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Abstract— Today’s Web interactions are frequently short, with an in-
creasing number of responses carrying only control information and no
data. While HTTP uses client-initiated TCP for all Web interactions,
TCP is not always well-suited for short interactions. Furthermore, client-
initiated TCP handicaps the deployment ofinterception cachesin the net-
work because of the possibility of disrupted connections when some client
packets bypass the cache on their way to the server.

We propose a new transfer protocol for Web traffic, called Dual-
transport HTTP (DHTTP), which splits the traffic between UDP and TCP
channels. When choosing the TCP channel, it is the server who opens the
connection back to the client. Among important aspects of DHTTP are
adapting to bottleneck shifts between a server and the network and cop-
ing with the unreliable nature of UDP. The comparative performance study
of DHTTP and HTTP using trace-driven simulation as well as testing real
HTTP and DHTTP servers showed a significant performance advantage
of DHTTP when the bottleneck is at the server and comparable perfor-
mance when the bottleneck is in the network. By using server-initiated
TCP, DHTTP also eliminates the possibility of disrupted TCP connections
in the presence of interception caches thereby allowing unrestricted caching
within backbones.

I. I NTRODUCTION

HTTP was conceived as essentially a protocol for transfer-
ring files. A logical consequence was to design it on top of
a connection-oriented transport protocol such as TCP. At the
same time, the current Web workload exhibits a large number of
short page transfers and interactions for control purposes rather
than data transfers. For example, in a trace of a large number
of modem users [1], 26% of all interactions were cache vali-
dations that resulted in a “not-modified” response. Arlitt et al.
observed that even for high-speed cable modem users (who in-
tuitively would be more likely to access larger objects) and even
considering only responses that did carry data (“successful” re-
sponses with 200 response code), the median response size was
just 3,450 bytes [2]. Median response sizes of 1.5-3KB were
also reported in numerous earlier studies, e.g., [3], [4], [5].

Such behavior is not always served well by TCP. In HTTP
0.9, each Web download paid a TCP connection establishment
overhead. Later versions of HTTP address these overheads by
introducingpersistent connectionsandpipelining [6], [7]. Per-
sistent connections allow a client to fetch multiple pages from
the same server over the same TCP connection, amortizing the
TCP set-up overhead. Pipelining lets the client send multiple re-
quests over the same connection without waiting for responses.
The server will send a stream of responses back.

These features have been shown to reduce client latency and
network traffic [8]. However, they do not eliminate all over-
heads of TCP, and in fact may introduce new performance penal-
ties, especially when the bottleneck is at the server [9]. Persis-
tent connections increase the number of open connections at the
server, which can have a significant negative effect on server

throughput. Pipelining has a limitation that servers must send
responses in their entirety and in the same order as the order
of the requests in the pipeline. This constraint causeshead of
line delays when a slow response holds up all other responses in
the pipeline. To avoid head of line delays, browsers often open
multiple simultaneous connections to the same server, further
increasing the number of open connections and degrading the
throughput of a busy server (see [9] and Section V-B).

To limit the number of open connections, servers close con-
nections that remain idle for apersistent connection timeoutpe-
riod. Busy sites often use short connection timeouts, thereby
limiting the benefits of persistent connections (see Section V-
A). Moreover, persistent connections that servers do main-
tain are often underutilized, which wastes server resources and
hurts the connection’s ability to transmit at proper rate (since
well-behaving TCP implementations shut down the transmis-
sion windows of idle connections [10]).

The Dual-Transport HTTP protocol (DHTTP) described in
this paper splits Web traffic between UDP and TCP. A DHTTP
client typically sends all requests by UDP. The server sends its
response over UDP or TCP, depending on the size of the re-
sponse and the network conditions. By using UDP for short
responses, DHTTP reducesboththe number of TCP connection
set-upsandthe number of open connections at the server. Also,
the utilization of the remaining TCP connections increases be-
cause they are reserved for larger objects. Finally, DHTTP does
not have the ordering constraints of pipelining.

Furthermore, when choosing TCP, a DHTTP server estab-
lishes the connection back to the client, reversing in a sense the
client/server roles in the interaction. While having some im-
plications with firewalls (see Section IV-B), this role reversal
brings major benefits. First, it avoids an increase (compared to
the current HTTP) in the number of message round-trips before
the client starts receiving the data over the TCP channel (see
Section III). (Of course, when the server uses UDP, the number
of message round-trips decreases.) Second, it removes a bot-
tleneck process at the server that accepts all TCP connections.
Third, as explained below, it allows unconstrained deployment
of interception cachesin the network.

Interception caches intercept client requests on their path to
origin servers and respond to clients on servers’ behalf. Inter-
ception caching is attractive to ISPs because it occurs transpar-
ently to clients and thus relieves ISPs of the administrative bur-
den of configuring client browsers; in fact, ISPs often do not
even know or have control over the end-users, as their imme-
diate clients may actually be other ISPs or corporate networks.
On the other hand, interception caches use servers’ IP addresses



when responding to clients thereby impersonating the origin
servers and violating the end-to-end semantics of the Internet.
In particular, this places significant limits on where interception
caches can be deployed and which clients they can serve (see
Section IV-A).

In contrast to existing HTTP, DHTTP interception caches
use their true IP addresses in their communication with clients.
Thus, DHTTP retains the end-to-end semantics of the Internet
even with interception proxies. In particular, DHTTP would al-
low interception proxies to be deployed in arbitrary points in the
network and hence enable a wide integration of caches into the
Internet fabric.

