
1

DHTTP: An Efficient and Cache-Friendly Transfer
Protocol for the Web

Michael Rabinovich Hua Wang
AT&T Labs – Research New York University
misha@research.att.com wanghua@cs.nyu.edu

Abstract—
Today’s HTTP carries Web interactions over client-initiated TCP con-

nections. An important implication of using this transport method is that
interception cachesin the network violate the end-to-end principle of the In-
ternet, which severely limits deployment options of these caches. Further-
more, while an increasing number of Web interactions are short, indeed
frequently carrying only control information and no data, TCP is often in-
efficient for short interactions.

We propose a new transfer protocol for the Web, called Dual-transport
HTTP (DHTTP), which splits the traffic between UDP and TCP channels.
When choosing the TCP channel, it is the server who opens the connection
back to the client. Through server-initiated connections, DHTTP upholds
the Internet end-to-end principle in the presence of interception caches,
thereby allowing unrestricted caching within backbones. Moreover, the
comparative performance study of DHTTP and HTTP using trace-driven
simulation as well as testing real HTTP and DHTTP servers showed a sig-
nificant performance advantage of DHTTP when the bottleneck is at the
server and comparable performance when the bottleneck is in the network.

I. I NTRODUCTION

This paper addresses two important issues in the current
HTTP protocol: the violation of the end-to-end principle of the
Internet by interception caches and performance implications of
using client-initiated TCP as the transport protocol.

Interception caches [31] intercept client requests on their path
to origin servers and respond to clients on servers’ behalf. Inter-
ception caching is attractive to Internet Service Providers (ISPs)
because it occurs transparently to clients and thus relieves ISPs
of the administrative burden of configuring client browsers; in
fact, ISPs often do not even know or have control over the end-
users, as their immediate clients may actually be other ISPs or
corporate networks. On the other hand, interception caches use
servers’ IP addresses when responding to clients thereby imper-
sonating the origin servers and violating theend-to-end princi-
pleof the Internet [33]. One particular implication of this viola-
tion is that an interception cache can disrupt a Web intercation if
some client packets bypass the interception cache on their way
to the server (see Section IV-A). As a result, interception caches
can only be deployed safely if there is a point in the network that
is guaranteed to see all packets from a given client. This implies
significant deployment limitations for interception caches. In
general, because of its violation of the end-to-end principle, in-
terception caching gave rise to much controversy in the Internet
community.1

With regard to performance, HTTP was conceived as essen-
tially a protocol for transferring files. A logical consequence

A preliminary version of this paper appeared at INFOCOM’01.
1See the email discussion in http://www.wrec.org/archive/, especially the

threads “Recommendation against publication of draft-cerpa-necp-02.txt” and
“Interception proxies” in April, 2000.

was to design it on top of a connection-oriented transport pro-
tocol such as TCP. At the same time, the current Web workload
exhibits a large number of short page transfers and interactions
for control purposes rather than data transfers. For example, in
a trace of a large number of modem users [15], 26% of all inter-
actions were cache validations that resulted in a “not-modified”
response. Arlitt et al. observed that even for high-speed ca-
ble modem users (who intuitively would be more likely to ac-
cess larger objects) and even considering only responses that did
carry data (“successful” responses with 200 response code), the
median response size was just 3,450 bytes [4]. Median response
sizes of 1.5-3KB were also reported in numerous earlier studies,
e.g., [1], [23], [5]. Such behavior is not always served well by
TCP because of high overhead of TCP connection establishment
and because of the strain connection maintenance places on the
servers.

In HTTP 0.9, each Web download paid a TCP connection es-
tablishment overhead. Later versions of HTTP address these
overheads by introducingpersistent connectionsand pipelin-
ing [17]. Persistent connections allow a client to fetch multi-
ple pages from the same server over the same TCP connection,
amortizing the TCP set-up overhead. Pipelining lets the client
send multiple requests over the same connection without wait-
ing for responses. The server will send a stream of responses
back.

These features have been shown to reduce client latency and
network traffic [28]. However, they do not eliminate all over-
heads of TCP, and in fact may introduce new performance penal-
ties, especially when the bottleneck is at the server [7]. Persis-
tent connections increase the number of open connections at the
server, which can have a significant negative effect on server
throughput. In fact, a study of 500 top Web sites showed that a
quarter of them did not support persistent connections in the Fall
of 2000 and that the number of such sites dropped only from 29
to 25% during the preceding 18 months of study [21]. We spec-
ulate that server throughput concerns play an important role in
this phenomenon.

Pipelining has a limitation that servers must send responses in
their entirety and in the same order as the order of the requests
in the pipeline. This constraint causeshead of linedelays when
a slow response holds up all other responses in the pipeline. To
avoid head of line delays, browsers often open multiple simul-
taneous connections to the same server, further increasing the
number of open connections and degrading the throughput of a
busy server (see [7] and Section VI-B).

To limit the number of open connections, servers close con-
nections that remain idle for apersistent connection timeoutpe-

2

riod. Busy sites often use short connection timeouts, which re-
duces the number of open connections but at the same time in-
creases the number of requests that pay the connection set-up
costs (see Section VI-A). Moreover, persistent connections that
servers do maintain are often underutilized, which wastes server
resources and hurts the connection’s ability to transmit at proper
rate (since well-behaving TCP implementations shut down the
transmission windows of idle connections [37]).

The Dual-Transport HTTP protocol (DHTTP) described in
this paper incorporates two main ideas. First, it splits Web traffic
between UDP and TCP. A DHTTP client typically sends all re-
quests by UDP. The server sends its response over UDP or TCP,
depending on the size of the response and the network condi-
tions. By using UDP for short responses, DHTTP reducesboth
the number of open connections at the serverandthe number of
TCP connection set-ups. In this way, DHTTP improves client
latency, since fewer Web interactions wait for the connection
set-ups, and increases server capacity by reducing the number
of open connections servers must manage. Also, the utilization
of the remaining TCP connections increases because they are
reserved for larger objects. Finally, DHTTP does not have the
ordering constraints of pipelining.

The second idea behind DHTTP is that, when choosing TCP,
a DHTTP server establishes the connection back to the client,
reversing in a sense the client/server roles in the interaction.
While having some implications with firewalls (see Section IV-
C), this role reversal brings major benefits. Most importantly, it
allows interception caches to use their true IP addresses in their
communication with clients. Thus, DHTTP retains the end-to-
end principle of the Internet even with interception proxies. In
particular, DHTTP would allow interception proxies to be de-
ployed in arbitrary points in the network and hence enable a
wide integration of caches into the Internet fabric. Furthermore,
as we will see in Section III, server-initiated TCP avoids an in-
crease (compared to the current HTTP) in the number of mes-
sage round-trips before the client starts receiving the data over
the TCP channel, even though TCP set-up is preceded by an “ex-
tra” UDP request message from the client. (Of course, when the
server uses UDP, the number of message round-trips decreases.)
Finally, it removes a bottleneck process at the server that accepts
all TCP connections.

Many application-level protocols split their traffic between
TCP and UDP channels. This includes DNS, which switches
from UDP to TCP when responses exceed 512 bytes [37] and
RTSP, which uses TCP for control commands and UDP for
stream data [34]. Further, in the active mode of the FTP pro-
tocol, FTP servers open TCP connections back to FTP clients
for data transfers [37]. We argue that similar approaches are
appropriate for Web traffic.

Obviously, DHTTP represents a significant deviation from
existing practice. However, it can be introduced incrementally
while co-existing with current HTTP in the transitional period
(see Section IV-E). We evaluated the performance of DHTTP
by conducting a simulation study as well as by implementing
and testing a real DHTTP server, built as a modification of the
Apache 1.3.6 Web server [3]. The source code of our DHTTP
implementation is available [14].

II. RELATED WORK

Several performance enhancements to TCP address TCP set-
up costs. The TCP Fast Start technique [29] allows caching
the congestion window size, avoiding the slow-start overhead
for consecutive connections from the same client. The shared
TCP control blocks optimization (S-TCP) [40] shares slow-start
information across concurrent connections between a pair of
hosts, helping the connections learn the appropriate window size
faster. The Transactional TCP (T/TCP) extension piggybacks
data on the handshake control segments, thus avoiding the la-
tency penalty for performing the handshake prior to page down-
load. Still, none of these approaches relieves the server from the
overhead of initializing and maintaining open connections, nor
do they address the violation of the end-to-end principle by in-
terception caches. We provide a detailed comparison of DHTTP
with T/TCP later in Section VI-B.3.

The TPOT approach by Rodriguez et al. [32] addresses the
end-to-end issue of interception caches at the TCP layer, by
switching to the true IP address of the interception cache dur-
ing TCP hand-shake. Unlike our approach, TPOT requires a
change to the TCP stack and does not address its performance
implications.

The HTTP-ng initiative [35] proposes to multiplex multiple
application-level protocol sessions over the same TCP connec-
tion. It allows fragmenting and re-ordering of multiplexed re-
sponses and, similar to persistent connections, amortizes TCP
connection set-up over multiple fetches. However, it duplicates
much functionality of the TCP at the application level, thus in-
troducing unnecessary overhead. For instance, the application
level performs its own flow control and its own packet order-
ing. There is also an extra level of buffering and copying. To be
fair, the primary goal of HTTP-ng is not performance but such
benefits as “easier evolution of the protocol standard, interface
technology that would facilitate Web automation, easier appli-
cation building, and so on” [19].

