . Qf 1, 5, and 15 seconds (we did not consider the timeout of O

All experiments used 1460 bytes for the site threshold and ln/@cause it can lead to a large number of new TCP connections).
for the loss threshold values. .

We see a dramatic performance advantage of DHTTP - an
order of magnitude lower latency and several times higher
throughput. The DHTTP server also scales better and is much

To test the servers for peak performance, we conductedeas sensitive to different persistent connection timeout values
study in a fast LAN environment, to ensure that the bottleneakd the number of concurrent TCP connections to a client. Inter-
is at the server. Our LAN setup included a server on a Pentiwstingly, Apache performance is the worst for the default value

B.1 Bottleneck at Server
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Fig. 12. Comparison of Apache and DHTTP servers: throughput (left) and

) ) latency (right).
(a) Throughput with three con- (b) Latency with three con-

nection per client. nection per client.
that servers must handle.

60000 08 ‘ ‘ — Figure 12 shows the performance of Apache that was mod-
o7} Tﬁ%”{lé% —— ified as discussed (the “Modified Apache” curve) and also the

A performance of the current Apache with clients using early close
policy (the “Altruistic clients” curve). For comparison, it also
duplicates the curves for DHTTP and Apache from Figures 10
and 11, for the best persistent connection timeout value (1 sec-
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e Timeout=5 550 -3¢~ | 1% ond). The modified Apache has the timeout value of 15 seconds.
T 2 2 a4 s T 2 s 4 s The figure shows that the performance of the modified

Numoer of Gifent Machines Numoer o Gifent Machines Apache is very close to the the current Apache with TCP timeout
of 1 second. Since for a non-overloaded server a longer timeout
would resultin lower latency to the clients, we believe this mod-
ification is worthwhile. Altruistic clients result in a huge perfor-
mance improvement for Apache. Still, DHTTP achieves around
20% better throughput and twice as low latency than Apache
with altruistic clients.
of persistent connection timeout, 15 seconds, except for the ex- )
tremely light load. We found the best timeout value to be B2 Bottleneck in the Network
second, and also that the performance improves if clients nevero test the behavior of DHTTP under network congestion,
open multiple parallel connections to the server. A similar olye conducted an experiment over the Internet. For this study,
servation was made in [7]. we used up to three client machines, located at University of
We found the reason for this is that Apache never forcefuliiyashington, Duke University, and New York University. The
closes idle TCP connections until they timeout, even if othgerver was at AT&T Labs in Florham Park, connected to the In-
connections are waiting in the accept queue. In the meantirtsnet by a fractional T3 line with a bandwidth of up to 9Mbps.
the number of backlog TCP connections can reach the limit angé ran two SURGE processes with 50 threads on each client
the server will start dropping TCP SYN requests, sending clientgachine, to observe the DHTTP behavior on the Internet with
into exponential backoff. The same reason explains the negative network below, near, and at saturafiomhe persistent con-
effect of multiple concurrent connections to a client - itincreasegction timeout for both servers is 5 seconds. Since the TCP
the number of connections at the server, with more idle connegcept queue is no longer the bottleneck, the connection time-
tions blocking incoming connections in the queue. out value did not affect performance. For the same reason, cur-
To factor out this implementation artifact, we modifiedent Apache, altruistic clients and modified Apache all showed
Apache as follows. When a worker process is in the blockedry similar performance. We describe here the performance of
readcall, it checks the TCRccept queuevery second. When- current Apache.
ever the accept queue is not empty it closes its current connedRecalling that the UDP channel is not appropriate for these
tion so that a pending TCP connection can be served. The eenditions, our goal is to see how successful the server is in
sulting behavior is that the server uses high timeout when it hasnitoring the congestion and switching to TCP. Figure 13
spare connections and switches to a sub-second timeout otehows throughput and latency of Apache and DHTTP. DHTTP
wise. Recent proposals for dynamic adjustments of the timeauitperforms Apache with one client machine - it has 15% higher
value based on the load and request history indirectly addrés®ughput and half the latency of Apache. On a saturated net-
the same issue [13]. work, Apache has slightly better latency (by up to 13%) and
Furth.er' SURGE clients close ConneCtior-]S after dOwnloadingFrom Figure 12, four SURGE processes generate roughly 10000 requests in
a certain number of HTML pages, according to the generatﬁg minutes, whichytranslates into over 80 requests per second. With the average
schedule. To test a more altruistic client behavior, we modiie size of roughly 10K, this generates around 8Mbps traffic. So, two client
fied SURGE to follow a recently proposedrly closepolicy [7] machines in our WAN experiment should saturate the connection, three would
. . . . . _put it far over the edge and one machine by itself should leave the network very
where clients close their connections after getting all the f'IeSste to but below saturation most of the time, unless the path from the client to
one HTML page, thereby reducing the number of connectioms server includes lower-bandwidth links or there is competing traffic.

