 DESIGN vita PIC

MICROCONTROLLERS

- John B. Peatman

Professor of Electrical and Computer Engineering
Georgia Institute of Technology

 PRENTICE HALL, Upper Saddle River, New Jersey 07458

Chapter

11

11.1 OVERVIEW

A UART, universal asynchronous receiver transmitter, is a module included in the following parts:
PIC16C63, PIC16C65A, PIC16C73A, and PIC16C74A. It is omitted from the following:

PIC16C62A (which is a reduced-feature version of PIC16C63)
PIC16C64A (which is a reduced-feature version of PIC16C65A)
PIC16C72 (which is a reduced-feature version of PIC16C73A).

How this unit works, how it can be used to create a serial interface to a personal computer, and how it
can be used to interconnect two PICs will be discussed in this chapter.

11.2 WAVEFORMS AND BAUD-RATE ACCURACY

When serial data is transmitted asynchronously, the data stream is generated with the transmitter’s
clock. The receiver must synchronize the incoming data stream to the receiver’s clock.

An example of the transmission of 4 bytes is shown in Figure 11-1. Each 8-bit byte is framed by
a START bit and a STOP bit. For transmission at 9,600 Bd, each of these bits lasts for a bit time (BT)
of 1/9,600 second. Before the first frame is transmitted, the line from the transmitter’s TX output to
the receiver’s RX input idles high. The receiver monitors its RX input, waiting for the line to drop low
because of the transmission of the (low) START bit. The receiver synchronizes on this high-to-low
transition. Then the receiver reads the 8 bits of serial data by sampling the RX input at

Section 11.2 Waveforms and Baud-Rate Accuracy 193

1st frame 2nd frame 3rd frame 4th frame
9.5BT
8.5BT {
BT = bit time 2.5 BT —]
1.5 BT — —
Idle bits —I I_ | Idle bits
Iy ZEEEEEEEERNENEEEEREENEENEEENEKNEREEREER RS
8 data bits) 8 data bits) 8 data bits) 8 data bits
STOP bits
START bits \ / /

Idle-to-START transition

STOP-to-START transitions

Receiver synchronizes on Idle-to-START transition

Receiver resynchronizes on each STOP-to-START transition

Figure 11-1 Four data frames having a serial protocol of one START bit, eight data bits, and one STOP bit.

1.5 BT, 2.5 BT, 3.5 BT, 4.5 BT, 5.5 BT, 6.5 BT, 7.5 BT, and 8.5 BT

as shown in Figure 11-1. It checks that the framing of the byte has been interpreted correctly by read-
ing what should be a high STOP bit at 9.5 BT. If the RX line is actually low at this time, for whatever
reason, the receiver sets a flag to indicate a framing error. Regardless of whether or not a framing error
occurs, the receiver then begins again, resynchronizing upon the next high-to-low transition of the RX
line. Because of this resynchronization, the receiver can generate its own baud-rate clock that only
approximates the transmitter’s baud-rate clock and yet the receiver can recover the serial data perfectly.

Example 11-1 Assume the transmitter transmits data at exactly 9,600 Bd and assume the receiver
measures its sampling times from the exact moment when the STOP-TO-START transition
occurs. How far off from 9,600 Bd can the receiver’s baud-rate clock be and still recover the
data and the STOP bit correctly?

Solution As illustrated in Figure 11-1, the STOP bit is read after 9.5 bit times. Consider the con-
sequence if the receiver’s baud rate clock is off sufficiently to cause the sampling to be off by
* 0.5 bit time after 9.5 bit times. The sampling of the first data bit at 1.5 bit times of the
receiver’s baud-rate clock will occur slightly off center of the bit time generated by the trans-
mitter. This off-centeredness progresses with successive bits to the point where the STOP bit
will be read unreliably and where the next STOP-TO-START transition may be missed because
the receiver is not yet looking for it. This error in the receiver’s baud-rate clock amounts to

