Dynamic TCP Proxies: Coping with Disadvantaged Hosts in MANETS

Tu Ouyang
Case Western Reserve University
Cleveland, Ohio 44106
Email: tu.ouyang @case.edu

Abstract

Applications in mobile ad-hoc networks can suffer from
poor link quality and degraded network services. In par-
ticular, standard TCP over low-quality, long routing paths,
can have disproportionally low throughput as the result of
a double penalty: long end-to-end round-trip time—due to
long path length, and frequent congestion window backoff
due to packet losses that could not be masked by the link-
layer retransmissions. To address this problem, we leverage
a well-known concept of dynamic TCP proxies but propose
to dynamically install these proxies along a routing path
based on the quality of the links comprising the path. By
enclosing poor quality path segments between a pair of TCP
proxies, we isolate the effect of these segments on the rest of
the network and improve the overall performance. We further
utilize cross-layer optimization to select proxy locations
without a separate signaling protocol, by leveraging existing
messages in the underlying routing protocol. We demonstrate
the potential benefits of this dynamic TCP proxies mecha-
nism, and illustrate the relevance of host mobility level on
this design choice.

1. Introduction

A mobile ad-hoc networks (MANET) is a self-configuring
network of mobile hosts connected by wireless links. The
network topology may change rapidly and unpredictably,
and the network connectivity may exhibit heterogeneity at
different parts of the network. Often in a network there
are disadvantaged hosts (and the associated users) who
experience poor network services due to various reasons,
such as communication interference from external sources,
congestion along prevalent routing paths, or bottlenecks at
upstream transit nodes. The negative effect of disadvantaged
hosts in MANETS extends far beyond their associated users.
Indeed, not only do these hosts have limited capacity to
relay packets for other hosts, but the resulting packet losses
cause end-to-end retransmissions by upper-layer protocols,
increasing the wireless channel contention along the entire
paths and degrading the entire network performance.

This work is supported by Lockheed Martin Corp.

Shudong Jin
Case Western Reserve University
Cleveland, Ohio 44106
Email: jins@case.edu

Michael Rabinovich
Case Western Reserve University
Cleveland, Ohio 44106
Email: misha@eecs.case.edu

To address these issues, we rely upon the following ob-
servation. It is well known that standard TCP (Reno version)
throughput is inversely proportional to the end-to-end delay
[18], and in MANETS, the throughput is directly affected
by the hop-distance [13]. However, disadvantaged hosts that
are far from the data sources will incur a double penalty for
both the long hop-distance, and the long delay and packet
loss at the bottleneck along the path. Our proposed solution
then builds upon a concept of TCP proxies, which has long
been used in a variety of contexts to improve end-to-end
TCP performance. A TCP proxy is a transit node that acts
as a TCP end-point to either side of the communication path;
the resulting split TCP connection can have higher overall
throughput by reducing the round-trip time on each side.
In particular, Kopparty et al. [15] attempted to improve the
throughput of end-to-end TCP connections in MANETSs by
utilizing TCP proxies along the routing path. They position
a TCP proxy every three nodes along the routing path, so
that a long path is divided into a sequence of short segments
of TCP connections.

However, we recognize that the benefits of TCP proxies
in a realistic MANET depend crucially on where on the
path the proxies are positioned. Indeed, by strategically
placing TCP proxies along the path, we can encompass a
trouble area with TCP proxies at both sides, isolating the
rest of the path from its adverse effects. Moreover, we can
obtain similar performance benefits with fewer proxies. This
is important for several reasons. First, processing transit
packets at the higher layer by proxies involves performance
overhead (although we did not quantify this overhead in our
preliminary experiments). Second, the set of TCP proxies
creates an overlay path that remains pinned for the duration
of the connection. As nodes change their locations due to
mobility, this overlay path may become highly suboptimal.
We show experimentally that an excessive number of proxies
can lead to significant performance degradation in high
mobility scenarios. While this observation suggests that
it might be beneficial to migrate proxies of an ongoing
connection (see Section 3.2), it is also clear that one should
place TCP proxies judicially.

Further, the beneficial positions for TCP proxies on the
path depend on the network topology and conditions, which
change in a MANET in time with node movements. Thus,

we provide a mechanism and heuristics for any transit node
to be designated as a TCP proxy dynamically based on
previously observed network performance in its vicinity.
For instance, it might be desirable to have a TCP proxy
at each side of an area with low-quality or congested
communication links. In addition to reducing the end-
to-end round trip time and hence improving the effective
throughput, these proxies will relieve the rest of the path
from having to carry end-to-end retransmissions. This will
reduce the wireless channel contention in those parts of the
network and improve the overall throughput of the network
for concurrent communication between other hosts.