The proposal of this paper is different from all of these ap-
proaches in that it asserts that a TCP pipe is not always an ap-
propriate transport for Web traffic. Consequently, our proposal
allows the parties to choose and go back and forth between the
UDP and TCP channels.

In independent work, Cidon et al. proposed using a hybrid
TCP-UDP transport for HTTP traffic [12]. This proposal also
splits the HTTP traffic between UDP and TCP. A client sends
a UDP request. The server replies by UDP if the response is
small; otherwise, the server sends back a special UDP response
asking the client to resubmit request over TCP. The client also
resubmits the request over TCP if no response arrived within a
timeout. Our proposal is similar in its basic premise but differs
from Cidon et al. in two major ways. First, unlike Cidon et al.,
DHTTP servers initiate connections back to the clients, which
allows interception caches to not violate the Internet’s end-to-
end principle and brings other important benefits already men-
tioned in the Introduction. Second, our mechanism for choosing
between TCP and UDP channels explicitly addresses the issue
of network congestion. Furthermore, by not prototyping their
idea, Cidon et al. could not quantify its affect on server perfor-
mance.

A proposal to split Web traffic between TCP and UDP was

3

Client Server
SYN

SYN

Ack/Req

Data

(a) Current
HTTP.

Client Server
Request

Data

(b) DHTTP over
UDP.

Client Server

Data

UDP req

TCP−SYN

TCP−SYN

(c) DHTTP over
TCP.

Fig. 1. Message exchange for a Web interaction.

also described by Brown in his Master’s Thesis [10]. However,
this proposal does not address the network congestion issue,
which we found can cause severe performance degradation if
traffic is split regardless of network conditions. Another differ-
ence with our protocol is that [10] achieves reliability through
client acknowledgments and server re-transmissions. This in-
creases the network overhead for packet acks and server over-
head for keeping unacknowledged packets in the buffers and
managing per-packet timeouts and retransmissions. Also, while
proposing that servers open TCP connections to clients, [10]
does not make a connection with unconstrained deployment of
interception caches that this arrangement allows, which is a key
insight of the current paper. Finally, by choosing a Perl im-
plementation (with unrealistically low server throughput of un-
der 10 requests per second) and not considering persistent con-
nections and pipelining of existing HTTP in their experimental
study, [10] does not make a convincing case for splitting the traf-
fic. We base our experiments on a production Apache server and
we include persistent connections with pipelining in our experi-
ments.

Previously, Almeroth et al. proposed to use a UDP multicast
for delivery of the most popular Web pages [2]. Using multicast
to deliver popular Web pages to proxies has been proposed by
Touch [41]. In contrast to these works, we propose to use UDP
for much of routine Web traffic.

Analytical models for HTTP performance over TCP and
ARDP, an alternative connection-oriented protocol built over
UDP, are provided and validated in [18]. Unlike our approach,
this work does not consider using raw UDP or switching be-
tween connection and connectionless transport.

III. DHTTP PROTOCOL

In DHTTP, both Web clients and servers listen on two ports,
a UDP and a TCP, except that servers use well-known ports (or
ports specified in the URLs) and clients use so-called ephemeral
ports, that is, ports selected anew for a given download. Thus,
two communication channels exist between a client and a server
- a UDP channel and a TCP channel. The client usually sends
its requests over UDP. Even if an open TCP connection to the
server is available, the client uses UDP because it cannot be sure
the server still keeps the TCP connection on its end. Only when
uploading a large amount of data (e.g., using a PUT request)
and in other special cases discussed later would the client use
TCP. By default, a request below 1460 bytes, the payload size

of an Ethernet maximum transfer unit (MTU) datagram, is sent
over UDP. Virtually all HTTP requests fall into this category
[23], [8]. For conceptual cleanness, the client itself initiates the
TCP connections to send requests instead of reusing connections
initiated by the server for data transfer.

When the server receives the request, it chooses between the
UDP and TCP channels for its response. It sends control mes-
sages (responses with no data), as well as short (below 1460
bytes, the payload of one Ethernet MTU, by default) data mes-
sages, over UDP even if there is an open TCP connection to the
client. This avoids the overhead of enforcing unnecessary re-
sponse ordering at the TCP layer. A UDP response is sent in
a single UDP packet since our default size threshold practically
ensures that the packet will not be fragmented. Dividing a re-
sponse among several UDP packets would likely allow higher
size thresholds and is a promising enhancement for the future.
For long data messages (over 1460 bytes by default), the server
opens a TCP connection to the client, or re-uses an open one if
available. If the server receives a request over a TCP connection
and chooses to respond by TCP, the server sends its response
over the client-initiated TCP connection.2

Figure 1 shows the message exchange of a current HTTP in-
teraction and a DHTTP interaction with the response sent over
UDP and TCP. It is important that even when choosing TCP,
DHTTP does not introduce any extra round-trip delays com-
pared to the current Web interactions. While it may appear
counter-intuitive because in DHTTP, TCP establishment is pre-
ceded by an “extra” UDP request, the comparison of Figure 1a
and 1c shows that data start arriving at the client after two round-
trip times (RTTs) in both cases. In fact, a possible significant
(but unexplored in this paper) advantage of DHTTP over current
HTTP in this case is that the server can overlap page generation
with TCP connection establishment.

Since responses may arrive on different channels and out of
order with respect to requests, the client must be able to match
requests with responses. Consequently, a client assigns a ran-
domly chosen request ID to each request. The request ID is
reflected by the server in the response and allows the client to
assign the response to the proper request.

The request ID must be unique only to a given client and only
across the outstanding requests that await their responses. We
allocate eight bytes for the request ID, sufficient to safely as-
sume no possibility of a collision [25]3.

The client must also let the server know which ports it lis-
tens to on both channels. To save on the overhead, we note that
source port number of the channel used by the request is in-
cluded in the IP headers already. So, the request must include
the port number of the other channel only. Consequently, our
request message has a port number field, which contains client’s
TCP port number if the request is sent over UDP and UDP port
number if the request is sent over TCP.

Figure 2 summarizes the DHTTP message formats. In ad-
dition to the request ID and port number, the request message

2Note that our current prototype does not implement the portion of the proto-
col that concerns sending requests over TCP.
3In fact, our DHTTP prototype uses only two-byte sequence numbers for re-

quest IDs, which we later realized is not adequate given fast improvements in
Web proxy performance and some security issues discussed in Section IV-C.

4

Flag HTTP Request ...Port
Number

64 800 88

Request ID

0 64

Request ID HTTP Response ...

(a) Request

(b) Response

Fig. 2. DHTTP message formats.

includes a byte worth of flags. The only currently used flag is
“resend” flag that indicates a duplicate request. Thus, DHTTP
adds eleven bytes to every request. The response includes only
the request ID, for an eight-byte overhead.

A. Reliability and Non-Idempotent Requests

Given the best-effort nature of the UDP channel, we must pro-
vide a reliability mechanism. A straightforward way to provide
reliability would be to make clients acknowledge every UDP
packet received and servers resend unacknowledged UDP pack-
ets. This, however, would increase network traffic for acknowl-
edgments and server overhead for storing unacknowledged UDP
packets and for managing per-packet timeouts and retransmis-
sions. These overheads would be paid whether or not a packet
loss occurs.

We believe this approach is never optimal. When packet loss
is low, it imposes the unnecessary overheads. When it is high, an
implementation would be hard-pressed to compete with highly
optimized TCP. So, instead of trying to build reliability into
the UDP channel, the DHTTP protocol simply stipulates that
a client may resend a UDP request if the response does not ar-
rive for a timeout period, with the resent flag set. A large re-
quest timeout (we use 5 and 10 seconds) with a limited number
of resends ensures that clients do not overwhelm a server with
repeated resends. In principle, clients could use more sophis-
ticated strategies such as smaller initial timeouts followed by
exponential backoff [26].4.

We leave it to the servers to efficiently deal with resent re-
quests. They may re-generate responses, or cache UDP re-
sponses in the buffers so that they can be re-transmitted quickly.
However, DHTTP stipulates that a response to a resent request
be sent over TCP for congestion control (see Section III-B).

A related issue is support for non-idempotent requests, which
should not be re-executed. Examples of such requests include
some e-commerce transactions, such as an order to buy or sell
stocks. Following its general minimalist approach, DHTTP cur-
rently deals with non-idempotent requests by delegating them to
TCP transport, instead of providing special support at the appli-
cation level. Since non-idempotent resources are by definition
not cacheable, this will not reduce the friendliness of DHTTP to
interception caches. Building native support for non-idempotent
requests is also possible but would be premature at this stage.

4While nothing would prevent the client to disregard this requirement and re-
send requests in quick succession, this problem is exactly the same with today’s
Web clients. Fighting these so calleddenial of serviceattacks is outside the
scope of this paper.

There are two ways to delegate non-idempotent requests to
TCP. In one method, the protocol portion of a URL would pre-
scribe the transport protocol to be used by clients. (This is the
approach used previously by the RTSP protocol [34].) For in-
stance, we can have a convention that, for URLs of the form
“dhttpt://<rest-of-URL>”, a client must send requests by TCP,
while for URLs that start with “dhttp:”, it can use UDP. Then,
all non-idempotent URLs would be given the “dhttpt:” prefix.

Alternatively, the protocol can define a special server re-
sponse that instructs the client to resend its request over TCP.
This method does not require the Web site to use special URLs
for non-idempotent resources but adds a round-trip delay to the
response time when these resources are accessed. As discussed
in Section VI-B.3, this response is also useful to improve server
resilience to denial of service attacks.