Many application-level protocols split their traffic between
TCP and UDP channels. This includes DNS, which switches
from UDP to TCP when responses exceed 512 bytes [10] and
RTSP, which uses TCP for control commands and UDP for
stream data [11]. Further, FTP servers open TCP connections
back to FTP clients for data transfers [10]. We argue that simi-
lar approaches are appropriate for Web traffic.

Obviously, DHTTP represents a significant deviation from
existing practice. However, it can be introduced incrementally
while co-existing with current HTTP in the transitional period
(see Section IV-C).

We evaluated the performance of DHTTP by conducting a
simulation study as well as by implementing and testing a real
DHTTP server, built as a modification of the Apache 1.3.6 Web
server [12]. The source code of our DHTTP implementation is
available [13].

II. RELATED WORK

Two proposed enhancements to TCP, transactional TCP (T-
TCP) [14], [15], and Shared TCP control blocks (S-TCP) [16],
address TCP set-up costs at the transport level. Transactional
TCP reduces the set-up overhead by caching per-host state from
previous connections and allowing the delivery of application
data in the first SYN message from a client that has the cached
state at the server. T-TCP also allows caching the window
size, avoiding the slow-start overhead for consecutive connec-
tions from the same client. S-TCP shares slow-start information
across concurrent connections between a pair of hosts, helping
the connections learn the appropriate window size faster. Still,
neither approach relieves the server from the overhead of initial-
izing and maintaining open connections, and neither addresses
the violation of the end-to-end semantics by interception caches.

The HTTP-ng initiative [17] proposes to multiplex multiple
application-level protocol sessions over the same TCP connec-
tion. It allows fragmenting and re-ordering of multiplexed re-
sponses and, similar to persistent connections, amortizes TCP
connection set-up over multiple fetches. However, it duplicates
much functionality of the TCP at the application level, thus in-
troducing unnecessary overhead. For instance, the application
level performs its own flow control and its own packet order-
ing. There is also an extra level of buffering and copying. To be
fair, the primary goal of HTTP-ng is not performance but such
benefits as “easier evolution of the protocol standard, interface
technology that would facilitate Web automation, easier appli-
cation building, and so on” [18].

In independent work, Cidon et al. proposed using a hybrid
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Fig. 1. Message exchange for a Web interaction.

TCP-UDP transport for HTTP traffic [19]. This proposal also
splits the HTTP traffic between UDP and TCP. A client sends
a UDP request. The server replies by UDP if the response is
small; otherwise, the server sends back a special UDP response
asking the client to resubmit request over TCP. The client also
resubmits the request over TCP if no response arrived within a
timeout. Our proposal is similar in its basic premise but differs
from Cidon et al. in two major ways. First, unlike Cidon et al.,
DHTTP servers initiate connections back to the clients, which
brings important benefits already mentioned in the Introduction.
Second, our mechanism for choosing between TCP and UDP
channels explicitly addresses the issue of network congestion.
Furthermore, by not prototyping their idea, Cidon et al. could
not quantify its affect on server performance.

In response to our posting of an initial draft of this paper
on the Internet, we received an unpublished manuscript that
also describes splitting Web traffic between TCP and UDP [20].
However, this proposal does not address the network congestion
issue, which we found can cause severe performance degrada-
tion if traffic is split regardless of network conditions. Another
key difference with our protocol is that [20] achieves reliabil-
ity through client acknowledgments and server re-transmissions.
This increases the network overhead for packet acks and server
overhead for keeping unacknowledgedpackets in the buffers and
managing per-packet timeouts and retransmissions. Further, by
choosing a Perl implementation (with unrealistically low server
throughput of under 10 requests per second) and not consider-
ing persistent connections and pipelining of existing HTTP in
their experimental study, [20] does not make a convincing case
for splitting the traffic. We base our experiments on a produc-
tion Apache server and we include persistent connections with
pipelining in our experiments.

Previously, Almeroth et al. proposed to use a UDP multicast
for delivery of the most popular Web pages [21]. Using multi-
cast to deliver popular Web pages to proxies has been proposed
by Touch [22]. In contrast to these works, we propose to use
UDP for much of routine Web traffic.

Analytical models for HTTP performance over TCP and
ARDP, an alternative connection-oriented transport protocol
built over UDP, are provided and validated in [23]. Unlike our
approach, this work does not consider using raw UDP or switch-
ing between connection and connectionless transport.



III. DHTTP PROTOCOL

This section describes the protocol and its mechanisms for re-
liability, flow control, and choosing between TCP and UDP for
a response. The next section discusses implications of DHTTP
on network caching and security as well as our proposal for de-
ployment.

In DHTTP, both Web clients and servers listen on two ports,
a UDP and a TCP. Thus, two communication channels exist be-
tween a client and a server - a UDP channel and a TCP channel.
The client usually sends its requests over UDP. Only when up-
loading a large amount of data (e.g., using a PUT request) would
the client use TCP. By default, a request below 1460 bytes, the
Ethernet maximum transfer unit (MTU), is sent over UDP. Vir-
tually all HTTP requests fall into this category [4]1. For con-
ceptual cleanness, the client itself initiates the TCP connections
to send requests instead of reusing connections initiated by the
server for data transfer.

When the server receives the request, it chooses between the
UDP and TCP channels for its response. It sends control mes-
sages (responses with no data), as well as short (below 1460
bytes, one Ethernet MTU, by default) data messages, over UDP
even if there is an open TCP connection to the client. This
avoids the overhead of enforcing unnecessary response order-
ing at the TCP layer. A UDP response is sent in a single UDP
packet since our default size threshold practically ensures that
the packet will not be fragmented. Dividing a response among
several UDP packets would likely allow higher size thresholds
and is a promising enhancement for the future. For long data
messages (over 1460 bytes by default), the server opens a TCP
connection to the client, or re-uses an open one if available.

