PaUI HorOWitZ HARVARD UNIVERSITY

Winfield Hi" ROWLAND INSTITUTE FOR SCIENCE, CAMBRIDGE, MASSACHUSETTS

2 CAMBRIDGE

&5 UNIVERSITY PRESS

MINICOMPUTERS, MICROCOMPUTERS,
AND MICROPROCESSORS

The availability of inexpensive ($1k) small
computers has made it attractive to control
experiments and processes, collect data,
and perform computation directly under
the control of a computer. Small comput-
ers are commonly used in laboratory and
industrial settings, and knowledge of their
capabilities, program languages, and inter-
facing requirements is an essential part of
electronics know-how.

The microcomputer evolved from the
earlier minicomputer, a small machine
whose central processing unit (CPU) was
constructed from SSI and MSI ICs, usu-
ally occupying one or more large printed-
circuit boards. As large-scale integration
improved, it became possible to put mini-
computer CPU performance into a single
LSI chip; thus a microcomputer is a com-
puter whose CPU is constructed from just
a few (often only one) LSI microcircuits;
the CPU chip (or chip set) constitutes a mi-
croprocessor. For example, DEC’s popular
PDP-11 minicomputers (CPU on several
interconnected boards) were succeeded by

a family of similarly named computers
whose CPUs were built from a few LSI
chips in place of many SSI/MSI chips; at
about the same time, Motorola introduced
a high-performance microprocessor (the
68000) that has many similarities to the
PDP-11 and was obviously influenced
by it.

Most modern small computers are in
fact microcomputers, relying on the im-
pressive performance of the present gen-
eration of microprocessors. The phrase
“superminicomputer” has recently sur-
faced and seems to signify a class of ma-
chines that achieve higher performance, in
some cases rivaling the large and expensive
“mainframe” computers. In some cases
the distinction refers more to physical size
or number of peripherals than to the scale
of integration used in the construction of
the CPU.

A more important distinction separates
microcomputers from microcontrollers, a
term used to describe the use of a micro-
processor, along with a small amount of
memory and other support chips, for dedi-
cated control of a process or instrument.
In this role a microprocessor plus a few

673

674

MICROCOMPUTERS
Chapter 10

assorted chips and some ROM (read-only
memory) can flexibly replace a complicated
logic circuit of gates, flip-flops, and ana-
log/digital conversion functions and should
be considered whenever embarking on a
large design project. There are micropro-
cessors optimized for this kind of appli-
cation, generally characterized by on-chip
timers, ports, and other functions that usu-
ally require extra ICs, at the expense of
the computational power and large address
space that characterizes microprocessors
intended for microcomputer-based com-
putational tasks.

In this chapter we will describe micro-
computer architecture, programming, and
interfacing, with some examples of useful
and simple interfacing of peripherals to the
IBM PC/XT (here we refer to the origi-
nal PC bus and its derivatives such as the
PC/AT and compatibles, and the low end
of the PS/2 line). Most of the ideas in-
troduced in this chapter will carry over to
the next chapter, where we will get into
a detailed discussion of the selection and
construction of microprocessor-based cir-
cuits and systems; for those examples we
will use the 68008 microprocessor, a mem-
ber of the Motorola 68000 family that,
together with the Intel 8086 family, domi-
nates small computers. Generally speak-
ing, with microcomputers the design of

the computer itself, including the integra-
tion of memory, disks, and I/O control,
as well as system programming and util-
ity program development, is taken care of
by the manufacturer (and suppliers of
compatible hardware and software).
The user need only worry about special-
purpose interfaces and the job of user
programming. By contrast, in a dedicated
microprocessor system, the choices of
memory types, system interconnection,
and programming generally have to be
made by the designer. Microcomputer
manufacturers are generally committed
to providing system and utility software
as part of a complete computing system
(often including peripherals), whereas
the microprocessor manufacturers (semi-
conductor companies) generally see the
design and marketing of microprocessor
and support chips as their central tasks.
In this chapter, then, we will describe com-
puter architecture and programming and
will concentrate on the details of internal
communication and interfacing.

10.01 Computer architecture

Figure 10.1 summarizes the organization
typical of most computers. Let’s take it
from left to right:

<«———data bus———»

<

iy

I bus control l

registers

stack | |instr
ptr decode

prog "

logi
fy—— ogic

= cache | unit l flags |

| S |

CcpPU

Figure 10.1. Block diagram of a computer.

\——memory——/ mMass

[disk printer A/D digital
E;IA“H |—RIOBH F;,e | l:] plottl;] D;A l/g
CD RO reader

[process, experiment, etc.J

\—alphanumeric—/ \—real-time¢, ——/
memory oriented data-oriented

10

MINICOMPUTERS, MICROCOMPUTERS, AND MICROPROCESSORS

10.01 Computer architecture

675

CPU

The central processing unit, or CPU, is the
heart of the machine. Computers do their
computation in the CPU on chunks of data
organized as computer words. Word size
can -range from 4 bits to 32 bits or more,
with a 16-bit word size being the most pop-
ular in current microcomputers. A byte
is 8 bits (half a byte, or 4 bits, is some-
times called a “nybble™). A portion of the
CPU called the instruction decoder inter-
prets the successive instructions (fetched
from memory), figuring out what should
be done in each case. The CPU has an
arithmetic unit, which can perform the in-
structed operations, such as add, comple-
ment, compare, shift, move, etc., on quan-
tities contained in registers (and sometimes
in memory). The program counter keeps
track of the current location in the exe-
cuting program. It normally increments
after each instruction, but it can take on a
new value after a “jump” or “branch” in-
struction. The bus control circuitry handles
communication with memory and I/0.
Most computers also have a stack pointer
register (more on that later) and a few flags
(carry, zero, sign) that get tested for condi-
tional branching. Many high-performance
processors also include cache memory,
which holds values recently fetched from
memory for quicker access.

There has been a lot of activity in the ex-
perimental field of “parallel processing,” in
which you interconnect many CPUs to get
tremendous computational power. With
time this trend may become dominant in
high-performance processing. For the time
being, however, our single-CPU machine,
executing instructions serially, represents
the standard microcomputer architecture.

Memory

All computers have some fast random-
access memory, called RAM (it used to
be called “core,” because tiny magnetic
cores held the data, one bit per core). In

a large microcomputer this may include
10 megabytes or more, although a mega-
byte is more typical, and as little as 16K
may be used in a microcontroller. (When
used to describe memory sizes, K doesn’t
mean 1000, but rather 1024, or 219; thus,
16K bytes is actually 16,384 bytes. We
employ the lower-case symbol k to mean
1000.) This memory can typically be read
and written in about 100ns. RAM is
almost always volatile, which means that
its information evaporates when power
is removed (maybe it should be called
“forgettory™!). All computers therefore
include some nonvolatile memory, usually
ROM (read-only memory), to “bootstrap”
the computer, i.e., get it started from a
state of total amnesia when power is first
turned on. Additional ROM is often pro-
grammed with system routines, graphics
routines, and other programs that you
want to be there all the time.

To get or store information in memory,
the CPU “addresses” the desired word.
Most computers address memory by bytes,
beginning at byte 0 and going sequentially
through to the last byte in memory. Since
most computer words are several bytes
long, you are usually storing or fetching
a group of bytes at a time; this is usu-
ally expedited by having a data bus that
is several bytes wide. For example, micro-
computers that use the 80386 or 68020 use
a bus 32 bits (4 bytes) wide, so that a 32-
bit word can be moved to/from memory in
one memory fetch. (There are control sig-
nals to specify how many contiguous bytes
are being moved, since even with a large
bus you may want only 1 or 2 bytes.)

In a computer with lots of memory, it
takes three or four bytes to specify an arbi-
trary memory address anywhere in the ma-
chine. Since most memory references in
an actual program are usually “nearby,” all
computers provide for simplified address-
ing modes: “Relative” addressing specifies
an address by its distance from the present
instruction; “indirect” addressing uses the

676

MICROCOMPUTERS
Chapter 10

contents of a CPU register to point to a
location in memory; “paged” addressing
uses a shortened address to refer to a mem-
ory location within a small area (a page);
“direct” or “absolute” addressing uses the
next few bytes in memory to specify an
address. A modern CPU embellishes this
short list with additional “indexed,”
“autoincrementing,” and other useful
addressing modes, which we’ll learn about
in the next chapter.

Both programs and data are kept in
memory during program execution. The
CPU fetches instructions from memory,
figures out what they mean, and does
the appropriate things, often involving
data stored somewhere else in memory.
General-purpose computers usually store
programs and data in the same memory,
and in fact the computer doesn’t even
know one from the other. Amusing things
start to happen if a program goes awry and
you “execute” data!

Since computer programs spend most
of their time looping through a relatively
short sequence of instructions, you can en-
hance performance by providing a small,
but fast, cache memory, in which you rou-
tinely store copies of the most recently
used memory locations. A cached CPU
checks its local cache first, before fetching
from (slower) main memory; when loop-
ing through familiar territory, you often
achieve a cache “hit” rate of 95% or better,
dramatically improving execution speed.

Mass memory

Computers intended for program develop-
ment or computation, as opposed to
dedicated control processors, usually have
one or more mass-storage devices. “Hard”
disks (also called “Winchester”) and
“floppy” disks (“diskettes”) are the usual
ones, with storage capacities going from a
few hundred kilobytes to a few megabytes
(floppy disks), and from a few tens of mega-
bytes to a few hundred megabytes (hard

disks). Most well-endowed computers also
have a tape drive or two, ranging from a
simple cartridge-tape “streaming” drive to
a full-fledged 9-track, half-inch, large-reel
tape (the kind that are always spinning in
the background in science fiction movies).
A newer technology uses 8mm videotape
(the kind that lives in those little hand-
held video cameras) to store a gigabyte
on a small tape cartridge. And the latest
in mass storage is the “CD ROM,” which
uses the same optical disk technology as
audio CDs (compact discs); they store 600
megabytes on one side of a 5 inch plastic
disk, with much faster access than any tape
medium. Unlike audio CDs, there are CD
ROM drives that let you write as well as
read, by laser-burning pits in a blank CD;
they’re called “WORM,” for “write once,
read many.” Furthermore, fully erasable
read/write magneto-optic disk memories
are also available.

Compared with RAM, mass-storage me-
dia are generally slow, magnetic tape being
the slowest, with access times of many sec-
onds, and hard disks being the fastest (and
most expensive), with average access times
of tens of milliseconds. With all mass-
storage devices, data transfer is rapid (10K
to 100K bytes per second or more) once
the data has been located. You generally
keep programs, data files, plot files, etc., on
some sort of mass-storage device and bring
these into RAM only when doing compu-
tation. Many users can simultaneously fit
their programs on one disk; a moderate-
size optical disk can hold the contents of
the Encyclopaedia Britannica several times
over.

If your computer has lots of RAM, a
nice way to speed up computer operations
that make heavy use of disk is to form a
“RAM disk” by loading all the relevant
disk files into RAM when you start. Thus
you might put a text editor, compiler,
and linker/loader into RAM; then you can
switch back and forth without waiting for
the disk. Be careful, though; because none

MINICOMPUTERS, MICROCOMPUTERS, AND MICROPROCESSORS

10.01 Computer architecture

677

of your work is being saved on nonvolatile
disk, you lose all your work if the computer
crashes.

Alphanumeric and graphic 1/O

It is nice to have a powerful computer, ca-
pable of millions of smart computations
per second, but it doesn’t do you any good
if it keeps all its results to itself. Periph-
erals such as a keyboard and screen (the
combination is a “terminal”), “mouse,”
printer, etc., let man and machine com-
municate, and these are essential in any
“friendly” computer system. These pe-
ripherals are mostly oriented toward pro-
gramming, word processing, spreadsheets,
and graphics; you use them when writing
programs, debugging, listing, writing and
printing documents, manipulating quanti-
ties and objects, and playing flight simu-
lator. These sorts of peripherals, together
with suitable interfaces, are available from
many sources, including the microcom-
puter manufacturer.

Real-time 1/O

For experiment or process control and data
logging, or for exotic applications such as
speech or music synthesis, you need A/D
and D/A devices that can communicate
with the computer in “real time,” i.e.,
while things are happening. The possibil-
ities are almost endless here, although a
general-purpose set of multiplexed A/D
converters, a few fast D/As, and some
digital “ports” (serial or parallel) for ex-
change of digital data will permit many
interesting applications. Such general-
purpose peripherals are commercially
available for most popular computer
buses. If you want something fancier, such
as improved performance (higher speed,
more channels) or special-purpose func-
tions (tone generation, frequency synthe-
sis, time-interval generation, etc.), you
may have to build it yourself. This is
where a knowledge of bus interfacing

and programming techniques is essential,
though it’s helpful in any case.

Network interface

Powerful desktop computers become even
more powerful when they can exchange
files with other computers. One way to do
this is to “log on” to a remote computer
via telephone lines, then use the features
of the remote computer that you need.
That might include access to a large
data base or special programs, a power-
ful supercomputer, computer “mail,”
or a colleague’s text or data file.
For these purposes you need a “modem”
(modulator/demodulator), which either
plugs directly into your computer’s bus
or hooks onto a serial data port. We’ll have
more to say about this later.

Another way to extend the scope of your
machine is to use a local area network
(LAN) to link a group of computers
together. An example is Ethernet, which
provides communication at rates up to
10Mb/s among linked machines, via a sin-
gle coaxial cable. A LAN lets you access
files on anyone’s machine; in fact, with a
good LAN you would probably pool your
resources, sharing a fast large disk, high-
priced plotters and printers, etc. Each
“workstation” would then have only lim-
ited mass storage, but enough computa-
tional and display capability for the work
you want to do with it. Such a setup is
ideal for a publishing house or newspaper,
for example, where different people work
on manuscripts as they are readied for pub-
lication. You can get Ethernet (and other
LAN) interfaces for most microcomputers.

Data bus

For communication within the computer
between the CPU and memory or periph-
erals, all computers use a bus, a set of
shared lines for exchange of digital words.
(Many buses also allow communication

678

MICROCOMPUTERS
Chapter 10

between peripherals, though this capability
is used less often.) The use of a shared bus
vastly simplifies interconnections, since
otherwise you would need multiwire cables
connecting every pair of communicating
devices. With a little care in bus design

and implementation, everything works fine.

The bus contains a set of DATA lines
(generally the same number as bits in a
word - 8 for microcontrollers and low-
performance PCs, 16 or 32 for more
sophisticated microcomputers), some AD-
DRESS lines for determining who should
“talk” or “listen” on the line, and a
bunch of CONTROL lines that specify
what action is going on [data going to or
from the CPU, interrupt handling, DMA
(direct memory access) transfers, etc.]. All
the DATA lines, as well as a number of
others, are bidirectional - they’re driven
by three-state devices, or in some cases by
open-collector gates with resistor pullups
somewhere (usually at the end of the bus,
where they also serve as terminators to
minimize reflections, see Section 13.09);
pullups may be necessary with three-state
drivers also, if the bus is physically long.

Three-state or open-collector devices are
used so that devices connected to the bus
can disable their bus drivers, since in nor-
mal operation only one device is assert-
ing data onto the bus at any time. Each
computer has a well-defined protocol for
determining who asserts data, and when.
If it didn’t, total chaos would result, with
everyone shouting at once (so to speak).
(Computer people can’t resist personaliz-
ing their machines, peripherals, etc. Engi-
neers are even worse, with flip-flops and
even gates coming to life. Naturally, we
follow the trend.)

There is one interesting distinction in
computer buses. They can be either syn-
chronous or asynchronous, with examples
of each in currently popular microcomput-
ers. You will see what this means when we
get into the details of communication via
the bus.

We’ll return to the bus in detail, with
interface examples, using the example of
the popular IBM PC/XT family. First,
though, we need to look at the CPU’s
instruction set.

A COMPUTER INSTRUCTION SET

10.02 Assembly language and machine
language

In order to understand bus signals and
computer interfacing, you’ve got to under-
stand what the CPU does when it executes
various instructions. At this point,
therefore, we would like to introduce
the instruction set that goes with the
IBM PC/XT family. Unfortunately, the
instruction sets of most real-world micro-
processors tend to be rich with complex-
ities and extra features, and the Intel
8086 series is no exception. However,
since our purpose is only to illustrate
bus signals and interfacing (not fancy pro-
gramming), we’ll take a shortcut by lay-
ing out a subset of 8086 instructions. By
leaving out the “extra” instructions we’ll
wind up with a compact set of instructions
that is both understandable and complete
enough to do any programming task. We’ll
then use it to show some examples of inter-
facing and programming. These examples
will help convey the idea of programming
at the “machine-language” level, some-
thing quite different from programming in
a high-level language like FORTRAN or C.

First, a word on “machine language”
and “assembly language.” As we men-
tioned earlier, the computer’s CPU is
designed to interpret certain words as
instructions and carry out the appointed
tasks. This “machine language” consists of
a set of binary instructions, each of which
may occupy one or more bytes. Incre-
menting (increasing by one) the contents
of a CPU register would be a single-byte
instruction, for example, whereas loading

A COMPUTER INSTRUCTION SET
10.03 Simplified 8086/8 instruction set

679

a register with the contents of a memory
location would usually require at least two
bytes, perhaps as many as five (the first
would specify the operation and register
destination, and four more would be neces-
sary to specify an arbitrary memory
location in a large machine). It is a sad
fact of life that different computers have
different machine languages, and there is
no standard whatsoever.

Programming directly in machine lan-
guage is extremely tedious, since you wind
up dealing with columns of binary num-
bers, each bit of which has to be bit-perfect,
so to speak. For this reason you invari-
ably use a program called an assembler; it
allows you to write programs using easily
remembered mnemonics for the instruc-
tions, and symbolic names of your own
choosing for memory locations and vari-
ables. This assembly-language program,
really nothing more than a number of
cryptic-looking lines of letters and num-
bers, is massaged by a program called an
assembler to produce as its output a fin-
ished program in machine-language object
code that the computer can execute. Each
line of assembly code gets turned into a few
machine-language bytes (1 to 6 bytes, for
the 8086). The computer cannot execute
assembly-language instructions directly.
To make these ideas concrete, let’s look at
our subset of the 8086/8 assembly language
and do a few examples.

10.03 Simplified 8086/8 instruction set

The 8086 is a 16-bit processor with a rich,
and somewhat idiosyncratic, instruction
set; part of its complexity stems from
the designers’ objective to maintain
compatibility with the earlier 8080 8-bit
processor. Newer CPUs, such as the 80286
and 80386, can still execute the full 8086
instruction set. We’ve gone through the
instructions with a machete, keeping 10
arithmetic operations and 11 others.
Here they are:

Instruction What you call it ‘What it does

arithmetic

MOV b,a move a—b; a unchanged
ADD b,a add a+b—b; a unchanged
SUB ba subtract b—a—b, a unchanged

AND b,a and

OR ba or a OR b—b bitwise; a unchanged

CMP b,a compare set flags as if b~a; a,b unchanged

INC rm increment rm+1—rm

DEC mm decrement m-1—rm

NOT rm not 1’s complement of rm—rm

NEG rm negate negative (2’s comp) of rm—rm
stack

PUSH rm push push rm onto stack (2 bytes)

POP rmm pop pop 2 bytes from stack to rm

control
JMP label jump jump to instr label
Jcc label jump conditional jump to instr label if cc true
CALL label call push next adr, jump to instr label
RET return pop stack, jump to that adr
IRET return from int pop stack, restore flags, return
STI set interrupt enable interrupts
CLI clear interrupt disable interrupts

input/output
IN AX(AL),port input
OUT port,AX (AL) output

port—AX (or AL)
AX (or AL)-port

notes

b,a: any of mr r,m r,r mimm rimm
rm: rorm, via various addressing modes
cc: anyofZ NZ G GE LE L C NC
label: via various addressing modes
port. byte (via imm) or word (via DX)

A quick tour

Some explanations: The first six arithmetic
instructions operate on pairs of numbers
(“2-operand” instructions), which we’ve
abbreviated as b,a, and which can be any
of the 5 pairs listed in the notes; m means
the contents of a memory location, r means
the contents of a CPU register (there are
8), and imm means an immediate argu-
ment, which is a number stored in the
next 1 to 4 bytes of memory following the

a AND b—»b bitwise; a unchanged

680

MICROCOMPUTERS

MUL/DIV/I]O

] loop, shift, count

base registers

index registers

} stack pointer

0 Figure 10.2. 8086 “general-
Lsg purpose” registers.

after reading the fine print you’ll realize
that most of them have special uses (Fig.
Four of them (A-D) can be used
either as single 16-bit registers (e.g., AX;

Chapter 10
16-bit
register
name
7 07 0
AX AH AL
byte-addressable DX DH oL
registers cX CH cL
BX BH BL
BP base pointer
Si source index
DI destination index
SP stack pointer
15
mMsB
instruction. Thus, for example, the in-
structions
MOV countCX 10.2).
ADD small,02H
AND AX,007FH

have arguments of the form m,r, m,imm,
and r,imm, respectively. The first copies
the contents of register CX to a memory
location that we’ve named “count”; the
second adds 2 to the contents of another
memory location called “small”; the third
clears the top 9 bits of 16-bit register AX,
while preserving the bottom 7 bits
unchanged (a so-called masking operation).
Note Intel’s argument convention: The
first argument is replaced or modified by
the second argument. (In the next chapter
we’ll learn that Motorola decided to do it
the other way around!)

The last four arithmetic operations take
only a single operand, which can be either
the contents of a register or memory. Here
are two examples:

INC count
NEG AL

The first adds 1 to the contents of memory
location “count,” while the second changes
the sign of register AL.

A detour: addressing

Before continuing, a word on registers
and memory addressing. The 8086 claims
to have 8 “general-purpose” registers, but

think of “X” as “extended”) or as a pair of
byte registers (AH, AL; “high” and “low”
halves). The BX and BP registers can hold
addresses, as can the SI and DI registers,
and tend to be used for addressing (see be-
low). Special looping instructions (which
we omitted from our short list) use register
C, while multiply/divide and I/0 instruc-
tions make analogous use of registers A
and D.