Finally, a key problem is proxy selection without adding
extra signaling overhead. In our design, the source of an
end-to-end connection selects proxies at the TCP connection
establishment time. To do that, the source collects the
information about network conditions through a cross-layer
optimization mechanism, by utilizing the signaling messages
of the underlying routing protocol. For instance, in the
dynamic source routing (DSR) protocol [14], which is one of
the most widely adopted routing protocols for MANETS [5],
we extend the route discovery messages to piggyback link
quality information.

We describe the implementation of the proposed mech-
anisms and present preliminary results from our ns-2 sim-
ulation experiments. The results demonstrate the potential
performance gain by using our dynamic TCP proxies ap-
proach, as well as the impact of high node mobility. This
paper represents our preliminary work in this direction by
motivating the idea and showing its promise and challenges.
We outline various directions for future work throughout the

paper.
2. Dynamic TCP Proxies

In designing our dynamic TCP (DTCP) proxy mecha-
nisms, we take the approach of cross-layer optimization.
We obtain information on link quality from the data link
layer, and propagate this information using extended route
discovery messages at the network layer. We then use this
information at the transport layer to improve end-to-end
performance.

2.1. Link Layer Extensions

We infer a disadvantaged link by two link-layer character-
istics at each node on the path: the link-layer transmission
queue size and the MAC layer retransmission count. The
former reflects the load on the transit node, which affects
the routing delay; the latter indicates the congestion and
interference on the link.

Our mechanism extends the link layer (and MAC sub-
layer) to calculate, using the exponentially weighted moving
average method, the smoothed estimates of two metrics: the

transmission queue length and retransmission count. The
smoothed estimates are calculated in a standard way, similar
to the approach used in TCP for round-trip time estimation.
Let AV G; be the smoothed estimate before the transmission
of the i-th packet, and S; be the instantaneous sample value
of the metric at the time of the transmission of the i-th
packet. We set

AVGi1 = a*xAVG+(1—a)xS;, ey

where the coefficient o determines the rate of the exponential
decay; we use a =0.85 in our experiments.

2.2. Network Layer Extension

We extend the DSR protocol to collect the above link
quality metrics without extra signaling messages. DSR is a
reactive routing protocol, where communication between a
pair of nodes is preceded by a route discovery phase. When
a node wishes to communicate to another node, it broadcasts
a Route Request (RREQ) packet into the network. As RREQ
packets flood through network, they record the path they
have taken. Once a RREQ reaches a node that is either the
destination or known the path from itself to the destination,
this node will send back to the source a route reply packet
(RREP) containing the whole path. The source will cache
the route from the first received RREP message and use this
route for subsequent communication.

To enable the collection of link quality information, we
extend DSR as follows. First, we make every node append
its smoothed estimates of the transmission queue length
and MAC layer retransmission count, along with its IP
address, to every RREQ message it processes. Thus, RREQ
messages accumulate the link quality information of the
paths they discover. Second, we modify the DSR route
cache maintained by each node so that whenever a node
is present in the DSR route cache, its associated link-layer
quality metrics are also maintained in the cache. This allows
a node to include the per-hop link quality information of
the full path any time it constructs a RREP response, even
if it completes the path from its cache. Third, we extend
the interface between the network and transport layers to
let the transport layer obtain from the network layer the
per-hop link quality information of the discovered route to
the destination. This allows the TCP layer at the source to
select which nodes on the path should become TCP proxies
as described in the next section. Forth, we insert a check
in the network layer to identify TCP SYN packets and to
further check an optional TCP header in these packets to
see if the current node should become a TCP proxy (see
Section 2.3). If this is the case, the network layer performs
a special upcall to the TCP layer and passes the packet to
the TCP layer. Fifth, our design calls for an API to install a
packet filter in the network layer to capture subsequent TCP
packets for which the current node acts as a proxy and to

pass these packets up to the TCP layer. This API would be
used by the TCP layer when a transit node becomes a TCP

proxy.