Figure 1 shows the message exchange of a current HTTP in-
teraction and a DHTTP interaction with the response sent over
UDP and TCP. It is important that even when choosing TCP,
DHTTP does not introduce any extra round-trip delays com-
pared to the current Web interactions. While it may appear
counter-intuitive because in DHTTP, TCP establishment is pre-
ceded by an “extra” UDP request, the comparison of Figure 1a
and 1c shows that data start arriving at the client after two round-
trip times (RTTs) in both cases. In fact, a possible significant
(but unexplored in this paper) advantage of DHTTP over current
HTTP in this case is that the server may overlap page generation
with TCP connection establishment.

Since responses may arrive on different channels and out of
order with respect to requests, the client must be able to match
requests with responses. Consequently, a client assigns a ran-
domly chosen request ID to each request. The request ID is
reflected by the server in the response and allows the client to
assign the response to the proper request.

The request ID must be unique only to a given client and only
across the outstanding requests that await their responses. We
allocate eight bytes for the request ID, sufficient to safely as-

1The cited study is rather old. However, there is some evidence that the overall
Web request size remains small despite a growing number of proposals for using
HTTP for new applications, which may increase the request size. Considering a
5-month trace from his research department (6 clients), Duchamp found in 1999
the average request size, including all headers, of 189 bytes [24]; in the 1997
trace used for our study [1], 98% of all requests were GET and HEAD, which
tend to be small.
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Fig. 2. DHTTP message formats.

sume no possibility of a collision [25]2.
The client must also let the server know which ports it lis-

tens to on both channels. To save on the overhead, we note that
source port number of the channel used by the request is in-
cluded in the IP headers already. So, the request must include
the port number of the other channel only. Consequently, our
request message has a port number field, which contains client’s
TCP port number if the request is sent over UDP and UDP port
number if the request is sent over TCP.

Figure 2 summarizes the DHTTP message formats. In ad-
dition to the request ID and port number, the request message
includes a byte worth of flags. The only currently used flag is
“resend” flag that indicates a duplicate request. Thus, DHTTP
adds eleven bytes to every request. The response includes only
the request ID, for an eight-byte overhead.

A. Reliability and Non-Idempotent Requests

Given the best-effort nature of the UDP channel, we must pro-
vide a reliability mechanism. A straightforward way to provide
reliability would be to make clients acknowledge every UDP
packet received and servers resend unacknowledged UDP pack-
ets. This, however, would increase bandwidth consumption for
acknowledgements and server overhead for storing unacknowl-
edged UDP packets and for managing per-packet timeouts and
retransmissions. These overheads would be paid whether or not
a packet loss occurs.

We believe this approach is never optimal. When packet loss
is low, it imposes the unnecessary overheads. When it is high, an
implementation would be hard-pressed to compete with highly
optimized TCP. So, instead of trying to build reliability into
the UDP channel, the DHTTP protocol simply stipulates that
a client may resend a UDP request if the response does not ar-
rive for a timeout period, with the resent flag set. A large re-
quest timeout (we use 5 and 10 seconds) with a limited number
of resends ensures that clients do not overwhelm a server with
repeated resends. In principle, clients could use more sophis-
ticated strategies such as smaller initial timeouts followed by
exponential backoff.

We leave it to the servers to efficiently deal with resent re-
quests. They may re-generate responses, or cache UDP re-
sponses in the buffers so that they can be re-transmitted quickly.
However, DHTTP stipulates that a response to a resent request
be sent over TCP for flow control (see Section III-B).

2In fact, our DHTTP prototype uses only two-byte sequence numbers for re-
quest IDs, which we later realized is not adequate given fast improvements in
Web proxy performance and some security issues discussed in Section IV-B.



A related issue is support for non-idempotent requests, which
should not be re-executed. Examples of such requests include
some e-commerce transactions, such as an order to buy or sell
stocks. Following its general minimalist approach, DHTTP cur-
rently deals with non-idempotent requests by delegating them
to TCP transport, instead of providing special support at the ap-
plication level. In this method, the protocol portion of a URL
prescribes the transport protocol to be used by clients. For in-
stance, we can have a convention that, for URLs of the form
“dhttpt://<rest-of-URL>”, a client must send requests by TCP,
while for URLs that start with “dhttp:”, it can use UDP. Then,
all non-idempotent URLs would be given the “dhttpt:” prefix.
Specifying the transport in the protocol portion of a URL is also
used in a different context by the RTSP protocol [11].

B. Flow Control

DHTTP servers must avoid flooding a congested network
with UDP messages. Instead of implementing its own flow con-
trol, DHTTP again leverages TCP by requiring that responses to
any resent requests be sent over TCP. So, any time a packet loss
occurs, the server switches to TCP with its flow control for this
interaction. An HTTP server using MTU discovery [26] sends
packets of 1460 bytes over the Internet and has the initial TCP
window for data transfer equal to two packets3. Thus, DHTTP
server could in principle send up to 2920 bytes by UDP without
relaxing TCP’s flow control. Our current default threshold of
1460 bytes makes DHTTP servers even more conservative than
HTTP servers in terms of flow control within one Web down-
load.