Data used in instructions can be an
immediate constant, a value held in a
register, or a value in memory. You
specify immediates by value, and registers
by name, as in the examples above. To
address memory, the 8086 provides six
addressing modes, three of which are
described by the diagrams in Figure 10.3.
You can just name the variable directly,
in which case its address gets assembled
as a pair of bytes immediately following
the instruction; you can put the variable’s
address in an addressing register (BX, BP,
SI, or DI), then use an instruction that
specifies addressing indirectly through the
register; or you can combine the above,
adding an immediate displacement to the
value in a designated addressing register
to get the variable’s address. The indirect

A COMPUTER INSTRUCTION SET
10.03 Simplified 8086/8 instruction set

681

direct

mem adr

[] [] []

indirect

adr-L I (BX, BP, SI, or DI)

indexed

N N ————
N\

N\,
Y
designates
N mem adr
N
\

I base adr-H/base adr-L J (BX, BP, S, or DI)

mode is faster (assuming the address has
already been loaded into an addressing
register) and much better if you want to
do something to a whole set of numbers (a
string or array). Here are a few addressing
examples:

MOV count,100H (direct,immediate)
MOV [BX],100H (indirect,immediate)
MOV [BX+1000H],AX (indexed,register)

The last two assume you’ve already put an
address into BX. The last instruction copies
the contents of AX to a memory location
4K (1000 hex) higher than BX points in
memory; we’ll give an example shortly
showing how you could use this to copy
an array.

There’s one other complexity of 8086
memory addressing that we’ve swept under
the rug: The “address” generated by any of
the above addressing modes is not actually
the final address, as should be obvious
from the fact that it has only 16 bits (which
can address only 64K bytes of memory).
In fact, it’s called an offset; to get an
actual address, you add to the offset a
20-bit base formed by shifting left 4 bits
the contents of a 16-bit segment register
(there are four such registers). In other
words, the 8086 lets you access groups of
64K bytes of memory at a time, with the
location of those “segments™ within a total
memory size of 1Mbyte set by the contents

Figure 10.3. Some addressing
modes.

of the segment registers. The use of 16-bit
addressing in the 8086 was basically a big
mistake, inherited from earlier generations
of microprocessors. Newer processors
(80386 onward, and the 68000 series)
are done right, with 32-bit addressing
throughout. Rather than complicate our
examples, we’ll simply ignore segments
entirely; in real life you would, of course,
have to worry about them.

Instruction set tour (continued)

The stack instructions PUSH and POP come
next. A stack is a portion of memory,
organized in a special way: When you put
data onto the stack (a push), it goes into
the next available spot (“top” of the stack);
and when you retrieve data (a pop), it is
taken from the top, i.e., it is the item last
pushed onto the stack. Thus a stack is a
consecutive list of data, stored last-in, first-
out (LIFO). It may help to think of a bus
driver’s coin dispenser (or a lunchroom
tray dispenser).

Figure 10.4 shows how it works. The
stack lives in ordinary RAM, with the
CPU?’s stack pointer (SP) keeping track of
the location of the current “top” of the
stack. The 8086 stack holds 16-bit words
and grows down in memory as you push
data onto it. The SP is automatically
decremented by 2 before each PUSH, and
incremented by 2 after each POP. Thus, in

682

MICROCOMPUTERS
Chapter 10

bottom of stack

r—memory addresses

iready i 3A 7FFF
already in
stack F2 7FFE
top of CA 7FFD
p
stack }(SP)—’ 0B 7FFC
old XX 7FFB
garbage xx 7FFA
XX “PUSH AX"' —»
SP 7F I FC
AX 4C 1 2B
A. Effect of PUSH
3A TFFF
F2
CA
0B
4C

—=| 2B 7FFA

XX
garbage {

SP 7F I FA
BX 12 | 34

B. Effect of POP
Figure 10.4. Stack operation.

the example, the 16-bit data in register AX
is copied onto the top of the stack by the
instruction PUSH AX; the SP is left pointing
at the last byte pushed. POP reverses the
process, as shown. As we will see, the stack
plays a central role in subroutine calls and
interrupts.

JMP causes the CPU to depart from its
usual habit of executing instructions in
sequential order, detouring instead to the
instruction that you jump to. Conditional

Program 10.1

MOV BX,1000H
MOV CL,100
LOOP: MOV AX, [BX]
MOV [BX+400H],AX
ADD BX,?2
DEC CL
JNZ LOOP
NEXT: (next statement)

“POP BX'——

3A 7FFF
F2 i
CA :
0B !
4C !
(SP)—=| 2B 7FFA
old xx
garbage
SP 7F | FA
AX ac | 28
3A 7FFF
F2
CA
—»| 0B 7FFC
4C
2B TFFA
garbage
XX
sp
BX 4C ' 2B

jumps (there are eight possibilities, indi-
cated generically as Jcc) test the flag reg-
ister (which lives in the CPU, and whose
bits are set according to the result of the
most recent arithmetic operation), then
either jump (if the condition is true) or exe-
cute the next instruction in sequence (if the
condition is not true). Program 10.1 shows
an example. It copies 100 words from
the array beginning at 1000 hex to a new
array beginning 1K bytes (400H) higher.

;put array address in BX
;initialize loop counter
;copy array element to AX
;then to new array
;increment array pointer
;decrement counter

;loop if count not zero
;exit here when done

A COMPUTER INSTRUCTION SET
10.04 A programming example

683

— -
(CPU PUSHes
A AN— contents of
POV NS IP (instruction
U pointer), in
CALLing CALL name f’r:‘:zxc‘a::r,“
program next adr: sae———~ and puts
 Smanand ““name’’ into
PESU NS IP: control
therefore
\ jumps to

_'name”’

’_CPU POPs
stack to IP,
thereby

Note the explicit loading of the pointer (to
address register BX) and the loop
count (to CL). The actual array of
words had to move through a register
(we chose AX) because the 8086 does not
permit memory-to-memory operations
(see the instruction set notes). At the
end of the 100th pass through the loop,
CZ = 0, and the jump nonzero (JNZ)
instruction no longer jumps. This example
will work, but in practice you would
probably use one of the 8086’s faster
string move instructions. Also, it’s good
programming practice to use symbolic
names for sizes and arrays, rather than
constants like 400H and 1000H.

The CALL statement is a subroutine call;
it’s like a jump, except that the return
address (the address of the instruction that
would have come next, except for the
intervening CALL) is pushed onto the stack.
At the end of the subroutine you execute
a RET statement, which pops the stack so
the program can find its way home

Program 10.2

n DW O ;n

jumping back

e NAME. A A
A
AAA—

RET

CALL ed
subroutine

to “‘next adr”
-

Figure 10.5. CALL operation.

(Fig. 10.5). The three statements STI, CLI,
and IRET have to do with interrupts,
which we’ll illustrate with a circuit
example later in the chapter. Finally, the
1/0 instructions IN and OUT move a word
or byte between the A register and the
addressed port; more on this shortly.

10.04 A programming example

As the example above suggests, assembly
language tends to verbosity, with a lot of
little steps needed to do a basically simple
thing. Here’s another example: Suppose
you want to increment a number, N, if
it equals another number, M. This will
typically be a tiny step in a larger program,
and in higher level languages it will be a
single instruction:

if (n==m) ++n; ©

IF (N.EQ.M) N=N+1 (Fortran)

if n=m then n:=n+1; (Pascal), etc.

In 8086 assembler, it looks like Pro-
gram 10.2. The assembler program will

(a "word") lives here, and

m DW O ;m lives here, both initialized to 0
MOV AX,n ;get n
CMP AX,m ;compare
JNZ NEXT ;unequal, do nothing
INC n ;edual, increment n
NEXT: (next statement)
o
o

(e}

684

MICROCOMPUTERS
Chapter 10

convert this set of mnemonics to machine
language, generally translating each line of
assembler source code to several machine-
language bytes, and the resultant machine-
language code will get loaded into suc-
cessive locations in memory before being
executed. Note that it is necessary to tell
the assembler to assign some storage space
for variables. This you do with the assem-
bler pseudo-op “DW” (define word) (pseudo-
op because it doesn’t produce executable
code). Unique symbolic labels (e.g., NEXT)
can be used to tag instructions; this is
usually done only if there is a jump to
that location (JNZ NEXT). Giving some
locations understandable (to you!) names
and adding comments (separated by a
semicolon) make the job of program-
ming easier; it also means that you have
a chance of understanding what you’ve
written a few weeks later. Programming in
assembly language can still be a nuisance,
but it is often necessary to write short rou-
tines in it, callable from a higher-level lan-
guage, to handle I/O. Assembly-language
programs run faster than programs com-
piled from a higher language, so it is
often used where speed is crucial (e.g.,
the innermost loop of a long numerical
calculation). To some extent the develop-
ment of the powerful C programming lan-
guage has minimized the occasions when
you must use assembly code. In any case,
you can’t really understand computer in-
terfacing without understanding the nature
of assembly-language 1/0. The corre-
spondence between mnemonic assembly
language and executable machine language
is explored further in Section 11.03, in that
case illustrated by 68000 microprocessor
programming.

BUS SIGNALS AND INTERFACING

A typical microcomputer data bus has
about 50-100 signal lines, devoted to the
transfer of data, addresses, and control
signals. The IBM PC/XT is typical of a

small machine, with 53 signal lines and
8 power/ground lines. Rather than throw
them all at you at once, we will approach
the subject by building up the bus,
beginning with the signal lines necessary
for the simplest kind of data interchange
(programmed I/0) and adding additional
signal lines as they become necessary. We
will give some useful interface examples as
we go along, to keep things comprehensible
and interesting.

10.05 Fundamental bus signals:
data, address, strobe

To move data on a shared (party-line) bus,
you have to be able to specify the data,
the recipient, and the moment when data
is valid. Thus, a minimum bus must have
DATA lines (for the data to be transferred),
ADDRESS lines (to identify the I/0 device
or memory address), and some STROBE
lines (which tell when data is being trans-
ferred). There are usually as many DATA
lines as bits in the computer word, so a
whole word can be transferred at once. In
the PC, however, there are only 8 DATA
lines (D0-D7); you can move a byte in
one transfer, but to move a 16-bit word
you have to do two transfers. The number
of ADDRESS lines determines the number
of addressable devices: If the bus is used
for both I/0 and memory (the usual situa-
tion) there will be 16 to 32 ADDRESS lines
(corresponding to a 64Kbyte to 4Gbyte ad-
dress space); a bus used for I/O only might
have 8 to 16 ADDRESS bits (256 to 64K
I/0 devices). [The IBM PC talks to both
memory and I/O on its bus, and has 20
ADDRESS lines (A0-A19), corresponding
to a 1Mbyte address space.] Finally, data
transfer itself is synchronized by pulses on
additional “strobing” bus lines. There are
two ways in which this can be done: by
having separate READ and WRITE lines,
with a pulse on one or the other synchro-
nizing data transfer; or by having one
STROBE line and one READ/WRITE! line,
with a pulse on STROBE synchronizing

BUS SIGNALS AND INTERFACING
10.06 Programmed 1/0: data out

685

data transfer in a direction specified by
the level on the READ/WRITE' line. The
IBM PC uses the first scheme, with (active-
LOW) read/write lines called IOR’, IOW’,
MEMR’, and MEMW/’; there are four
because the PC distinguishes between
memory and I/O, with individual pairs of
read/write strobes for each.

These bus signals - DATA, ADDRESS,
and the four strobes - would normally
be all you need to do the simplest kind
of data transfers. However, on the PC
bus you need one more, called ADDRESS
ENABLE (AEN), to distinguish normal
I/0 transfers from what’s called “direct
memory access” (DMA). We’ll get to DMA
in Section 10.12; for now, all you need
to know is that AEN is LOW for normal
1/0, and HIGH for DMA. We now have
33 bus signals: D0-D7, A0-A19, IOR/,
IOW/, MEMR’, MEMW’, and AEN.
Let’s see how they work.

10.06 Programmed 1/O: data out

The simplest method of data exchange on
a computer bus is known as “programmed
I/0,” meaning that data is transferred via
an IN or OUT statement in the program
(the directions for IN and OUT are among
the few things on which all computer
manufacturers agree: IN always means
toward the CPU, and OUT always means
from the CPU). The whole process of
data OUT (and memory write) is extremely
simple and logical (Fig. 10.6). The AD-
DRESS of the recipient and the DATA to
be sent are put onto the respective bus
lines by the CPU. A write strobe (IOW’
or MEMW’) is asserted (LOW) by the
CPU to signal the recipient that data is
good. On the PC’s bus the address is
guaranteed valid beginning about 100ns
before IOW’, and the data are guaranteed
valid at least 500ns before the end of IOW’
(and for another 185ns thereafter). To play
the game, the peripheral (in this case, an
XY “vector” scope display) looks at the
ADDRESS and DATA lines. When it sees

its own address, it latches the information
on the DATA lines, using the trailing edge
of the IOW’ pulse as a clocking signal.
That’s all there is to it.

|¢————900 noM—uo— 5|

A0-A15 X X
00-D7 X validdata X

[———650 nom———»

oW l«——516 min-—p/—__“
—J 9,2 630 nom-———, g
mn min[*

Figure 10.6. I/O WRITE cycle.

valid 1/0O adr

Let’s look at the example shown in Fig-
ure 10.7. Here we have designed an XY
scope display; you send it successive X,Y
pairs of numbers, and it plots each point
in turn on an XY display oscilloscope.
First we have to pick an /O address. Fig-
ure 10.8 shows the reserved and available
I/0 addresses on the IBM PC; we’ve cho-
sen 3COy for the X register, and 3Cly for
the Y register. The *688 is an octal com-
parator with enable and LOW-true output
on equality, giving a LOW output when
the eight high-order bits A2-A9 match the
fixed comparison bits, in this case when
the address bus contains addresses 3CO-
3C3 (you could use a bunch of gates, but
an address comparator is more compact).
We’ve also required AEN to be LOW, as
explained earlier. The 3-input NANDs
complete the address decoding, using AO
and Al, to give LOW outputs on indi-
vidual addresses 3CO and 3Cl1 (another
method will be described shortly). Finally,
these outputs are ANDed with IOW’ to
get the clocks for the X and Y registers,
which are ’574 octal D flip-flops. These
latch bytes from the data bus when (a) the
correct address is present, (b) AEN is
LOW, and (c) an IOW’ is sent. The 8-bit
DACs convert the latched bytes to analog
voltages, to drive the X and Y inputs

‘Kerdstp adods XX "L 01 21nd1g

ADX— oA v ov
S"s Sg N1OA— LA gb—1v

NA.ATAO 0 ZA oh
A X o v Au_.n v % e 2

O——MOI

o <
l_ N3 Po——0=d
—q LA —G +

3ou1 801U

€esLav €z5Lav

80

La 8a ta /f
haaslinas)
10€

rl— S LD
80 10 80 ———— |0
10 v, < oy 4 098 /ﬁ 0=d 889, N3 Jo—

&

8a
€0¢€
-02¢ A

N3V

ov

v

£V

144

sv

v

8V

6V

(2
~
<
(lensed) sng Od gl

1a

[4¢]

€a

sa

Ae]

686

BUS SIGNALS AND INTERFACING
10.06 Programmed I/0: data out

687

of a display scope. A pair of monostables
generates a 5us “unblanking” pulse a few
microseconds after the Y coordinate has
been latched, to intensify the selected spot
on the scope (all scopes have a “Z input”
for that purpose). To draw a graph or
set of characters on the screen, all you
do is output successive XY coordinates
repetitively (send X, then Y), fast enough
so the eye doesn’t see the flicker. Micro-
computers are fast enough to display a
few thousand XY pairs repetitively with-
out annoying flicker. Given the fact that
video (raster-scanned) displays for viewing

4 3
%0 13 SERIAL PORT
3r8
8 FLOPPY CONTROL
3F0
16 UNUSED
3E0
16 COLOR/GRAPHICS
300
16 UNUSED
3co
16 MONOCHROME/PRINTER
380
48 UNUSED
380
378 12 PRINTER | CARD sLOTS
{1/O BUS)
120 UNUSED
300
8 2nd SERIAL PORT
2F8
120 UNUSED
280
8 2nd PRINTER
278
118 UNUSED
202
1 GAME CONTROL
201
1 UNUSED
200
320 UNUSED
co
32 NMI MASK
A
32 DMA PAGE REG
80 > MOTHERBOARD
60 |32 KBDISENSE/CONTROL
4o 122 TIMER/COUNTER
5 |32 INTERRUPT CONTROL
32 DMA CONTROL
0 J

Figure 10.8. 1/0 addresses for IBM PC.

are commonplace on microcomputers, this
example might be more useful as an ultra-
high-resolution plotter for photographic
“hard copy,” using 14-bit DACs and a
micro-spot-size hard-copy scope display
(see the next exercise).

Some useful comments: (a) Note that
we’ve arranged polarities so that the trail-
ing edge of IOW’ clocks the D flip-flops;
that is essential, since the data isn’t yet
valid on the leading edge of IOW’. If we
were being very careful, we would check to
see that required setup and hold times are
satisfied for the *574s; in fact, for a slow
bus like the PC’s, you can’t go wrong, since
there are more than 500ns from valid data
to trailing edge of IOW’. (b) You can save a
few parts by using a strobed decoder in the
address decoding circuitry, as indicated.
Decoders like the 138 (3-line to 8-line)
and 139 (dual 2-line to 4-line) include one
or more enable inputs, and they are handy
in this sort of application. (c) Note also
that we could have combined the 3-input
and 2-input NAND:s into 4-input NANDs;
we kept them separate only for clarity,
decoding the addresses first, then AND-
ing with the IOW’ strobe. (d) In fact, we
could have ignored A1 entirely, and the cir-
cuit would work just the same! However,
it would then respond also to addresses
3C2 and 3C3 (as X and Y, respectively),
in effect “wasting” two I/O locations. In
practice you often cheat in this way, in-
completely decoding the address, because
it saves parts (and there is plenty of 1/0
space, even if you waste some). In this ex-
ample we could then have connected IOW’
where Al is now connected, and omitted
the 2-input NANDs entirely. (e) An
interface like this is more flexible if its ad-
dress can be set using a DIP switch (or DIP
jumper block); then you can always make
sure its address doesn’t conflict with that
of another interface you’ve got somewhere
else. In this case the change is simple —
replace the “hardwired” address lines
to the comparator with eight lines that

688

MICROCOMPUTERS
Chapter 10

have switches to ground and pullups to
+5 volts. (f) We used separate octal
registers and DACs in this example for
clarity. In real life you would probably
choose a DAC with built-in latch (e.g., the
“microprocessor-compatible” AD7528, a
dual DAC with input latches); these even
come in quad versions, (e.g., the AD7226)
and in “double-buffered” versions with
two cascaded latches for each DAC (e.g.,
the AD7225 quad).

EXERCISE 10.1
Redraw the address comparator logic with
selectable I/0 address.

EXERCISE 10.2

Redraw the XY display interface, using 16-
bit DACs for both X and Y. You'll need four
consecutive addresses: Assign the first two to
the X register, and the last two to the Y register;
use DIP-selectable I/0 base address, of course.
In each case the even address is the low-order
byte, and the odd address is the high-order byte;
that’s the good choice, because that's how the
8086 stores 16-bit words, so you can use word
I/0 instructions to send data to your interface.

Programming the scope display

The programming to run this interface is
straightforward. Program 10.3 shows what
you do. The addresses of the first X and Y,
and the number of points to be plotted,

Program 10.3

have to be available to the program. The
display program will probably be a subrou-
tine, with those parameters passed as argu-
ments in the subroutine call. The program
puts the addresses of the X and Y arrays
(i.e., the address of the first X and Y) into
address pointer registers SI and DI, and
the byte count into CX. It then enters a
loop in which successive XY pairs are sent
to I/0 ports 3C0O and 3C1. The X and Y
pointers are advanced each time around,
and the counter is decremented and tested
for zero, which means the last point has
been displayed; the pointers and counter
are then reinitialized, and the process
begins again.

A couple of important points: Once
started, this program displays the XY ar-
ray forever. In real life the program would
probably check the keyboard to see if the
operator wants the plot terminated. Alter-
natively, the display could be terminated
after a specified time had elapsed, or by an
“interrupt,” which we will discuss shortly.
With this sort of “refreshed” display, there
usually isn’t time to do much comput-
ing while displaying. A display device
refreshed from its own memory takes that
burden off the computer, and this is gener-
ally a better method. Nevertheless, if the
objective is to make a precision plot for
photographic hard copy, this program and
interface (souped up as in Exercise 10.2)
will do the job nicely.

;routine to drive XY display

INIT: MOV SI,xpoint ;initialize x pointer
MOV DI, ypoint ;initialize y pointer
MOV CX,npoint ;initialize counter
PLOT: MOV AL, [SI] ;get x byte
OUT 3COH,AL ;send it out
MOV AL, [DI] ;jget y byte
OUT 3C1H,AL ;send it out
INC SI ;advance x pointer
INC DI ;advance y pointer
DEC CX ;decrement counter
JNZ PLOT ;not done, plot more stuff
JMP INIT ;done, start over

BUS SIGNALS AND INTERFACING

10.07 Programmed I/0: data in 689
J ‘679
900 nom ’ A9—
A8—
A0-A15 X valid 1/0 adr X A7— __fbus)
A6—
l¢———630 nom———> AS—] J l I l l I l
10" } _ A4—
] 50 g A3— L ot ————
|min < —> min [*— =] 2';’— S ﬁ574
N\ \]
00-D7 (|) AT 01
—— es T
TOR — LSB MSB
valid EN
data .._l'._ P3— PO strobe 8 bit data
+5—‘——U

Figure 10.9. I/0 READ cycle.

10.07 Programmed 1/O: data in

The other direction of programmed I/0 is
equally simple. The interface looks at the
ADDRESS lines as before. If it sees its
own address (and AEN is LOW), it puts
data onto the DATA lines coincident with
the IOR’ pulse (Fig. 10.9). Figure 10.10
shows an example. This interface lets the
PC read a byte latched in the *574 D-type
register. Since the clock input and data
inputs of the register are accessible to an
external device, the register could hold just
about any sort of digital information (the
output of a digital instrument, A/D con-
verter, etc.). For variety, we’ve eliminated
all gates by using a ’679 “12-bit address
decoder” IC. It’s a clever chip with 12
address inputs, an enable, and 4 “program-
ming” inputs. If you want to decode a
fixed address, it does the trick: It’s func-
tionally a 12-input NAND gate, for which
a programmable number of the inputs can
be inverted; the inverted inputs are always
the lowest-numbered ones, and the num-
ber of them is the number you have
asserted at the (4-bit) programming inputs.