2.3. TCP Proxy Selection and Connection Manage-
ment

When the TCP source needs to connect to the destination,
it decides which intermediate nodes on the path to the
destination should act as TCP proxies. To this end, the
TCP layer first queries the network layer for the route
information, which would be returned either from the DSR
route cache or as the result of the route discovery protocol.
The algorithm for selecting the proxies uses a combination
of (the smoothed estimates of) both the queue size and
retransmission count of a node. We currently use a simple
sum of the two metrics as a combined metric, although other
choices can also be explored. We call it the “proxy-selection
metric”. The higher the value of the proxy selection metric
of a host the more disadvantaged this host is. The source
host executes the following procedure:

1) Calculate the difference of the proxy-selection metric
between any two adjacent nodes. If the difference
exceeds a threshold, the node with the smaller metric
is selected to become a proxy. The intuition behind this
selection is that a jump in the proxy selection metric
indicates a boundary of a disadvantaged area, and then
the node with the smaller value will be last node
outside the trouble spot. For example, in Figure 1,
the nodes 3 and 9 will have much lower values
of their proxy selection metrics than, respectively,
neighboring nodes 4 and 8, indicating the boundary of
the disadvantaged area. At the end of this step we have
a set of proxies. The size of this set can vary from 0 to
N/2, where N is the path length. The threshold value
is an implementation parameter. (In our experimental
evaluation, we set it to 20). This design choice is
based on the observations that if a node’s neighbor
has a dramatically higher proxy-selection metric, this
node can be a good proxy to reduce the impact of the
bottleneck (i.e., the neighbor).

2) Check the entire path to see if there exist a
continuous path section between two proxies (or
source/destination) comprising three or more nodes
without a proxy in-between. If so, select the middle
node as a proxy. Repeat this process until no such
path exists (thus, there will be a proxy at most every
three nodes). We chose this heuristic to allow apple-to-
apple comparison with [15]. However, from our own
experiments, we found that in a contiguous congestion
area, we can have chains of up to 5 regular nodes
without affecting the throughput (see the twelve-node
experiment described in Section 3). This suggests we
can be more judicial in proxy deployment in some

. Node with Proxy

O Regular Node

SplitTCP@ @ @ . . . @ . @

DTCP @ @ . @ ‘ @

=== Congestion Areq ===

Figure 1. A comparison of proxy selection in Split TCP
and DTCP.

areas. More sophisticated heuristics in this regards
should be explored in the future.

After the source selects the proxies, it inserts the proxy
list into an optional TCP header of the SYN segment. Every
node receiving this modified SYN packet would check the
optional header to see whether its address appears to be the
first element of proxy address list. If yes, it becomes a proxy.
It then will (a) respond to the source with a TCP SYN-ACK
segment, and (b) attempt to establish the TCP connection
with the destination by sending out a new SYN packet,
with the first element (corresponding to itself) removed from
the proxy list. The new proxy node will then intercepts all
subsequent TCP packets in this connection defined by the
source address, source port, (ultimate) destination address
and destination port, buffering these packets as needed on
each side of the connection.

There is another option when the intermediate node
receives a SYN packet and its address appears in the
proxy address list: the node may choose not to become a
proxy based on its own newest information (queue size,
retransmission count, or other metrics). Instead, it would
just let the SYN packet pass through with the removal of its
address from the optional header. In other words, the proxy
selection by the source would be treated only as a hint by the
intermediate nodes. This approach needs further exploration
in the future.

In summary, our design of TCP proxies divides an en-
tire end-to-end TCP connection into multiple sections. The
proxies are chosen and will perform most functionality of a
regular TCP source/destination. This design was convenient
as the first step in our study since it makes the path
sections rather independent of each other. However, we
acknowledge there is also a weakness in this design. Like
most other split TCP approaches, our current prototype
does not support full end-to-end reliability semantics of
TCP since without end-to-end acknowledgments at the TCP
layer, the burden of providing end-to-end reliability rests
with an application. One future direction is to provide
these semantics by layering end-to-end acknowledgments

on top of our current mechanism. These acknowledgments
would be mostly piggybacked on our current proxy-to-proxy
acknowledgments.

2.4. Implementation in rns-2

We have completed the ns-2 implementation of the above
TCP proxy mechanism and the necessary extensions to lower
layers, using ns-2 version 2.31. We modified the DSRAgent
and FullTCPAgent (NewReno), as well as the link layer and
MAC sub layer, to accommodate our design.