B. Congestion Control

DHTTP servers must avoid flooding a congested network
with UDP messages. Instead of implementing its own conges-
tion control, DHTTP again leverages TCP by requiring that re-
sponses to any resent requests be sent over TCP. So, any time a
packet loss occurs, the server switches to TCP with its conges-
tion control for this interaction. An HTTP server using MTU
discovery [27] sends packets with payload of 1460 bytes over
the Internet and has the initial TCP window for data transfer
equal to two packets5. Thus, DHTTP server could in principle
send up to 2920 bytes by UDP without relaxing TCP’s conges-
tion control. Our current default threshold of 1460 bytes makes
DHTTP servers even more conservative than HTTP servers in
terms of congestion control within one Web download.

One could argue that DHTTP servers may still create traffic
bursts by sending a large number of UDP packets belonging to
distinct parallel downloads. However, short parallel TCP con-
nections will create similar bursts in existing HTTP due to SYN
and the first data packets. So, it is only in the case of multi-
ple short downloads to thesameclient reusing a persistent TCP
connection in existing HTTP, where DHTTP may be more ag-
gressive. Even in this case, when the fraction of resent requests
becomes noticeable (indicating possible congestion), DHTTP
servers starts using TCP almost exclusively (see Section III-C).
In our experiment over congested Internet, only 6% of responses
were sent over UDP. Thus, native TCP congestion control was in
place for 94% of interactions. Finally, Feldmann et al. showed
that although most Web transfers are short, a majority of the
bytes and packets belong to long transfers [16], and DHTTP
uses TCP with its native congestion control for them.

C. Choosing a Channel

The server must choose between TCP and UDP based on the
response size and network conditions. When the network is not
congested and packet loss is low, then the best strategy for the
server would be to maintain no state for sent responses. This
strategy optimizes for the common case of no packet loss, at the
expense of having to re-generate the response after a loss does
occur.

5The initial window size is 1 but most implementations increase it after re-
ceiving the TCP SYN-ACK packet.

5

However, when the network is congested, this strategy is ex-
tremely poor. Not only do the UDP responses have to be re-
regenerated and re-transmitted often, but even TCP responses
may arrive at clients so slowly that clients send duplicate re-
quests for them. The result is that the server sends many du-
plicate responses, further aggravating network congestion. The
same situation may occur with compute-intensive responses
which may take a long time to reach the client.

To address this issue, our server maintains a “fresh requests
counter”, incremented any time the server sends a response by
UDP to a request with unset resend flag, and a “resent requests
counter”, which counts the number of resent requests received.

Our algorithm for choosing a channel uses aloss threshold
parameter,L, (currently 1%) and asize thresholdparameterS
(1460 bytes by default). All responses exceeding the size thresh-
old as well as those in reply to resent requests, are sent over TCP.
The choice for the remaining responses depends on the ratio of
resent request counter to fresh request counter. If this ratio is
belowL, these responses use UDP. The ratio aboveL indicates
high packet loss and would suggest sending all responses by
TCP. However, the server must still send a small number of re-
sponses over UDP to monitor the loss rate, since losses in the
TCP channel are masked by the TCP layer. Therefore, we chose
rather arbitrarily to send1 � L fraction (or 99%) of small re-
sponses over TCP and the remaining small responses over UDP
in the high loss condition.

In summary, the algorithm for choosing a channel is as fol-
lows:

1. Choose TCP for all large responses, i.e., whose size ex-
ceedsS, as well as for all resent requests.

2. If the ratio of resent request counter to fresh request
counter exceedsL, enter a “high loss” mode, else enter a
“low loss” mode.

3. In the low loss mode, choose UDP for all small responses,
i.e., those below the size thresholdS.

4. In the high loss mode, choose TCP for the1 � L fraction
of small responses and UDP for the remainingL small re-
sponses.

There is still a race condition mentioned earlier, where a client
may time out and resend a request before the TCP response to
this request arrives. To address this race condition, our server
maintains a circular buffer of global request IDs (which is a
combination of the client IP address and request ID from a re-
quest) that have been responded to by TCP. The buffer has room
for 10000 global request IDs. When a resent request arrives, the
master process ignores it if it is found in the buffer, since the
response was already sent by TCP that has reliable delivery.

A potential limitation of the above algorithm is that the server
maintains aggregate packet loss statistics. While the aggregate
statistics reflect well the congestion of the server link to the In-
ternet, congestion of network paths to individual clients may
vary. Thus, enough clients with congested links can make the
server use TCP even for clients with uncongested links. Con-
versely, the server may use UDP for an occasional congested
client if its connection to the rest of the clients is uncongested.
The investigation of finer grained algorithms, which would track
network conditions at at the client autonomous system or even
subnet granularity, is an interesting direction for future future

Client Server

Cache

Path1

Path2

Acks

Data

Fig. 3. Problematic deployment of interception cache.

work. At this point, we only note that if a UDP response to the
congested client is lost, the client will resend its request with the
resentflag set, forcing the server to use TCP for this interaction.

Choosing the size threshold presents another interesting
tradeoff. A large value will reduce the number of TCP connec-
tions by sending more responses over UDP; however, if it ex-
ceeds one MTU (1500 raw bytes or 1460 payload bytes), some
responses in the current version of DHTTP will be fragmented.
Fragmentation degrades router performance [20]; also, the loss
of any fragment will entail resending the entire packet, increas-
ing response latency and bandwidth consumption. Thus, in a
high loss environment such as Internet,S should be limited to
one MTU. In a low loss network such as a LAN or intranet a
higher value ofS may be appropriate. Moreover, DHTTP could
be extended to allow large responses to be sent over multiple
UDP packets. This would avoid fragmentation and allow clients
to issuerange requests[17] to obtain just the missing portions of
the response in the aftermath of a packet loss. Exploring this ex-
tension and the dynamic policies for choosing the size threshold
is another promising direction for future research.

IV. I MPLICATIONS OF DHTTP

A. DHTTP and Interception Caches

Interception cachinghas been an enticing idea for ISPs since
it allows them to cache Web content in the network transparently
to clients. With interception caching, routers or switches on the
request path to the server divert the request to a proxy cache,
which accepts the connection and send the response as if it were
the origin server. To impersonate the origin server, the cache
uses the IP address of the origin server as the source IP address
of the response packets. Since this breaks the end-to-end princi-
ple of the Internet, interception caching has raised much contro-
versy. The main concerns are the possibility that an interception
cache may disrupt TCP connections and that it deceives clients
into assuming they interact with end servers, so that the clients
may neglect adding appropriate cache control headers into their
requests.

Connections can be disrupted when different packets from the
client choose different paths to the server. For instance, in Fig-
ure 3, assume that half way through the download of a page from
the cache, TCP acknowledgments from the client will choose
the upper path and start arriving at the origin server, which will
discard them since it does not recognize the connection. In the
meantime, the cache will not receive any acknowledgments and
will eventually timeout the connection.

These problems may occur even without route changes, e.g.,
when OSPF routers forward packets using round-robin load bal-
ancing over multiple shortest path routes. In fact, with route load

6

balancing, an inappropriate placement of interception cache in
the network may disrupteveryWeb interaction going through
the ISP. In any case, most ISPs are not willing to add extra con-
nection failures, however few. Thus, they limit deployment of
interception caches to only network points traversed byall pack-
ets from clients. In particular, they typically avoid interception
caches in transit backbones and turn off caching for requests ar-
riving from another ISP or from clients known to obtain Internet
connectivity from multiple ISPs.

DHTTP retains the end-to-end principle even with intercep-
tion caching. A DHTTP interception cache will intercept only
requests sent over UDP and pass through any requests using
TCP. As already mentioned, these requests will be either data
uploads to servers or requests for non-idempotent resources, the
kinds of requests that usually cannot benefit from caches any-
way. So, restricting interception caches to UDP requests will
not reduce cache effectiveness.

When a DHTTP cache intercept a UDP request, it will either
respond by a UDP packet, or establish a connection back to the
client. In either case, it will use its true source IP address (refer
to Section IV-C for security considerations). At the transport
layer, no IP impersonation occurs and all packets will arrive at
each end regardless of routing path properties. Thus, DHTTP
would enable a wide integration of interception caches into the
Internet fabric, without any consideration of routing policies.

Further, the client is aware it speaks with the cache and not the
end server since the response comes from a different IP address.
A configuration option can thus be easily added to clients that
would allow them to bypass all interception caches or selectively
allow or exclude interception caches on certain subnets or for
requests to certain Web sites.

B. Addressing Limitations of HTTP over TCP

Busy HTTP servers face a dilemma ofeithera large number
of simultaneous open connections (when using a long persistent
connection timeout)or a large number of of client requests that
pay TCP set-up costs (when using short timeouts). By perform-
ing short downloads over UDP, DHTTP reduces the number of
TCP connection set-upsandat the same time reduces the num-
ber of open TCP connections at the server. Furthermore, the
TCP connections that DHTTP does open transfer larger objects,
increasing connection utilization.

DHTTP also eliminates the head-of-line delay problem of
pipelining in existing HTTP. Since it provides the means for
explicitly matching of requests and responses, DHTTP has no
need for imposing any ordering constraints on server responses.
In DHTTP, responses may use UDP or TCP, they may reuse the
same TCP connection or use new connections; in any case, the
order in which responses are sent is immaterial.