(+0.5/9.5)x 100 =+ 5.3 %

Example 11-2 The PIC’s baud-rate clock operates at either of two ranges, called high-speed

194 UART Chapter 11
STOP or
idle bit .)
— et __START bit } bit 0 it bit le— o oo
RX oO-0-0n Arﬁ f , A’ Al
Sampling clock | | TIIIIITTTIIIIIIIIIIIII EEEEEEEEEEEN
(16x baud rate) 1 3 2% 40
} } 16 } 16 |

Figure 11-2 Receiver’s sampling of RX using its low-speed baud rate circuitry.

baud rate and low-speed baud rate. Using the low-speed baud rate, the receiver looks for the
STOP-TO-START transition by sampling its RX input every 1/16™ of one of its bit times, as
shown in Figure 11-2. Then it counts six more of these sample times to a point where it reads
a cluster of three closely spaced samples of RX and votes among them to ensure that it is see-
ing the low START bit. Thereafter, it reads successive clusters of three samples spaced 16 sam-
ple times apart. In effect, the receiver is reading its input cvery 16 periods of its sample clock.
How far off from 9,600 Bd can the receiver’s baud-rate clock be and still recover the data and
the STOP bit correctly?

Solution The mechanism for detecting the STOP-TO-START transition can throw the samples
off from the center of each bit time by as much as 1/16%™ of a bit time, even if the receiver’s baud
rate exactly matches the transmitter’s baud rate. If the receiver’s baud-rate clock is off sufficiently
to cause the sampling to be off by

+(0.5 bit time — 1/16 bit time) = +0.4375 bit time

after 9.5 bit times, then an error can occur. This places a baud rate error limit of

(+0.4375/9.5) X 100 = +4.6%

on the receiver’s baud-rate clock (assuming the transmitter’s baud-rate clock matches its nom-
inal rate exactly).

Example 11-3 Examine the baud rate accuracy requirement for the high-speed baud rate. The
receiver’s sampling scheme is shown in Figure 11-3.

Solution In this case, the sampling rate is eight times higher than the baud rate. Consequently,
the pinpointing of when the STOP-TO-START transition occurs may be off by one-eighth of
a bit time. When RX is sampled to read the START bit, the data bits, and the STOP bit, again
three samples are collected and a vote taken among the three. The samples are collected using
the three rising and falling edges of the crystal clock (OSC), as shown in Figure 11-3. For any
baud rate much less than the crystal clock rate (e.g., 9,600 Bd << 4 MHz) the RX line is sam-
pled almost exactly at the times of the sampling clock of Figure 11-3. Consequently, this places
a baud-rate error limit of

(=(0.5 bit time — 1/8 bit time)/9.5) X 100 = +3.9%

on the receiver’s baud-rate clock.

Section 11.3 Baud-Rate Selection 195

STOP or

idle bit R
— e} START bit } bit 0 } bit [e« ¢ ¢ e
RX T N l W T m
Sampling clock _| I L1 mL I S O 11 I S s I
(8x baud rate) 1 4 12 20
s : 8 | 8 |

Figure 11-3 Receiver’s sampling of RX using its high-speed baud rate circuitry.

11.3 BAUD-RATE SELECTION

Given the considerations of the preceding section, a desired baud rate can now be approximated by the
UART'’s baud-rate generator. If the crystal clock rate were selected to be a carefully chosen multiple
of the desired baud rate, then the baud-rate generator would produce the desired baud rate exactly. The
clock rates used by Microchip to characterize the three speed grades of their parts

4 MHz 10 MHz 20 MHz

do not provide exact multiples of the popular 9,600 Bd and 19,200 Bd rates commonly used by personal
computer serial ports. However, the flexibility of the baud-rate generator circuitry permits close approxi-
mations to both 9,600 Bd and 19,200 Bd with any of the standard crystal clock rates. The baud rate is
derived from the crystal rate using an 8-bit presettable divider and a fixed divider of either 16 or 64, as
shown in Figure 11-4b. The results are tabulated in Figure 11-4a. Even in the worst case, the percent error
of the approximate baud rate is only one-third of the percent error that cannot be tolerated by the UART.