In this case we’ve decided to plunder
that lonely unused port at 1/0O address
200y (Fig. 10.8). We need to recognize
the state A9 = HIGH, A0-A8 = LOW.
We might as well use the *679 to qualify
the decoded address with AEN = LOW
and IOR’ = LOW. So altogether we need
a NAND with 11 inverted inputs and

=

Figure 10.10. Parallel input port.

1 noninverted input, which we get by
hard-wiring the programming inputs with
11 in binary (1011). Then we connect
the address lines and strobe as shown.
When an

IN AL,200H

instruction is executed, the CPU asserts
200y on AO-A9, waits a while, then asserts
IOR’ for 630ns. The CPU latches what
it sees on the DATA bus (D0-D7) at
the trailing edge of IOR’, then disasserts
A0-A9. The peripheral’s responsibility
is to get the data onto DO-D7 at least
50ns before the end of IOR’; that’s pretty
relaxed timing, since it has known that
data is being requested from it for at
least 600ns. With typical HC or LS gate
propagation times of 10ns, 600ns looks
like forever.

Beginning with this example, we will
omit the tangle of bus lines and simply call
them out by name.

Bus signals: bidirectional versus one-way

From the two examples we’ve done so
far you can see that some bus lines are
bidirectional, for example the DATA lines:
They are asserted by the CPU during write,
but asserted by the peripheral during read.
Both CPU and peripheral use three-state
drivers for these lines. Others, like IOW’
and IOR’, are always driven by the CPU,

MICROCOMPUTERS

690 Chapter 10

(bus)

p¢ ——————— D7
TOR (bus) r a1 as
KBDATA SEL

OE
'574

P>
,‘m

+

Qo
ASCIl keyboard

I é ‘125
N
D ~qf
L

N D> 74
R

it

Figure 10.11. Keyboard interface with status bit.

with standard totem-pole driver chips. It
is typical of computer buses to have both
kinds of lines, using bidirectional lines for
data that goes both ways, and one-way
lines for signals that are always generated
by the CPU (or, more accurately, generated
by the associated bus control logic). There
is always some clear protocol, like our rules
for asserting/reading according to IOW’,
IOR/, and ADDRESS, to prevent “bus
contention” on these shared lines.

Of the signals so far, only the DATA
lines are bidirectional; the ADDRESS
lines, AEN, and strobes are one-way from
the CPU. (Lest we give the wrong im-
pression, we should point out that more
complex computer systems permit other
riders on the bus to become bus “masters”;
obviously in such a system nearly all bus
signals must be shared and bidirectional.
The PC is unusualily simple.)

10.08 Programmed 1/O: status registers

In our last example, the computer can read
a byte from the interface any time it wants
to. That’s nice, but how does it know when
there’s something worth reading? In some
situations you may want the computer
to read data at equally spaced intervals,

TOR (bus)
KBFLAG SEL

as determined by its “real-time clock.”
Perhaps the computer instructs an A/D
converter to begin conversions at regular
intervals (via an OUT command), then
reads the result a few microseconds later
(via an IN command). That might suffice
in a data-logging application. However, it
is often the case that the external device
has a mind of its own, and it would be nice
if it could communicate what’s happening
to the computer without having to wait
around.

A classic example is an alphanumeric
input terminal, with someone banging
away at a keyboard. You don’t want
characters to get lost; the computer has
to get every character, and without much
delay. With a fast storage device like disk
or tape the situation is even more serious;
data must be moved at rates up to 100,000
bytes per second without delay. There are
actually three ways to handle this general
problem: status registers, interrupts, and
direct memory access. Let’s begin with
the simplest method - status registers —
illustrated by the keyboard interface in
Figure 10.11.

In this example, an ASCII keyboard
drives a ’574 octal D-type register, clock-
ing in a character via the keyboard’s STB

BUS SIGNALS AND INTERFACING
10.08 Programmed I/O: status registers

691

(strobe) output pulse when a key is struck.
We rig up the standard programmed data-
incircuit, as shown, using the three-state
outputs of the ’574 to drive the DATA bus
directly. The input labeled KBDATA SEL'
comes from an address decoding circuit of
the sort shown explicitly in the previous
examples, and it goes LOW when the
particular address chosen for this interface
appears on the ADDRESS lines of the bus
(in combination with AEN asserted LOW).

What’s new in this example is the flip-
flop, which gets set when a character is
struck, and cleared when a character is
read by the computer. It’s a 1-bit status
register, HIGH if there’s a new character
available, LOW otherwise. The computer
can query the status bit by doing a data
IN from the other address of this device,
decoded (with gates, decoders, or what-
ever) as KBFLAG SEL’. You need only
one bit to convey the status information,
so the interface drives only the most sig-
nificant bit, in this case with a 125 three-
state buffer. (Never drive a bidirectional
line with a totem-pole output!) The line
coming into the side of the buffer symbol
is the three-state output enable, asserted
when LOW, as indicated by the negation
bubble.

Program example: keyboard terminal

The computer now has a way to find out
when new data is ready. Program 10.4
shows how. This is a routine to get char-
acters from keyboard terminal, whose data
port address is KBDATA (it’s good program-
ming style to define the actual numeri-
cal port addresses — which correspond to
what the hardware decodes as KBDATA
SEL, etc. — in some statements near the
beginning of the program, as shown); each
character is “echoed” on the computer’s
display device (port address = OUTBYTE).
When it has gotten a whole line, it transfers
control to a line-handling routine, which
might do just about anything, based
on what the line says. When it’s ready

for another line, it types an asterisk. This
sort of function should make sense to
you if you’ve had some experience with
computers.

The program begins by initializing the
character buffer pointer, by moving the
address of the buffer that we just allocated
to the address register BP. Note we can’t
just say

MOV BP,charbuf

because that would load the contents of
charbuf, not its address; in 8086 assembly
language you use the word “offset” in
front of a memory label to signify its
address. The program then reads the
keyboard status bit via an IN instruction,
ANDs it with 80y to keep only the status
bit (this is called “masking”), and tests for
zero. Zero means the bit isn’t set, so the
program loops. When a nonzero status
bit is detected, it reads the keyboard data
port (which clears the status flag flip-flop),
stores it consecutively in the line buffer,
increments the pointer (BP), and calls the
routine that echoes the character to the
screen. Finally, it checks to see if the line
was terminated by a carriage return: If
it wasn’t, it goes back and loops on the
keyboard status flag again; if it was a CR, it
transfers control to the line handler, after
which it types an asterisk and begins the
entire process anew.

A subroutine has been used to display a
character, since even that simple operation
requires some flag checking and masking.
The routine first saves the byte into AH,
then reads and masks the screen’s busy
flag. Nonzero means the screen is busy,
so it keeps checking; otherwise it restores
the character to AL, sends it to the screen’s
data port, and returns.

Some notes on the program: (a) We
could have omitted the keyboard flag
masking step, since the MSB (where we
put the flag bit in our hardware) is the
sign bit; thus we could have used the in-
struction JPL KFCHK. However, this trick
works only for testing the MSB and thus is

692

MICROCOMPUTERS

Chapter 10

Program 10.4

i1 keyboard handler -- uses flags

KBDATA equ ***H ;put kbd data port adr here
KBFLAG equ ***H ;ditto for kbd flag
KBMASK equ 80H ;kbd flag mask
OUTBYTE equ ***H ;put disp port adr here
OUTFLAG equ ***H ;ditto for disp port flag
OUTMASK equ ***H ;disp port busy mask
charbuf DB 100 dup(0) ;allocates buffer of 100 bytes
INIT: MOV BP,offset charbuf ;initialize char buffer pointer
KFCHK: IN AL, KBFLAG ;read kbd flag
AND AL,KBMASK ;mask unused bits
Jz KFCHK ;flag not set -- no data
IN AL, KBDATA ;get new kbd byte
MOV [BP],AL ;store it in line buffer
INC BP ;advance pointer
CALL TYPE ;echo last char to display
CMP AL, ODH ;was it carriage return?
JNZ KFCHK ;1f not, get next char
LINE: o ;if so, do something with line
o ;keep at it
o ;don’t quit now
e} ;done at last!
MOV AL,’*’
CALL TYPE ;type a "prompt" -- asterisk
JMP INIT ;get another line
;routine to type character
;types and preserves AL
TYPE: MOV AH,AL ;save the char in AH
PCHK: 1IN AL, OUTFLAG ;check printer busy?
B AND AL, QUTMASK ;printer flag mask
JNZ PCHK ;if busy check again
MOV AL,AH ;restore char to AL
OUT OUTBYTE, AL ;type it
RET ;return

somewhat specialized. (b) In keeping with
good programming practice, the carriage
return symbol (ODH) and asterisk probably
should be defined constants, similar to KB-
MASK. (c) The line handler probably should
be a subroutine, also. (d) Characters will
be lost if the line handler takes too long;
this leads us to the more elegant approach
of interrupts, which we’ll take up shortly.
(e) Keyboard and terminal handlers are
used so often that the PC provides built-
in handlers, accessed through “software
interrupts” (we’ll see them later); thus, our
program isn’t even needed!

Status bits generalized

This keyboard example illustrates status
bit protocol; but it’s so simple that you
may come away with the wrong idea.
In an actual peripheral interface of some
complexity, there will usually be several
flags to signal various conditions. For
example, in a magnetic-tape interface you
will normally have status bits for beginning
of tape, end of reel, parity error, tape in
motion, etc. The usual procedure is to put
all the status bits into one byte or word, so
that a data IN command from the status

BUS SIGNALS AND INTERFACING
10.09 Interrupts

693

register gets all bits at once. Typically you
would have a bit indicating any of a set of
error conditions as the MSB of the status
word, so a simple check of sign tells if there
are any errors; if there are, you test specific
bits of the word (by ANDing with masks)
to find out what’s wrong. Furthermore, in
a complex interface you probably wouldn’t
have the status bits reset “automatically,”
as we did with our single bit; instead, a
data OUT statement might be used, each bit
of which clears a specific flag.

EXERCISE 10.3

With our keyboard interface there is no way for
the computer to know if it missed a character.
Modify the circuit so there are two status bits:
CHAR READY (that's what we have already)
and LOST DATA. The LOST DATA flag should
be readable as D6 on the same status port
as CHAR READY; it is 1 if a key was struck
before the previous character was fetched by
the computer, zero otherwise.

EXERCISE 10.4
Add a program segment to Program 10.4 that
checks for lost data. It should call a subroutine
called LOST if it detects lost data; otherwise it
should work as before.

10.09 Interrupts

The use of status flags just illustrated is
one of three ways for a peripheral device
to “tell” the computer when some action
needs to be taken. Although it will
suffice in many simple situations, it has
the serious drawback that the peripheral
cannot “announce” that some action needs
to be taken — it has to wait to be “asked”
by the CPU, via a data IN command from
its status register. Devices that need quick
action (such as disks or latency-sensitive
real-time I/0) would have to have their
status flags queried often, and with a few
such devices in a computer system the
CPU would soon find itself spending most
of its time checking status flags, as in the
last example.

Furthermore, even with continual status
flag checking you can still get in trouble:
In the last example, for instance, the
CPU will have no trouble keeping up with
someone typing at the keyboard when it
is in the main (flag checking) loop. But
what if it spends 1/10 second in the line-
handling portion? Or what if the display
device is a slow one, making the program
wait for its busy flag to clear?

What is needed is a mechanism for a
peripheral to interrupt the normal action
of the CPU when something needs to be
done. The CPU can then check the status
register to find out what the trouble is, take
care of what needs to be done, and go back
to its normal business.

To add interrupt capability to a
computer, it is necessary to add a few
new bus signals: At least one shared line
for peripherals to signal an interrupt,
and (usually) a pair of lines by which the
CPU can determine who interrupted.
As luck would have it, the IBM PC is
not a very instructive example, because
it does not implement a full interrupt
capability. What it lacks in power, though,
it more than makes up for in simplicity;
implementing hardware interrupts in a
PC peripheral interface is like falling off
a log.

Here’s how it works: The PC bus has
a set of 6 interrupt request lines, called
IRQ2-IRQ7. They are positive-true in-
puts to the CPU’s support circuitry (spe-
cifically, to the 8259 interrupt controller).
To make an interrupt, you simply bring
one of the lines HIGH. If interrupts are
enabled in general (along with the partic-
ular IRQ you assert), the CPU will break
off after its next instruction, then (after
saving its flags and current location onto
the stack) jump to an “interrupt-handler”
program somewhere in memory. You write
the handler to do what you want (e.g.,
get keyboard data), and you can put the
handler anywhere you wish, because
the CPU figures out where to jump by

694

MICROCOMPUTERS
Chapter 10

TOR (bus) ir Q1-8
KBDAT A—SEL':D'" c;)E 4 574

8
125
Q1-7 0%a

ASCIl kbd S

RESET DRV

D7 (bus)

IRQ2 (bus)

(bus)

Figure 10.12. Keyboard interface with interrupts.

looking for the handler’s 4-byte address
in a special location in low memory. That
location depends on which IRQ you’ve
asserted; for the 8086 it is given in hex
by 20 + 4n, where n is the interrupt level.
For example, the CPU would respond to
an interrupt on IRQ2 by jumping to the
(4-byte) address stored in locations
28y through 2By (it’s just like indirect
addressing, except that the address is found
in memory rather than in a register); of
course, you would have cleverly arranged
for the starting address of your handler to
be there. At the end of your handler you
execute an IRET instruction, which causes
the CPU to restore the preexisting flag
register and jump back to wherever it was
when the interrupt happened.

Let’s illustrate by adding interrupts to
the keyboard interface (Fig. 10.12). We’ve
left the flag bit (“character ready”) and
programmed I/O circuitry essentially as
before, except that we’ve ORed the flag
clear with a new bus line, RESET DRY, a
CPU output that is momentarily asserted

HIGH when the computer is turned on.
This signal is generally used to force
your flip-flops and other sequential
logic into a known state at power-up.
Obviously it should reset a flag that
indicates a valid byte is ready to be claimed
(and that, in our new interface, will
even cause an interrupt). The only other
change we’ve made is to use a compact
notation for the byte-wide data paths,
to make the diagram easy to read.

The new interrupt circuitry consists of
a driver to assert IRQ2 when a charac-
ter is ready. That’s all the new hardware
you need. Although not strictly necessary,
we’ve added the capability to disable the
interrupt driver (it’s a three-state buffer)
by sending a byte with DO LOW to
the KBFLAG port address. This would be
used if you wanted to plug in another
peripheral with interrupts at the same
IRQ level, allowing only one peripheral
to use its interrupts at any given time
(later we’ll have further explanation on this
awkward point).

BUS SIGNALS AND INTERFACING
10.10 Interrupt handling

695

10.10 Interrupt handling

The IBM PC/XT family makes interrupt
handling easy (though limited in flexibil-
ity) by using an 8259 interrupt-controller
IC on the motherboard. This chip does
most of the hard work, which consists
of prioritizing, masking, and asserting
vectors (we’ll describe these after finishing
the example). The CPU, for its part,
recognizes the interrupt and responds by
saving the instruction pointer and flag
register, disabling further interrupts,
then making a jump via the corresponding
address stored in the low-memory vector
area. Your handler program does the rest,
namely: (a) save (push) any registers you’ll
be using (remember that the interrupted
program can’t prepare for the interrupt,
since it can happen anywhere in the run-
ning program,; it’s a bolt out of the blue),
(b) figure out what needs to be done,
by reading status register(s) if necessary,
(c) do it, (d) restore the saved registers
from the stack, (e) tell the 8259 you’re
done (by sending an “end-of-interrupt”
byte 20y to its register at I/O address
20y), and finally (f) execute a return
from interrupt instruction IRET; this
causes the CPU to restore the old flag
register that it saved on the stack, and
jump (via the old instruction pointer it
saved on the stack) back to the program
that was interrupted. Somewhere in the
program, you must have (g) loaded the
handler’s address into the vector location
corresponding to the IRQ level used by
the hardware, and told the 8259 to enable
interrupts at that level.

Program 10.5 shows the code for the
keyboard with interrupt. Here’s the over-
all scheme: The main program sets things
up, then loops on a flag (in memory,
not hardware) that the interrupt handler
sets when it recognizes a carriage return;
when the main program sees that flag set,
it goes off and does something with the
line, then returns to the flag-checking loop.

The handler, entered at each interrupt,
puts a character into the line buffer,
sets the flag if it was a carriage return,
then returns.

Let’s look at the program in some
detail. After defining port addresses and
the all-critical vector location for IRQ?2, it
allocates 100 bytes (initially filled with
zeros) for the character buffer. The actual
program execution begins by putting the
buffer address in address register SI, zero
in the end-of-line flag, and the address of
the handler (which begins with KBINT) in
location 28y. To enable level-2 interrupts
in the 8259, we clear bit 2 of its existing
mask (IN, AND, OUT); then we enable CPU
interrupts and send a 1 to KBFLAG, which
enables the three-state driver. Now we’re
running. The program then loops, with
interrupts secretly happening right under
the main program’s nose, until it mysteri-
ously finds “buflg” set. It resets the pointer
and flag immediately (in case another
interrupt occurs soon), then gobbles
up the line. It would be well advised
either to move quickly or to copy the line
to another buffer, since another inter-
rupt (with a new byte to go in the buffer)
could come along in a few milliseconds;
in that time you can execute a few
thousand instructions, however, more
than enough to copy the line.

The interrupt handler is a separate little
piece of code, with no entry from the
main program. It gets entered upon a
level-2 interrupt, via its address that we
initially loaded into 28y. It knows exactly
what it has to do, and it does it without
complaining: It saves AX (since it plans
to clobber it), reads the character from
the keyboard data port, puts it in the
buffer, increments the pointer, echoes the
character to the screen, sets the flag if
it was a carriage return, sends end-of-
interrupt to the 8259, restores AX, and
returns.

If you look back at our list of handler
tasks above, you’ll see that we omitted just

MICROCOMPUTERS
696 Chapter 10

Program 10.5

KBVEC

KBDATA equ ***H

KBFLAG equ ***H ;put kbd flag port adr here
buflg DB 0 ;allocates "buffer-full" flag
charbuf DB 100 dup(0) ;allocates 100-byte character buffer
CLI ;disable interrupts
MOV SI,offset charbuf ;initialize buffer pointer
MOV buflg,0 ;and end-of-line flag
MOV KBVECT,offset KBINT ;handler adr to vector area
IN AL,21H ;existing 8259 int mask
AND - AL, OFBH ;clear bit 2 to enable INT2
OUT 21H,AL ;and send to 8259 OCWl
STI ;enable interrupts
MOV AL,1
OUT KBFLAG, AL ;enable hardware 3-state driver
LNCHK: MOV AL,buflg
JZ LNCHK ;loop until end-of-line flag set
LINE: MOV SI,offset charbuf ;reset pointer
MOV buflg,0 ;and line flag
MOV AL, */
CALL TYPE ;type prompt "*"
o ;do something with line
o
o
JMP LNCHK ;and wait for another line
;keyboard interrupt handler
;an INT2 lands you here, via vector we loaded
KBINT: PUSH AX ;save AX register, used here
IN AL, KBDATA ;get data byte from keyboard
MOV [SI],AL ;put it in line buffer
INC SI ;and advance pointer
CALL TYPE ;echo to screen
CMP AL, ODH ;check for carriage return
JNZ HOME ;not a CR -- return
MOV buflg, OFFH ;CR -- set end-of-line flag
HOME: MOV AL,20H
OUT 20H,AL ;end-of-interrupt signal to 8259
POP AX ;restore old AX
IRET ;and return

;keyboard handler -- uses interrupts

T equ word pntr 0028H

one step, namely reading status flags to
figure out which of several actions needed
to be done. That’s unnecessary here,
though, because there’s only one reason
to interrupt, namely a new keyboard
character needs to be read. (The program-
mer obviously has to understand under

; INT2 vector
;put kbd data port adr here

what conditions the hardware makes an
interrupt, and what is required to service
the interrupt.)

A few notes on this program: First,
even though we’re using interrupts, the
program seems as dumb as before - it
loops continually on the end-of-line flag.

BUS SIGNALS AND INTERFACING
10.11 Interrupts in general

697

However, it could be doing other things,
if there were things to do. In fact, it
does just that beginning at statement LINE,
where it processes the finished line; during
that time, interrupts make sure that new
characters are put into the buffer, whereas
they would have been lost in our previous
example without interrupts.

This brings up a second point, namely,
even with interrupts we’re still in trouble
if the program is doing things with the
previous line when the next line has
been completely entered. Of course,
on the average the program simply has
to keep up with keyboard entry; but you
could have a situation in which the line
user occasionally spends a lot of time,
and you need to buffer more than one
line temporarily. One solution to this
is to make a copy to a second buffer,
or to alternate between two buffers. An
elegant alternative is to organize input as
a queue, implemented as a “ring buffer”
(or “circular buffer”), in which a pair
of pointers keep track of where the next
input character goes, and where the next
character is removed. The interrupt
handler advances the input pointer, and
the line user advances the output pointer.
Such a ring buffer might typically be
256 bytes long, permitting the line user
to get behind by a few lines.

A third point concerns the interrupt
handler itself. It’s usually best to keep it
short and simple, perhaps setting flags to
signal the need for complicated operations
in the main program. If the handler does
become long-winded, you risk losing data
from other interrupting devices, because
interrupts are disabled when the CPU
jumps into the handler. The solution in
this case is to re-enable interrupts within
your handler with an STI instruction,
after doing the critical things that have
to be done first. Then if an interrupt
occurs, your interrupt handler will itself
be interrupted. Since flags and return
addresses are stored on the stack, the

program will find its way back, first to your
handler, finally to the main program.

10.11 Interrupts in general

Our keyboard example illustrates the
essence of interrupts — a spontaneous hard-
ware request for attention by a peripheral,
producing a program jump to a dedicated
handler routine (usually resulting in some
programmed I/0), followed by a return
to the code that was interrupted. Other
examples of interrupting devices are real-
time clocks, in which a periodic interrupt
(often 10 per second, but 18.2 per second
in the PC) signals a timekeeping routine to
advance the current time; another example
is a parallel printer port, which interrupts
each time it is ready for a new charac-
ter. By using interrupts, these peripher-
als let the computer interleave other tasks
simultaneously; that’s why you can be
doing word processing while your PC is
printing a file (and, of course, keeping
proper time throughout).