One could argue that DHTTP servers may still create traf-
fic bursts by sending a large number of UDP packets belong-
ing to distinctparallel downloads. However, short parallel TCP
connections will create similar bursts in existing HTTP due to
SYN and the first data packets. So, it is only in the case of
multiple short downloads to thesameclient reusing a persis-
tent TCP connection in existing HTTP, where DHTTP may be
more aggressive. Even in this case, when the fraction of re-
sent requests becomes noticeable (indicating possible conges-
tion), DHTTP servers starts using TCP almost exclusively (see
Section III-C). In our experiment over congested Internet, only
6% of responses were sent over UDP. Finally, Feldmann et al.
showed that although most Web transfers are short, a majority of
the bytes and packets belong to long transfers [27], and DHTTP
uses TCP with its native flow control for them.

C. Choosing a Channel

The server must choose between TCP and UDP based on the
response size and network conditions. When the network is not
congested and packet loss is low, then the best strategy for the
server would be to maintain no state for sent responses. This
strategy optimizes for the common case of no packet loss, at the
expense of having to re-generate the response after a loss does
occur.

However, when the network is congested, this strategy is ex-
tremely poor. Not only do the UDP responses have to be re-
regenerated and re-transmitted often, but even TCP responses

3The initial window size is 1 but most implementations increase it after re-
ceiving the TCP SYN-ACK packet.

may arrive at clients so slowly that clients send duplicate re-
quests for them. The result is that the server sends many du-
plicate responses, further aggravating network congestion. The
same situation may occur with compute-intensive responses
which may take a long time to reach the client.

To address this issue, our server maintains a “fresh requests
counter”, incremented any time the server sends a response by
UDP to a request with unset resend flag, and a “resent requests
counter”, which counts the number of resent requests received.

Our algorithm for choosing a channel uses aloss threshold
parameter,L, (currently 1%) and asize thresholdparameters
(1460 bytes by default). All responses exceeding the size thresh-
old as well as those in reply to resent requests, are sent over TCP.
The choice for the remaining responses depends on the ratio of
resent request counter to fresh request counter. If this ratio is
belowL, these responses use UDP. The ratio aboveL indicates
high packet loss and would suggest sending all responses by
TCP. However, the server must still send a small number of re-
sponses over UDP to monitor the loss rate, since losses in the
TCP channel are masked by the TCP layer. Therefore, we chose
rather arbitrarily to send1 � L fraction (or 99%) of small re-
sponses over TCP and the remaining small responses over UDP
in the high loss condition.

There is still a race condition mentioned earlier, where a client
may time out and resend a request before the TCP response to
this request arrives. To address this race condition, our server
maintains a circular buffer of global request IDs (which is a
combination of the client IP address and request ID from a re-
quest) that have been responded to by TCP. The buffer has room
for 10000 global request IDs. When a resent request arrives, the
master process ignores it if it is found in the buffer, since the
response was already sent by TCP that has reliable delivery.

A potential limitation of the above algorithm is that the server
maintains aggregate packet loss statistics. While the aggregate
statistics reflect well the congestion of the server link to the In-
ternet, congestion of network paths to individual clients may
vary. Thus, enough clients with congested links can make the
server use TCP even for clients with uncongested links. Con-
versely, the server may use UDP for an occasional congested
client if its connection to the rest of the clients is uncongested.
The investigation of finer grain algorithms remains a future
work. At this point, we only note that if a UDP response to the
congested client is lost, the client will resend its request with the
resentflag set, forcing the server to use TCP for this interaction.

Choosing a size threshold presents another interesting trade-
off. A large value will reduce the number of TCP connections
by sending more responses over UDP; however, if it exceeds
one MTU (1460 bytes), some responses in the current version
of DHTTP will be fragmented. Fragmentation degrades router
performance [28] and entails resending the entire response upon
a loss of any fragment. Thus, in a high loss environment such
as Internet,s should be limited to one MTU. Future versions of
DHTTP will be able to use higher values ofs by sending a large
response over several UDP packets, which would avoid frag-
mentation and allow clients to issuerange requests[7] to obtain
just the missing portions of the response in the aftermath of a
packet loss.
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IV. I MPLICATIONS OF DHTTP

A. DHTTP and Interception Caches

Interception cachinghas been an enticing idea for ISPs since
it allows them to cache Web content in the network transpar-
ently to clients. With interception caching, routers or switches
on the request path to the server divert the request to a proxy
cache, which accepts the connection and send the response as
if it were the origin server. To impersonate the origin server,
the cache uses the IP address of the origin server as the source
IP address of the response packets. Since this breaks the end-
to-end principle of the Internet, interception caching has raised
much controversy4. The main concerns are the possibility that
an interception cache may disrupt TCP connections and that it
deceives clients into assuming they interact with end servers,
so that the clients may neglect adding appropriate cache control
headers into their requests.

Connections can be disrupted when different packets from the
client choose different paths to the server. For instance, in Fig-
ure 3, assume that half way through the download of a page from
the cache, TCP acknowledgements from the client will choose
the upper path and start arriving at the origin server, which will
discard them since it does not recognize the connection. In the
meantime, the cache will not receive any acknowledgements and
will eventually timeout the connection.

These problems may occur even without route changes, e.g.,
when OSPF routers forward packets using round-robin load bal-
ancing over multiple shortest path routes. In fact, with route load
balancing, an inappropriate placement of interception cache in
the network may disrupteveryWeb interaction going through
the ISP. In any case, most ISPs are not willing to add extra con-
nection failures, however few. Thus, they limit deployment of
interception caches to only network points traversed byall pack-
ets from clients. In particular, they typically avoid interception
caches in transit backbones and turn off caching for requests ar-
riving from another ISP or from clients known to obtain Internet
connectivity from multiple ISPs.