OSC =4 MHz OSC =10 MHz 0OSC =20 MHz
BRGH |SPBRG | % error | BRGH |SPBRG| % error | BRGH | SPBRG | % error
9,600 baud I(high) | 25 |+0.16%|1(high)| 64 |[+0.16%| 1(high) | 129 |+0.16%
19,200 baud 1thigh) | 12 |+0.16%]1(high)| 32 |—14%|l(high)| 64 |+0.16%

Nominal baud rate

(a) Register contents and accuracy of approximated baud rate

For BRGH = 1 (high-speed baud rate) For BRGH = 0 (low-speed baud rate)

0SC Baud rate = OSC

Baud rate = ——95C 0S¢
AU At = 16(SPBRG + 1) 64(SPBRG + 1)

(b) Relationship between OSC, BRGH, SPBRG, and baud rate

Figure 11-4 Setup for 9,600 baud and 19,200 baud.

196 UART Chapter 11

11.4 UART DATA HANDLING CIRCUITRY

The transmit data circuit is shown in Figure 11-5a. To transmit a byte of data serially from the TX pin, the
byte is written to the TXREG register. Assuming there is not already data in the TSR (transmit shift reg-
ister), the content of TXREG will be automatically transferred to the TSR, making TXREG available for
a second byte even as the first byte is being shifted out of the TX pin, framed by START and STOP bits.

The receive data circuit is similar, with received data shifted into the RSR (receive shift register).
When it is in place, the STOP bit is checked and an error flag is set if the STOP bit does not equal one. In
any case, the received byte is automatically transferred into a 2-byte FIFO (first-in, first-out memory). If
the FIFO was initially empty, the received byte will fall through to the RCREG (receive register) virtually
immediately, where it is ready to be read by the CPU. If the CPU is slow in reading the RCREG, a sec-
ond byte can be received at the RX pin. When it is in place in the RSR, it will follow the first byte into the
2-byte FIFO. At that point, the FIFO is full. If a third byte enters the RX pin and is shifted all the way
across the RSR before at least one of the two bytes in the FIFO has been read, then the new byte will be
lost. An overflow error flag will be set, alerting the receiver software of the loss of a byte of data.

At 9,600 Bd, it takes 10/9,600 second, or just a little longer than a millisecond, to receive each
byte. If the received bytes are handled under interrupt control, each byte should be easily handled in a
timely fashion, well before an overrun error can ever occur. No other interrupt handler should be per-
mitted to lock out this or any other interrupt source for anywhere near a millisecond.

11.5 UART INITIALIZATION

The registers involved with UART use are shown in Figure 11-6. The data direction bits associated
with the RC6/TX pin and the RC7/RX pin must both be set up as inputs, with ones in bits 6 and 7 of
the TRISC register. The setting of these two bits disables the general I/O port output circuitry associ-
ated with these two pins. (The handling of these bits of TRISC stands in contrast to the clearing of bits
3 and 5 of TRISC in support of the Serial Peripheral Interface output pins, as shown in Figure 7-2.)

The UART’s baud rate and its transmit and receive functions are initialized by writes to SPBRG,
TXSTA, and RCSTA, as shown in Figures 11-4 and 11-6. At 9,600 Bd, each transfer takes about a
millisecond, so sending or receiving a string of characters is best carried out under interrupt control.
The flag and interrupt enable bits of the PIR1, PIE1, and INTCON registers control the timing of the
CPU’s interactions with the UART.