DHTTP effectively addresses another potential problem re-
lated to pipelining, first described by Frystyk Nielsen et al. [28].
Unilateral closing of a persistent connection by the server may
occur when there are in-transit pipelined requests that the client
has sent before receiving the FIN message indicating the termi-
nation of the connection. Pipelined requests that arrive to the
server after it closed the connection will cause the “reset” mes-
sage unless the server keeps the receiving half of the connection
open. Upon receiving the reset, the client’s TCP stack will dis-

card all data that it has received but has not yet acknowledged
back to the server. The connection will have to be re-established,
and the discarded data requested and sent again.

DHTTP allows either the client or the server to unilaterally
close the TCP connection and at the same ensure that the con-
nection has no in-transit data. A client can close a connection to
a server when there are no outstanding requests to this server. A
server can close a connection to a client at will after sending the
current response, since new requests from the client would ar-
rive on the UDP channel or a different TCP connection. While
an HTTP server can also address this problem by keeping the
receiving part of the connection open [28], DHTTP allows a
cleaner solution since it avoids in-transit requests altogether.

C. Firewalls and Security

DHTTP imposes similar requirements on firewalls as many
other protocols. In particular, the firewall must open a limited-
time “hole” to the client UDP and TCP ports specified in a
DHTTP request, so that the DHTTP response can get through.
Modern firewalls, such as widely used FireWall-1 [11], provide
this functionality for other protocols and are capable for main-
taining the necessary state from previous requests. For example,
for RTSP protocol, FireWall-1 opens a temporary hole for in-
coming UDP packets to the client’s port specified in the client’s
SETUP request. To support FTP in active mode, FireWall-1
opens a similar hole for incoming TCP connections to the port
specified in the client’s PORT command.

DHTTP shares with active FTP the vulnerability to an attack
through a malicious applet described in [24]. In this attack, a
malicious site entices the client to visit its Web page, which con-
tains an applet that generates an FTP request with the sole goal
of opening the hole to incoming TCP connections to a vital port,
such as port 23 used by telnet, giving the attacker an opportu-
nity to try a login password. By the same token, the remedy
described in [24] and implemented in Firewall-1, which is to
prohibit clients from using low port numbers used by telnet and
other entry points, also applies to DHTTP.

Further, if interception proxies are allowed to use their true IP
addresses, the firewall must let packets with an arbitrary source
IP address through the hole to the client ports. This is a devi-
ation from existing firewalls that only allow incoming packets
from the IP address matching the destination IP address of the
request packet that opened the hole. Since learning this IP ad-
dress requires an attacker to have the ability to intercept request
packets, removing this requirement may seem as if lowering the
bar for the attacker.

A closer analysis, however, shows that even with DHTTP, a
successful attacker would still have to intercept request packets.
First, the attacker still has to learn the correct client port number
to get through the firewall, and it has only short time to guess the
port before the hole closes. To complicate guessing port num-
bers, a client using DHTTP in the clear can frequently change
its port numbers, every time choosing a different random port
number6. Second, even if the imposter guessed the port num-
ber in time and passed through the firewall, its packets would be

6While many OS kernels seem to allocate smallest available port numbers,
changing it to random numbers is straightforward.

7

Attacked
 server

Malicious
 host

DHTTP requests with

attacked server address

DHTTP responses

Unsuspecting
 servers

Fig. 4. An induced TCP SYN attack.

discarded by the client because they will not match a valid re-
quest ID number (the likelihood of guessing an 8-byte random
request ID can be safely dismissed [25]). Learning the correct
request ID would require intercepting the request. In fact, it
is not inconceivable for a firewall to remove any possibility of
letting these requests through by making holes specific to the
request IDs. Recent proxy logs showed that over 20 thousand
well-connected users generated peak request rate of less than
300 requests per second [42]. Assuming on average it takes a
second for the HTTP response to arrive, this would require a
firewall serving a 20,000 people enterprise network to maintain
a state about only a few hundred requests at a time.

The attacker can also attempt a SYN attack against a DHTTP
server using third-party DHTTP servers. In this attack, il-
lustrated on Figure 4, the attacker sends DHTTP requests for
large objects to arbitrary other DHTTP servers with the attacked
server’s IP address as the source address. The contacted DHTTP
servers will attempt to respond by opening TCP connections to
the specified address and as a result, the attacked server will face
a large number of TCP SYN packets from these servers, which
unknowingly participate in the attack. Fortunately, the defense
used against the active FTP attack applies here as well. Specif-
ically, one must allocate non-overlapping port number ranges
to DHTTP servers and clients. Then, if the attacker specifies
a low source port number in its requests, the contacted servers
will recognize these requests as fraudulent and not act on them.
If the attacker specifies a high port number, the SYN packets
reaching the attacked server will be addressed to an unexpected
port and will be discarded by the server or its firewall.

We stress that both DHTTP and existing HTTP are vulner-
able to an imposter with a capability to intercept and examine
request packets. In particular, such imposter can substitute the
legitimate content with its own. In existing HTTP, it would do so
by learning the intended Web server IP address, and in DHTTP
by learning the client port number and request ID. Only an en-
crypted version of the protocol, be it HTTP or DHTTP, can pro-
tect against such an attack. Similar to non-idempotent requests,
we assume that clients will choose the TCP channel to send re-
quests for secure downloads. Because the cost of setting up a
secure session dwarfs the cost of TCP handshake and because
interception proxies do not handle encrypted traffic, there ap-
pear to be no tangible benefits in using UDP for either requests
or responses, and the current protocol for encrypted Web com-
munication, SSL, does not support UDP exchanges.

D. Network Address Translation

As is the case with firewalls, DHTTP’s traversal of NAT
(network address translation) devices imposes requirements on
these boxes that are similar to many other protocols. A NAT
box hides IP addresses of hosts behind it by translating their
addresses and port numbers to distinct external addresses and
port numbers. To allow unambiguous translation of incoming
packets back from external to internal addresses, the NAT box
ensures that no two hosts are mapped to the same external ad-
dress/port pair at the same time.

To support DHTTP, the NAT box must also translate the
ephemeral TCP port in outgoing DHTTP requests, and trans-
late back incoming TCP packets accordingly. In other words,
the NAT box must be able to translate a new packet flow based
on the DHTTP request packet. The ability to consider packet
payload in address translation is calledapplication awareness,
and the ability to translate additional packet flows based on a
previous packet is calledstateful translation. Both capabilities
are required for existing protocols and supported to varying ex-
tend by most modern NAT devices. An indicative example is
voice over IP [22], where a session starts using the Q.931 setup
protocol, which specifies ephemeral ports for subsequent flows
over TCP (for the call setup) and UDP (for RTP packets that
carry the audio itself). Simpler examples include RTSP and ac-
tive FTP protocols already mentioned in Section IV-C.

In summary, to support DHTTP, a NAT box must be config-
ured to create a temporary mapping from the TCP port number
in the payload of a DHTTP request to the internal address of the
client that sent the request. For NAT boxes that are not capable
of such configuration, an application-level gateway [36] can be
configured on the NAT to implement this functionality.

E. Incremental Deployment

One cannot realistically assume that the world will switch to
DHTTP at once. A simple incremental path to deployment is
as follows. DHTTP clients and servers must be able to also use
HTTP in the transitional period. Further, in the transitional pe-
riod, DHTTP clients should use existing HTTP for any requests
sent by TCP (such as large or non-idempotent requests), even to
presumably a DHTTP server, so that legacy HTTP servers never
receive DHTTP requests on a TCP channel.

A URL naming convention would be established between
DHTTP servers and clients, so that the latter will recognize
URLs hosted by DHTTP serversin most cases. For exam-
ple, a convention can be that DHTTP URLs have the form
of “http://host-name/dhttp /remainder-of-URL”. Legacy HTTP
clients will issue a normal HTTP request for these URLs while
DHTTP clients will use DHTTP for them, unless it is a request
using TCP. There is still a remote possibility that a legacy HTTP
server uses a URL of the same format, in which case a DHTTP
client may issue a DHTTP request over UDP to this server (re-
call that any request over TCP is sent using legacy HTTP for-
mat). Unless this server also happens to use this UDP port for an
unrelated application and has no barrier to block an unexpected
UDP message, the client will get back an ICMP “destination
unreachable” message and immediately resend the request us-
ing HTTP.

8

R
e

a
d

R
e

q
u

e
st

 T
h

re
a

d

P
ip

e
R

e
q

u
e

st
 T

h
re

a
d

Maintenance
 Thread

Worker process

Timeout
thread

Worker process

Timeout
thread

Worker process

Timeout
thread4K

4K

4K

Global
Buffer

...

Master Process Child Processes

C
lie

n
t

re
q

u
e

st
s

S
e

rv
e

r
re

sp
o

n
se

s

Fig. 5. DHTTP server architecture.

In theory, an HTTP server that has a URL with DHTTP for-
matandand uses the DHTTP UDP port for an unrelated appli-
cationand does not block outside messages to this port could
still receive an unexpected DHTTP request. However, the com-
bination of all these conditions is so unlikely that we consider it
impossible for all practical purposes.