In particular, the instantiation of a TCP proxy on a node
is implemented as follows. We add an extra procedure
into DSRAgent’s packet processing operation. The modified
DSRAgent checks each incoming packet. If it is a TCP SYN,
the DSRAgent checks if the optional header containing the
proxy list exists, and if so, whether this node is on the list. If
the node is supposed to become a proxy, DSRAgent creates
two new instances of TCPAgent. One TCPAgent, which is
a new object we implemented by modifying the existing ns-
2 TCPAgent, will handle any further intercepted incoming
packets of this connection, mimicking the TCP end-point on
the preceding path section. The other TCPAgent connects
to the destination (by sending out the SYN packet to the
destination; it could be again intercepted by the next TCP
proxy), and sends out the packets belonging to this TCP
connection towards the final destination.

Thus, a TCP proxy consists of two TCPAgent objects and
a buffer between them, with the DSR routing agent playing
an important role in intercepting and demultiplexing packets.
We make the source code of this implementation publicly
available here[10].

3. Experimental Results

The purpose of our simulation experiments is to demon-
strate the potential performance gain by using dynamic TCP
proxies, as well as possible detrimental effects in some cases,
for example, in highly mobile environment. For this purpose,
we consider two extreme scenarios: first an ideal, stationary
network configuration, and then a network with high node
mobility. We focus on environments with long routing paths,
which are characteristic of MANETS connecting troops on a
battlefield, members of search-and-rescue or disaster relief
teams, etc. These environments are also likely to contain
disadvantaged areas that we target in our approach.

3.1. Performance in Stationary Environment

In this experiment, we consider a stationary network.
The network is deployed on a 3000mX2000m area, with
evenly spaced 60 nodes forming a regular rectangular grid.
The source and the destination nodes are chosen manually

160 : ;
"NoProxy" —+—
@ 140 | . "Split:: ——x---
° DTCP" -----
E 120
iZ
=
£ 100
=4
E
5 80
7]
g 60
=
8 40 -
5 ><,f,fj_~~—- ,,,,,,,,,,,,,,,,
® 20 SN S
0
8 9 10 11 12 13

Nodes

Figure 2. Source Transfer Finish Time Versus Hops
Using 3 Algorithms

1800

"NoPm;y‘44+4:
"Split" —--x-—-
1600 [.pToP" x
2
8 1400
<4
2 1200 5
8 -
o 1000
IS
c
& 800
o
600
k-
400
8 9 10 11 12 13

Nodes

Figure 3. Channel Capture Cost Versus Hops Using 3
Algorithms

to ensure a path of a desired length. We introduce disad-
vantaged hosts on the path from source to destination by
injecting a number of persistent flows of cross traffic, each
at an average rate of S0KBps. The size and location of the
disadvantaged area differ in different scenarios. After a 10-
second warm-up period (allowing nodes to acquire the link
quality metrics), the source initiates an FTP/TCP connection
to send a 1.44MB file to the destination. Both source and
destination use the NewReno version of TCP.

We run simulations with different path lengths between
the source and destination — 9 nodes, 10 nodes, and 12 nodes.
The congested area in these three scenarios is set as follows:
the congested area in the 9-node and 10-node scenarios
only includes the 9th node; in the 12-node experiment, the
congested area extends, inclusively, from 4th node to 8th
node.

In each scenario, we compare three algorithms: regular
TCP without proxies, Split TCP with a proxy every three
nodes, and Dynamic TCP Proxies (referred to as DTCP be-
low). We consider three performance metrics: source transfer
finish time, overall transfer finish time, and overall channel
capture cost. In particular, the overall channel capture cost is
calculated as follows. We first compute, for each path section

160 ‘ ‘
"NoProxy" —+—
& 150 | “Split* ---x---
b "DTCP" - %
g2 140
E
< 130
Q0
& 120
£ 110
g
£ 100
8 90
Q /
> ¥ .
6 80 oA
70 .
8 9 10 11 12 13

Nodes

Figure 4. Overall Transfer Finish Time Versus Hops
Using 3 Algorithms

(note that regular TCP has a single section), the product of
its transfer time and its hop-distance. We then take the sum
of these computed products for all path sections. Intuitively,
this metric defines the total amount of time when any link
is engaged in the current TCP transfer. Note that this is an
aggregate metric indicating the overall effect of the transfer
on the network, as a particular link will not be continuously
busy with an ongoing TCP transfer. The results are shown
in Figures 2—4.