11.6 UART USE

A major application for the PIC’s UART is to provide a two-wire (plus ground) serial interface to a
personal computer. The circuit of Figure 11-7 uses a Motorola chip to translate between the 0 V and
+5 V logic level signal swings on the PIC’s RX and TX pins and *10 V signal swings that support the
RS-232 interface requirements. Both the PIC and the PC should be set up for the same baud rate (e.g.,
9,600 Bd) and for one start bit, eight data bits, one stop bit, and no parity.

Given this setup, the PIC will respond to RCIF interrupts by reading each byte from the RCREG
register sent by the PC. The RCIF flag will clear itself when the byte read from RCREG leaves the
receive circuit’s FIFO empty.

Section 11.6 UART Use

Data bus
Write to TXREG

TXREG (H'19)

| Automatic transfer when
TSR has been emptied

STOPbit=1 START bit=0

| l
=TT T X roomxpin

TSR (transmit shift register)

Data transmitted
least-significant bit first

(a) Transmit data circuit

% RC7/RX pin

RSR (receive shift register)

Data received
— T T TTTTIT 11 least-significant bit first
STOP bit ~—J L. START bit
~+——————————— Automatic transfer

when room is available

L |

——]

L l

RCREG (H'1A)

Two-byte
FIFO

Read from RCREG

Data bus
(b) Receive data circuit

Figure 11-5 UART’s data-handling circuitry.

197

The PIC sends out a string of bytes by writing them, one by one under interrupt control, to
TXREG. The TXIF flag takes care of itself, clearing automatically when TXREG is written to, and
setting again as the data written to TXREG are automatically transferred to the transmit shift register.
At the completion of sending the string of bytes to the PC, the TXIE bit in the PIE1 register is cleared

to disable further “transmit” interrupts until another string needs to be sent to the PC.

198

7654321

0

TRISC [[[[1]

SPBRG [|
(H"99")
TXSTA 765 43210
TXSTA [oTol 1 olo] [1T0]
RCSTA 765 43210
RSTA [To[o[1[o] T To]
TXREG
(H'19") l J
RCREG l |
(H'1A")
PIRI 76 543210
e (TTITL]
PIEL 76 543210
ZE [(TIIITTT]
76 543210
INTCON
TN D [T T 111

Figure 11-6 UART registers.

UART

'—— Configure other PORTC pins as inputs or outputs

RC6/TX } Set up as inputs, to disable

RC7RX

Serial

PORTC output circuitry

port baud rate generator register (Figure 11.4)

BRGH, high/low-speed baud rate (Figure 11.4)
TXEN = 1 : Enable transmit function

clear by clearing, then setting, CREN bit
0: No overrun error

1: Overrun error has occurred;
OERR

clear by reading RCREG

1: Framing error has occurred;
FERR

0: No framing error

CREN = 1. Enable receive function
SPEN = 1: Serial port enabled (configures

RC7/RX and RC6/TX as serial port pins)

Transmit register

Receive register

RCIF

TXIE

RCIE

PEIE
GIE

1: Set when TXREG is empty and ready
for more data to be transmitted

0: Clear when TXREG is full, waiting
for TSR to clear out

: Set when a byte is available in RCREG
: When FIFO has been cleared out by
one or two reads of RCREG

[

: Enable interrupt when TXIF =1
: Disable interrupt when TXIF = 1

: Enable interrupt when RCIF =1
: Disable interrupt when RCIF = 1

—A— A —A—
O = O

1
} Enable interrupts to CPU
1

Chapter 11

Section 11.6 UART Use 199

Another application of the PIC UART is to couple two PIC’s together. In this way some of the
work that would be done by one PIC (if only it could do all it needs to do by itself) is off-loaded to a
second PIC. Figure 11-8 shows this connection of two PICs, using the maximum possible baud rate to
obtain fast coupling between the two PICs. Within 40 internal clock cycles, what is written into one
PIC’s TXREG register appears in the other PIC’s RCREG register.