V. SERVER DESIGN

We have implemented a DHTTP server by modifying
Apache, today’s most popular Web server. We used Apache
1.3.6 [3] as the basis for our modifications. The structure of our
DHTTP server inherits many aspects of Apache and is shown
in Figure 5. The server has a master process that accepts in-
coming requests and worker processes, which execute individ-
ual requests and send the responses back to clients. The master
process has three threads. A ReadRequestThread thread reads
incoming requests from the UDP port and copies them into a
global buffer. A PipeRequestThread thread takes the requests
from the global buffer and pipes them to worker processes for
execution. The global buffer is used to move requests out of the
UDP port buffer as quickly as possible, so that the incoming re-
quests will not fill up the UDP port buffer and get dropped. A
better alternative, which we have not yet implemented, would
have been to increase the size of the UDP port buffer and elim-
inate the extra copying of requests between the two buffers. Fi-
nally, the Maintenance thread wakes up every second and checks
the status of the worker processes. If it finds too few idle worker
processes, it forks some new ones. If there are too many idle
worker processes, it kills some, so that number of worker pro-
cesses would scale to the request rates.

A worker process reads an HTTP request from its pipe, gener-
ates the HTTP response, chooses between UDP and TCP chan-
nels and sends the response to the client. If the worker process
chose TCP and it already has an open TCP connection to the
client, it reuses this connection; otherwise it opens a new con-
nection to the client. Thus, a worker process can have at most
one TCP connection to a client, although it may have several
concurrent connections to different clients.

Each worker process also contains a Timeout thread that is in-
voked periodically to close any TCP connections created by this
process that have been idle for more than a timeout period. This

timeout parameter is equivalent to persistent connection timeout
in HTTP servers.

Worker processes share with the master a data structure that
describes open TCP connections. The data structure includes a
pending request counterfor each connection, which is an up-
per bound on the number of requests than may be responded
to over this connection. When the PipeRequest thread chooses
a worker process and the latter has an open connection to the
client, the PipeRequest thread increments the pending request
counter (even though it does not know if the response will use
the connection or be sent over UDP). When a worker completes
sending the response, it decrements the pending request counter
for this client.

When choosing a worker process for a new request, the
PipeRequest thread tries to efficiently reuse available TCP con-
nections and, at the same time, distribute the incoming requests
uniformly among all worker processes according to the follow-
ing procedure:

1. If there is an open idle TCP connection available to this
client and to the TCP port specified in the request message,
choose the worker process that has created this TCP con-
nection.

2. Otherwise, if the number of open TCP connections to this
client and the total number of open connections are below
their respective limits, choose a worker process with the
smallest total number of pending requests.

3. Otherwise, choose a process that has a TCP connection to
this client with the fewest pending requests; if there are no
connections to this client, choose a process with the small-
est total number of pending requests.

VI. PERFORMANCEANALYSIS

We performed a three-pronged performance study. First, we
conducted a trace-driven simulation to study the number and uti-
lization of TCP connections that the server experiences under
HTTP and DHTTP. Second, we benchmarked the Apache HTTP
server and our DHTTP server with clients on the same LAN,
to compare their peak performance and scalability. Finally, we
tested both servers in a WAN environment with a congested In-
ternet connection.

A. Simulation

Our simulation study uses the access log from the EasyWWW
Web server, which provides AT&T’s low-end hosting services.
The trace has the duration of three months and contains over 100
million accesses with the average response size of 13K. Each
log record contains the client address, the URL requested, re-
sponse code, size of the response and the timestamp. We add
an appropriate number of bytes to the size of the response for
response and IP headers (the actual number depends on the re-
sponse code).

Our simulation assumes that the time to generate a response at
the server is negligible compared to the value of persistent con-
nection timeout. Thus, we measure the time between request
arrivals for persistent connection timeouts. In reality, the server
measures the time between the completion of one response gen-
eration and the arrival of the next request. However, the infor-
mation needed to compute this time interval is not available in

9

0

50

100

150

200

250

300

0 5 10 15 20

M
ax

im
um

 c
on

cu
rr

en
t c

on
ne

ct
io

ns

Timeout (sec)

HTTP
DHTTP/4K

DHTTP/1MTU

(a) Max number of concur-
rent connections.

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

4.5e+07

5e+07

0 5 10 15 20

T
ot

al
 o

pe
n

co
nn

ec
tio

ns
Timeout (sec)

HTTP
DHTTP/4K

DHTTP/1MTU

(b) Total number of TCP connec-
tions.

Fig. 6. Number of TCP connections at a server with three connections per client.

server logs.
The simulation processes log records in timestamp order. In

the HTTP case, for each record, if the number of connections
from the client reached the maximum, the oldest connection is
reused. Otherwise, a new connection is opened. After the access
at timet, the connection is closed at timet+TIMEOUT unless
it is reused before that.

For the DHTTP case, the response is sent by UDP if the size
of the response is less than a threshold valueS. Otherwise, it is
sent by TCP, reusing existing connections if available. We use
two threshold values in our simulation - 4K and 1460 bytes. The
former is an optimistic value based on multiple studies showing
that many Web responses are smaller than 4K bytes; the latter is
a conservative value that fits into one Ethernet MTU.

We are concerned with three performance measures: the
maximum number of simultaneous connections observed at the
server during the simulated period, the total number of connec-
tions used by the entire trace, and average connection utiliza-
tion. The first metric indicates the scalability requirements of
the server at peak demand7. The second metric shows how
many requests paid an overhead of TCP connection establish-
ment during the trace period. Connection utilization measures
the amount of data sent over a TCP connection. TCP is opti-
mized for large data transfers, which allow it to learn available
bandwidth and amortize start-up costs. Overall, we would like
low numbers of simultaneous and total connections and high
connection utilization.

Figures 6 and 7 show the simulation results when clients can
open up to three parallel connections to the server. For Apache’s
default connection timeout of 15 seconds, our approach reduces
the maximum number of simultaneous connections by a third
for the 4KB threshold and by 20% for the 1460 bytes threshold.
The difference can be reduced by decreasing the timeout value,
which has in fact been recommended for servers under high load
[7], [13]. But that increases dramatically the total number of
connections (Figure 6b), meaning that more requests must pay
the overhead of connection establishment and slow-start. Thus,
DHTTP has a significant advantage over HTTP over the entire
range of timeout values, with most benefits due to the number of
simultaneous connections at high end of the range and the total

7The maximum number of concurrent connections a server can support is one
of main parameters provided by server vendors and tested by benchmarks.

0

5000

10000

15000

20000

25000

0 5 10 15 20

A
ve

. b
yt

es
 p

er
 c

on
ne

ct
io

n

Timeout (sec)

HTTP
DHTTP/4K

DHTTP/1MTU

Fig. 7. Connection utilization with three connections per client.

0

20

40

60

80

100

120

0 5 10 15 20

M
ax

im
um

 c
on

cu
rr

en
t c

on
ne

ct
io

ns

Timeout (sec)

HTTP
DHTTP/4K

DHTTP/1MTU

(a) Max number of concur-
rent connections.

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

4.5e+07

5e+07

0 5 10 15 20

T
ot

al
 o

pe
n

co
nn

ec
tio

ns

Timeout (sec)

HTTP
DHTTP/4K

DHTTP/1MTU

(b) Total number of TCP connec-
tions.

Fig. 8. Number of TCP connections at a server with one connection per client.

number of connections at low end.
In the DHTTP case, the fraction of responses sent over UDP

was over 58% for the 4K threshold and over 40% for the 1460
bytes threshold. Since TCP is used only for large responses,
DHTTP exhibits better utilization of TCP connections. As
shown in Figure 7, the average number of bytes sent over one
connection can be over two times higher in DHTTP than in
HTTP, for 4K size threshold and short timeout values.

Figures 8 and 9 depict the results for the case where all clients
only use one connection. Figure 8a shows that while the max-
imum number of simultaneous connections decreased for both
HTTP and DHTTP, the relative difference between the two can
still be significant, reaching almost the factor of two for 5 second
timeout and 4K size threshold. Further, Figure 8b shows that
the total number of connections opened by HTTP drops only for
high timeout values, where it was already low. Thus, DHTTP
retains a significant overall performance advantage over the en-
tire range even under an unrealistically conservative assumption
that all clients open only one connection at a time to any server
8. Figure 9 shows that DHTTP’s advantage in connection uti-
lization, while still noticeable, is much smaller than in the case
of three connections per client, except for short timeouts where
DHTTP’s advantage remains practically the same.

B. Prototype Testing

We tested the original Apache server and our modified ver-
sion that speaks DHTTP (referred to as DHTTP server) using
the SURGE workload generator [6]. We found it to be the most
appropriate workload generator for our purpose because it mod-

8The assumption is unrealistic because there are valid performance reasons,
such as the head-of-line delay in pipelining mentioned in Introduction, why
HTTP 1.1 clients open more than one connection to a server.

10

0

10000

20000

30000

40000

50000

60000

0 5 10 15 20

A
ve

. b
yt

es
 p

er
 c

on
ne

ct
io

n

Timeout (sec)

HTTP
DHTTP/4K

DHTTP/1MTU

Fig. 9. Connection utilization with one connection per client.

els the client idle times, allowing TCP connections to time out
in a realistic manner. Beside idle times, SURGE tries to match
empirical distributions of document sizes on the server, request
sizes, document popularity, embedded object references, and
temporal locality of reference. Also important for us is that
SURGE imitates HTTP1.1 clients, utilizing persistent connec-
tions and pipelining.

SURGE forks several processes, each creating multiple
threads that simulate the behavior of individual users. We used
current SURGE to test Apache. We also modified SURGE to
use DHTTP and used this version to test our DHTTP server. All
experiments ran for two minutes.