(c) Throughput with one connec- (d) Latency with one connec-
tion per client. tion per client.

Fig. 11. DHTTP server performance (bottleneck at the server).
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Fig. 13. Apache and DHTTP server performance under network congestiéing. 14. The throughput of the DHTTP server using TCP and the Apache server
throughput (left) and latency (right). using T/TCP.

TABLE |

A major functional difference between DHTTP and T/TCP
EFFECTIVENESS OF CONGESTION DETECTION IDHTTP SERVER

is that, like other transport-layer optimizations, T/TCP does not
address the issue of the violation of the end-to-end principle by

Client | fraction of | resend/freshl ignored ) . - .
. . interception caches and the severe deployment restrictions it en-
machines UDP ratio resent . L A ;
tails. Beyond this difference, itis interesting to see how DHTTP
responses| requests .
1 18.9% 07% ) and T/TCP compare from purely performance perspective.
o o o Because T/TCP is supposed to be natively supported on
2 8.3% 1.2% 4.9%
3 6.1% 4.9% 35% FreeBSD (although see [14] for our bug report), we ported our
DHTTP server and SURGE to FreeBSD. We further ported the

original Apache server (which already runs on FreeBSD) to use

virtually identical throughput. The increased latency of DHTT ./TCP' Porting Apache required only a minimal change — set-

is probably due to fact that when a UDP request is lost, the cli%ﬂc}?n .tl:]e _ngpg;?]e%‘:%?g Z%;hgossqr?k%éh?;#rs]teir:% ;Zr.rt::r?qgg_
waits for the fixed timeout before resending it. Ny ' Ny ! : !

o ately after servicing all HTTP requests from the incoming seg-
Overall, these results indicate that the DHTTP server success: . -
fully detects the network congestion and switches to TCP. T1§1ent with the FIN flag set (because the FIN flag indicates that

ffie client will not use this connection for more requests, the

ble | provides some insight into the effectiveness of its CONGESS o has No No reason to keep this connection open). We then

tion detection mechanism. We can see that the the fraction Ofi mpared the throughput of DHTTP (using standard TCP) and

sponses sent over UDP channel indeed drops significantly as p%che (using T/TCP). Our setup includes four machines run-

network congestion grows worse. At the same time, the NUMhg FreeBSD 4.7 connected by a 100Mbps switched LAN: a
ber of resent requests remains low (recall that the resend/fr

ratio numbers in the third column are relative to the decreasi MHz Pentium 3 machine with 2G memory as a server and

; : ee 2.8GHz Pentuim 4 machines with 4GB memory each as
0,
number of UDP responses). Also, with three machines, 35 A’f:gi%ents. As before, each client machine runs four processes with

resent requests are ignored by the server. This means the SGLIMEL (eads each. or 200 user equivalents

already sent the responses by TCP, but the congestion is so h'gPo test T/TCP under the most favorable conditions, we used

maet the requests timeout at the clients before the responsesaﬁmistic clients with early close policy to test existing Apache,