The IBM PC does not, however, illus-
trate the full generality of interrupts. As
we saw, it has a set of six IRQ lines on
the bus, each one of which can be used
only for a single interrupting device. The
IRQ lines are numbered according to pri-
ority; in the event of multiple interrupts,
the lowest-numbered interrupt is serviced
first. Four of the IRQ lines are preassigned
to essential peripherals, namely the serial
port (IRQ4), hard disk (IRQ5), floppy disk
(IRQ6), and printer port (IRQ7), leaving
only IRQ2 and IRQ3 available [lines for
two additional IRQ levels recognized in
the IBM PC are not even brought out on
the bus, being used on the motherboard for
the 18.2Hz clock (IRQO) and the keyboard
(IRQ1)]. If you were to add a stream-
ing tape backup or local area network, you
would have to use IRQ2 and IRQ3. Fur-
thermore, the interrupt is edge-triggered,
which frustrates any reasonable possibility
of using wired-OR to combine several
peripherals on a single IRQ line.

MICROCOMPUTERS

Chapter 10
+5Vv
interrupt
CPU cor;ntroller b
K IRQ3 @ h

N [IRQ2p

7 e IRQ1O
ete. iRQo>

16
DATA < ? bus

24
ADR |~

/

CONTROL | several

N
(RD, WR,
etc) 1
-

— /

I 1]
: ;int oc :
| D
| portA 1]
| S | [

Figure 10.13. Shared interrupt lines.

O Shared interrupt lines

The usual interrupt protocol, as imple-
mented on many microcomputers, Ccir-
cumvents these limitations. Look at Fig-
ure 10.13. There are several (prioritized)
IRQ-type lines; these are negative-true
inputs to the CPU (or its immediate
support circuitry). To request an interrupt,
you pull one of the IRQ’ lines LOW, using
an open-collector (or three-state) gate, as
shown (note the trick for using a three-
state gate to mimic an open-collector gate).
The IRQ’ lines are shared, with a single
resistive pullup, so you can put as many
devices on each IRQ’ line as you want;
in our example two ports share IRQI.
You would generally connect a latency-
sensitive (impatient) device to a higher-
priority IRQ’ line.

Since the IRQ' lines are shared, there
could always be another device interrupt-
ing on the same line at the same time.
The CPU needs to know who interrupted,
so it can jump to the appropriate handler.
There is a simple way, and a complicated

port8 4

(e}
[9]

;

o

(9]
Fr——————

5.

Io
[
=Y
1O
f SO

e

(3-state
buffer)

way, to do this. The simple way is called
autovectored polling and is used nearly
universally (though not on the IBM PC).
Here’s how it works.

O Autovectored polling. Some circuitry on

the CPU board (we’ll have an example in
Chapter 11) instructs the microprocessor
that it is to use autovectoring, which works
just like the IBM PC - each level of inter-
rupt forces a jump through a correspond-
ing vectoring location in low memory. For
example, the 68000 microprocessor family
we’ll meet in Chapter 11 has seven levels
of prioritized interrupt, which autovector
through 4-byte pointers stored in the 28
(7 x 4) locations 64y through 7Fy. You
put the addresses of the handlers in those
locations, just as in our example above.
For example, you would put the (4-byte)
address of the handler for a level-3
interrupt in hex locations 6C through 6F.
Once in the handler, you know which
level of interrupt you’re servicing; you
just don’t know which particular device
caused the interrupt. To find out, you

BUS SIGNALS AND INTERFACING
10.11 Interrupts in general

699

simply check the status registers of each
of the devices connected to that level
of interrupt (a device never requests an
interrupt without also indicating its need
by setting one or more readable status
bits). If a bit is set indicating that
something needs to be done, you do it,
including whatever it takes to cause the
device to disassert its IRQ’: Some devices
(like our keyboard) clear their interrupt
when read, whereas others may need a
particular byte sent to some I/O port
address.

If the device you serviced was the only
one interrupting at that level, that IRQ’
will now be HIGH upon returning to the
interrupted program, and execution will
continue. However, if there had been
a second interrupting device at the same
level, that IRQ’ line will still be held
LOW (by the wired-OR action of the
shared IRQ’ line) upon return from the
service routine, so the CPU will immedi-
ately autovector back to the same handler.
This time the polling will find the other
interrupting device, do its thing, and
return. Note that the order in which
you poll status registers effectively sets
up a “software priority,” in addition
to the hardware priority of the multiple
IRQ’ levels.

Interrupt acknowledgment. We shouldn’t
leave the subject of interrupts without men-
tioning a more sophisticated procedure for
identifying who interrupted - interrupt
acknowledgment. In this method the CPU
doesn’t need to poll the status registers
of possible interrupters, because the in-
terrupting device tells the CPU its name,
when asked. The interrupter does this by
putting an “interrupt vector” (usually a
unique 8-bit quantity) onto the DATA lines
in response to an “interrupt acknowledge”
signal that the CPU generates during the
interrupt processing.

Nearly every microprocessor generates
the needed signals. The sequence of events

goes like this: (a) The CPU notices a pend-
ing interrupt. (b) The CPU finishes the
current instruction, then asserts (i) bus sig-
nals that announce an interrupt, (ii) the
interrupt level being serviced (on the low-
order ADDRESS lines), and (iii) READ-
like strobes that invite the interrupting de-
vice to identify itself. (c) The interrupting
device responds to this bus activity by as-
serting its identity (interrupt vector) onto
the DATA lines. (d) The CPU reads the
vector and jumps into the corresponding
unique handler for the interrupting device.
(e) The handler software, as in our last
example, reads flags, gets and sends data,
etc., as needed; among its other duties,
it must make sure the interrupting device
disasserts its interrupt. (f) Finally, the
interrupt handler software returns control
to the program that was interrupted.
Sharp-eyed readers may have noticed
a flaw in the procedure just outlined.
In particular, there has to be a protocol
to ensure that only one device asserts
its vector, since there may be several
simultaneous interrupting devices at the
same IRQ level. The usual way to handle
this is to have a bus signal (call it INTP,
“interrupt priority”) that is unusual in
not being shared by devices on the bus,
but rather is passed along through each
device’s interface circuit, beginning as a
HIGH level at the device closest to the
CPU and threading along through each
interface. That’s called a “daisy chain” in
the colorful language of electronics. The
rule for INTP hardware logic is as follows:
If you have not requested an interrupt at

" the level being acknowledged, pass INTP

through to the next device unchanged; if
you have interrupted at that level, hold
your INTP output LOW. Now the rule
for asserting your vector goes like this:
Put your vector number onto the data
bus when requested by the CPU only if
(a) you have an interrupt pending at the
level being acknowledged and (b) your
input INTP is HIGH. This guarantees that

700

MICROCOMPUTERS
Chapter 10

only one device asserts its vector; it also
establishes a “serial priority” chain within
each IRQ level, with devices electrically
closest to the CPU getting serviced first.
Computers that implement this scheme
have little jumper plugs to pass INTP over
unused motherboard slots. Don’t forget to
remove these jumpers when you plug in
a new interface card (and put them back
when you take one out!).

There is a nice alternative to the
serial daisy-chain method of interrupt
acknowledgment: Instead of threading a
line through each possible interrupter,
you bring individual lines back from each
one to a priority encoder (Section 8.14),
which in turn acknowledges the interrupt
by asserting the identity of the highest-
priority interrupting device. This scheme

avoids the nuisance of daisy-chain jumpers.

We will describe it in detail in Section 11.4
(Fig. 11.8).

In most microcomputer systems it
isn’t worth implementing the full-blown
interrupt acknowledgment just described.
After all, with 8-level autovectoring you
can handle up to § interrupting devices
without polling, and several times that
number with polling. Only in large com-
puter systems, in which you demand fast
response with dozens of interrupting
devices present, might you succumb to
the complexity of the interrupt acknowl-
edgment protocol, whether with serial
daisy-chained hardware priority or with
parallel priority encoding.

However, it is important to realize that
even simple computers may be using vec-
tored interrupt acknowledgment internally.
For example, the simple 6-level autovec-
tor interrupt scheme of the IBM PC seen
by the bus user is actually generated by an
8259 “programmable interrupt controller”
chip that lives close to the CPU and gener-
ates the proper interrupt acknowledgment
sequence just described (see below). This
is necessary because the 8086 (and
successors) can’t implement autovectoring

by themselves. On the other hand, the
popular 68000 series of CPU chips can
implement autovectoring internally, with
just a single external gate (see Chapter 11).

O Interrupt masks

We put a flip-flop in our simple keyboard
example so that its interrupts could be
disabled, even though the 8259 controller
lets you turn off (“mask™) each level of
interrupt individually. We did that so that
some other device could then use IRQ2.
For a bus with shared (level-sensitive) IRQ’
lines, it is especially important to make
each interrupt source maskable, again with
an 1/0 output port bit. For example, a
printer port normally interrupts each time
its output buffer is empty (“give me more
data”); when you’ve finished printing,
though, you don’t care. The obvious
solution is to turn off printer interrupts.
Since there might be other devices hooked
to the same interrupt level, you must not
mask that whole level; instead, you just
send a bit to the printer port to disable its
interrupts.

O How the IBM PC got the way it is

The 8086/8 microprocessor used in the
IBM PC actually implements the full vec-
tored interrupt acknowledgment protocol.
To keep things simple, however, the PC de-
signers used an 8259 interrupt controller
IC on the motherboard. The way it is used
in the PC, it has a set of IRQ inputs from
the I/O bus card slots (that’s where you
make your interrupt requests), and it con-
nects to the microprocessor’s data bus and
signal lines. When it gets a request on an
IRQ line from a peripheral, it figures out
priority and goes through the whole busi-
ness of asserting the corresponding vector
onto the data bus. It has a mask register
(accessible as I/0 port 21y) so that you can
disable any specified group of interrupts.

BUS SIGNALS AND INTERFACING
10.12 Direct memory access

701

The 8259 lets you select (through
software) either level- or edge-triggered
interrupts on its IRQ input lines,
according to a byte sent to a control
register (I/O port 20y). Unfortunately,
the PC designers decided to use edge
triggering, probably because that makes it
a little easier to implement interrupts
(for example, you can just connect the
real-time clock’s square-wave output
directly to IRQO). If they had selected
level-sensitive interrupts instead, you
would be able to hang multiple inter-
rupting devices on each IRQ’ line, with
software polling as illustrated above.
Unfortunately, the PC’s ROM BIOS
(Basic Input/Output System) and operat-
ing system (not to mention the hardware)
assume edge triggering, so the choice is
irrevocable. (Nearly all other computers,
including even the successors to the PC
and PC/AT, use level-sensitive interrupts.)

There is a partial solution to this
problem. As long as there is an IRQ line
available, you can combine several inter-
rupting devices on a single PC board, with
logic to generate edge-triggered interrupts
on that single IRQ line; in fact, you
could use your own 8259 (with its I/O
ports accessible to the CPU) to do the
job. But, since the interrupting devices
have to know about each other, you
can’t use this scheme for independent
plug-in peripherals. Furthermore, you
still use up an IRQ line per card, and in
a complicated system, given that there are
only two IRQ levels free in the IBM PC,
there will not be enough to go around.

Software interrupts

The Intel 8086-series of CPUs have an
instruction (“INT n,” where n is 0-255)
that allows you to produce the same
kind of vectored jump as an actual hard-
ware interrupt. In fact, among its 256
possible jump vectors are duplicates of
the 8 levels of IRQ-requested hardware

interrupts (INT 8 through INT 15, to be
exact). Thus, you can make a “software
interrupt” from a program statement.
The IBM PC uses these software inter-
rupts to let you communicate with the
operating system and its various ROM-
based utilities. For example, INT 5 sends
a replica of the screen to the printer.
INT 21H turns out to be particularly
important, because it is a function call
to the operating system; you tell the
system which DOS function you want
by putting the corresponding number in
register AH before executing the INT 21H.

Don’t confuse these software interrupts
with the externally triggered hardware
interrupts we’ve been talking about. Soft-
ware interrupts turn out to be a handy
way of implementing vectored jumps from
user code into system software. But they
are not real interrupts, in the sense of
a hardware call for attention from an
external autonomous device. On the con-
trary, you build these into your software,
you know when they are coming (that’s
why you can pass arguments through reg-
isters), and they are merely the response
(albeit identical with what follows a true
interrupt) of the CPU to its own code.
You might think of software interrupts as
a clever way to extend the instruction set.

10.12 Direct memory access

There are situations in which data must
be moved very rapidly to or from a
device. The classic examples are fast
mass-storage devices like disk or tape,
and on-line data-acquisition applications
such as multichannel pulse-height analysis.
Interrupt-initiated programmed processing
of each data transfer in these examples
would be awkward, and probably too slow.
For example, data come from a “high-
density” floppy disk at about 500kbit/s, or
one byte every 16us. With all the book-
keeping involved in handling an interrupt,
data would almost certainly be lost, even

702

MICROCOMPUTERS
Chapter 10

if the floppy were the only interrupting
device in the system; with a few such
devices the situation becomes hopeless.
Even worse, a typical hard disk transfers
a byte every 2us, completely beyond the
capability of programmed I/0. Devices
like disks and tapes (not to mention real-
time signals and data) can’t stop in mid-
stream, so a method must be provided for
reliably fast response and high overall byte
transfer rates. Even with peripherals with
low average data transfer rates, there are
sometimes requirements for short latency
time, the time from initial request to actual
movement of data.

The solution to these problems is direct
memory access, or DMA, a method for
direct communication from peripheral
to memory. In some microcomputers
(e.g., the IBM PC) the communication is
actually handled by the CPU hardware,
but that doesn’t really matter. The im-
portant point is that no programming is
involved in the actual transfer of data;
bytes are moved between memory and
peripheral via the bus, without program
intervention. The only effect on the execu-
ting program is some slowing down of
execution time, because DMA activity
“steals” bus cycles that would otherwise
be used to access memory for program
execution. DMA usually involves more
hardware complexity in the interface
itself, and it should not be used unless
necessary. However, it is useful to know

- what can be done, so we will describe

briefly what you need to make a DMA
interface. As with interrupts, the IBM PC
designers streamlined their DMA protocol;
a “DMA controller” chip on the mother-
board does the hard work for you, making
a DMA interface relatively straight-
forward. In general, though, DMA
interfaces tend to be machine-dependent
and complicated. We’ll first explain the
more usual “bus mastership” method
of DMA, then the PC’s simplified DMA
protocol.

A typical DMA protocol

In DMA transfers, the peripheral re-
quests access to the bus via special “bus re-
quest” lines (prioritized like the IRQ lines)
that are part of the bus. The CPU gives
permission and releases control of address,
data, and strobing lines. The peripheral
then asserts memory addresses onto the
bus and either sends or receives data, one
byte at a time, according to the strobes it
asserts; in other words, it takes over the
bus (it becomes “bus master”) and acts like
a CPU, directing data transfers. The DMA
bus master is responsible for generating
addresses (usually a block of successive
addresses, generated with a binary counter)
and keeping track of the number of bytes
moved. The usual way to do this is to have
a byte counter and an address counter in
the interface. These are initially loaded
from the CPU, via programmed 1/0, to set
up the DMA transfer desired. On com-
mand from the CPU (via a command bit,
written with programmed 1/0), the inter-
face makes its DMA request and begins
to move its data. It may release the bus
between each byte (allowing the CPU to
sneak a few instructions in), or it may take
the more antisocial approach of keeping
the bus for a block of transfers. When all
transfers are complete, it releases the bus
for the last time and notifies the program
that it is finished by setting a status bit
and requesting an interrupt, whereupon
the CPU can decide what to do next.

Getting data or programs from disk is a
common example of DMA transfer: The
executing program asks for some “file”
by name; the “operating system” (more
about this soon) translates this into a set
of programmed data OUT commands to the
disk interface’s control (or “command”)
register, byte count register, and address
register (specifying where to go on the disk,
how many bytes to read, and where to put
them in memory). Then the disk interface
finds the right place on the disk, makes a

BUS SIGNALS AND INTERFACING
10.12 Direct memory access

703

DMA request, and begins moving blocks
of data to the specified place in memory.
When it’s done, it sets bits in its status reg-
ister to signify completion and then makes
an interrupt. The CPU, which has mean-
while been executing other instructions (or
possibly just waiting for data from the disk),
responds to the interrupt, finds out from
the status register of the disk interface that
the data are now in memory, and then goes
on to the next task. Thus, programmed 1/0
to the interface (the simplest kind of 1/0)
was used to set up the DMA transfer, DMA
itself (stealing bus cycles from the CPU)
was used for rapid transfer of data, and
an interrupt was used to let the computer
know the task was done. This sort of I/0
hierarchy is extremely common, especially
with mass-storage devices; you can expect
maximum DMA transfer rates of one to
ten million words per second on a typical
microcomputer bus.

[0 DMA on the IBM PC

The IBM PC, which is basically a simple
microcomputer, has a simpler DMA
protocol. The motherboard has a DMA
controller (the Intel 8237) with built-in
address and byte counters, along with
the logic to disable the CPU and take
over the bus. A peripheral that wants
to do DMA, therefore, doesn’t have to
generate addresses and drive the bus.
Instead, it signals the controller (via
one of the three DRQI-DRQ3 “DMA
request” lines), which in turn responds by
returning the corresponding DACKO0-3'
(“DMA acknowledge”). The controller
then controls the transfers, asserting
address and strobing lines, with the
peripheral asserting (or receiving) data
to (or from) memory. In this whole process
the memory sees nothing unusual going on,
since addresses and memory strobes
(MEMW’ or MEMR’), normally supplied
by the CPU, are supplied by the 8237

controller, and if it’'s DMA fo memory,
data are supplied by the peripheral. The
peripheral, on the other hand, knows
something special is happening since it
requested DMA access (and received
confirmation via DACK'); so when the
DMA controller asserts IOR’ (or IOW’),
the peripheral supplies (or accepts)
successive bytes. You might wonder
why some innocent bystander peripheral
doesn’t get hurt in the DMA process, since
both I/0 strobes and addresses are being
asserted, whereas the addresses are in
fact the memory addresses that go with
the memory strobes MEMW’ or MEMR’
asserted by the controller; they have
nothing to do with I/O port addresses. The
secret is our old friend AEN, specifically
added to the bus just to solve this problem.
AEN is asserted HIGH during DMA
transfers, and all I/O port addressing
must be qualified by ANDing with AEN
LOW to prevent spurious responses to
DMA memory addresses.

Even with the use of a separate con-
troller chip, you still have to set up the
starting address, byte count, and direction
for the impending DMA transfer. These
data go to the 8237, which is obliging,
having a set of registers that you write (via
programmed I/0) from the CPU. It’s pretty
straightforward (see Eggebrecht’s book for
clear guidance), except that, as with most
peripheral LSI chips, there is a confusing
variety of choices of “modes” (single trans-
fer, block transfer, etc.). Luckily, the PC is
sufficiently primitive that you’re allowed to
use only “single transfer,” which transfers
only one byte per DRQ request. If you
insist on transferring a whole block of data
by holding DRQ high, the 8237 releases
the bus for one CPU cycle between each
DMA cycle; that keeps the computer alive,
even if you have a greedy peripheral that
tries to hog the bus. The standard PC has
a rather modest DMA capacity, about 2us
per byte transferred. As with interrupts,
the PC is sparse on DMA channels: Three

704

MICROCOMPUTERS
Chapter 10

TABLE 10.1. IBM PC BUS SIGNALS

3 g =
E £ § Direction

Signal name Z € F CPUsIO Pin # Function
AO0-A19 20 H 28 - A31-A12 address (A0-A15 for I/O)
Do-D7 8 H 38 o A9-A2 data
IOR’ i L 2§ - B14 1/O read strobe
ow’ i L 28 - B13 1/O write strobe
MEMR’ 1 L 28 - B12 memory read strobe
MEMW’ i L 28 - B11 memory write strobe
AEN 1 H 28 - A1 DMA address signal
IRQ2-IRQ7 6 T 2S “ B4,B25-B21 interrupt request
RESET DRV 1 H 28 - B2 power-on reset
DRQ1-DRQ3 3 H 28 « B18,B6,B16 DMA request
DACKO'-DACK3' 4 L 2S - B19,B17,B26,B15 DMA acknowledge
ALE 1 H 28 - B28 "address latch enable”
CLK 1 - 28 - B20 CPU clock (4.77MHz)
/10 CH CK’ 1 L OC « Al I/O error - makes NMI
1/0 CH RDY i H OC « A10 pull LOW for wait states
osc 1 - 25 - B30 14.31818MHz (3xCPU clk)
T/IC 1 H 28 - B27 DMA terminal count
GND 3 - PS - B1,810,B31 signal & power gnd
+5V DC 2 - PS - B3,829 +5V supply
+12VDC i - PS - B9 +12V supply
-5V DC 1 - PS - B5 -5V supply
-12VDC i - PS - B7 -12V supply

(@ OC - open-collector; PS - power supply; 2S - 2-state (totem-pole); 3S - 3-state.

channels (DRQ1-DRQ3) are accessible
on the I/O bus (DRQO is already used
internally to refresh dynamic memory):
DRQI is used for hard disk, and DRQ2
is used for floppy disk. That leaves DRQ3
for everything else.

10.13 Summary of the IBM PC’s bus
signals

Through our examples — programmed /O,
interrupts, and DMA - we’ve seen most of
the bus signals that go to the card slots in

the IBM PC. Table 10.1 (and Fig. 10.14)
lists the full bus, with pin connections.
For completeness we’ll summarize them
all here, beginning with the ones we’ve
already met.