We chose Apache as the basis for our implementation because
it is by far the most popular Web server. Recently, more efficient
event-based servers have been built (e.g., [39], [43]). We believe
our conclusions are not affected by the process-based implemen-
tation of Apache because our DHTTP server is also process-
based and inherits the same overheads. If anything, DHTTP
is hurt more by the process-based architecture because it has
higher throughput and therefore more context switches.

To maximize the throughput of current Apache, we config-
ured it to the maximum number of concurrent clients of 200
(the default is 150). Increasing the limit further did not lead to
any additional performance gains since the server could not fork
any more worker processes anyway. Since each worker process
has at most one TCP connection and because standard Linux
limits the total number of TCP connections that are in the pro-
cess of being established (the server sent the SYN-ACK and is
waiting for ACK from the client to complete the handshake) or
are waiting to be accepted to 128, the total number of simulta-
neous connections at the Apache server can be at most 328. To
factor out the effect of this limit, we artificially limited the num-
ber of concurrent TCP connections in the DHTTP server to the
same value. Since both servers share the same connection limit,
setting it to another value should not significantly affect perfor-
mance trends. We note, however, that in reality DHTTP servers
do not have a bottleneck process that accepts all TCP connec-
tions and therefore the number of TCP connections in DHTTP
is only limited by the maximum number of open sockets.

All experiments used 1460 bytes for the site threshold and 1%
for the loss threshold values.

B.1 Bottleneck at Server

To test the servers for peak performance, we conducted a
study in a fast LAN environment, to ensure that the bottleneck
is at the server. Our LAN setup included a server on a Pentium

0

6000

12000

18000

24000

30000

36000

42000

48000

54000

60000

1 2 3 4 5

N
um

be
r

of
 F

ile
s

Se
rv

ed

Number of Client Machines

Timeout=0 sec
Timeout=1 sec

Timeout=15 sec

(a) Throughput with three con-
nections per client.

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5

M
ea

n
L

at
en

cy
 (

se
co

nd
s)

Number of Client Machines

Timeout=0 sec
Timeout=1 sec

Timeout=15 sec

(b) Latency with three connec-
tions per client.

0

6000

12000

18000

24000

30000

36000

42000

48000

54000

60000

1 2 3 4 5

N
um

be
r

of
 F

ile
s

Se
rv

ed
Number of Client Machines

Timeout=0 sec
Timeout=1 sec

Timeout=15 sec

(c) Throughput with one connec-
tion per client.

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5

M
ea

n
L

at
en

cy
 (

se
co

nd
s)

Number of Client Machines

Timeout=0 sec
Timeout=1 sec

Timeout=15 sec

(d) Latency with one connection
per client.

Fig. 10. Apache performance (bottleneck at the server).

III 500MHz PC with 128MB of memory running Linux RedHat
7.3 and a variable number of SGI workstations running SURGE
clients, all connected by a 100Mbps LAN. We ran 4 processes
on each client machine, with 50 threads per process for the total
of up to 1000 user equivalents on 5 machines.

Figure 10 shows the throughput (reported as the number of
requests served during the two-minute experiment) and latency
of Apache, when the maximum number of parallel TCP connec-
tions to a client is set to three and one. The latency in this and all
subsequent experiments is client-perceived latency as measured
on the client. To compensate for latency hiding due to pipelin-
ing, SURGE charges the overlapped latency to only one of the
dowdloads. Further, our DHTTP-enabled SURGE issues UDP
requests for the page and all its embedded objects at once, thus
underestimating the latency to some extent. Because underesti-
mation affects only the initial page download and is amortized
over all objects of the page, it should not affect noticeably our
results. The figures show curves for persistent connection time-
outs of 0 (no persistent connections – the choice of many high-
volume sites), 15 (the default value), and 1 second (which we
found to produce the best performance). Figure 11 shows the
same characteristics for the DHTTP server, for timeout values
of 1, 5, and 15 seconds (we did not consider the timeout of 0
because it can lead to a large number of new TCP connections).

We see a dramatic performance advantage of DHTTP - an
order of magnitude lower latency and several times higher
throughput. The DHTTP server also scales better and is much
less sensitive to different persistent connection timeout values
and the number of concurrent TCP connections to a client. Inter-
estingly, Apache performance is the worst for the default value

11

0

10000

20000

30000

40000

50000

60000

1 2 3 4 5

N
um

be
r

of
 F

ile
s

Se
rv

ed

Number of Client Machines

Timeout=1 sec
Timeout=5 sec

Timeout=15 sec

(a) Throughput with three con-
nection per client.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5

M
ea

n
L

at
en

cy
 (

se
co

nd
s)

Number of Client Machines

Timeout=1 sec
Timeout=5 sec

Timeout=15 sec

(b) Latency with three con-
nection per client.

0

10000

20000

30000

40000

50000

60000

1 2 3 4 5

N
um

be
r

of
 F

ile
s

Se
rv

ed

Number of Client Machines

Timeout=1 sec
Timeout=5 sec

Timeout=15 sec

(c) Throughput with one connec-
tion per client.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5

M
ea

n
L

at
en

cy
 (

se
co

nd
s)

Number of Client Machines

Timeout=1 sec
Timeout=5 sec

Timeout=15 sec

(d) Latency with one connec-
tion per client.

Fig. 11. DHTTP server performance (bottleneck at the server).

of persistent connection timeout, 15 seconds, except for the ex-
tremely light load. We found the best timeout value to be 1
second, and also that the performance improves if clients never
open multiple parallel connections to the server. A similar ob-
servation was made in [7].

We found the reason for this is that Apache never forcefully
closes idle TCP connections until they timeout, even if other
connections are waiting in the accept queue. In the meantime,
the number of backlog TCP connections can reach the limit and
the server will start dropping TCP SYN requests, sending clients
into exponential backoff. The same reason explains the negative
effect of multiple concurrent connections to a client - it increases
the number of connections at the server, with more idle connec-
tions blocking incoming connections in the queue.

To factor out this implementation artifact, we modified
Apache as follows. When a worker process is in the blocked
readcall, it checks the TCPaccept queueevery second. When-
ever the accept queue is not empty it closes its current connec-
tion so that a pending TCP connection can be served. The re-
sulting behavior is that the server uses high timeout when it has
spare connections and switches to a sub-second timeout other-
wise. Recent proposals for dynamic adjustments of the timeout
value based on the load and request history indirectly address
the same issue [13].

Further, SURGE clients close connections after downloading
a certain number of HTML pages, according to the generated
schedule. To test a more altruistic client behavior, we modi-
fied SURGE to follow a recently proposedearly closepolicy [7]
where clients close their connections after getting all the files in
one HTML page, thereby reducing the number of connections

0

10000

20000

30000

40000

50000

60000

1 2 3 4 5

N
um

be
r

of
 F

ile
s

Se
rv

ed

Number of Client Machines

DHTTP (3 conn)
DHTTP (1 conn)
Apache (1 conn)
Apache (3 conn)
Altruistic Clients
Modified Apache

0

1

2

3

4

5

6

1 2 3 4 5

M
ea

n
L

at
en

cy
 (

se
co

nd
s)

Number of Client Machines

DHTTP(3 conn)
DHTTP(1 conn)
Apache(1 conn)
Apache(3 conn)

Altruistic Clients
Modified Apache

Fig. 12. Comparison of Apache and DHTTP servers: throughput (left) and
latency (right).

that servers must handle.
Figure 12 shows the performance of Apache that was mod-

ified as discussed (the “Modified Apache” curve) and also the
performance of the current Apache with clients using early close
policy (the “Altruistic clients” curve). For comparison, it also
duplicates the curves for DHTTP and Apache from Figures 10
and 11, for the best persistent connection timeout value (1 sec-
ond). The modified Apache has the timeout value of 15 seconds.

The figure shows that the performance of the modified
Apache is very close to the the current Apache with TCP timeout
of 1 second. Since for a non-overloaded server a longer timeout
would result in lower latency to the clients, we believe this mod-
ification is worthwhile. Altruistic clients result in a huge perfor-
mance improvement for Apache. Still, DHTTP achieves around
20% better throughput and twice as low latency than Apache
with altruistic clients.

B.2 Bottleneck in the Network

To test the behavior of DHTTP under network congestion,
we conducted an experiment over the Internet. For this study,
we used up to three client machines, located at University of
Washington, Duke University, and New York University. The
server was at AT&T Labs in Florham Park, connected to the In-
ternet by a fractional T3 line with a bandwidth of up to 9Mbps.
We ran two SURGE processes with 50 threads on each client
machine, to observe the DHTTP behavior on the Internet with
the network below, near, and at saturation9. The persistent con-
nection timeout for both servers is 5 seconds. Since the TCP
accept queue is no longer the bottleneck, the connection time-
out value did not affect performance. For the same reason, cur-
rent Apache, altruistic clients and modified Apache all showed
very similar performance. We describe here the performance of
current Apache.

Recalling that the UDP channel is not appropriate for these
conditions, our goal is to see how successful the server is in
monitoring the congestion and switching to TCP. Figure 13
shows throughput and latency of Apache and DHTTP. DHTTP
outperforms Apache with one client machine - it has 15% higher
throughput and half the latency of Apache. On a saturated net-
work, Apache has slightly better latency (by up to 13%) and

9From Figure 12, four SURGE processes generate roughly 10000 requests in
two minutes, which translates into over 80 requests per second. With the average
file size of roughly 10K, this generates around 8Mbps traffic. So, two client
machines in our WAN experiment should saturate the connection, three would
put it far over the edge and one machine by itself should leave the network very
close to but below saturation most of the time, unless the path from the client to
the server includes lower-bandwidth links or there is competing traffic.