Figure 2 shows that both Split TCP and DTCP allow the
source to finish its transfer to the first proxy much quicker
than regular TCP. This promises significant benefits in the
overall network effectiveness because the nodes and links
on the first path section become quickly available to be
used by other, unrelated, connections. Furthermore, Figure 3
shows that both Split TCP and DTCP have an advantage
over regular TCP in terms of the overall channel capture
costs as well, although this advantage is less dramatic than
was the case with the previous metric. Finally, Figure 4
demonstrates that both Split TCP and DTCP accomplish
the overall transfer faster than regular TCP, confirming the
intuition that proxies should improve TCP throughput.

To compare between Split TCP and DTCP, we examine
the simulation scenarios and results more carefully. In both
scenarios with 9 nodes and 10 nodes on the path, we set up
cross traffic through the 9-th node (i.e., the congested area).
Regardlessly, Split TCP places one proxy every 3 nodes, i.e.,
at node 4 and node 7. Our dynamic TCP proxies mechanism
is designed to place a proxy just outside of the congested
area. Thus, it places proxies at node 4 and node 8 in both
scenarios.

In the 9-node experiment, Split TCP is slightly better
than DTCP in terms of the overall transfer time because
the former divides the path more evenly into sections. From
this perspective, this is the most unfavorable scenario for
DTCP. Still, DTCP has a slight advantage over Split TCP
even in this scenario in terms of channel capture (as shown
in Figures 2 and 3), promising better overall efficiency

for competing flows. However, in the 10-node experiment,
DTCEP is better for all metrics, including the overall transfer
finish time. The reason is that DTCP-produced path sections
differ less in length in this case, yet DTCP localizes the
effect of the disadvantaged host (node 9) better.

The third scenario with 12 nodes, which was illustrated
earlier in Figure 1, might be more interesting, and it show
more performance gain for our dynamic proxies mechanism.
Here, an array of nodes (from node 4 to node 8) all
experience congestion due to cross traffic. Our dynamic TCP
proxies mechanism wisely places proxies only at node 3
and node 9, while Split TCP places proxies at nodes 4, 7,
and 10. The overall channel capture of both Split TCP and
DTCP is similar as shown in Figure 3. However, Figure 4
shows a significant advantage of DTCP over Split TCP in
total transfer time. Indeed, Split TCP approaches regular
TCP according to this metric but is over 19% worse than
DTCP. We suspect it is not a good idea to designate already
overloaded nodes as proxies. This experiment also suggests
that using fewer proxies wisely (2 proxies with our dynamic
TCP proxies mechanism) can achieve competitive or even
better performance than using more proxies (3 proxies with
Split TCP).

3.2. Impact of Mobility

In this experiment, we would like to investigate the po-
tential impact of high mobility on TCP proxies mechanisms.
Intuitively, TCP proxies “pin” an overlay route from source
to destination, and in a high-mobility environment this route
may diverge significantly from the underlying topology.

In our simulation, 120 nodes in a mobile network are
uniformly spread in a 3000mX2000m area. Each node will
undergo a series of random movements, similar to the
random waypoint model [4], but without pauses between
two consecutive movements. For each movement, the speed
is chosen uniformly between 1 and 100m/s, and the direction
of movement is randomly decided. Therefore, the simulated
network has a very high degree of mobility. We create differ-
ent network scenarios (by using different seeds for random
number generators) in order to discern meaningful trends.
For each scenario, in the beginning, a source/destination
pair is chosen randomly and a TCP connection to transfer a
1.44M file is initiated between them. In each scenario, we
run simulations for: (1) regular TCP without proxies, (2)
TCP with a proxy every 5 nodes, and, (3) TCP with a proxy
every 3 nodes.

We use two metrics to compare performance: transfer fin-
ish time and total number of DSR route discovery requests.
Transfer finish time is the time when the destination receives
the last packet. DSR route discovery requests represent pure
overhead and should be minimized. To study the overall
route discover overhead, we sum up the number of route

discovery requests by the source, as well as all proxies, if
any.

We collected results for 15 different scenarios. Table
1 shows the performance of the three algorithms in the
first three scenarios. It illustrates a trend that more proxies
increase the transfer time and DSR route discover overhead.
In all but one scenario, regular TCP has the best transfer
time, and in more than 75% of the scenarios, TCP with a
proxy every 5 nodes has better transfer time than with a
proxy every 3 nodes. In addition, there are also more route
discovery requests when more proxies are used.