A0-A19

Address bus. Two-state, output only,
active-HIGH. All 20 lines are used to
address memory (with MEMR’ and
MEMW’ as strobes, analogous to IOR’
and IOW’), but only the 16 least signifi-
cant lines are used during I/O access

BUS SIGNALS AND INTERFACING
10.13 Summary of the IBM PC’s bus signals

705

N
AD-A19 20
—
1 N
DP-D7 8 (3-S)
N %
motherboard: |1
CPU IRQ2-IRQ7 6
INT control N
DMA control 1
DRQ1-DRQ3 3
N
N
DACKO’'-DACK3’ 4
1%
N
IOR’, IOW’, MEMR’, MEMW" 4
AEN 1 M
RESET DRV 1
ALE 1
CLK 1
osC 1
TIC 1
1/0 CH CK’ 1 (0C)
1/0 CH RDY 1 (0C)
N
GND, +5V, 12V 8
%

(64K port addresses); 1/0 devices should
qualify address with AEN LOW. Important
note: I/0 on the motherboard only looks
at A0-A9, and uses 000y-1FFy; so
external I/O must have its low ten bits in
the range 200y-3FFy. You can be clever,
though, by roosting in an unused 10-bit
I/0 address, then using the top 6 bits to
create 64 1/0 port addresses.

Do-D7

Data bus. Three-state, bidirectional,
active-HIGH. Asserted by CPU during
memory or I/0 write; asserted by memory
during memory read or DMA from mem-
ory; asserted by I/0 port during I/0O read
or DMA to memory.

8 card
slots

Figure 10.14. IBM PC bus.

IOR', IOW', MEMR', MEMW'

Data strobes. Two-state, output only,
active-LOW. Asserted by CPU during read
or write. On writes, data should be latched
on trailing (rising) edge, qualified by
address; on reads, data should be asserted
coincident with strobe, qualified by
address.

AEN

Address enable. Two-state, output only,
active-HIGH. Asserted by CPU during
DMA cycles. 1/0 ports must not respond
with normal address decoding to IOR’
and IOW’; instead, I/O port that received
DACK uses IOR’ or IOW’ to strobe DMA
data bytes.

706

MICROCOMPUTERS
Chapter 10

IRQ2-IRQ7

Interrupt request. Two-state, input only,
rising-edge-triggered. Asserted by inter-
rupting device. Prioritized, with IRQ2
highest, IRQ7 lowest. Maskable in 8259
interrupt controller, via CPU write to
port 21y. Each IRQ level can be used
by only one device at a time.

RESET DRV

Reset driver. Two-state, output only,
active-HIGH. Asserted by CPU during
power-on. Used to initialize I/O devices
to known start-up state.

DRQ1-DRQ3

DMA request. Two-state, input only,
ac...e-HIGH. Asserted by I/0 device
requesting DMA channel. Prioritized,
with DRQI1 highest, DRQ3 lowest.
Acknowledged by DACK1’-DACK3’.

DACKO’'-DACK3’

DMA acknowledge. Two-state, output
only, active-LOW. Asserted by CPU
(DMA controller) to indicate grant of
corresponding DMA request.

ALE

Address latch enable. Two-state, output
only, active-HIGH. The 8088 used a
multiplexed data/address bus, and this
signal corresponds to the 8088’s strobing
signal, used by latches on the motherboard
to latch the address. Can be used to signal
beginning of a CPU cycle; usually ignored
in I/0O design.

CLK

Clock. Two-state, output only. This
is the CPU’s clocking signal; it’s asym-
metrical, 1/3 HIGH and 2/3 LOW.
The original PC used a 4.77MHz clock,
but higher speeds are common. CLK is
used to synchronize wait-state requests
(via /O CH RDY), in order to stretch
an I/0 cycle for slow devices.

osc

Oscillator. Two-state, output only. This
is a 14.31818MHz square wave, which
can be used (when divided by 4) as a
color-burst oscillator for color display.

T/C

Terminal count. Two-state, output only,
active-HIGH. Tells I/O port that a DMA
block data transfer is complete. A DMA
device must qualify it with DACK’ for the
channel in use, since T/C is asserted when
any of the DMA channels finishes a block
transfer.

/O CH CK'

I/0 channel check. Open-collector,
input only, active-LOW. Generates highest-
priority interrupt (NMI, “nonmaskable
interrupt”); used to signal error condition
from some peripheral. CPU figures out
who’s in trouble by device polling
(Section 10.11); each peripheral that can
assert /O CH CK’ must therefore have
a status bit that can be read by the CPU.

1/O CH RDY

1/0 channel ready. Open-collector,
input only, active-HIGH. Generates “wait
states” if disasserted (i.e., pulled LOW)
before the second CLK rising edge of a
processor cycle (normally 4 CLKs). Used
to extend bus cycle for slow I/O or
memory.

GND, +5VDC, —5VDC, +12VDC, —12VDC

Ground and dc supplies. Regulated dc
voltages that are bused for use by periph-
eral interface cards. Check the specifi-
cations of your computer for power lim-
itations, which are machine-dependent.
Generally speaking, there should be
enough power to run anything you can fit
into the 1/0 slots.

BUS SIGNALS AND INTERFACING

10.14 Synchronous versus asynchronous bus communication

707

O 10.14 Synchronous versus

asynchronous bus communication

The data IN/OUT protocol we described
earlier constitutes a synchronous exchange
of data; data are asserted onto or retrieved
from the bus synchronously with strobing
signals generated in the CPU (or DMA
controller). Such a scheme has the
virtue of simplicity, but it does open the
possibility of problems with long buses,
since the long propagation delays you get
mean that data may not be asserted soon
enough during a data IN operation for
reliable transmission. In fact, with a
synchronous bus the device sending the
data never even knows if it was received!
This sounds like a serious disadvantage,
but in reality computer systems with
synchronous buses seem to work just fine.
The alternative is an asynchronous bus,
in which a data IN transfer, for example,
goes something like this: The CPU asserts
the port ADDRESS and a /evel/ (not
a pulse) on a strobing line (call it IOR/,
as before) that signifies data IN from
the addressed device. The addressed
device then asserts the DATA and a level
signifying that the DATA is valid (call it
DTACK’, “data transfer acknowledged”).
When the CPU sees DTACK, it latches
the DATA and then releases its IOR’ level.
When the interface sees the IOR’ line
go HIGH, it releases the DTACK'
and DATA lines. In other words,
the CPU says “Give me data.” The
peripheral then says “OK, here it is.”
The CPU then says “OK, got it.”
And the peripheral finally says “Great!
I'll go back to sleep again.” This is
sometimes referred to as “interlocked
communication,” or “handshaking.”
Asynchronous bus protocol allows long
buses and gives the communicating
devices assurance that data are being
moved. If a remote device is switched off,
the CPU will know about it! Actually,
that information is available via status

registers with any kind of bus, and
the chief advantage of asynchronous
protocol is the flexibility of using
any length of bus, bought at the ex-
pense of slightly greater hardware com-
plexity.

There are situations where you want
to attach relatively slow interface ICs to
a bus; an example is slow-access ROM,
or even RAM. All buses provide some
way to stretch a bus cycle: With an
asynchronous bus it’s automatic, since
the bus cycle goes on until the DTACK’
handshake is returned. With synchronous
buses there is always some sort of HOLD'
line (it’s called I/O CH RDY on the PC)
to create wait states, effectively stretching
the strobes and thereby delaying the
end of the cycle. The overall bus cycle is
always lengthened by an integral number
of CPU clock cycles; that is the number
of “wait states” inserted. For example,
a standard IBM PC has a clock frequency
of 4.77MHz (period of 210ns), and
a standard memory access bus cycle is
4 clock periods (840ns). If /0O CH RDY
is brought LOW before the second rising
edge of CLK during a memory access, and
brought HIGH again before the third, one
wait state is generated, stretching the bus
cycle (and MEMW’ or MEMR) to 5 clocks
(1050ns). If you hold I/O CH RDY LOW
for additional clocks, you get additional
wait states, up to a maximum of 10 clock
periods.

Now we can reveal a well-kept secret
about synchronous versus asynchronous
buses: In reality, all single-processor
(or, more precisely, single-bus-master)
microcomputer buses are really syn-
chronous, because all timing is slaved
to a single CPU oscillator (like the
4.77TMHz clock signal for the original
IBM PC). Thus, if a peripheral device
delays its handshake on an “asynchro-
nous” bus, the cycle is always stretched
by an integral number of CPU clocks.
The distinction that is usually called

708

MICROCOMPUTERS
Chapter 10

synchronous versus asynchronous is
really this: On an “asynchronous” bus,
wait states are inserted by default unless a
wired-OR line (DTACK') is asserted LOW,
whereas on a “synchronous” bus the
default bus cycle has no wait states,
which are generated only if a wired-
OR line (HOLD') is asserted LOW. The
difference is more than semantic - you
can’t have a physically long bus with “syn-
chronous” protocol, because the HOLD’
signal gets back too late to stretch the
cycle, whereas with an “asynchronous”
bus the CPU won’t terminate the bus
cycle without your permission (DTACK').
In our usually humble manner, we offer
the following suggestive terminology
to clear up this confusion: If the
bus makes wait states by default
(“asynchronous™), call it default-wait,
if the bus makes wait states only when you
ask (“synchronous”), call it request-wait.
The IBM PC is request-wait, whereas the
VME bus (see below) is default-wait.

This whole bus situation becomes more
complicated with multiprocessor systems,
in which bus mastership changes hands.
A synchronous bus with multiple masters
requires all masters to use a single clock,
whereas an asynchronous bus permits
different clock rates. Luckily for you,
multiprocessor systems are beyond the
scope of this book!

A possible point of confusion: You
don’t add wait states because you have a
slow peripheral (a printer, for example);
you do it only because you have a slow
IC (ROM, say, with 250ns access time, or
a slow LSI peripheral chip), which cannot
latch (or produce) the data within the
normal bus access time. A slow peripheral
is usually hopelessly slow (milliseconds,
not nanoseconds); the solution is to send
(or receive) a byte at full bus speed,
latching it in a byte-wide register chip,
then wait for an interrupt (or possibly a
status flag) before doing another full-speed
transfer.

10.15 Other microcomputer buses

We chose the IBM PC to illustrate micro-
computer bus architecture - bus signals,
memory and programmed I/0O, interrupts,
and DMA. Since the PC is widely copied
and widely used in engineering and data
acquisition/control, this is a good illus-
trative choice for an electronics book.
Furthermore, the PC bus is extraordinarily
simple and easy to use.

However, simplicity has its costs. The
original PC bus is seriously limited in
important ways, some of which we have
already mentioned (e.g., scarcity of
interrupt and DMA channels). Even more
seriously, by today’s standards the PC
bus has too little address space (20 bits,
only 640K usable), too narrow a data path
(8 bits), insufficient data transfer rate
(1.2Mbyte/s, max), and no provision for
multiple bus masters. IBM has evolved
improved buses in subsequent PC
generations, first the PC/AT (a compat-
ible enhancement of the original PC),
then the all-new (= incompatible!) “micro-
channel” bus of the PS/2 series. Outside
the IBM world there are competing buses
peculiar to a given manufacturer (e.g.,
DEC’s Q-bus and VAXBI bus), and generic
buses (Multibus, NuBus, VME bus). Let’s
take a quick tour of the computer buses
listed in Table 10.2.

PC/AT and Micro Channel

IBM’s PC/AT (for “Advanced Technology™)
was introduced in 1984, and discontinued
in 1987, at the peak of its popularity,
to make way for IBM’s PS/2 series of
“clone-killer” computers, which use the
improved “Micro Channel” bus. [The
PC/AT continued to thrive, however,
since the clone manufacturers (and many
buyers) initially ignored IBM’s newer
machines, whose advanced features re-
quired nonexistent software.] The PC/AT
uses the 80286 CPU and a compatible

‘[e108dS WS [BUOHEN () 'ISOW(E (5 uuod ped-g Aususp ybiy - H ‘10j08uuoo uid-g6 piedoing, Led-z - NIQ ‘ebpa-pies - 30 @
"sidnuiajul 8AlISUSS-|8A8)| 10 -abpa sjqewwelboid - 4 ‘diysieisew snqg eIA Jul, -] 4(,8W 18 %00],) WY - 7 ‘eAmsuss-abpa - 3 ®

$9Je10 AUBW SSOJOB UOHEDIUNWIWOD H 103 N Vv . . . 2 2¢ 091 snqjse4
(p) - ¥ . 0zl sngaining
€-NNS MOV paureyo-Asiep NIQ UL L V « — < 2EVYZ9L 2L9l'e OF ANWA
i '10|S J8d IN| POJEOIPOD | SPPE | UYSOWIBN NIA 1Ll W S« e e 2 e ov sngnN
asImIBYlo NOZ Jopx Mg 4o s/anoy Aed NI 1L W S o e e 2e'9L ze'veol's ov Il snanin
Aedsanas 0098 ‘08Z XVA dIZ LL b S e e e 2e 2eve9l's €€l 19 XVA
snq jojuod g uosinboeelep 30 D00MLL 1 S - - . 6 ve € JVINVD
SiIeylopue|-NNS‘BII 30 1Ll 8 V. - — $g'02 91'8 ot I snqninpy
MOVI pauteyo-Astep I'i-XVAT ‘LI-1IST 30 (P) /20 A S 22 gl g sNq-0
anbyuoo-oe 'Z/ISd Al 30 L b ¥V .« — . (28)v2 ()91’ 02 1auueydosoIN
ainbyuoo-ojne {[y/Qd peoueyue 30 UL dib S . — . 2E%20Z 2E'9L'8 €€ vsi3a
Spied |X/0d sideooe 35 1L 304 S (@) - - ve'oe glL'g €§ 1v/0d
so|quedwod @ Od Wgl feubuo 39 11 3§ S - - - 02 8 A 1X/0d
suoneoldde adAj-teonuod 30 1L S - - - 9l 8 snq ais
sjuswwon Ie) o T L =T =T = uwpm upm (spKAgN) sng
S S © 3 £ & § ssappy eleg uipmpueq
3 o = Q S o = Me
2 ® 5 » 3 & 2 H
-~ [(] b -
) % s 2 § @
- 3] g =
-IU D/v
Q
2

S3SNg H3LNdWOOD 201 3718Vl

709

710

MICROCOMPUTERS
Chapter 10

enhancement of the original PC bus: An
additional (and optional) connector carries
an extra 8 bits of data, 4 bits of address,
and 5 additional IRQ lines (edge-triggered,
as before). The resulting 16-bit data
path and higher CPU clock speed raise
the maximum bandwidth to 5.3Mbyte/s,
which, with the additional address space
and interrupts, makes the PC/AT a
serious microcomputer. The PC/AT bus
(sometimes called Industry Standard
Architecture, or ISA) even supports
multiple bus masters, though its abilities
here are limited. Cards that work on the
original PC bus will work in the PC/AT
(if they are fast enough), because you can
ignore the bus enhancement carried on the
extra connector; in that case, of course,
you revert to an 8-bit data path and 20-
bit address space. AT-compatible comput-
ers generally run their I/O bus at higher
speeds, which can create additional timing
problems with older plug-in boards.

The Micro Channel bus was first used
in IBM’s PS/2 series of second-generation
personal computers, introduced in 1987.
It allows for data and address paths up
to 32 bits wide (in the high-end 80386-
based machines), 11 levels of shared (level-
sensitive) interrupts, multiple bus masters,
and asynchronous protocol. Cards that
plug into the Micro Channel don’t have
hardwired 1/O port addresses; instead, the
CPU assigns an address (and other config-
uration choices) at start-up, based on in-
formation it reads from ROM on the card.
This pleasant feature means that you don’t
have to set little switches on each card, and
you don’t have to worry about cards using
overlapping address space. Micro Channel
cards have tight dimensional tolerances,
owing to the daring use of 0.050 inch spac-
ing between pads on the edge connectors.

EISA

The Extended Industry Standard Archi-
tecture (EISA) is the clone-makers’ answer

to the Micro Channel. It was introduced
in 1988 by nine manufacturers of AT-
compatible computers. By adding an extra
connector to the AT bus, the EISA’s
designers implemented many of the
desirable features of the Micro Channel,
while maintaining compatibility with
existing AT plug-in cards. Thus, you can
plug standard AT boards into EISA and get
normal AT functionality. Moreover, when
used with boards designed specifically for
it, the EISA supports 32-bit data transfers
(with peak transfer rates of 33Mbyte/s),
32-bit memory addressing, multiple bus
masters, programmable level or edge-
triggered interrupts, and automatic board
configuration.

Multibus | and Il

Originally introduced by Intel, the
Multibus formats have found their way
into many computers. The original Multi-
bus I is a capable bus with 16-bit data
path and 24-bit address space, and it
allows multiple bus masters. Multibus II
is intended for high-performance multi-
processor systems, with 32-bit data
and address paths, parity checking,
distributed arbitration, and message-
passing protocols. It uses a synchronous
10MHz clock and can transfer up to
40Mbyte/s to sequential addresses in
“block transfer” mode. In common with
some other large buses (NuBus, Fastbus),
Multibus II saves pins by multiplexing data
and address on a common set of 32 lines.
It also uses a 96-pin card-mounted DIN
connector, rather than the simple gold-
plated “card-edge” connector: By using
a well-designed card-mounted (“2-part”)
connector, you get better reliability and
a connection system that is insensitive
to card warp and rough handling.
Although Multibus II seems to have all
the advantages, its flexibility can make
your work hard. For example, it doesn’t
have conventional interrupts; instead, you

BUS SIGNALS AND INTERFACING
10.16 Connecting peripherals to the computer

711

“interrupt” by requesting bus mastership,
then sending a message to the processor
you want to interrupt! For simple systems,
the simpler Multibus I (or some other
simple bus) may be better.

NuBus

This is another high-performance synchro-
nous multiprocessor bus with multi-
plexed 32-bit data and address paths,
DIN connectors, and high data-transfer
rates (to 40Mbyte/s in “block transfer”
mode). In common with Multibus II, it
forces you to go through a bus mastership
protocol to interrupt. It is used in the
high-end Macintosh computers where,
thankfully, Apple added a dedicated
interrupt line to each slot. Thus, each
card slot has a unique vector assigned; the
corresponding software handler knows
which card interrupted without polling
and has to poll only if that card has more
than one possible interrupting device.

VME bus

The VME bus, like NuBus and Multibus II,
is intended for multiprocessor 32-bit
systems. Unlike those buses, however,
it does not use multiplexed data/address
lines. Nor does it use a synchronous
master clock, preferring asynchronous
protocol; this lets you mix processors
of varying speeds without pain. The
VME bus also implements conventional
multilevel IRQ-type interrupts, with
full interrupt acknowledgment (complete
with daisy-chained INTP line). The VME
bus is often viewed as an alternative
to Multibus; for example, the original
Sun computer from Sun Microsystems
used Multibus, whereas their more
recent Sun 2 and Sun 3 use VME.
VME bus and Multibus II are currently
slugging it out in the trade press,
cheered on by Motorola and Intel,
complete with diatribes and name-calling.

Fastbus and Futurebus

These are very high performance buses,
with blazing speed. The Fastbus uses large
cards (14x16 inches), ECL drivers, and
arbitration protocols to support multiple
bus masters. In fact, bus communication
is one of its strong points, with capa-
bility for sophisticated “geographic”
communication beyond the immediate
crate of cards.

Q-bus and VAXBI

These are proprietary buses used in DEC
computers. The Q-bus, used in the LSI-11
and early MicroVAX computers, evolved
from DEC’s original PDP-11 “Unibus.” It
supports 16-bit data and 22-bit addressing,
asynchronous protocol with multiple mas-
ters, and multilevel IRQ-type interrupts.
The VAXBI is a high-performance multi-
plexed 32-bit data/address bus used in the
larger VAX 8600-series machines.

10.16 Connecting peripherals
to the computer

Interfaces are usually built on printed-
circuit cards or Wire-Wrap cards (see
Chapter 12) designed to plug into the
microcomputer’s card slots. Microcom-
puters generally contain a number of
unused slots for just this purpose (or they
can be “expanded” to accommodate extra
cards), with power-supply voltages and
bus signals distributed to the card slots.
Some machines use a “proprietary” bus
(e.g., the IBM PC), others use a standard-
ized microcomputer bus (e.g., the Sun 3
workstation, which rides on the VME bus),
and some have no bus slots at all (e.g.,
the original Macintosh). Each bus has a
standard card size (or sizes), ranging from
the small 3.2x11.5 inch IBM PS/2 cards
to the giant 14.4x15.9 inch Fastbus cards.
Depending on the particular bus, each
card has 50 to 300 connections along one

712

MICROCOMPUTERS
Chapter 10

edge, either in the form of a set of gold-
plated printed-circuit edge connections or
as a set of multipin connectors that are sol-
dered to the board; the latter are known
as “two-part” connectors and are generally
more reliable than PCB edge connectors.
Commercially available interfaces for
common tasks (disk, graphics, communi-
cations, analog I/0) are usually built on
cards that plug into unused bus slots.
Cables then go from connectors on the
interface card to the peripheral (if any);
if the interface involves many inputs or
outputs (e.g., a digital logic analyzer),
it may connect by cable to an external
panel or box where there is more room for
connectors (and additional circuitry).
In either case it is common to use flat
ribbon cable, with some care being taken
to prevent cross-coupling of strobing
signals with data. One method is to
ground every other wire in the ribbon;
another technique uses ribbon cable
bonded to a flexible metal groundplane
to reduce inductance and coupling, at the
same time maintaining a nearly constant
cable impedance. In both cases you can
get nice multipin “mass-termination”
connectors that attach to the cable with
one simple crimping operation; check
the catalogs of AMP, Berg, T& B Ansley,
3M, etc. An alternative to ribbon cable
is a cable made of multiple twisted-
pairs, each pair consisting of one signal
line and one ground wire. Twisted-pair
cable is available in many configurations,
including a nifty ribbonlike flat cable
(Allied/Spectra “Twist-"n-flat”) in which
there is a flat untwisted region every 20
inches for easy connection to crimp-on
connectors of the type used for ordinary
ribbon cable. Because of the strobed
data-transfer protocol used between an
interface card and the device it controls,
it generally isn’t necessary to use signal/
ground pairs for all signal lines, just for the
synchronizing pulses and other strobing
or enabling lines. Suitable terminations

and driver/receiver combinations should
be used for long lines, as described in
Section 9.14.

Custom interfaces are best handled in
the same way, either laying out printed-
circuit boards or using one of the
general-purpose interfacing cards avail-
able commercially from companies such
as Douglas, Electronic Solutions, and
Vector. These blank cards have places
for ICs and other components (including
mass-termination connectors for external
cables), and they come in solder and
Wire-Wrap styles (more in Chapter 12).
Some of them include built-in circuitry
to handle bus communication, including
interrupts and even DMA.