which showed the highest performance in our previous tests.
Furthermore, to factor out a policy decision on whether or not
B.3 DHTTP versus T/TCP to send the FIN flag with requests for container HTML objects
Probably the most closely related existing approach ¢ahich would entail, resectively, downloading embedded ob-
DHTTP is Transactional TCP (T/TCP) [9], [38], which reducefects over an extra follow-up connection or incurring an extra
the set-up overhead by caching per-host state from previous coverhead for closing the connection if there are no embedded
nections and allowing the delivery of application data in thebjects), we let the clients send all requests for a page (that is,
first SYN message from a client that has the cached state attthes container object and all embedded objects) at once, along
server. In the best scenario, the entire HTTP download occwith the SYN and FIN flags?
in three segments: the client's SYN segment that also containgigure 14 plots the throughput of DHTTP and Apache using
the HTTP request and and the FIN flag (starting the conn@@TCP under these conditions. As the basis of comparison, it
tion, sending data, and closing the connection in one segmeat¥o plots the throughput of Apache using standard TCP (with
the server SYN/ACK segment that also contains the HTTP ra&truistic clients, since they showed the best performance for
sponse and the FIN flag (at once accepting the connection, seRdP in out tests in Section VI-B.1). We can see that DHTTP
ing response and closing the connection), and the client's AGi¢hieves much better throughput than Apache-T/TCP. This is
segment acknowledging the response. Connections from cliedit® to the fact that T/TCP must still perform all TCP process-
that do not have cached state are established using the normal
TCP handshake. The T/TCP specification also mentions reusinl%We also tested clients that download the container object and subsequent
. . . . embedded objects in two separate T/TCP transactions. As expected, these re-
the congestion window for consecutive connections from ﬂ&ﬁstic clients achieved slightly, up to 5%, worse throughput than the idealized
same client similar to Fast Start. clients presented in Figure 14.
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ing, and because of the bottleneck process in Apache that mugtrom the functionality standpoint, DHTTP retains the end-to-
handle all the incoming connections. In fact, our tests did nend principle of the Internet in the presence of interception Web
show any appreciable advantage of T/TCP over TCP in termoxies, allowing their unconstrained deployment throughout
of throughput. Surprisingly, TCP had actually better throughptite Internet without the possibility of disrupting connections.
at the highest load. We can speculate that this might be due tgrom the performance perspective, with existing HTTP, busy
more careful fine-tuning of TCP performance. servers face a dilemma eftherlimiting the number of Web ac-
Furthermore, servers are reluctant to support T/TCP for sgesses that benefit from persistent connectiotsving to deal
curity reasons, and typically either drop the data from a SYWith a large number of simultaneous open connections. By per-
segmernit' or block the entire segment at the firewall. Indeed, f@rming short downloads over UDP, DHTTP redutesh the
ensure strong TCP guarantees, the server keeps malicious $\iber of TCP connection set-ugsdthe number of open TCP
packets for a long time while trying to complete the connectiaibnnections at the server. At the same time, the TCP connec-
setup: 75 seconds on FreeBSD 4.3 and 45 seconds on FreeB&k% that DHTTP does open transfer larger objects, increasing
4.6. Allowing the size of this packet to increase from 40 bytesnnection utilization. Also, by opening TCP connections back
(SYN packet without data) to 1500 bytes (the maximum datg the clients, the server no longer has a bottleneck process that
gram with MTU discovery) drains server resources that muesceives all TCP connection requests from the clients.
faster. Our performance analysis shows that when the network is not
Although DHTTP also has to spend resources on processithgested, DHTTP significantly improves the performance of
data from the first packet, the application specifics makes it eggeb servers, reduces user latency, and increases utilization of
ier to deal with thet hreat. If the DHTTP server sends a UDRmaining TCP connections, improving their ability to discover
response back, it only deals with this entire request for the diyajlable bandwidth. At the same time, we demonstrate that the
ration of processing, typically milliseconds, and maintains MOHTTP server successfully detects network congestion and uses
state about this request afterwards. If the server must use T&EP for almost all traffic under these conditions.
and is in a danger zone in terms of overload, it can always ré-the protocol achieves these advantages at the expense of ex-
spond to the client with a special UDP response asking the cligff requirements on firewalls and NAT devices. Although these
to re-sent the request over traditional TCP and forget about s irements are similar to those imposed by an increasing num-
current request immediately. In this case, the DHTTP Sengs of other protocols and can be satisfied with an appropriate
will not open the TCP connection back to the client and forgi’pplication-level gateway, they certainly complicate the config-
the associated advantages, but the only expense compared @ &ion of these devices. Another limitation of DHTTP is that it
isting Web servers is the extra round-trip for legitimate clients, @5y es out of scope the encrypted Web traffic.
reasonable price at the time when server survival is in jeopardy.A number of further optimizations to the protocol are clearly

VIl. FUTURE WORK possible. _Hovv_ever! even the initial minima_list_i_mplementa_—
. ) tion described in this paper demonstrated significant benefits

There are a number of ways in which DHTTP could pos¢ pHTTP over existing transport. The source code for our
tentially be improved. We discussed throughout the paperyyTTp server implementation, as well as SURGE workload
possibility of native support for non-idempotent requests, ﬁ”S'enerator modified to use DHTTP, is available [14]. Beyond

grained channel selection based on conditions of network c@gnchmarking DHTTP servers, modified SURGE can also serve
nections to individual client autonomous systems or subnets, dys 5, example of a DHTTP client implementation.

namic policies for size threshold selection, and sending a UDP
response over several separate UDP packets.

In addition, since the server in DHTTP can decide how many
connections to open to a client, it would be interesting to capi-We would like to thank Paul Barford for making SURGE
talize on this capability to improve performance. For examplayailable and for his help with our SURGE questions. We are
if the server has few open connections overall, it may decideitwlebted to Jennifer Rexford for numerous insightful comments
open many TCP connections to the client to parallelize serah earlier drafts of the paper. We are grateful to Balachander
ing multiple embedded objects. If the server already has a lak§gshnamurthy for the traces used in our simulation study, and
number of connections, it may send these objects sequentistifd Lazowska, Erik Lundsberg, and Amin Vahdat for access to
over the same connection, or even use individual short-livéte SGI machines used in our Internet experiments. Thanks also
connections in a succession. Note that DHTTP enables thgsdo Steve Bellovin, Matthew Roughan, and Avi Rubin for their

ACKNOWLEDGMENTS

flexible policies because of server-initiated connections. help with security and firewall issues, and to Fred Douglis, Larry
Masinter, Mikhail Mikhailov, Oliver Spatscheck, Graig Wills,
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