To explain these results, we note that when nodes are mo-
bile, especially when they move rather quickly, the locations
of the end-hosts and proxies can change in the course of
the TCP transfer. Therefore, an initial, good proxy selection
scheme might degrade. In the extreme case, the end-hosts
and proxies could be randomly placed anywhere, and the
sheer effects of introducing more proxies is to increase
communication cost with no benefit. For instance, it might be
possible for the source and destination hosts to move close
to each other, but for the end-to-end TCP connection to still
traverse proxies that are far away from both end-hosts.

Table 1. The effect of TCP proxies in a mobile
environment

Scenario Proxy Tot. Transfer Number of Route
Positions Time Discovery Reqs
No Proxy 40 21
1 Every 5 nodes 90 44
Every 3 nodes 110 113
No Proxy 60 15
2 Every 5 nodes 400 68
Every 3 nodes 380 144
No Proxy 45 19
3 Every 5 nodes 55 46
Every 3 nodes 85 142

To summarize, in highly mobile networks, it could be
harmful to have fixed proxies in the network. Our dynamic
TCP proxies scheme selects proxies more judicially than
Split TCP and can be less vulnerable to node mobility.
Still dynamic proxy selection based on the current state
of the network will be necessary to fully overcome this
problem. This is especially important for long-lived TCP
connections—even with moderate node mobility, the initial
proxy selection may become a poor choice later. We envision
an approach and implementation which can dynamically
relocate proxies in the middle of a long TCP transfer to adapt
to a high-mobility environment. Yet a number of relevant
questions need to be answered, for example, (1) how much

benefit we will get from relocating proxy? (2) how much
relocating overhead we have to pay? and (3) what are the
criteria to make the decision to relocate a proxy, and achieve
a balance between performance and overhead?

4. Related Work

Our work builds upon a well-known concept of TCP
proxies, which have been applied in a variety of contexts
to improve TCP throughput (see, e.g.,[1], [12], [6], [15],
[16], [8] and references therein). The general performance
of TCP in the presence of proxies has been studied in, e.g.,
[11].

There are alternative ways to improve communication
efficiency, for example, in the context of Internet, CHART
system[2] makes use of several fixed nodes of overlay
network as intelligent middle routers. Forwarded messages
are encapsulated in UDP within the routing overlay. End-to-
end reliability and congestion control are maintained by TCP
at source and destination nodes. Some of these techniques,
such as UDP communications between proxies, could be
applied in our DTCP method.

The closest to ours is the approach by Kopparty et al. [15],
which attempts to improve the throughput of end-to-end TCP
connections in MANETS by positioning a TCP proxy every
three nodes along the routing path. Our approach selects
proxy locations dynamically based on the observed network
characteristics.

Our approach uses a combination of link-level retrans-
mission count and transmission queue length to measure a
wireless link quality and to dynamically select TCP proxy
locations. A number of other metrics have been proposed
in the context of improving ad-hoc routing performance.
Bononi et al. [3] proposed to improve multipath ad-hoc
routing based on cross-layer measurements of path statistics
reflecting the size and congestion level of each path. Mitra
et al. [17] proposed discovering stable paths using predicted
future sleep times of mobile nodes. Draves et al. [9] com-
pared several metrics in a static wireless network and found
the expected transmission count, or ETX [7], to perform the
best for routing purposes. An advantage of our metric is
that the underlying data is readily available in the link layer
(whereas, e.g., all the metrics considered in [9] require probe
traffic). However, quantitative analysis of various metrics for
proxy placement is an open question for future work.

5. Conclusions

This paper describes a novel approach to improve the
performance of a mobile ad-hoc network in the presence
of disadvantaged hosts, which can be hosts in a high-
interference or contention area, busy hosts with a large
packet transmission queue, or distant hosts with a poor
line-of-sight connectivity. Our approach extends the split

TCP mechanism that divides a long routing path into
short sections, each with its own TCP end-point called a
TCP proxy. However, unlike existing split TCP approaches,
our approach determines TCP proxy locations dynamically
based on the network conditions at the time of the con-
nection establishment. This allows us to effectively isolate
disadvantaged portions of the routing path, shielding the
remaining network areas from their detrimental effect. We
further utilize a cross-layer optimization mechanism to select
the TCP proxy locations without extra signaling overhead,
by leveraging the messages exchanged by the underlying
routing protocol to convey the link quality information. Our
preliminary simulation study shows the promising benefits of
our approach. Our study also indicates that a large number of
TCP proxies can have a detrimental effect in a high-mobility
environment. This provides additional motivation for our
approach that places TCP proxies judicially and suggests
a further direction of work to investigate a possibility of
dynamic migration of TCP proxies in an ongoing connection
when the network topology and conditions change due to
node mobility.