DHTTP retains the end-to-end semantics even with intercep-
tion caching. A DHTTP interception cache will intercept only
requests sent over UDP and pass through any requests using
TCP. As already mentioned, these requests will be either data
uploads to servers or requests for non-idempotent resources, the
kinds of requests that usually cannot benefit from caches any-
way. So, restricting interception caches to UDP requests will
not reduce cache effectiveness.

When a DHTTP cache intercept a UDP request, it will either

4See the email discussion in http://www.wrec.org/archive/, especially the
threads “Recommendation against publication of draft-cerpa-necp-02.txt” and
“Interception proxies” in April, 2000.

respond by a UDP packet, or establish a connection back to the
client. In either case, it will use its true source IP address (refer
to Section IV-B for security considerations). At the transport
layer, no IP impersonation occurs and all packets will arrive at
each end regardless of routing path properties. Thus, DHTTP
would enable a wide integration of interception caches into the
Internet fabric, without any consideration of routing policies.

Further, the client is aware it speaks with the cache and not the
end server since the response comes from a different IP address.
A configuration option can thus be easily added to clients that
would allow them to bypass all interception caches or selectively
allow or exclude interception caches on certain subnets or for
requests to certain Web sites.

B. Firewalls and Security

DHTTP imposes similar requirements on firewalls as many
other protocols. In particular, the firewall must open a limited-
time “hole” to the client UDP and TCP ports specified in a
DHTTP request, so that the DHTTP response can get through.
Modern firewalls, such as widely used FireWall-1 [29], provide
this functionality for other protocols and are capable for main-
taining the necessary state from previous requests. For example,
for RTSP protocol, FireWall-1 opens a temporary hole for in-
coming UDP packets to the client’s port specified in the client’s
SETUP request. To support FTP in active mode, FireWall-1
opens a similar hole for incoming TCP connections to the port
specified in the client’s PORT command.

DHTTP shares with active FTP the vulnerability to an attack
through a malicious applet described in [30]. In this attack, a
malicious site entices the client to visit its Web page, which con-
tains an applet that generates an FTP request with the sole goal
of opening the hole to incoming TCP connections to a vital port,
such as port 23 used by telnet, giving the attacker an opportu-
nity to try a login password. By the same token, the remedy
described in [30] and implemented in Firewall-1, which is to
prohibit low port numbers used by telnet and other entry points,
also applies to DHTTP.

Further, if interception proxies are allowed to use their true IP
addresses, the firewall must let packets with an arbitrary source
IP address through the hole to the client ports. This is a devi-
ation from existing firewalls that only allow incoming packets
from the IP address matching the destination IP address of the
request packet that opened the hole. Since learning this IP ad-
dress requires an attacker to have the ability to intercept request
packets, removing this requirement may seem as if lowering the
bar for the attacker. A closer analysis, however, shows that even
with DHTTP, the attacker would still have to intercept request
packets. First, the attacker still has to learn the correct client port
number to get through the firewall, and it has only short time to
guess the port before the hole closes. To complicate guessing
port numbers, a client using DHTTP in the clear can frequently
change its port numbers, every time choosing a different ran-
dom port number5. Second, even if the imposter guessed the
port number in time and passed through the firewall, its packets
would be discarded by the client because they will not match a
valid request ID number (the likelihood of guessing an 8-byte

5While many OS kernels seem to allocate smallest available port numbers,
changing it to random numbers is straightforward.



random request ID can be safely dismissed [25]). Learning the
correct request ID would again require intercepting the request.
A potential denial of service attack on the client machine by
flooding it with packets containing wrong request IDs could af-
flict limited damage because the guessed port will remain valid
only for the duration of the current hole. Current Web servers are
much easier (because they have a permanent hole for incoming
connections to a well-known port) and more enticing targets for
these attacks. The attacker can also attempt a SYN attack against
a DHTTP server by sending DHTTP requests for large objects
to arbitrary other DHTTP servers with the attacked server’s IP
address as the source address. A simple defense against such
an attack is to allocate non-overlapping port number ranges to
DHTTP servers and clients, allowing servers to discard SYN
packets to client ports.

We stress that both DHTTP and existing HTTP are vulner-
able to an imposter with a capability to intercept and examine
request packets. In particular, such imposter can substitute the
legitimate content with its own. In existing HTTP, it would do so
by learning the intended Web server IP address, and in DHTTP
by learning the client port number and request ID. Only an en-
crypted version of the protocol, be it HTTP or DHTTP, can pro-
tect against such an attack.

C. Incremental Deployment

One cannot realistically assume that the world will switch to
DHTTP at once. A simple incremental path to deployment is
as follows. DHTTP clients and servers must be able to also use
HTTP in the transitional period. Further, in the transitional pe-
riod, DHTTP clients should use existing HTTP for any requests
sent by TCP (such as large or non-idempotent requests), even to
presumably a DHTTP server, so that legacy HTTP servers never
receive DHTTP requests on a TCP channel.