12

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 2 3

N
um

be
r

of
 F

ile
s

Se
rv

ed

Number of Client Machines

DHTTP
Apache

0

0.5

1

1.5

2

2.5

1 2 3

M
ea

n
L

at
en

cy
 (

se
co

nd
s)

Number of Client Machines

DHTTP
Apache

Fig. 13. Apache and DHTTP server performance under network congestion:
throughput (left) and latency (right).

TABLE I

EFFECTIVENESS OF CONGESTION DETECTION INDHTTP SERVER.

Client fraction of resend/fresh ignored
machines UDP ratio resent

responses requests
1 18.9% 0.7% 0
2 8.3% 1.2% 4.9%
3 6.1% 4.9% 35%

virtually identical throughput. The increased latency of DHTTP
is probably due to fact that when a UDP request is lost, the client
waits for the fixed timeout before resending it.

Overall, these results indicate that the DHTTP server success-
fully detects the network congestion and switches to TCP. Ta-
ble I provides some insight into the effectiveness of its conges-
tion detection mechanism. We can see that the the fraction of re-
sponses sent over UDP channel indeed drops significantly as the
network congestion grows worse. At the same time, the num-
ber of resent requests remains low (recall that the resend/fresh
ratio numbers in the third column are relative to the decreasing
number of UDP responses). Also, with three machines, 35% of
resent requests are ignored by the server. This means the server
already sent the responses by TCP, but the congestion is so high
that the requests timeout at the clients before the responses ar-
rive.

B.3 DHTTP versus T/TCP

Probably the most closely related existing approach to
DHTTP is Transactional TCP (T/TCP) [9], [38], which reduces
the set-up overhead by caching per-host state from previous con-
nections and allowing the delivery of application data in the
first SYN message from a client that has the cached state at the
server. In the best scenario, the entire HTTP download occurs
in three segments: the client’s SYN segment that also contains
the HTTP request and and the FIN flag (starting the connec-
tion, sending data, and closing the connection in one segment),
the server SYN/ACK segment that also contains the HTTP re-
sponse and the FIN flag (at once accepting the connection, send-
ing response and closing the connection), and the client’s ACK
segment acknowledging the response. Connections from clients
that do not have cached state are established using the normal
TCP handshake. The T/TCP specification also mentions reusing
the congestion window for consecutive connections from the
same client similar to Fast Start.

0

5000

10000

15000

20000

25000

30000

35000

40000

1 2 3

N
um

be
r

of
 F

ile
s

Se
rv

ed

Number of Client Machines

DHTTP
T/TCP

TCP

Fig. 14. The throughput of the DHTTP server using TCP and the Apache server
using T/TCP.

A major functional difference between DHTTP and T/TCP
is that, like other transport-layer optimizations, T/TCP does not
address the issue of the violation of the end-to-end principle by
interception caches and the severe deployment restrictions it en-
tails. Beyond this difference, it is interesting to see how DHTTP
and T/TCP compare from purely performance perspective.

Because T/TCP is supposed to be natively supported on
FreeBSD (although see [14] for our bug report), we ported our
DHTTP server and SURGE to FreeBSD. We further ported the
original Apache server (which already runs on FreeBSD) to use
T/TCP. Porting Apache required only a minimal change – set-
ting the NOPUSH option on the socket that listens for the in-
coming TCP connections and closing the connections immedi-
ately after servicing all HTTP requests from the incoming seg-
ment with the FIN flag set (because the FIN flag indicates that
the client will not use this connection for more requests, the
server has no no reason to keep this connection open). We then
compared the throughput of DHTTP (using standard TCP) and
Apache (using T/TCP). Our setup includes four machines run-
ning FreeBSD 4.7 connected by a 100Mbps switched LAN: a
731MHz Pentium 3 machine with 2G memory as a server and
three 2.8GHz Pentuim 4 machines with 4GB memory each as
clients. As before, each client machine runs four processes with
50 threads each, or 200 user equivalents.

To test T/TCP under the most favorable conditions, we used
altruistic clients with early close policy to test existing Apache,
which showed the highest performance in our previous tests.
Furthermore, to factor out a policy decision on whether or not
to send the FIN flag with requests for container HTML objects
(which would entail, resectively, downloading embedded ob-
jects over an extra follow-up connection or incurring an extra
overhead for closing the connection if there are no embedded
objects), we let the clients send all requests for a page (that is,
the container object and all embedded objects) at once, along
with the SYN and FIN flags.10

Figure 14 plots the throughput of DHTTP and Apache using
T/TCP under these conditions. As the basis of comparison, it
also plots the throughput of Apache using standard TCP (with
altruistic clients, since they showed the best performance for
TCP in out tests in Section VI-B.1). We can see that DHTTP
achieves much better throughput than Apache-T/TCP. This is
due to the fact that T/TCP must still perform all TCP process-

10We also tested clients that download the container object and subsequent
embedded objects in two separate T/TCP transactions. As expected, these re-
alistic clients achieved slightly, up to 5%, worse throughput than the idealized
clients presented in Figure 14.

13

ing, and because of the bottleneck process in Apache that must
handle all the incoming connections. In fact, our tests did not
show any appreciable advantage of T/TCP over TCP in terms
of throughput. Surprisingly, TCP had actually better throughput
at the highest load. We can speculate that this might be due to
more careful fine-tuning of TCP performance.

Furthermore, servers are reluctant to support T/TCP for se-
curity reasons, and typically either drop the data from a SYN
segment11 or block the entire segment at the firewall. Indeed, to
ensure strong TCP guarantees, the server keeps malicious SYN
packets for a long time while trying to complete the connection
setup: 75 seconds on FreeBSD 4.3 and 45 seconds on FreeBSD
4.6. Allowing the size of this packet to increase from 40 bytes
(SYN packet without data) to 1500 bytes (the maximum data-
gram with MTU discovery) drains server resources that much
faster.

Although DHTTP also has to spend resources on processing
data from the first packet, the application specifics makes it eas-
ier to deal with thet hreat. If the DHTTP server sends a UDP
response back, it only deals with this entire request for the du-
ration of processing, typically milliseconds, and maintains no
state about this request afterwards. If the server must use TCP
and is in a danger zone in terms of overload, it can always re-
spond to the client with a special UDP response asking the client
to re-sent the request over traditional TCP and forget about the
current request immediately. In this case, the DHTTP server
will not open the TCP connection back to the client and forgo
the associated advantages, but the only expense compared to ex-
isting Web servers is the extra round-trip for legitimate clients, a
reasonable price at the time when server survival is in jeopardy.

VII. F UTURE WORK

There are a number of ways in which DHTTP could po-
tentially be improved. We discussed throughout the paper a
possibility of native support for non-idempotent requests, fine-
grained channel selection based on conditions of network con-
nections to individual client autonomous systems or subnets, dy-
namic policies for size threshold selection, and sending a UDP
response over several separate UDP packets.

In addition, since the server in DHTTP can decide how many
connections to open to a client, it would be interesting to capi-
talize on this capability to improve performance. For example,
if the server has few open connections overall, it may decide to
open many TCP connections to the client to parallelize send-
ing multiple embedded objects. If the server already has a large
number of connections, it may send these objects sequentially
over the same connection, or even use individual short-lived
connections in a succession. Note that DHTTP enables these
flexible policies because of server-initiated connections.

VIII. C ONCLUSIONS

This paper describes and motivates a new protocol for Web
traffic, DHTTP. The protocol splits the traffic between UDP and
TCP channels based on the size of responses and network condi-
tions. When TCP is preferable, DHTTP opens connections from
Web servers to clients rather than the other way around.

11With an explicit comment in the sources of Linux and FreeBSD 4.7 kernels
citing security concerns for discarding the data.

From the functionality standpoint, DHTTP retains the end-to-
end principle of the Internet in the presence of interception Web
proxies, allowing their unconstrained deployment throughout
the Internet without the possibility of disrupting connections.

From the performance perspective, with existing HTTP, busy
servers face a dilemma ofeitherlimiting the number of Web ac-
cesses that benefit from persistent connectionsor having to deal
with a large number of simultaneous open connections. By per-
forming short downloads over UDP, DHTTP reducesboth the
number of TCP connection set-upsandthe number of open TCP
connections at the server. At the same time, the TCP connec-
tions that DHTTP does open transfer larger objects, increasing
connection utilization. Also, by opening TCP connections back
to the clients, the server no longer has a bottleneck process that
receives all TCP connection requests from the clients.

Our performance analysis shows that when the network is not
congested, DHTTP significantly improves the performance of
Web servers, reduces user latency, and increases utilization of
remaining TCP connections, improving their ability to discover
available bandwidth. At the same time, we demonstrate that the
DHTTP server successfully detects network congestion and uses
TCP for almost all traffic under these conditions.

The protocol achieves these advantages at the expense of ex-
tra requirements on firewalls and NAT devices. Although these
requirements are similar to those imposed by an increasing num-
ber of other protocols and can be satisfied with an appropriate
application-level gateway, they certainly complicate the config-
uration of these devices. Another limitation of DHTTP is that it
leaves out of scope the encrypted Web traffic.