Carrying out transfers at this fast rate calls for some precautions if overrun errors are to be avoided,
given PICs that are trying to carry out tasks in addition to monitoring the UART’s RCREG register. A
PIC can only receive 2 bytes into its FIFO without reading them immediately. Any further bytes
received will be discarded until the earlier bytes are read out of the FIFO, making room for new bytes.

One application that can easily bypass this limitation is illustrated in Figure 11-9. The slave PIC
is used with a phoneme generator chip and a speaker to speak any word that is included in its dictio-
nary of N words. The code representing each word is used to access a string of phoneme codes in the
slave PIC’s program area and sent to the phoneme generator chip, one by one, producing a vocaliza-
tion of the desired dictionary word.

Given this scenario, the master PIC can send a 1-byte code to the slave PIC to initiate the vocal-
ization of any word in a dictionary of up to 256 words. When the slave PIC has the time to read the
received word, it can respond by sending a byte of acknowledgment back to the master PIC. This hand-
shake procedure ensures that no byte will ever be lost because of an overrun error. With room for 2
bytes in the FIFO, the dictionary can easily be extended to more than 256 words by using a 2-byte code
to identify each of the words.

PIC 1 20
+ |+
22 uF =¢ 22 uF
3 18 |
11
= 13
2 17 Serial .
erial connector

22 uF 1 22 uF B‘;BPQCS

| 4 19 | -
+5V (female)

1

15 6]
RC6/TX > 2

RC7/RX 16] > [|
4
RS-232 interface chip 5

Motorola MC145407 -J:T |
(20-pin DIP) 6

—
7
8

°

Figure 11-7 PIC’s UART interface to a PC.

200 UART Chapter 11

PIC PIC
TX RX
RX TX
OSC1 OSC2 OSC1 0OSC2
22 pF 22 pF 22 pF 22 pF
o e o
i 0osC - Same frequency - 0osC i
(a) Circuit
BRGH =1 SPBRG = H'00' Baud rate = OSC/16
© OSC=4MHz | OSC=10MHz | OSC=20MHz '
250 kbaud 625 kbaud 1.25 Mbaud
? Tuneto tran#fér '
b dne‘ﬁyt¢ iy 40 pus 16 pus 8 us

(b) Setup for maximum transfer rate

Figure 11-8 UART interconnection of two PICs.

The slave PIC in this application can go one step further by letting the master PIC quickly down-
load complete sentences of words. In this way, the master PIC can avoid getting tied up with a slow
sequence of transfers dictated by the rate at which the phoneme chip can generate the vocalization of
each word. The slave PIC need only handshake for each received byte and then put it in a queue (i.e.,
a FIFO implemented in software). As the vocalization of each word is completed, the slave PIC goes
to this queue for the next word to be spoken.

PROBLEMS

11-1 Framing error A UART receiver is triggered by a high-to-low transition on its input. If
this is a false trigger caused by an isolated noise spike, then hopefully the UART will automat-
ically detect this and begin again to look for a high-to-low transition to trigger upon.

Problems 201

W Speaker

Phoneme generator
and amplifier

One code
per phoneme
Master Slave
PIC PIC
One code
per word ‘Word-to-phoneme translator
TX RX (dictionary implementation)
RX TX
OSC1 0OSC2 OSC1 0OSC2
22 pF 22 pF 22 pF 22 pF
oHa o
OSC =4 MHz OSC =4 MHz

Figure 11-9 Use of UART interface to expand master PIC’s resources.

Assummg that the UART input again idles high after the noise spike, when will the UART
: detect the error? When it reads the START bitas a one? When it reads the data as H'FF'? When
it reads the STOP bit as a one?

11-2 Baud-rate selection The entry in Figure 11-4 for OSC = 4 MHz and a nominal baud rate

of 9,600 Bd uses the high-speed baud rate choice (BRGH = 1) and produces an error from the

nominal rate of +0,16%.

(a) Show the calculations to verify this.

(b) What value of SPBRG will couple with BRGH = 0 to approxmlate 9,600 Bd as closely
as possible? What is the percent error in this case?