A URL naming convention would be established between
DHTTP servers and clients, so that the latter will recognize
URLs hosted by DHTTP serversin most cases. For exam-
ple, a convention can be that DHTTP URLs have the form
of “http://host-name/dhttp /remainder-of-URL”. Legacy HTTP
clients will issue a normal HTTP request for these URLs while
DHTTP clients will use DHTTP for them, unless it is a request
using TCP. There is still a remote possibility that a legacy HTTP
server uses a URL of the same format, in which case a DHTTP
client may issue a DHTTP request over UDP to this server (re-
call that any request over TCP is sent using legacy HTTP for-
mat). Unless this server also happens to use this UDP port for an
unrelated application and has no barrier to block an unexpected
UDP message, the client will get back an ICMP “destination un-
reachable” message and immediately resend the request using
HTTP. In theory, an HTTP server that has a URL with DHTTP
formatandand uses the DHTTP UDP port for an unrelated ap-
plicationanddoes not block outside messages to this port could
still receive an unexpected DHTTP request. However, the com-
bination of all these conditions is so unlikely that we consider it
impossible for all practical purposes.

V. PERFORMANCEANALYSIS

We performed a three-pronged performance study. First, we
conducted a trace-driven simulation to study the number and uti-
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Fig. 4. Simulation results with three connections per client.

lization of TCP connections that the server experiences under
HTTP and DHTTP. Second, we benchmarked the Apache HTTP
server and our DHTTP server with clients on the same LAN,
to compare their peak performance and scalability. Finally, we
tested both servers in a WAN environment with a congested In-
ternet connection.

A. Simulation

Our simulation study uses the access log from the EasyWWW
Web server, which provides AT&T’s low-end hosting services.
The trace has the duration of three months and contains over 100
million accesses with the average response size of 13K. Each
log record contains the client address, the URL requested, re-
sponse code, size of the response and the timestamp. We add
an appropriate number of bytes to the size of the response for
response and IP headers (the actual number depends on the re-
sponse code).

Our simulation assumes that the time to generate a response at
the server is negligible compared to the value of persistent con-
nection timeout. Thus, we measure the time between request
arrivals for persistent connection timeouts. In reality, the server
measures the time between the completion of one response gen-
eration and the arrival of the next request. However, the infor-
mation needed to compute this time interval is not available in
server logs.

The simulation processes log records in timestamp order. In
the HTTP case, for each record, if the number of connections
from the client reached the maximum, the oldest connection is
reused. Otherwise, a new connection is opened. After the access
at timet, the connection is closed at timet+TIMEOUT unless
it is reused before that.

For the DHTTP case, the response is sent by UDP if the size
of the response is less than a threshold values. Otherwise, it is
sent by TCP, reusing existing connections if available. We use
two threshold values in our simulation - 4K and 1460 bytes. The
former is an optimistic value based on multiple studies showing
that many Web responses are smaller than 4K bytes; the latter is
a conservative value that fits into one Ethernet MTU.

We are concerned with three performance measures: the
maximum number of simultaneous connections observed at the
server during the simulated period, the total number of connec-
tions used by the entire trace, and average connection utiliza-
tion. The first metric indicates the scalability requirements of
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utilization.

the server at peak demand6. The second metric shows how
many requests paid an overhead of TCP connection establish-
ment during the trace period. Connection utilization measures
the amount of data sent over a TCP connection. TCP is opti-
mized for large data transfers, which allow it to learn available
bandwidth and amortize start-up costs. Overall, we would like
low numbers of simultaneous and total connections and high
connection utilization.

Figures 4 and 5 show the simulation results when clients can
open up to three parallel connections to the server. For Apache’s
default connection timeout of 15 seconds, our approach reduces
the maximum number of simultaneous connections by a third
for the 4KB threshold and by 20% for the 1460 bytes threshold.
The difference can be reduced by decreasing the timeout value,
which has in fact been recommended for servers under high load
[9], [31]. But that increases dramatically the total number of
connections (Figure 4b), meaning that more requests must pay
the overhead of connection establishment and slow-start. Thus,
DHTTP has a significant advantage over HTTP over the entire
range of timeout values, with most benefits due to the number of
simultaneous connections at high end of the range and the total
number of connections at low end.

In the DHTTP case, the fraction of responses sent over UDP
was over 58% for the 4K threshold and over 40% for the 1460
bytes threshold. Since TCP is used only for large responses,
DHTTP exhibits better utilization of TCP connections. As
shown in Figure 5, the average number of bytes sent over one
connection can be over two times higher in DHTTP than in
HTTP, for 4K size threshold and short timeout values.

Figures 6 and 7 depict the results for the case where all clients
only use one connection. Figure 6a shows that while the max-
imum number of simultaneous connections decreased for both
HTTP and DHTTP, the relative difference between the two can
still be significant, reaching almost the factor of two for 5 second
timeout and 4K size threshold. Further, Figure 6b shows that
the total number of connections opened by HTTP drops only for
high timeout values, where it was already low. Thus, DHTTP
retains a significant overall performance advantage over the en-
tire range even under an unrealistically conservative assumption
that all clients open only one connection at a time to any server
7. Figure 7 shows that DHTTP’s advantage in connection uti-

6The maximum number of concurrent connections a server can support is one
of main parameters provided by server vendors and tested by benchmarks.
7The assumption is unrealistic because there are valid performance reasons,

such as the head-of-line delay in pipelining mentioned in Introduction, why
HTTP 1.1 clients open more than one connection to a server.
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Fig. 6. Simulation results with a single connection per client.
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Fig. 7. Simulation results with a single connection per client: connection uti-
lization.

lization, while still noticeable, is much smaller than in the case
of three connections per client, except for short timeouts where
DHTTP’s advantage remains practically the same.

B. Prototype Testing

We tested the original Apache server and our modified ver-
sion that speaks DHTTP (referred to as DHTTP server) using
the SURGE workload generator [32]. We found it to be the
most appropriate workload generator for our purpose because it
models the client idle times, allowing TCP connections to time
out in a realistic manner. Beside idle times, SURGE tries to
match empirical distributions of document sizes on the server,
request sizes, document popularity, embedded object references,
and temporal locality of reference. Also important for us is that
SURGE imitates HTTP1.1 clients, utilizing persistent connec-
tions and pipelining.