In some cases the best plan may be to
build an interface that resides partly in the
computer and partly outside, as suggested
in Figure 10.15. In such cases the inter-
face circuitry that goes in the computer will
probably be a simple parallel input/output
port, either a commercially available par-
allel port card or a custom card you design.
The cable connecting the two parts of the
interface is simple and could use one of
the high-performance driver/receiver com-
binations we discussed in Section 9.14 if
high-speed communication over long cable
runs is needed (for example, RS-422, or
the differential current-sinking 755110 IC,
or even fiber optics). This sort of scheme
may be particularly useful for interfaces
that handle low-level analog signals, since
the noise-susceptible linear circuitry can be
kept away from the general roar of dig-
ital interference present in the computer
(and close to its analog signal source); this
also allows you to pay careful attention
to maintaining clean analog signal ground
lines.

SCSI, IEEE-488, and other interfaces

There are literally hundreds of plug-in
boards, performing an incredible variety
of functions, available for common buses

BUS SIGNALS AND INTERFACING
10.16 Connecting peripherals to the computer

DATA

AVAIL

DATA

ACCEPTED
Do

Dis /

computer bus |—.

computer

BUFFER

instrument

resident interface

EMPTY

STROBE

remote interface

Do

T

i

interface in computer —ta————— cable ————————s=t——external part of interface

Figure 10.15

such as the IBM PC, Multibus, VME,
and Q-bus. These are so inexpensive and
easy to use that you should always check
out the possibility that either (a) the
board you are designing already exists
or (b) you can use a simple parallel-port
card as a computer-resident part of your
interface, as described in the last section.
Another possibility is to use a standard
built-in “Centronics” parallel port, or an
RS-232 serial port (see Sections 10.19
and 10.20), to couple a custom gadget to
a microcomputer. This scheme has the
virtue of making your gadget portable, even
to a microcomputer with a different bus
(or no bus at all!), since these ports
look the same on all computers. Such
a gadget for connection to a serial port
will probably have its own microproces-
sor, so you might tend to think of it as a
computer rather than a peripheral. But,
as we’ll explain in the next chapter, it’s
fun and easy (and cheap) to build little
microprocessor-based instruments; there’s

really no good reason to treat a micro-
processor differently from any other LSI
chip, which you wouldn’t hesitate to
include in a custom circuit.

Following this idea a step further,
there are a few “cable interface”
standards that have become popular
recently,. They have names like SCSI
(“small computer system interface”),
IPI (“intelligent peripherals interface”),
ESDI (“enhanced small-disk interface”),
and IEEE-488 (also known as HPIB and
GPIB, “general-purpose interface bus”).
SCSI (pronounced “skuzzy”) in particular
is now standard equipment on many mi-
crocomputers, thanks to the availability of
disks and other peripherals that connect
directly to a SCSI port. You can get add-
in SCSI interface cards for computers
without built-in SCSI ports. SCSI is
actually a descendant of SASI (Shugart
Associates System Interface, a simple
parallel bus that Shugart cooked up for
their hard-disk drives) and in its simplest

714

MICROCOMPUTERS
Chapter 10

incarnation is a byte-wide bidirectional
parallel protocol with handshaking. It
allows several modes, including synchro-
nous or asynchronous transfer, with single-
ended or differential drivers; although it
originally was used to connect a single
CPU to a single disk, it can be used to
couple multiple CPUs to multiple disks.
Typical transfer rates are 1.5Mbyte/s
(asynch) and 4Mbyte/s (synch); asyn-
chronous protocol is slower because the
handshakes are bouncing back and forth
during each transfer. SCSI can go 20 feet
with single-ended drivers, and 80 feet with
differential drivers.

The IEEE-488 bus, originated by Hew-
lett-Packard as the HPIB, was designed
for connecting laboratory instruments
to computers. There is a full protocol
for connecting multiple instruments on
a bus, with phrases like “talkers” and
“listeners.” TEEE-488 is firmly entrenched
in the instrumentation field, with manu-
facturers like Hewlett-Packard, Keithley,
Philips/Fluke, Tektronix, and Wavetek of-
fering it on most of their instrumentation.
You can get 488 interfaces for nearly all
microcomputers. We’ll have more to say
on SCSI and IEEE-488 in Section 10.20.

SOFTWARE SYSTEM CONCEPTS

In this section we will discuss some general
aspects of small-computer programming,
since a knowledge of computer interfacing
is of limited value without an understand-
ing of the hierarchy of programs that ac-
tually make the computer come to life. In
particular, we would like to discuss the im-
portant areas of programming, operating
systems, files, and use of memory. It is easy
to get carried away admiring the beauty of
computer hardware and underestimate the
importance of good software. Software is
what makes the computer fly, and a good
operating system and package of “utilities”
can make all the difference.

Following our discussion of software
and systems, we will end the chapter with
a section on communications concepts,
in particular the standardized RS-232
serial ASCII protocol, the “Centronics”
parallel port, other parallel communica-
tions schemes (SCSI, IPI, GPIB), and local
area networks.

10.17 Programming

Assembly language

As we mentioned earlier in the chapter, the
computer’s CPU recognizes certain group-
ings of bits as valid instructions, which it
then acts upon. It is extremely rare to
program directly in this binary machine
language. Instead, you write programs in
a mnemonic assembly language (like our
interfacing examples earlier), which a
program called an assembler converts into
relocatable machine code. Assembly lan-
guage is very close to machine language;
each instruction is converted directly into
one line or a few lines of machine code (the
first line is usually the operation code, with
the extra lines generally completing the
addressing of the variables, or furnishing
constants). Assembly-language program-
ming produces the most efficient code and
allows you to get at flags and registers
that are inaccessible from higher-level
languages. But it is tedious programming,
as the examples illustrate, and for most
computing jobs (especially those involving
plenty of numerical computation) it pays
to use a compiled or interpreted high-level
language, such as C or FORTRAN, with
calls to assembly-language routines only
where necessary.

Compilers and interpreters

C, FORTRAN, PASCAL, and BASIC are
popular examples of high-level languages.
You write a program with algebraic types
of commands, for instance

z=(-b+sqri(bxb—4xaxc))/(2*a)

SOFTWARE SYSTEM CONCEPTS
10.17 Programming

715

and with control structures like if . .. elseif

. else, for ... ,while ... ,and do
You don’t have to shuttle your little bytes
hither and thither, or worry about address-
ing, saving registers, etc.; you just declare
variables and arrays by type and size and
use them in arithmetic or logical expres-
sions. Everything is chocolate-coated.

This is called source code, from which
there are two routes to a running program.
Languages like C and FORTRAN are
compiled, a process in which a language
compiler converts the source-code state-
ments to assembly code; from there it’s
business as usual, with the assembler
converting that intermediate assembly lan-
guage into machine language. Languages
like BASIC and APL have traditionally
been interpreted; instead of compiling
an assembly-language program from the
source program, an interpreter program
“looks at” the statements and executes
appropriate computer instructions.

In general, interpreted languages run
much more slowly than compiled lan-
guages. However, since there’s no com-
pilation, assembly, or linking (discussed
next), there’s no delay after entering a
program before it can run. Interpreters
often include a simple editor, convenient
for quick modification and retrial of a
program you're debugging. Interpreted
BASIC gained popularity in the early
days of microcomputers, when hard disks
were a rarity, since it ran entirely
in memory; this contrasted with the
tedious multipass compilation process.
With today’s fast disks and efficient
compilers, there’s not much to complain
about. In fact, recent compilers have
followed the lead of Borland’s interpreted
“Turbo Pascal” by providing a “total
environment” in which you can hop
around effortlessly between editor and
running program: If there’s a bug, the
system puts you back into the editor,
pointing to the bad statement; these
compilers include debuggers, provision

for making “libraries,” and other pleasant
features.

The current all-around favorite among
heavy-duty programmers seems to be C,
which combines the power of high-level
languages with the beauty of structured
languages and the bit-pushing flexibility
of assembly code. However, FORTRAN
still claims the lion’s share of scientific
computing.

Linkers and libraries

The assembler produces machine code
(well, almost; it’s actually called “relocat-
able machine code”) from the assembly
code produced by the compiler and from
separate subroutines written in (or com-
piled to) assembly code. In addition, there
are usually routines needed by particular
commands in the high-level program. For
example, a C program might need a math
function like sqrt, or a host of I/O func-
tions like printfor fopen. A program called
a “linker” handles the bureaucratic night-
mare of getting the appropriate subrou-
tines (in relocatable form) from a “library,”
then rigging up all the linking jumps and
addressing so the whole mess fits together
in memory. It is the linker’s job to put final
numerical values into the memory refer-
ences and variable addresses of the
assembled code, and it can do this
only when it knows which program calls
which, and how long each program is.
That’s why the code produced by the
assembler must be in relocatable form,
as must the assembled subroutines that
sit in the various libraries [there are
usually several - a library of compiler func-
tions, an I/O library, a math library, a
library of system calls, and perhaps a
home-grown (or store-bought) library of
useful subroutines].

Editors and formatters

In prehistoric days (before 1970) you could
find card-carrying computer programmers,

716

MICROCOMPUTERS
Chapter 10

literally: You wrote your programs by
hand on coding forms, then punched them
(or paid someone else to punch them)
onto those handsome “IBM cards” that
had rows of numbers printed on pastel
cardboard. Nowadays even toddlers know
how to use computer editors, the uni-
versal program entry method. Old-timers
(those over 30) can still remember the
first awkward “interactive” computer
editors, with which you could create and
modify a text file that, for some reason,
the editor never let you see much of.
Don Lancaster teased us with his “TV
Typewriter,” a build-it-yourself project
that let you display a line of text on a
television. That’s all it did. No editing,
no storage, no nothing. Our joy was truly
unbounded, therefore, when we first used
“full-screen” editors.

A good editor (and they’re all good, now)
lets you type and correct as you go, search
for words, change text, move blocks of text
around, open multiple windows on multi-
ple files, and write “macro” definitions that
do complex manipulations. The screen
should redraw quickly, even if you add text
near the beginning of a large file. Very
large files shouldn’t slow things down.

A general-purpose editor doesn’t know,
or care, what you are writing; it could be
a program, a sonnet, or a book. It just
creates the text file according to your
keyboard instructions. If the file con-
sists of statements in a programming
language, the compiler, interpreter, or
assembler reads it directly. If, on the
other hand, the file is text that you
want to print, you have two choices:
You can send it directly to a printer,
or you can mark it up with formatting
information and send it to a formatter
program that tells the printer how it
should be printed. A good text formatter
takes care of margins and line justification,
proportional spacing, changes of font, ital-
ics, boldface, underline, and so on. The
editor and formatter are often combined,

sometimes with a screen display showing
what the printed page will look like
(that’s called WYSIWYG, pronounced
“wizzywig”: what you see is what you get),
but more often with the screen display
only partially faithful to the final
page. The most advanced formatters are
capable of typesetting mathematical and
scientific formulas. For “camera-ready”
quality, you do your printing on a type-
setting machine, which exposes photo-
graphic paper or film directly; laser or
LED printers offer quite good quality
at moderate cost and high speed; “dot-
matrix” impact printers are the cheapest,
as the result shows.

Editor/formatters go by names like
MacWrite, Manuscript, Microsoft Word,
Sprint, and WordPerfect. Popular tech-
nical formatters (which do both text and
equations) are TEX and Troff. One caution:
When creating text (as opposed to
programs), most editor/formatters insert
unusual characters in the edited text
stream, for example to indicate italics,
or temporary end-of-line. These charac-
ters are unacceptable to compilers and
assemblers. Thus, you’ve got to force the
editor to run in a “vanilla” mode, in
order to create unadorned source code that
the compiler, etc., won’t choke on.

Here’s some free advice: (a) Find a good
editor and stick with it, and (b) Don’t try
to persuade others that your editor is better
than theirs.

10.18 Operating systems, files,
and use of memory

Operating systems

As you might guess from the preceding
discussion, you frequently want to run
different programs at different times,
trading data back and forth between them.
For instance, in writing and running
a program you begin by running the
editor program, creating a text file from

SOFTWARE SYSTEM CONCEPTS

10.18 Operating systems, files, and use of memory

717

the keyboard (good programmers never
set pencil to paper, as far as we can tell).
After temporarily storing the text file,
you bring in the compiler program and
compile the stored text file to form
an assembly-language file. You store that,
bring in the assembler, and produce a
relocatable machine-language file from
the stored assembly-language file. Finally,
the linker combines the relocatable
machine code with other assembled
subroutines and library routines to
produce the executable machine-language
program, which (at last!) you run. For all
these operations you need some sort of
super program to juggle things around,
getting programs from disk, putting them
into memory, and transferring control
to the relevant programs. In addition, it
would be nice if each program didn’t have
to contain all the commands necessary to
do disk reads and writes (including inter-
rupt handling, loading of status and
command registers, etc.), or, indeed, any of
the other detailed data communications
tasks.

These are some of the tasks of the
operating system, a vast program that
oversees the loading and running of user
programs (the ones you write) and utility
programs (editor, compiler, assembler,
linker, debugger, etc.), as well as the
handling of I/0O and interrupts, and file
creation and manipulation. The operating
system includes a monitor for user
interface (you tell it to run the editor,
compile a program, Oor run a program)
and many “system calls” that permit a
running program to read or write a line
of text from some device, find out the
time of day, swap control to another
program, let several multitasking “pro-
cesses” share CPU time and communicate
among themselves, bring in a program
“overlay,” etc. Good operating systems
handle all the busywork of I/O handling,
including “spooling” (the buffering of
input or output data so that the program

can run at the same time that data are
being read or written to some device).
When running under an operating system,
a user program doesn’t have to worry
about interrupts; an interrupt is taken
care of by the system, and it affects
the running program only if it wants to
take part in the handling of a particular
device’s interrupts. The whole business
of successful “time sharing” (using one
computer to handle many users at once),
with the disk providing “virtual memory”
for unlimited program size, is system
programming at its finest.

Some popular microcomputer operating
systems are MS-DOS (used on the IBM
PC and its imitators), OS/2 (used on the
PS/2, IBM’s successor to the PC), UNIX
(created at Bell Labs, widely used on VAX
and 68000-based machines), MacOS, and
VMS (company-supplied VAX operating
system).

Files

The mass-storage medium in widest
use currently is magnetic disk, either
flexible (“floppy”), with contacting read/
write heads, or rigid (“hard” disk, or
“Winchester”), with flying heads. Typical
storage capacities are in the range of
1Mbyte for floppies and 20-500Mbyte for
small Winchesters. The data are organized
into files. Text, user programs, utility pro-
grams (e.g., editor, assembler, compiler),
libraries, etc., are all stored in similar
ways, and all constitute files. Although
the mass-storage medium is divided into
physical blocks or sectors of well-defined
size (512 bytes/sector is common), the
files themselves may have any length.
The operating system mercifully takes
care of track/sector addressing, etc.; it
gets the data you want, if you know the
file name. There are all sorts of interest-
ing details having to do with file organiza-
tion that we don’t have space to describe
here. What is important is to understand

718

MICROCOMPUTERS
Chapter 10

that all those programs (editor, compiler,
etc., as well as user source text, compiled
programs, and even data) reside on some
mass-storage device as named files, and the
system can get them for you (read the next
subsection, however, on “ramdisk”). In
the normal course of its duties, the system
does enormous amounts of file handling.
Recent additions to the mass-storage
stable are based on consumer electronics
media and provide very high density
storage in small packages: (a) Optical
disks of the kind used in audio CD players
store nearly a gigabyte, as prerecorded
“read-only” memory, as WORM memory
(“Write Once, Read Many”), or (as with
magnetic media) as fully erasable read/
write memory. (b) Videotape, in both
VHS and 8mm formats, lets you store
a gigabyte of read/write memory on
inexpensive tape; the major drawback is
the long access time. Both storage systems
use sophisticated error-correction schemes
to overcome errors due to media blem-
ishes, etc., which are a minor nuisance
in the original audio/video applications
of these media, but would be devastating
for data or program storage if uncorrected.

Use of memory

Files are stored in some mass-storage
device, but a program must reside in
memory while being executed. A simple
stand-alone program of the sort we’ll
talk about in the next chapter can be
loaded almost anywhere in memory. But
in a microcomputer with an operating
system there are special areas reserved
for special functions. For example, the
MS-DOS operating system itself, along
with its command interpreter, disk
buffers, stack, etc., is usually loaded
at the bottom of memory, taking care to
put its interrupt vectors in the specific
locations in low memory that the CPU
requires, while the portion of MS-DOS

that is in ROM is located high in memory,
above the portion of memory reserved
for video display buffers. When operating
under an operating system, the allocation
of memory for user programs will be
handled by the system. This is particularly
important to understand if you intend to
use DMA; in that case you have to let the
system figure out where your data buffer
wound up, and use that as the starting
address for the DMA block transfer.

The situation is even more complicated
if programs are being swapped in and out
of memory, or moved around in memory.
There may be several programs in memory
simultaneously, sharing “time slices” of
the CPU in a multitasking mode. To add
to the complexity, most microcomputers
use “memory mapping,” in which physical
memory addresses (what’s actually on the
bus lines) are mapped to different logical
addresses (where your program thinks it
is). If that isn’t enough to confuse you,
consider “virtual memory,” a feature of
advanced microcomputers in which your
program is diced up into little “pages,” any
of which may or may not be in memory at
any instant; the program “pages” them in
and out in a crazy quilt of frenzied activity.

No discussion of memory use is com-
plete without mentioning ramdisk, which
can be invoked even on relatively simple
machines, if they have enough memory.
The basic idea is to make memory look
like disk, from the operating-system point
of view; you then load into this ramdisk
memory the programs that you need
frequently. This can be handy during pro-
gram development, when you need to keep
using the editor, compiler, assembler, and
linker. With ramdisk, things move along
quickly, since no actual disk access is
required. It does have the hazard that you
can lose all your work if the computer
crashes, since files are not automatically
saved on disk. A related concept is a disk
cache, in which an area of RAM holds the
results of recent disk accesses.

SOFTWARE SYSTEM CONCEPTS

10.18 Operating systems, files, and use of memory

719

Drivers

The computer world is rich with diver-
sity — each month we see products using
novel technologies in data storage
(magnetic, optical), printers (laser, LED),
networks, etc. Different hardware re-
quires different controlling signals, with
different timing requirements, etc. This
would appear to create real program-
ming problems, since publishing software
designed for a dot-matrix printer, for
example, would appear to be totally
inappropriate for a laser typesetter.

The solution consists of software drivers,
which are special programs designed to
create a uniform programming interface
to each particular piece of hardware.
"Thus, for example, the typesetting lan-
guage TEX creates output in the form of dvi
(device-independent) files; a printer driver
(specific to the particular printer you are
using) eats the dvi file and spits out the
corresponding idiosyncratic printer codes
to instruct the printer. TEX works with any
printer, once you have the dvi-translating
driver. The same sort of device indepen-
dence goes for mass-storage devices such
as disk drives, so that you can attach any
of a variety of disks to UNIX, PC-type,
or Macintosh computers.

Drivers are really part of the overall
system software, and the average computer
user is unaware of their operation. If you
are designing new computer hardware,
however, you will probably find yourself
quickly becoming an expert on these
essential software modules, since you
will have to write your own drivers to
make your hardware play with the rest of
the team.

DATA COMMUNICATIONS CONCEPTS

A small computer system will usually be
configured with some mass-storage devices,
such as disks and tape, and some “hard-
copy” or interactive devices, such as

alphanumeric terminals, printers, plot-
ters, etc. In addition, it may have a
modem (modulator-demodulator) so that
it can dial up other computers through
ordinary telephone lines. Finally, local
area networks (LANs) are becoming
increasingly popular. With a LAN you
can have access to files stored in other
computers on the network, as well as
the ability to share expensive resources
(for example, large disks, tape drives,
printers, and typesetters). In each case
your CPU has to communicate data.
Let’s see how it works.

Incompatibility

In the dark “middle ages” of computers
(say, up to 1975) the situation was pretty
bleak. Each brand of computer had its
own bus structure and interfacing protocol
(not to mention programming language).
You bought (or sometimes built) interfac-
ing cards to fit the particular computer,
with custom cables going from the inter-
face to the peripheral itself. This general
lack of compatibility extended to the pe-
ripherals themselves: You couldn’t hook a
tape drive to a disk interface, or a terminal
to a plotter interface, etc. To make mat-
ters worse, the peripherals offered by dif-
ferent manufacturers generally used differ-
ent signals and data-transfer conventions
and were not “plug-compatible.”

Compatibility

Some of this incompatibility was unavoid-
able, since to maximize performance dif-
ferent peripherals transfer their data to and
from the interface differently. For exam-
ple, a magnetic disk moves words in par-
allel byte-wide format for high speed, and
the corresponding interface must use DMA
transfer, as we explained earlier; by con-
trast, a keyboard terminal uses a standard-
ized alphanumeric bit-serial format, with
the interface using simpler interrupt-driven
programmed 1/0. Although some of this

720

MICROCOMPUTERS
Chapter 10

incompatibility is still with us, the situa-
tion is vastly improved, with most of the
industry standardizing on a few agreed-
upon data communications standards. The
introduction of the IBM PC defined
a much-needed small-machine format
and data bus, while nonproprietary high-
performance buses like VME and Multibus
became the backplane for a number of
other computers. You can get interface
cards for these buses (and others, like
DEC’s Q-bus) from many manufacturers,
which simplifies things enormously. Even
more important, the manufacturers of
peripherals have agreed on a few standard-
ized “cable interfaces.” The most impor-
tant of these are (a) RS-232 serial format,
usually used with alphanumeric ASCII
data, (b) Centronics’ parallel printer for-
mat, (c) SCSI parallel bus, (d) IPI bus, and
(¢) IEEE-488 (GPIB) instrument bus.
Let’s take a look at these, and then finish
the chapter with a brief description of two
popular kinds of local area networks,
Ethernet and token-ring networks.