(¢) ‘Why does the BRGH = 1 choice give a lower percent error than the BRGH 0 chmce"

11-3 Baud-rate selectlon The entry in Fxgure 11-4 for OSC =20 MHz and a nommal baud rate

of 19,200 Bd chooses the high-speed baud rate cm:ultry with BRGH 1. What would the con-

tent of the 8-bit register, SPBRG, have to be with BRGH = 0? What would be the resulting
‘ percem error in the baud rate? Why is ﬁus not hsmd in the table mstead of .

obtain a percent em for eachvvalue of OSC t‘hat 1& Iess than the worst-case tolerances foumd m o
Examplcsli-2andll 3?7 , L ey

202 UART Chapter 11

11-5 Transmit data circuitry Consider the circuitry shown in Figure 11-5a and the operation

of the TXIF bit in the PIR1 register, described in Figure 11-6. For a variable string of bytes to

be transmitted plus a pointer to that string in a 1-byte RAM variable called TXPTR, an inter-

rupt handler called TX can be written to transmit this string. Assume that each interrupt trans-

mits a single byte.

(a) Assuming the UART’s transmit circuit is through transmitting any earlier string, how
does the mainline code initiate the transmission of this string pointed to by TXPTR?

(b) How long after what is done in part (a) will the interrupt handler write to TXREG, the
output register? Answer this assuming a baud rate of 9,600 and phrase your answer as

<< 1 msor=1ms.)

(c) How long after part (b) will it be before the second write to TXREG occurs?

(d) How long after part (c) will it be before the third write to TXREG occurs?

(e) Assuming that H'00’ serves as an end-of-string designator, what does the interrupt han-
dler do when it fetches H'00’ from the string?

11-6 UART use

(a) Using Figures 11-6 and 11-4 for guidance, modify the code of P4.ASM (Figure 5-7) to ini-
tialize the UART for use under interrupt control at 9,600 Bd. Assume OSC = 4 MHz.

(b) Modify IntService to poll for both TX and RX interrupts, going to TX in the one case
and RX in the other.

(c) Write the TX handler. Describe any design decisions you make. Assume that the charac-
ters being sent reside in a variable string located in RAM and pointed to by TXPTR and
transmit just 1 byte per interrupt.

(d) Write the RX handler. Assume that the characters being received will be stored in sequen-
tial RAM locations pointed to by RXPTR. Increment the pointer after each store. You
may assume that the number of bytes received will never overrun the amount of RAM
available for it. When an end-of-string designator of H'00' is received, signal the main-
line code by setting bit 7 of a 1-byte FLAGS RAM variable.

11-7 UART use Consider the interconnection of two PICs, as in Figure 11-8 and operating at
250 kBd (with OSC = 4 MHz). The “master” PIC on the left has strings of up to 10 bytes to send
to the “slave” PIC on the right. The slave PIC will devote itself entirely to receiving these char-
acters, but only after it terminates what it is presently doing.

Describe a possible protocol for doing this in which the master PIC sends out a single byte
requesting the full attention of the slave, and the slave responds with a single byte (perhaps as
long as a tenth of a second later) saying it has stopped what it is doing and is now devoting
100% of its CPU time to the monitoring of the UART. In your description, discuss the role of
interrupts and mainline code in both master and slave.

11-8 UART use Consider the word-to-phoneme translator application described in conjunc-
tion with Figure 11-9. Describe a coding scheme that can be used to.code up to 500 words with
two bytes. The slave PIC needs to be able to look at each byte, independent of what it has pre-
viously received, and tell which byte is which. That is, it must be able to look at one byte and
recognize (by looking at it alone) that it needs the next byte to combine with this byte into a 2-
byte code. Likewise, it must be able to look at the other byte and recognize (by looking at it alone)
that it needs to be combined with the previously received byte into a 2-byte code. The binary value
of the resulting 2-byte number should not range beyond 0 to 511.