SURGE forks several processes, each creating multiple
threads that simulate the behavior of individual users. We used
current SURGE to test Apache. We also modified SURGE to
use DHTTP and used this version to test our DHTTP server. All
experiments ran for two minutes.

We chose Apache as the basis for our implementation because
it is by far the most popular Web server. Recently, more efficient
event-based servers have been built (e.g., [33], [34]). We believe
our conclusions are not affected by the process-based implemen-
tation of Apache because our DHTTP server is also process-
based and inherits the same overheads. If anything, DHTTP
is hurt more by the process-based architecture because it has
higher throughput and therefore more context switches.

To maximize the throughput of current Apache, we config-
ured it to the maximum number of concurrent clients of 200



0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 2 3 4 5

N
um

be
r 

of
 F

ile
s 

Se
rv

ed

Number of Client Machines

Timeout=0 sec
Timeout=1 sec

Timeout=15 sec

(a) Throughput with three con-
nections per client.

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5

M
ea

n 
L

at
en

cy
 (

se
co

nd
s)

Number of Client Machines

Timeout=0 sec
Timeout=1 sec

Timeout=15 sec

(b) Latency with three con-
nections per client.

0

5000

10000

15000

20000

25000

1 2 3 4 5

N
um

be
r 

of
 F

ile
s 

Se
rv

ed

Number of Client Machines

Timeout=0 sec
Timeout=1 sec

Timeout=15 sec

(c) Throughput with one connec-
tion per client.

0

1

2

3

4

5

6

1 2 3 4 5

M
ea

n 
L

at
en

cy
 (

se
co

nd
s)

Number of Client Machines

Timeout=0 sec
Timeout=1 sec

Timeout=15 sec

(d) Latency with one connec-
tion per client.

Fig. 8. Apache performance (bottleneck at the server).

(the default is 150). Increasing the limit further did not lead to
any additional performance gains since the server could not fork
any more worker processes anyway. Since each worker process
has at most one TCP connection and because standard Linux
limits the total number of TCP connections that are in the pro-
cess of being established (the server sent the SYN-ACK and is
waiting for ACK from the client to complete the handshake) or
are waiting to be accepted to 128, the total number of simulta-
neous connections at the Apache server can be at most 328. To
factor out the effect of this limit, we artificially limited the num-
ber of concurrent TCP connections in the DHTTP server to the
same value. Since both servers share the same connection limit,
setting it to another value should not significantly affect perfor-
mance trends. We note, however, that in reality DHTTP servers
do not have a bottleneck process that accepts all TCP connec-
tions and therefore the number of TCP connections in DHTTP
is only limited by the maximum number of open sockets. All
experiments used 1460 bytes for the site threshold and 1% for
the loss threshold values.

B.1 Bottleneck at Server

To test the servers for peak performance, we conducted a
study in a fast LAN environment, to ensure that the bottleneck
is at the server. Our LAN setup included a server on a Pen-
tium III 500MHz PC running Linux and a variable number of
SGI workstations running SURGE clients, all connected by a
100Mbps LAN. We ran 4 processes on each client machine, with
50 threads per process for the total of up to 1000 user equivalents
on 5 machines.

Figure 8 shows the throughput (reported as the number of re-
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Fig. 9. DHTTP server performance (bottleneck at the server).

quests served during the two-minute experiment) and latency of
Apache, when the maximum number of parallel TCP connec-
tions to a client is set to three and one. Figure 9 shows the same
characteristics for the DHTTP server. We see a dramatic per-
formance advantage of DHTTP - an order of magnitude lower
latency and several times higher throughput. The DHTTP server
also scales better and is much less sensitive to different persis-
tent connection timeout values and the number of concurrent
TCP connections to a client.

Interestingly, Apache performance is the worst for the default
value of persistent connection timeout, 15 seconds, except for
the extremely light load. We found the best timeout value to
be 1 second, and also that the performance improves if clients
never open multiple parallel connections to the server. A similar
observation was made in [9].

We found the reason for this is that Apache never forcefully
closes idle TCP connections until they timeout, even if other
connections are waiting in the accept queue. The same reason
explains the negative effect of multiple concurrent connections
to a client - it increases the number of connections at the server,
with more idle connections blocking incoming connections in
the queue.

To factor out this implementation artifact, we modified
Apache to check the TCP accept queue every second during pe-
riods when it has idle connections. Whenever the accept queue
is not empty it closes some idle connections so that pending
TCP connections can be served. The resulting behavior is that
the server uses high timeout when it has spare connections and
switches to a sub-second timeout otherwise. Recent proposals
for dynamic adjustments of the timeout value based on the load
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Fig. 10. Comparison of Apache and DHTTP servers: throughput (left) and
latency (right).

and request history indirectly address the same issue [31].
Further, SURGE clients never close connections, hoping to

reuse them for future requests. To test a more altruistic client
behavior, we modified SURGE to follow a recently proposed
early closepolicy [9] where clients close their connections after
getting all the files in one HTML page, thereby reducing the
number of connections that servers must handle.

Figure 10 shows the performance of Apache that was mod-
ified as discussed (the “Modified Apache” curve) and also the
performance of the current Apache with clients using early close
policy (the “Altruistic clients” curve). For comparison, it also
duplicates the curves for DHTTP and Apache from Figures 8
and 9, for the best persistent connection timeout value (1 sec-
ond). The modified Apache has the timeout value of 15 seconds.