10.19 Serial communication and ASCII

As mentioned earlier, alphanumeric com-
munication between a computer and de-
vices of moderate speed is most frequently
done using the 7-bit ASCII code (Ameri-
can Standard Code for Information Inter-
change), with bit-serial transmission over
a single line. Table 10.3 presents a listing
of the 7-bit codes. Devices communicat-
ing via serial ASCII almost always send
an 8th bit, but it is not part of the ASCII
code; it is most often a hardware parity bit
(sometimes odd parity, sometimes even,
but most often set to 0 and ignored), but
it is occasionally used as a “meta” shift
key to generate an additional 128 charac-
ters, which may be Greek symbols, alter-
nate fonts, etc. There are no standards for
these extra symbols. (The 8th bit also gets
used when you ship binary data via a serial

connection; this doesn’t always work,
though, because serial data links are so
used to getting rid of the 8th bit during
ASCII transfer that they may not permit
you to retain it as data.)

A few notes on the ASCII table. The
upper-case alphabet begins at 41y; setting
bit 5 to a 1 generates the corresponding
lower-case character. The ASCII value for
a digit is just the digit plus 30y. The
first 32 ASCII characters are nonprinting,
or “control” characters. Some of them
are important enough to have earned their
own keys on keyboards, for example
CR (which may be labeled “return,”
since keyboards don’t have carriages),
BS (“backspace”), HT (“tab”), and ESC
(“escape”). You can generate any control
character (including the above) by holding
down CTRL and typing the correspond-
ing letter from the upper-case alphabet;
for example, CR is CTRL-M (try it on
your computer). The control characters
are used to control printing or program
execution, or they can be used by pro-
grams that otherwise expect to receive
alphanumeric characters, e.g., text editors.
Some other important control characters,
besides the ones listed above, are NUL
(null), a character of all zeros often used to
delimit character strings; FF (form feed),
used to begin a new page; ETX (end of text,
affectionately called “control C”), which
many operating systems interpret as a com-
mand to abort a running program; DC3
(control S), used as a “soft handshake”
to stop serial transmission; and DClI
(control Q), the complementary character
to resume transmission.

Unfortunately, ASCII doesn’t provide
for subscripts, exponents, or any Greek
or scientific characters. As a minimum,
it would be nice to have w, u, €, and
the degree symbol (°), which crop up
frequently in technical writing. Of course,
it is possible to use a control character
(or sequence of characters) to indicate
a change of font or alphabet. This is

DATA COMMUNICATIONS CONCEPTS
10.19 Serial communication and ASCII

721

TABLE 10.3. ASCIl CODES

non-printing printing printing printing
Control

Name char Char Hex Dec Char Hex Dec Char Hex Dec Char Hex Dec
null ctr-@ NUL 00 00 SP 20 32 @ 40 64 ‘ 60 96
start of heading ctr-A SOH 01 01 21 33 A 41 65 a 61 97
start of text ctrl-B STX 02 02 " 22 34 B 42 66 b 62 98
end of text ctr-C ETX 03 03 # 23 35 C 43 67 c 63 99
end of xmit ctr-D EOT 04 04 $ 24 36 D 44 68 d 64 100
enquiry ctrkE ENQ 05 05 % 25 37 E 45 69 e 65 101
acknowledge ctr-F - ACK 06 06 & 26 38 F 46 70 f 66 102
bell ctr-G BEL 07 07 27 39 G 47 7 g 67 103
backspace ctrrH BS 08 08 (28 40 H 48 72 h 68 104
horizontal tab ctrl-1 HT 09 09) 29 41 1 49 73 i 69 105
line feed ctr-d LF O0A 10 * 2A 42 J 4A 74 j 6A 106
vertical tab ctrkK VT 0B 11 + 2B 43 K 4B 75 k 6B 107
form feed ctrl-L FF 0C 12 , 2C 44 L 4C 76 I 6C 108
carriage return ctkM CR 0D 13 - 2D 45 M 4D 77 m 6D 109
shift out ctrlkN SO O0E 14 2E 46 N 4E 78 n 6E 110
shift in ctl-O Sl OF 15 /| 2F 47 O 4F 79 o 6F 111
data line escape ctrl-P DLE 10 16 0 30 48 P 50 80 p 70 112
device controlt ctrl-Q DC1 11 17 1 31 49 Q 51 8t q 71 113
device control2 ctr-lR DC2 12 18 2 32 50 R 52 82 r 72 114
device control3 ctrl-S DC3 13 19 3 33 &1 S 53 83 s 73 115
device control 4 ctrl-T DC4 14 20 4 34 52 T 54 84 t 74 116
neg acknowledge ctrl-U NAK 15 21 5§ 35 853 U 55 85 u 75 117
synchronous idle ctrl-V SYN 16 22 6 36 54 V 56 86 v 76 118
end of xmit block ctrl-W ETB 17 23 7 37 55 W 57 87 w 77 119
cancel ctr-X CAN 18 24 8 38 56 X 58 88 x 78 120
end of medium ctrlkY EM 19 25 9 39 57 Y 59 89 y 79 121
substitute ctr-Z SUB 1A 26 : 3A 58 Z 5A 9 z 7A 122
escape cr-[ESC 1B 27 ;3B 59 [5B 91 { 7B 123
file separator ctrl-\ FS 1C 28 < 3C 60 \ 5C 92 | 7C 124
group separator ctrl-] GS 1D 29 = 3D 61] 5D 93 } 7D 125
record separator ctr-* RS 1E 30 > 3E 62 A B5E 94 ~ 7E 126
\unlt separator ctrl-— US 1F 31 Y ¥'? 3F 63 N - 5F 95 Y, \DEL 7F 127 Y.

the usual method used in technical word
processing, where the formatter interprets
subsequent ASCII characters differently.
This is probably the best solution anyway,
since, given the variety of symbols needed
for any serious technical writing, you
wouldn’t be happy for long even with a
very large fixed ASCII alphabet.

Note that computer keyboards are
often implemented not simply as ASCII
code generators, one code per keystroke;
instead, recent practice is to generate
unique “key down” and “key up” codes
for each key. Special system software (a
“keyboard driver,” see Section 10.18) may
then translate the keystrokes into vanilla

722

MICROCOMPUTERS
Chapter 10

more than +3V

START LOGIC ZERO
"\ MARKING" - LOGIC ONE
less than —3V Dy D, D,

(LSB)

any amount of
time desired
START

STOP! l ‘MARKING"

Dg D,
or
parity

Figure 10.16. RS-232 serial data-byte timing waveform.

ASCII. However, this implementation
allows much greater flexibility, since you
can configure the keyboard driver to have
auto-repeat keys, multiple shifts, keyboard
remapping (e.g., a Dvorak keyboard),
“hot keys,” etc.

Bit-serial transmission

ASCII (or any other alphanumeric code)
can be transmitted either as a parallel 8-bit
group (8 separate wires) or as a serial string
of 8 bits, one after the other. For transmis-
sion at low to moderate speeds it is most
convenient to use serial transmission, to
simplify wiring. A modem (discussed later
in this section) converts a serial bit stream
to an audio signal, and vice versa (e.g., by
using one audio tone for “1,” another for
“0”), which can then be sent via telephone
lines; serial transmission is a natural here,
too. Serial transmission has a standard bit-
transmission protocol and fixed bit rates:
With asynchronous transmission, a start
bit and a stop bit (sometimes two) are at-
tached to the ends of each 8-bit character,
forming a 10-bit group. The sender and re-
ceiver use a fixed bit rate, the most popular
of which are 300, 1200, 2400, 4800, 9600,
and 19,200 baud (=clock periods per
second). Figure 10.16 shows the idea.
When no information is being sent, the
transmitter sits in the “marking” state (the
language comes from the teletypewriter
days, with “mark” and “space”). Every
character begins with a START bit, fol-
lowed by the 8 ASCII bits, least significant
bit first (usually organized as 7 data bits,
plus 1 optional parity bit), and a final
STOP bit; the latter must be at least one

clock period, but may extend any amount
longer. At the receiving end, a UART
(“universal synchronous/asynchronous
receiver/transmitter,” see Section 11.11)
operating at the same baud rate synchro-
nizes to each 10-bit group, generating suc-
cessive 8-bit parallel data groups from the
input serial string. By resynchronizing on
the START and STOP bits of each char-
acter, the receiver doesn’t require a highly
accurate clock; it only has to be accurate
and stable enough for the transmitter
and receiver to stay synchronized to a
fraction of a bit period over the time of
one character, i.e., an accuracy of a few
percent. The receive UART is triggered
by the transition at the beginning of the
START bit, waits for half a bit cell to
be sure the START bit is still present,
and then examines the data value at the
middle of each data cell. The STOP bit
terminates the character and is the
resting state if no new characters are
sent immediately. The receive UART
looks for the STOP bit level 10.5 bit-
cell intervals after the START transition,
to help verify a correctly sent character.
“Break” is a continuous space, which can-
not occur during normal character
transmission. Programmable baud-rate
generators (i.e., programmable dividers)
are available that generate any of the
standard baud rates from a single oscilla-
tor input frequency, with the output baud
rate selected by a binary input code.
Most modern UARTSs (for example the
dual-channel synchronous/asynchronous
8530 from Zilog) include internal software-
programmable baud-rate generators.

DATA COMMUNICATIONS CONCEPTS
10.19 Serial communication and ASCII

723

RS-232

The actual serial ASCII signals can be sent
in one of several ways. The original meth-
od, which dates back many decades, con-
sists of switching a 20mA (or sometimes
60mA) current at the selected baud rate.
This is known as “current-loop” signaling.
It is sometimes available as an option,
but has been superseded for moderate
baud rates by the EIA RS-232C standard
of 1969 (and subsequent RS-232D stand-
ard of 1986), which uses bipolarity voltage
signaling. The RS-232 standard specifies

the properties of both drivers and receivers:

A driver must generate voltage levels
of +5 to +15 volts (logic LOW input),
and —5 to —15 volts (logic HIGH input),
into a load of 3k to 7k, with a slew rate of
less than 30V/us, and the ability to with-
stand a short to any other output (which
can be as inhospitable as £5V@500mA);
a receiver must present a 3k to 7k load
resistance, converting an input of +3 to
+25 volts to logic LOW, and an input of
—3to —25 volts to logic HIGH. Note that
logic 1 gets inverted by the RS-232
driver to a negative level, called “mark”;
logic O is a positive level (“space”). In
current-loop transmission, current flows
during logic 1 (mark), and ceases during
logic O (space).

RS-232 receivers usually have voltage
hysteresis at the input, and some types
let you limit the response speed with a
capacitor, to reduce susceptibility to noise
pulses. Look at Sections 9.14 and 14.17
for a discussion of official RS-232 driver
and receiver ICs. RS-232 works well up to
38,400 baud over distances of tens of feet,
even with unshielded bundled multiwire
cable; for short links it is sometimes used
at 115,200 baud.

RS-232 also specifies the connector type
and pin assignments. Unfortunately, it
doesn’t specify enough! This is an eter-
nal source of confusion because, in gen-
eral, two RS-232 devices, when connected

together, won’t work. The problem is
so annoying that readers of the previous
edition of this book have even complained
to us, because we didn’t tell them what
to do about it. Luckily for you, you’re
reading the second edition. Here’s the
story:

There are two basic problems in this
business: (a) There are two flavors of de-
vice defined, with input pins of one type
corresponding to output pins of the other;
you may want to connect two similar de-
vices together, or you may want to con-
nect two complementary types together.
(b) There are five “handshaking” signals;
some devices send them out, and expect
to receive them back, while others ignore
their inputs (and don’t drive their outputs).
To make things work, you’ve got to
understand these in detail. Let’s plunge in.

RS-232 was designed for connecting
DTEs (“data terminal equipment”) to
DCEs (“data communication equipment”).
A terminal always looks like a DTE,
and a modem always looks like a DCE;
but other devices, including micro-
computers, can be either. The IBM PC
looks like a DTE with a male connector,
although most large computers are DCE-
like. When you connect a DTE to a DCE,
you just connect corresponding pins of
their DB-25 connectors (which can be
either male or female, at either end!),
and, with some luck, it may work. We say
may, because it still depends on which
handshaking lines each device expects
from the other, and bothers to drive itself.
(Of course, even when the cable is right,
you still have to agree on baud rate, parity,
and a few other software parameters!)
When you want to connect two similar
devices, on the other hand, you can’t
connect corresponding pins, because that
would connect the two outputs together:
A DTE transmits on pin 2 and receives
on pin 3, while a DCE does the reverse.
So you have to connect them with a cable
(called a “null modem™) that criss-crosses

MICROCOMPUTERS
Chapter 10

TABLE 10.4. RS-232 SIGNALS

Pin number
Direction

Name 25-pin 9-pin (DTE<DCE) Function (as seen by DTE)
TD 2 3 - transmitted data } dat X
RD 3 2 P received data ata pair
RTS 4 7 request to send (= DTE ready) .
cTS 5 8 clear to send (= DCE ready) } handshake pair
DTR 20 4 data terminal ready .
DSR 6 6 data set ready } handshake pair
DCD 8 1 « data carrier detect .
RI 22 9 - ring indicator } enable DTE input
FG 1 - frame ground (= chassis)
SG 7 5 signal ground

pins 2 and 3. Unfortunately, that’s not all
there is to it.

Table 10.4 shows all the important
lines. TD and RD are the data transmit
and receive lines; RTS and CTS are
“ready to send” and “clear to send”; DTR,
DSR, and DCD are “data terminal ready,”
“data set ready,” and “data carrier detect.”
There are, in addition, two grounds: a
“frame ground” (or chassis, pin 1) and a
“signal ground” (pin 7); most machines
just tie them together. The five signals
that aren’t data are handshaking-type
control signals: A DTE asserts RTS and
DTR when it’s ready to receive, and
a DCE asserts CTS and DSR when it is
ready to receive. Some DTEs also expect
their DCD input to be asserted before
they will do anything. All signal lines
are RS-232 bipolarity levels, with data
(TD, RD) asserted negative, but control
lines (RTS, CTS, DSR, DTR, DCD)
asserted positive.

Note that the signal names make sense
only as viewed by the DTE: For instance,
pin 2 is called TD (“transmitted data”) by
both sides, even though the DTE asserts
it and the DCE receives it. Thus, the
name of a pin isn’t enough to tell you if
it’s an input or output - you also need

to know whether the device thinks it’s a
DTE or a DCE (or you can cheat and use
a voltmeter!).

If all RS-232 devices asserted everything
they are supposed to and listened to every-
thing they are supposed to, then you could
just connect corresponding pins (for
DTE < DCE), or cross corresponding
pairs (for DCE <« DCE, or DTE <
DTE). However, when you connect a
device that ignores all handshaking
lines to one that expects them, nothing
happens. So you have to tailor your
strategy to the reality; this sometimes
involves trickery. Figure 10.17 shows how
to make cables that actually work, for
all (well, nearly all) situations. In part A
we show the connection for DTE — DCE
when both devices use full handshaking.
RTS/CTS is one pair of handshakes,
and DTR/DSR is the other. In C we
show the same thing, but with a “null
modem” cable to cross inputs and outputs
for a DTE « DTE pair. The same cable
works for a DCE < DCE pair, but you
should reverse the arrows in the picture,
and omit the connections to pin 8. These
cables won’t work, though, if one device is
looking for handshaking and the other isn’t
providing it. In that case the easiest thing

DATA COMMUNICATIONS CONCEPTS
10.19 Serial communication and ASCII

725

DTE DCE
G 1)G
™ 2) T
RO (3 - 3)RD

RTs (4 > @RTS

cts(s - ®cts

sk (5 - sOLS:
6(7 7)G
oco (8 8) DCD

DTR (30 > 20 DTR

A

DTE DTE
1€ 1) 6

TD TD
oo :>—<: o
RTS RTS

DCD ‘——‘ H DCD
DTR DTR

sig. GND @
ocp (8)

DTR @9

E RI @D

is to wire the cable so that each device
provides its own handshakes, i.e., tells
itself to go ahead. That’s shown in B for

PEOOEOOO | ¢

Figure 10.17.

DTE

DCE

-

s

TD@

@TD

e
RTS

CTs
DSR

A

@RD

RTS
(s) cTs

—®) bsR

G

DCD

REAjN

DTR

DTE

7)G

y (® oco
—‘ DTR

G

TD D
RD RD

RTS @—_V {'—-——@ RTS
crs O—— —(®)crts
sk (B— —@®) osr
¢ (@D— O
oco B)——o 4 DCD
DTR ‘ ‘——. DTR

RS-232 cables that really work. Pin numbers
shown are for 25-pin (“DB-25") connectors, with alternate 9-pin
numbering shown in part E.

DTE < DCE and in D for DTE <~ DTE
(works also for DCE < DCE, but you

should omit the connections to pin 8).

726

MICROCOMPUTERS
Chapter 10

How to become an RS-232 genius. If
you make up these four cables, with a
male and female connector at each end,
you can make anything work with anything
else (almost). Your colleagues will swear
you’re a genius. They will, that is, unless
they’ve discovered the real professional’s
gimmick, an “RS-232 breakout box.” It
has LEDs for each line, so that you can
see who is asserting what, and it has
little jumpers so that you can connect any
given pin to any other pin. Instructions:
Look at the lights to get TD and RD
connected right, then look again to see
who asserts the handshakes. If a device
asserts RTS, it probably looks at CTS. If
both do, connect them together; otherwise,
loop its RTS back to its CTS. Play the
same game with DTR and DSR. If only
one pair of handshakes is implemented,
it is usually DTR/DSR. In general, the
DTR/DSR pair is used to make sure the
other side is connected and turned on,
while the RTS/CTS pair is used to start
and stop transmission as one side gets
ahead of the other.

If you’re too cheap to buy a break-
out box, use a voltmeter to check for
implemented signals: Any line with a large
(>4V) negative or positive level is asserted;
any line floating near ground is not.

Software handshaking. Some devices
use the RTS/CTS hardware handshakes to
start and stop data transmission while the
slower device (e.g., a printer) catches up.
Others transmit a “software handshake”:

CTRL-S (to stop) and CTRL-Q (to resume).

If you’re lucky, you’ll have a choice. The
software method means you can use a
simpler cable, and if the devices ignore the
the hardware lines altogether, your cable is
extremely simple, with only pins 1, 2, 3,
and 7 connected (all you have to figure out
is whether or not to cross pins 2 and 3).
The devices may still expect the hardware
handshakes to be connected to enable

the link, even if they use CTRL-S and
CTRL-Q for detailed handshaking. In
that case you can get away with the
scheme of Figure 10.17B,D. Just make
sure you remember to turn on the power
at both ends, because neither side has
any way to know that the other is alive,
or even connected!

Other serial standards:
RS-422, RS-423, and RS-485

The RS-232C standard was frozen in 1969,
when serial data communication was a
relatively leisurely occupation. It works
well up to 50 feet, at speeds up to 19,200
baud. But computer and peripheral speeds
have been doubling every year or two, and
a better standard for serial communication
was needed.

As we discussed in Section 9.14,
RS-423 is an improved bipolarity single-
ended protocol, good to 100kbaud and to
4000 feet (not at the same time); it is
essentially compatible with RS-232.
RS-422 is a unipolarity differential pro-
tocol good to 10Mbaud and to 4000 feet
(see Fig. 9.37 for the speed/length trade-
off). RS-485 is similar to RS-422, but
with additional specifications so that
many drivers and receivers can share a
single line. Table 10.5 summarizes the
characteristics of these four standards.

Modems
As we remarked earlier, a modem
(“modulator/demodulator”) is used to

convert bit-serial digital quantities into
analog signals that can be sent over tele-
phone lines or other transmission paths
(Fig. 10.18). An internal modem plugs
into a slot in your computer (or comes
built-in), whereas an external modem is
a stand-alone box, powered from the ac
power line, with RS-232 connection to

DATA COMMUNICATIONS CONCEPTS
10.19 Serial communication and ASCII

727

TABLE 10.5. SERIAL DATA STANDARDS

RS-232C/D RS-423A RS-422A RS-485
Mode single-ended single-ended differential differential
Maximum number
drivers 1 1 32
receivers 1 10 10 32
Maximum cable length 15m 1200m 1200m 1200m
Maximum data rate (bits/s) 20k 100k 10M 10M
Transmit levels +5V min +3.6V min +2V min +1.5V min
+15V max +6.0V max (diff'l)
Receive sensitivity 3V +0.2V 0.2V 0.2V
Load impedance 3k to 7k 450Q min 100Q min 60Q min
Output current limit 500mAto Vorgnd 150mA to gnd 150mA to gnd 150mA to gnd
250mA to -8V or +12V
Driver Z 4, min (pwr off) 300Q 60k 60k 120k
your computer’s serial port. In either to send data on a single telephone channel

case the modem communicates with the
telephone line, in one of two ways:
(a) direct connection, via a telephone-
type “modular jack,” or (b) “acoustically
coupled,” by seating the telephone hand-
set into a rubbery cradle containing micro-
phone and speaker. Acoustically coupled
modems are pretty much out of style these
days, although they can be handy in hotel
rooms where you may not want to crawl
around under the beds looking for a
modular jack (which may not even exist!).

In most situations you want to be able

telephone line

wires or other medium
TxD1

computer external

#1 modem
#1
RxD1
digital audio
RS-232C 300Hz-3kHz

Figure 10.18. Modem communication.

in both directions simultaneously (“full
duplex”), sharing the telephone audio
bandwidth, which is roughly 300Hz-3kHz.
There are three full-duplex formats in
common use: 300 baud FSK (Bell 103),
1200 baud dibit PSK (Bell 212A), and
2400 baud dibit PSK (FSK stands for
“frequency-shift keying,” and PSK stands
for “phase-shift keying”). A modem de-
signed for 1200 baud, say, generally also
supports 300 baud communication, etc.
Although you don’t need to understand
how the modem encodes its data in order

wires

RxD2
external computer
modem #2
#2
TxD2
——
digital
RS-232C

MICROCOMPUTERS
728 Chapter 10

space
l ‘ mark
k
f na space[— Bna)
B FSK _r—]__J—
binary __ FSK L» encoded
datain osc signal VWSV s

eI

(mark)
binary H receive Rx FSK
data out BPF input

BPF

(space)

A
Tx
R R
Rx
modem (with hybrid)
at far end
Tx 1:1:1

Rx
Figure 10.19. A. FSK modem.

B. Hybrid couplers

DATA COMMUNICATIONS CONCEPTS
10.19 Serial communication and ASCII

729

to use it, the methods are .interesting
in their own right, and we can’t resist
describing them briefly.