Acknowledgment: The authors would like to thank Krishna
Shastry of Lockheed Martin Corp. for valuable discussions
throughout this work.

References

[1] A.Bakre and B. R. Badrinath. I-TCP: Indirect TCP for mobile
hosts. In Proceedings of the 15th International Conference
on Distributed Computing Systems (ICDCS’95), pages 136—
143, Los Alamitos, CA, USA, May 30-June 2 1995. IEEE
Computer Society Press.

[2] A. Bavier, L. Peterson, J. Brassil, R. McGeer, D. Reed,
P. Sharma, P. Yalagandula, A. Henderson, L. Roberts,
S. Schwab, et al. Increasing TCP Throughput with an
Enhanced Internet Control Plane. In Proc. IEEE Military
Comm. Conf (Milcom’06),(Washington DC), pages 1-7.

[3] L. Bononi and M. Di Felice. Performance analysis of cross-
layered multipath routing and MAC layer solutions for multi-
hop ad hoc networks. In Proceedings of the 4th ACM
international workshop on Mobility management and wireless
access, pages 190-197. ACM New York, NY, USA, 2006.

[4] T. Camp, J. Boleng, and V. Davies. A survey of mobility
models for ad hoc network research. Wireless Comm. and
Mobile Computing (WCMC) Special Issue on Mobile Ad Hoc
Networking, 2(5):483-502, 2002.

[5] I. D. Chakeres and C. E. Perkins. Dynamic MANET on-
demand routing protocol. IETF Internet Draft, 6 2006.

[6] Reuven Cohen and Srinivas Ramanathan. Using proxies to
enhance TCP performance over hybrid fiber coaxial networks.
Technical Report HPL-97-81, HP Labs, 1997.

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Douglas S. J.De Couto, Daniel Aguayo, John Bicket, and
Robert Morris. A highthroughput path metric for multihop
wireless routing. In Proceedings of MobiCom, pages 114—
128.

S.M. Das, H. Pucha, and Y.C. Hu. Mitigating the gateway
bottleneck via transparent cooperative caching in wireless
mesh networks. Ad Hoc Networks, 5(6):680-703, 2007.

Richard Draves, Jitendra Padhye, and Brian Zill. Comparison
of routing metrics for static multi-hop wireless networks. In
SIGCOMM, pages 133 — 144.
Dynamic tep proxies code.
http://ipl.eecs.case.edu/DTP/.

source

Navid Ehsan and Mingyan Liu. Modeling tcp performance
with proxies. Computer Communications, 27(10):961 — 975,
2004.

Z.). Haas and P. Agrawal. Mobile-TCP: an asymmetric
transport protocol design for mobile systems. ICC, pages
1054-1058 vol.2, 1997.

Gavin Holland and Nitin H. Vaidya. Analysis of tcp perfor-
mance over mobile ad hoc networks. In MOBICOM, pages
219-230, 1999.

David B. Johnson and David A. Maltz. Dynamic source
routing in ad hoc wireless networks. In Tomas Imielinski
and Hank Korth, editors, Mobile Computing, pages 153-181.
Kluwer Academic Publishers, 1996.

Swastik Kopparty, Srikanth V. Krishnamurthy, Michalis
Faloutsos, and Satish K. Tripathi. Split TCP for mobile ad
hoc networks. In Proceedings of GLOBECOM, volume 1,
pages 138- 14, 2002.

M. Luglio, M. Y. Sanadidi, M. Gerla, and J. Stepanek. On-
board satellite split tcp proxy. IEEE Journal on Selected Areas
in Communications, 22(2):326-344, 2004.

Pramita Mitra, Christian Poellabauer, and Shivajit Mohapatra.
Stability aware routing: Exploiting transient route availability
in manets. In HPCC, pages 508-520, 2007.

J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling
TCP throughput: A simple model and its empirical valida-
tion. ACM SIGCOMM Computer Communication Review,
28(4):303-314, 1998.