A number of further optimizations to the protocol are clearly
possible. However, even the initial minimalist implementa-
tion described in this paper demonstrated significant benefits
of DHTTP over existing transport. The source code for our
DHTTP server implementation, as well as SURGE workload
generator modified to use DHTTP, is available [14]. Beyond
benchmarking DHTTP servers, modified SURGE can also serve
as an example of a DHTTP client implementation.

ACKNOWLEDGMENTS

We would like to thank Paul Barford for making SURGE
available and for his help with our SURGE questions. We are
indebted to Jennifer Rexford for numerous insightful comments
on earlier drafts of the paper. We are grateful to Balachander
Krishnamurthy for the traces used in our simulation study, and
to Ed Lazowska, Erik Lundsberg, and Amin Vahdat for access to
the SGI machines used in our Internet experiments. Thanks also
go to Steve Bellovin, Matthew Roughan, and Avi Rubin for their
help with security and firewall issues, and to Fred Douglis, Larry
Masinter, Mikhail Mikhailov, Oliver Spatscheck, Graig Wills,
and anonymous referees for useful discussions, comments, and
suggestions.

REFERENCES

[1] G. Abdulla. Analysis and Modeling of World Wide Web Traffic. PhD Dis-
sertation. Virginia Polytechnic Institute and State University, 1998.

[2] K. C. Almeroth, M. H. Ammar, and Z. Fei. Scalable delivery of web pages
using cyclic best effort multicast. InINFOCOM, pages 1214–1221, 1998.

[3] Apache server project.http://www.apache.org/httpd.html .

14

[4] Martin Arlitt, Rich Friedrich, and Tai Jin. Workload characterization of a
Web proxy in a cable modem environment. Technical Report HPL-1999-
48, HP Labs, April 1999.

[5] P. Barford, A. Bestavros, A. Bradley, and M. Crovella. Changes in Web
client access patterns:characteristics and caching implications.Wolrd Wide
Web, 2(1-2):15–28, Special issue on Characterization and Performance
Evaluation 1999.

[6] Paul Barford and Mark Crovella. Generating representative web work-
loads for network and server performance evaluation. InProceedings of
SIGMETRICS-98 Conference, pages 151–160, 1998.

[7] Paul Barford and Mark Crovella. A performance evaluation of hyper text
transfer protocols. InProceedings of SIGMETRICS-99 Conference, pages
188–197, 1999.

[8] Leeann Bent, Michael Rabinovich, Geoff Voelker, and Zhen Xiao. Char-
acterization of a large Web site population with implications for content
delivery. InProceedings of the 8th International WWW Conference, May
2004.

[9] R. Braden. Extending tcp for transactions - concepts, November 1992.
RFC-1379.

[10] Barry Brown. U-HTTP: a high-performance UDP-based HTTP. M.S.
Thesis. Department of Computer Science and Engineering, UCSD, 1997.

[11] Check point firewall-1. Check Point Software Technologies. White Paper.
http://www.checkpoint.com/products/firewall-1/index.html.

[12] Israel Cidon, Raphael Rom, Amit Gupta, and Christoph Schuba. Hybrid
TCP-UDP transport for Web traffic. InIEEE Int’l Performance, Comput-
ing and Communications Conference, pages 177–184, 1999.

[13] Edith Cohen, Haim Kaplan, and Jeffrey D. Oldham. Managing TCP con-
nections under persistent HTTP. InProceedings of the 8th International
WWW Conference, pages 631–646, Toronto, Canada, May 1999.

[14] DHTTP. http://www.research.att.com/�misha/dhttp/abstract.html.
[15] A. Feldmann, R. C´aceres, F. Douglis, G. Glass, and M. Rabinovich. Per-

formance of web proxy caching in heterogeneous bandwidth environ-
ments. InINFOCOM-99, pages 107–116, 1999.

[16] Anja Feldmann, Jennifer Rexford, and Ram´on Cáceres. Efficient policies
for carrying Web traffic over flow-switched networks.IEEE/ACM Trans-
actions on Networking, 6(6):673–685, December 1998.

[17] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. RFC 2616: Hypertext transfer protocol — HTTP/1.1.
ftp://ftp.internic.net/rfc/rfc2616.txt, June 1999.

[18] John Heidemann, Katia Obraczka, and Joe Touch. Modeling the perfor-
mance of HTTP over several transport protocols.IEEE – ACM Transac-
tions on Networking, 5(5):616–630, October 1997.

[19] Short- and long-term goals
for the http-ng project. http://www.w3.org/Protocols/HTTP-NG/, March
1998. W3C Working Draft.

[20] C. A. Kent and J. C. Mogul. Fragmentation considered harmful. InPro-
ceedings of the ACM Workshop on Frontiers in Computer Communications
Technology, pages 390–401, August 1988.

[21] Balachander Krishnamurthy and Martin Arlitt. PRO-COW: Protocol com-
pliance on the web: A longitudinal study. InProceedings of the 3rd
USENIX Symposium on Internet Technologies and Systems (USITS-01),
pages 109–122. The USENIX Association, 2001.

[22] Vineet Kumar, Markku Korpi, and Senthil Sengodan.IP Telephony with
H.323: Architectures for Unified Networks and Integrated Services. John
Wiley & Sons, 2001.

[23] Bruce Mah. An empirical model of HTTP network traffic. InProceedings
of the INFOCOM’97, pages 592–600, 1997.

[24] D. M. Martin, S. Rajagopalan, and A. D. Rubin. Blocking Java applets at
the Firewall. InInternet Society Symposium on Network and Distributed
Systems Security, pages 16–26, 1997.

[25] A.J. Menezes, P. V. Oorschot, and S. A. Vanstone.Handbook of Applied
Cryptography. CRC Press, 1997.

[26] Robert M. Metcalfe and David R. Boggs. Ethernet: Distributed packet
switching for local computer networks.Communications of the ACM,
19(7):395–404, July 1976.

[27] J. Mogul and S. Deering. Path MTU discovery, RFC 1191.
http://dynamo.bns.att.com/rfc/rfcdir/rfc1191.txt, 1990.

[28] Henrik Frystyk Nielsen, James Gettys, Anselm Baird-Smith, Eric
Prud’hommeaux, Hakon Wium Lie, and Chris Lilley. Network perfor-
mance effects of HTTP/1.1, CSS1, and PNG. InProceedings of ACM
SIGCOMM’97 Conference, pages 155–166, September 1997.

[29] V. N. Padmanabhan and R. H. Katz. Tcp fast start: A technique
for speeding up web transfers. InIEEE Globecom ’98 Internet
Mini-Conference, pages 41–46. http://www.cs.columbia.edu/˜hgs/Inter-
netTC/GlobalInternet98/, 1998.

[30] Venkata N. Padmanabhan and Jeffrey C. Mogul. Improving http latency.
Computer Networks and ISDN Systems, 28(1–2):25–35, December 1995.

[31] M. Rabinovich and O. Spatscheck.Web Caching and Replication.
Addison-Wesley, 2001.

[32] P. Rodriguez, S. Sibal, and O. Spatscheck. Tpot: Translucent proxying of
tcp. COMPCOM, 24:249–255, February 2001.

[33] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system
design.ACM Transactions on Computer Systems, 2(4):277–288, Novem-
ber 1984.

[34] H. Schulzrinne, A. Rao, and R. Lanphier. RFC 2326: Real Time Streaming
Protocol (RTSP). ftp://ftp.internic.net/rfc/rfc2326.txt, April 1998.

[35] M. Spreitzer and W. Janssen. HTTP “Next Generation”. InProceedings
of the 9th Int. World Wide Web Conference, pages 593–609, May 2000.

[36] P. Srisuresh and M. Holdrege. IP network address translator (NAT) termi-
nology and considerations. RFC 2663, August 1999.

[37] R.W. Stevens.TCP/IP Illustrated, Volume 1. Addison-Wesley, Reading,
MA, 1994.

[38] R.W. Stevens.TCP/IP Illustrated, Volume 3. Addison-Wesley, Reading,
MA, 1996.

[39] THTTPD - tiny/turbo/throttling HTTP server.
http://www.acme.com/software/hthhpd/ .

[40] J. Touch. Tcp control block interdependence, April 1997. RFC-2140.
[41] J. Touch. The LSAM proxy cache: a multicast distributed virtual cache.

Computer Networks And ISDN Systems, 30(22-23):2245–2252, November
1998.

[42] Alec Wolman, Geoff Voelker, Nitin Sharma, Neal Cardwell, Molly
Brown, Tashana Landray, Denise Pinnel, Anna Karlin, and Henry Levy.
Organization-based analysis of Web-object sharing and caching. InPro-
ceedings of the 1999 Usenix Symposium on Internet Technologies and Sys-
tems (USITS’99), October 1999.

[43] Zeus web server.http://www.zeus.co.uk/products/zeus3/ .

Michael Rabinovich Michael Rabinovich (ACM ’98)
received his PhD in Computer Science from the Uni-
versity of Washington. He is a researcher at AT&T
Labs – Research, where he works in the areas of Web
and Internet performance, distributed databases, and
workflow management. He co-wrote a book ”Web
Caching and Replication” that appeared in 2002. His
email address is: misha@research.att.com.

Hua Wang Hua Wang received his B.S. in mathe-
matics from Xi’an Jiaotong University in China, and
his M.S. from Computer Science Department of New
York University. He is currently working as an Asso-
ciate Director for Bear Stearns, Co. Inc. His email
address is: wanghua@cs.nyu.edu.