The figure shows that the performance of the modified
Apache is very close to the the current Apache with TCP timeout
of 1 second. Since for a non-overloaded server a longer timeout
would result in lower latency to the clients, we believe this mod-
ification is worthwhile. Altruistic clients result in a huge perfor-
mance improvement for Apache. Still, DHTTP achieves around
20% better throughput and twice as low latency than Apache
with altruistic clients.

B.2 Bottleneck in the Network

To test the behavior of DHTTP under network congestion,
we conducted an experiment over the Internet. For this study,
we used up to three client machines, located at University of
Washington, Duke University, and New York University. The
server was at AT&T Labs in Florham Park, connected to the In-
ternet by a fractional T3 line with a bandwidth of up to 9Mbps.
We ran two SURGE processes with 50 threads on each client
machine, to observe the DHTTP behavior on the Internet with
the network below, near, and at saturation8. The persistent con-
nection timeout for both servers is 5 seconds. Since the TCP
accept queue is no longer the bottleneck, the connection time-
out value did not affect performance. For the same reason, cur-
rent Apache, altruistic clients and modified Apache all showed
very similar performance. We describe here the performance of
current Apache.

8From Figure 10, four SURGE processes generate roughly 10000 requests in
two minutes, which translates into over 80 requests per second. With the average
file size of roughly 10K, this generates around 8Mbps traffic. So, two client
machines in our WAN experiment should saturate the connection, three would
put it far over the edge and one machine by itself should leave the network very
close to but below saturation most of the time, unless the path from the client to
the server includes lower-bandwidth links or there is competing traffic.
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TABLE I

EFFECTIVENESS OF CONGESTION DETECTION INDHTTP SERVER.

Client fraction of resend/fresh ignored
machines UDP ratio resent

responses requests
1 18.9% 0.7% 0
2 8.3% 1.2% 4.9%
3 6.1% 4.9% 35%

Recalling that the UDP channel is not appropriate for these
conditions, our goal is to see how successful the server is in
monitoring the congestion and switching to TCP. Figure 11
shows throughput and latency of Apache and DHTTP. DHTTP
outperforms Apache with one client machine - it has 15% higher
throughput and half the latency of Apache. On a saturated net-
work, Apache has slightly better latency (by up to 13%) and
virtually identical throughput. The increased latency of DHTTP
is probably due to fact that when a UDP request is lost, the client
waits for the fixed timeout before resending it.

Overall, these results indicate that the DHTTP server success-
fully detects the network congestion and switches to TCP. Ta-
ble I provides some insight into the effectiveness of its conges-
tion detection mechanism. We can see that the the fraction of re-
sponses sent over UDP channel indeed drops significantly as the
network congestion grows worse. At the same time, the num-
ber of resent requests remains low (recall that the resend/fresh
ratio numbers in the third column are relative to the decreasing
number of UDP responses). Also, with three machines, 35% of
resent requests are ignored by the server. This means the server
already sent the responses by TCP, but the congestion is so high
that the requests timeout at the clients before the responses ar-
rive.

VI. CONCLUSIONS

This paper describes and motivates a new protocol for Web
traffic, DHTTP. The protocol splits the traffic between UDP and
TCP channels based on the size of responses and network condi-
tions. When TCP is preferable, DHTTP opens connections from
Web servers to clients rather than the other way around.

With existing HTTP, busy servers face a dilemma ofeither
limiting the number of Web accesses that benefit from persis-
tent connectionsor having to deal with a large number of si-
multaneous open connections. By performing short downloads
over UDP, DHTTP reducesboththe number of TCP connection



set-upsand the number of open TCP connections at the server.
At the same time, the TCP connections that DHTTP does open
transfer larger objects, increasing connection utilization. Also,
by opening TCP connections back to the clients, the server no
longer has a bottleneck process that receives all TCP connection
requests from the clients.

Our performance analysis shows that when the network is not
congested, DHTTP significantly improves the performance of
Web servers, reduces user latency, and increases utilization of
remaining TCP connections, improving their ability to discover
available bandwidth. At the same time, we demonstrate that the
DHTTP server successfully detects network congestion and uses
TCP for almost all traffic under these conditions.

From the functionality standpoint, DHTTP retains the end-to-
end Internet semantics in the presence of interception Web prox-
ies, allowing their unconstrained deployment throughout the In-
ternet without the possibility of disrupting connections.

As a future work, we would like to finesse the channel selec-
tion algorithm. First, it would be interesting to consider finer-
grain statistics on resent requests and factor the client subnet
into channel selection. Second, we would like to explore chang-
ing the UDP size threshold dynamically based on the observed
packet loss. When the loss rate is low, we could double the
size threshold to two Ethernet MTUs without relaxing TCP’s
flow control, for further performance gains. This would require
sending a UDP response in several packets to avoid packet frag-
mentation.

Finally, since the server in DHTTP can decide how many con-
nections to open to a client, it would be interesting to capitalize
on this capability to improve performance. For example, if the
server has few open connections overall, it may decide to open
many TCP connections to the client to parallelize sending mul-
tiple embedded objects If the server already has a large number
of connections, it may send these objects sequentially over the
same connection, or even use individual short-lived connections
in a succession.

The source code for our DHTTP server implementation, as
well as SURGE workload generator modified to use DHTTP, is
available [13]. Beyond benchmarking DHTTP servers, modi-
fied SURGE can also serve as an example of a DHTTP client
implementation.
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