The 300 baud standard (Bell 103) uses
frequency-shift keying (FSK), in which a
designated pair of audio tones represents
mark and space: 1270Hz (mark) and
1070Hz (space) in one direction, 2225Hz
and 2025Hz in the other. A Bell 103
modem is very simple, with a switchable
oscillator for transmitting, and a pair of
audio filters for receiving (Fig. 10.19A).
Note also the use of a hybrid circuit
(Fig. 10.19B) to isolate the outgoing signal
from the received signal: Assuming the
telephone line is close to its nominal 600
ohms impedance, none of the modem’s
own transmitted signal (Tx) appears back
at its received-signal (Rx) output. In
practice, hybrids don’t work that well,
because the telephone line impedance can
deviate substantially from the nominal
600 ohms (see Section 14.5). Thus, it is
important to have a very sharp receive
filter, which adds some complexity to the
modem circuit.

EXERCISE 10.5
Figure out how the hybrid circuits in Figure 10.19
work. Then impress your friends with your new
knowledge.

The 1200 baud standard (Bell 212A)
works differently. The digital data stream
is grouped into bit pairs (“dibits”); each of
the four possible dibits is transmitted as a
designated phase shift of a fixed-frequency
carrier (00: +90°, 01: 0°, 10: 180°, and
11: —90°), with smooth transitions of
phase from each transmitted dibit to the
next. Thus, dibits are transmitted at a
600Hz rate. The (phase-modulated) car-
rier frequency is 1200Hz in one direction,
2400Hz in the other. The receiving mo-
dem decodes by looking at the difference
in phase of adjacent dibits. This clever
idea has one pitfall, namely that the
receiver loses track of relative phase if

there is a long run of similar dibits.
Therefore, in order to prevent long
runs of constant phase, the transmitted
data stream is randomized by exclusive-
ORing it with a pseudo-random sequence
(generated by a 17-bit shift register with
XOR feedback from the 14th bit, see Sec-
tion 9.32), with an identical descrambling
process at the receiving end.

The 2400 baud full-duplex modems also
use phase-encoded dibits, though with a
different set of phases. These sophisticated
modems tend to use real-time adaptive
equalizers to correct the frequency and
time-delay errors of the telephone line, and
highly optimized filters for both transmit-
ted and received signals. The end result
is that the error rate is not significantly
degraded when compared with the earlier
300 baud FSK modems.

You don’t have to construct a modem
from scratch, because complete modem
chips and modules are made by AMI/
Gould, Exar, National, Rockwell, Silicon
Systems, and TI. Your life is made even
easier, however, if you buy a complete
modem, whether in the form of an inter-
nal plug-in card or an external box with
RS-232 connection to your computer.
Modems cost $100-$300, depending on

features. Look for “Hayes-compatible”
modems, which accept standardized
commands for dialing, etc., that are

now the de facto standard used by all
communications software.

Some good advice: When using a mo-
dem to transfer data files between comput-
ers, be sure to use a block-checking modem
protocol such as Kermit or XMODEM.
These send the data in fixed-length blocks,
each with error-checking checksums. The
receiving modem compares the checksums,
automatically insisting on retransmission
of bad blocks. Files received this way
are guaranteed error-free; files sent with
plain unformatted ASCII transmission,
by contrast, can almost be guaranteed to
have errors!

730

MICROCOMPUTERS
Chapter 10

10.20 Parallel communication:
Centronics, SCSI, IPIl, GPIB (488)

For cable communications with high-speed
peripherals, parallel transmission is gener-
ally better than serial. Here are the popular
favorites.

Centronics

This is a simple byte-wide unidirectional
parallel port with handshaking, originated
by Centronics and now widely used for

printers. Unlike RS-232, it always works!
Table 10.6 lists the signals, which are sup-
posed to be sent with twisted-pairs and
terminated in a 36-pin connector. Fig-
ure 10.20 shows the corresponding timing.

The basic signals are listed in the first
group: DO0-D7, STROBE/, ACKNLG',
and BUSY. BUSY is a flag. When LOW,
the printer is not “busy,” i.e., it’s ready
to accept data; the data source (computer)
therefore asserts DATA, then a STROBE'
(with data guaranteed valid on both sides).

TABLE 10.6. CENTRONICS (PRINTER) SIGNALS

Pin number

Name sig com Direction Description
STROBE’ 1 19 ouT data strobe
Do 2 20 ouT data LSB
D1 3 21 ouTt .
D2 4 22 ouTt .
D3 5 23 ouTt .
D4 6 24 ouT .
D5 7 25 ouTt .
D6 8 26 ouT .
D7 9 27 ouTt data MSB
ACKNLG’ 10 28 IN finished with last char; pulse
BUSY 11 29 IN not ready (note 1)
PE’ 12 30 IN HIGH = no paper
SLCT 13 - IN pulled HIGH
AUTO FEED XT* 14 - ouT auto LF
INIT’ 31 16 ouT initialize printer
ERROR’ 32 - IN can't print (note 2)
SLCTIN’ 36 - ouT deselect protocol (note 3)
GND - 33 - additional ground
CHASSISGND 17 - - chassis ground

note 1: BUSY = HIGH
i) during each char transfer
ii) if buffer full
jii) if off-line
iv) if error state
note 2: ERROR’ = LOW
i) if out-of-paper
ii) if off-line
iii) if error state

note 3: normally LOW

i) sending DC3 when SLCT IN’' = HIGH deselects printer
i) can only re-select by sending DC1 when SLCT IN’ = HIGH

DATA COMMUNICATIONS CONCEPTS

10.20 Parallel communication: Centronics, SCSI, IPI, GPIB (488)

731

DATA (valid data out)~ £ (: ___________
. g(
STROBE g N /
0.5us
0.5us 0.5us| -
min mim] min
S
BUSY
=
ACKNLG

BUSY then goes HIGH, and it comes
LOW again only when the printer is ready
for another byte. The computer should
look at BUSY, as shown, in order to know
when it can send another byte. ACKNLG’
(which is a pulse, not a level) can be used
to trigger an interrupt; don’t try to use it
instead of BUSY, though, because it may
be gone by the time you look, and you’ll
wait forever.

There are several other signals, to
indicate that the printer is out of paper
(PE), or off-line (ERROR’ or BUSY),
the computer can initialize the printer
(INIT’), ask for automatic line feed
(AUTO FEED XT’), or send a byte to
deselect the printer (set SLCT IN’ HIGH,
then send an ASCII DC3). Note the
relaxed timings, obviously intended for a
slow (mechanical) device that can’t accept
data at a high rate. Most printers have
some buffer memory, so they can accept
data at a high rate initially; on the aver-
age, though, you can send bytes only at
the printing rate. For a dot-matrix printer
you’re talking 100-300 bytes per second.

If you need to design a Centronics
interface to go on some computer’s bus,
the easiest thing is to drive all the output
lines from latched data via programmed
I/0: Make DO-D7 one port, and the
remaining lines (including STROBE') a
second port. For the input signals (BUSY,
etc.), don’t latch anything, just enable
them onto the bus for programmed IN. A
nice touch is to use ACKNLG' to make
an interrupt. Figure 10.21 shows the idea,

Figure 10.20. Centronics
(printer) interface timing.

-~ 7;45 ~ 5;15

for the IBM PC bus. Note that interrupts
are easy here, because the PC uses edge
triggering; just use the trailing edge of
ACKNLG/, as shown. We’ve used one
of the latched output bits to disable the
interrupt line, as discussed in Sections
10.09 and 10.11. Note also the use of
the bus signal RESET DRYV to disassert
all outputs (and also interrupts) at power-
on; that’s why we chose the °273 octal D
register (which has a RESET’ input).

To use this interface, you assert and dis-
assert output control lines selectively by
sending OUT bytes to port B, with appro-
priate bits set to 1 or 0. With a latched
output arrangement like this you can al-
ways safely change the state of one output
bit without introducing glitches on the un-
changed outputs. For this purpose, keep a
copy in memory of the current byte latched
in port B, so you can send out a new byte
to port B with only one bit changed (by
using AND and OR, see example below).
To generate a STROBE' pulse you must
use software, since the interface has
no ugly monostables. - Program 10.6
shows how you make a “software pulse”
on the STROBE' line. Note the use of
AND and OR, to clear and set a single
bit, respectively. In this example we
didn’t bother updating the byte stored
in “current,” because at the end it was
unchanged. If instead we had changed
(and left changed) one of the other control
bits, we would have saved the new byte
with a “MOV current,AL” instruction at
the end.

732

MICROCOMPUTERS

Chapter 10
——C2) DATAO
L ——(3) DATA1
L——(4) DATA2
L——5) DATA3
L ——(6) DATA4
| ——7) DATAS
570 DATA6
: s ow
(DP-D7 F—<—1° —0 # 1
8x
TOWR S oeb T.oozz,u:
Port A /5
DO-D4
] adr P 240 3
AB-A 9 — ;
decode 273 o
AEN b— Qo (D sTROBE’ @
g
Port B (dope & —GD T g
Q2 (4) AUTO FD XT’ €
(8]
2 03 (6 sLCTIN'
[&]
a OWR Q4
w i
RESET DRV Do T Tf_i
INT EN ‘
'125!
IRQ, <} (0) ACRNLG
1244
h___D4
D3 % D PE
~N—D2 < G3) siet
N2 (2) FERROR
Port A (__ Do
< G BusY P
r
\

Figure 10.21. Centronics port for PC.

A hardware alternative to keeping a
copy of the port byte in memory is to add
a “readback” port to the interface, so a
programmed IN lets you look at what’s
actually latched. The next example lets
you discover how.

EXERCISE 10.6
Imagine that you are feeling energetic and
want to add a readback port to the Centronics
interface circuit. Make an IN from port B do the
job. You should be pleasantly surprised at how
little hardware is required.

urrent DB 0

DATA COMMUNICATIONS CONCEPTS

10.20 Parallel communication: Centronics, SCSI, IPI, GPIB (488)

733

Program 10.6

;make a software pulse
;assume Cenronics "port B" address is in DX
;assume strobe bit (bit DO0) is initially 1"

;copy of port B kept here

o
o
MOV AL, current ;current value of control byte
AND AL, OFEH ;clear DO
OouT DX,AL ;send to port B
OR AL,1 ;set DO
OUT DX,AL ;and send it out again
o
o

EXERCISE 10.7
Now rewrite Program 10.6, using your new port
and omitting the use of “current.”

Centronics ports are standard on nearly
all microcomputers; don’t hesitate to take
advantage of it, if you need a quick and
simple parallel output port. In many cases
(but not on the IBM PC) the microcom-
puter will even let you use the port bidi-
rectionally; the usual way that’s done is by
sending a control bit to the port to reverse
the direction of the single 8-bit data path.

SCSI and IPI

These are universal parallel interface
standards for connecting disks and other
high-performance peripherals to micro-
computers, as mentioned briefly in
Section 10.16. SCSI (“Small Computer
System Interface™) is an 8-bit parallel
cable interface with handshakes and
protocols for handling multiple hosts and

omitted if
SCSl is on
motherboard

SCsS!
host adapter

motherboard

computer

Figure 10.22. SCSI bus with single peripheral.

flat cable

multiple peripherals. It has both asynchro-
nous and synchronous modes, and defined
software protocols. You can get SCSI
interface cards to plug into most popular
microcomputer buses, including VME and
Multibus I and II; you then connect this
SCSI “host adapter” to the peripheral’s
controller card via a flat-cable SCSI
bus (Fig. 10.22). The controller card is
often part of the peripheral itself (e.g., it
may be attached to a hard-disk drive) and
communicates with the drive by a “device-
level interface,” which will have a name
like “ST-506/412,” ESDI, or SMD.

SCSI has the advantage of effectively
making all microcomputers compatible
with all peripherals. Everyone’s rushing
to adopt SCSI, and new microcomputer
designs incorporate it right on the CPU
motherboard. At the peripheral end, man-
ufacturers are eliminating the controller
by going to an “embedded-SCSI” archi-
tecture, in which the SCSI bus becomes
also the device-level interface. In other

to other
peripherals
i
i
]
1
|

) SCSI controller card

,I
/ internal omitted if

cable ““embedded

device-level| scs)”
disk drive

Sn———

interface

734

MICROCOMPUTERS
Chapter 10

words, you just hook a cable from the
microcomputer’s motherboard to the
disk drive. SCSI supports data rates to
1.5Mbyte/s (asynchronous) or 4Mbyte/s
(synchronous), with cable lengths to 20 feet
(single-ended) or 80 feet (differential).

SCSI is complicated enough that we
don’t have room here to define all
its signals, modes, command protocols,
and interfacing possibilities. However,
because of its popularity, there are single-
IC interface chips (e.g., the NCR 5380
series, Western Digital 33C90 series,
and others from Fujitsu, Ferranti, etc.)
to make your life easy.

SCSI works well with current-generation
disks. However, in order to increase data-
transfer rates, the industry is considering
going to a 16-bit wide interface bus.
For this the IPI (“Intelligent Peripheral
Interface”) may be the next interface
bus of choice. IPI specifies a 16-bit
parallel bus operating to 10Mbyte/s (SMHz
transfer rate); like SCSI, it also works
with multiple hosts and peripherals. Hard-
disk drives have been getting denser and
faster at an amazing pace lately; given
the increasing transfer rates, the world
is heading rapidly toward universal
embedded-bus interfaces (SCSI or IPI).
In a few years you probably won’t see
any other formats.

O IEEE-488 (GPIB, HPIB)

When laboratory instruments first became
available with actual data outputs on the
back, it was a case of “each company for it-
self.” There were nearly as many interface
protocols as there were instruments, with
parallel and serial modes, positive and
negative polarities, and all sorts of crazy
handshakes. It was total pandemonium.
We remember vividly designing a huge-
digit (6 inches high) display for use in
Harvard’s lecture halls: It had separate
input circuitry for each instrument we
owned!

Hewlett-Packard decided in the mid-
1960s to end this craziness by defining
a universal instrument interface. They
modestly called it the Hewlett-Packard
Interface Bus (HPIB) and implemented
it as the only option on all new designs.
It permits up to 15 instruments on a
single bus cable up to 20 meters long,
with a cleverly designed connector that
you can stack at each node. The HPIB bus
protocol is byte-wide with handshakes, and
it allows data-transfer rates to 1Mbyte/s;
it includes software commands to enable
any connected device to become a “talker”
(source of data), and any combination of
the remaining devices to be “listeners”
(recipients of data). A “controller”
(dictator) tells everybody what to do.

HPIB worked so well that a standards
committee was set up by the IEEE to make
it official. The resulting standard is known
as IEEE-488-1975/ANSI MCI1.1, which
everyone except HP refers to as “GPIB”
(“general-purpose interface bus”) or “488-
bus.” It has become the universal digital
interface for laboratory instrumentation.
The instruments of all companies can be
strung together on the same GPIB, with a
microcomputer (or fancy desk calculator)
giving the orders. For example, you can set
the waveform, frequency, and amplitude of
a frequency synthesizer, then take voltage
measurements from the same experiment
or process.

10.21 Local area networks

In prehistoric times, computing was done
in “batch mode” on large centralized com-
puters. They were powerful (slower than
the least powerful of today’s personal com-
puters, with a tiny fraction of the mem-
ory) and expensive (comparable to today’s
supercomputers). You punched your pro-
grams on decks of cards, then submitted
the job. With luck, your aborted output
was available by the end of the day, so you
could resubmit the job the next morning
to find the next bug.

DATA COMMUNICATIONS CONCEPTS
10.21 Local area networks

735

Nowadays we’re all spoiled by incredi-
ble desktop horsepower, fast disks, beauti-
ful graphics. We want more. We want to
be able to exchange files with the guy down
the hall without getting out of our chairs.
We want instant access to everyone’s data
bases, printers, and fancy peripherals. The
way we get it is with networking — both
the worldwide networks like BITNET
and DECNET and “local area networks”
(LANS) like Ethernet and LocalTalk.

The field of networking is still in its
infancy, and we expect dramatic changes
in the next decade. A few trends have
emerged, however, and it’s worth describ-
ing the kinds of LANs in use today.

CSMA/CD (Ethernet)

Ethernet typifies “carrier-sense multiple-
access/collision-detection” (CSMA/CD)
networks. It uses coaxial line to trans-
mit 10Mbit/s signals to the addressed
recipient. An Ethernet message is sent
in “packets,” with a preamble and error-
checking. The sending protocol goes like
this: (a) wait until you see no activity
on the network; (b) begin sending your
message packet (see below); (c) while
sending, check simultaneously for inter-
ference (a “collision”); (d) (i) as long as all
is clear, continue sending your message,
but (i) if you detect interference, jam
the network intentionally (to ensure that
everyone else sees the collision!), then
abort your transmission, wait a random
length of time, and try again; wait a longer
“random” time after each successive
failure.

Ethernet messages are organized into
relatively short packets (=lkbyte maxi-
mum), each of which includes a header
(identifying recipient and sender), a few
bytes telling the packet’s length, type,
and sequence number, the actual group
of data bytes, and finally a “cyclical
redundancy checksum” (CRC), from

which the recipient can verify error-
free transmission. Note that a collision
can occur only during the beginning
of transmission of a packet, since [by rule
(a) above] a transmission in progress for
twice the network travel time will not be
interfered with.

Ethernet was invented by Xerox and is
widely used. It has ample bandwidth for
most local area networks, and its perfor-
mance degrades somewhat gracefully un-
der heavy use, owing to the random retry
protocol. You can get Ethernet controllers
for most serious microcomputers (VAX,
IBM PC, etc.) and buses (Multibus, VME),
and it’s the official network for the popular
Sun and NeXT workstations. An Ethernet
network can go up to lkm per segment,
with up to 2 repeaters; you can also have
fiber-optic “bridges” of greater length. A
number of desktop computers can share
a multiple-port RS-232 “server,” tied into
one node on the Ethernet coax. Servers
can also tie into shared resources such as
printers and large disks.

Token-ring networks

A token-ring network visits a closed set of
nodes, in a ring configuration. Collisions
are not allowed here, and the rules of
the game go like this: Imagine some
token object; whoever has it is permitted
to send messages, while all others can
only listen. In a token ring, the token
is a short message that can be passed
around when the owner is finished. At any
time, one node owns the token and is
free to send messages. As with Ethernet
(and any other sensible network), the
messages are packetized, often using the
SDLC format (“Synchronous Data Link
Control”: one packet = flag + address +
header + message + checksum + flag).
The message packets circulate around the
ring until the addressed recipient receives
them. When the sender is finished sending
the full message (normally many packets),

736

MICROCOMPUTERS
Chapter 10

he sends the token. It circulates around []10.22 Interface example:

until some other node in the ring, desiring
to send a message, swallows it, becoming
the new token owner.

LocalTalk

LocalTalk (formerly Appletalk) is a sim-
plified collision network, designed by
(guess who) Apple Computer. It is a lin-
ear network, not a ring. One node can
transmit, while all listen. The cable is a
single differential pair, with RS-422
signals transformer-coupled at each node.
The packet format is SDLC. Maximum
network length is 1000 feet, with up to 32
nodes attached. The network bandwidth is
230.4kbit/s. A compatible variant known
as PhoneNET (Farallon Computing Inc.)
uses standard telephone cable and connec-
tors and claims to work up to 4000 feet.
The protocol is similar to Ethernet, but
simpler: If you hear no activity, you may
send a packet. The network hardware
doesn’t attempt to detect collisions; it
just forwards received packets with valid
checksums up to the next higher level of
software. A collision generally clobbers
the colliding packets, rendering both their
checksums invalid; thus, the software
never gets the message at all! It is the
software’s job to notice this: For example,
the sender of a message expects a reply;
if he doesn’t get one after a while, he ini-
tiates an identical message and tries again.
LocalTalk is a “CSMA/CA” network; the
“CA” stands for collision avoidance,
rather than Ethernet’s collision detection.
LocalTalk has defined protocols for
sharing of files and resources (printers,
modems, etc.), and it has a method for
naming devices connected to the network.
You can even get LocalTalk interfaces
for non-Apple computers, letting you
ship files between Macintoshes, IBM-
compatibles, and UNIX computers, and to
shared resources such as laser printers.

hardware data packing

If all your instruments connect to a stan-
dardized interface bus (such as the GPIB),
you’re in great shape: Just buy the inter-
face card for your computer, buy some ca-
bles, string things together, and hire a pro-
grammer. It doesn’t take much talent, only
money. However, this chapter is about bus
interfacing, so we would like to conclude
with a complete design example.

If you’re like us, you probably don’t
throw out all your functioning instruments
when something new comes along.
Some extremely capable measurement
instruments were made before the era of
GPIB; you can bring new life to them by
cooking up an interface to your lab com-
puter. As an example, an 8-digit frequency
counter with multiplexed display is likely
to have a rear-panel output that gives
you one digit after another (“digit-serial,
bit-parallel”), encoded as 4-bit BCD, and
probably presented at the display’s internal
refresh rate. You have no control over the
timing; each valid digit, along with its 3-
bit digit-position address, is signaled with
a strobe. Such an instrument most likely
uses TTL output levels.

Figure 10.23 shows how to interface
such an instrument to an IBM PC. This
is a complete interface, including a status
flag, interrupt, and selectable I/O port
address. The action begins at the lower
left, where the counter is busy putting
out successive digits, their addresses (0-
7), and a STROBE' pulse when the data
is valid. The counter goes from the
least significant digit (LSD) to the most
significant digit (MSD), so a complete
output cycle ends with the receipt of the
MSD (digit 7). The eight 173 registers
(4-bit D registers with three-state outputs)
latch the successive digits, being driven
in parallel and separately clocked via the
decoded digit addresses. Note the use of
a ’138 strobed 1-of-8 decoder to generate

*308}I9JUI [BLIAS-IdJORIRYD "€7°0T 2In31

131un0d wouy

gva zvd S @aa €aa
L .\Ill_ A
—d 9 g
qs 2
—dv)
—d¢ =
7 b
—d L
_.o 0 gel,
ﬂ ['t e I i B i
9d —ea) | [pa —eq 90 —¢d] | [ea —eg 90 — €0 9a — ¢a) | [eg — 7] pa —&d) |
£c1. 30) ect. 30k, | ecr. 36 ecv, 30f | ecr. 36 cLL, m%? T vl TP
90 — £ g0 — to go — to 90 — €D g0 — fo0 @0 — €0 90 — €D g0 —
s_o _Ilm_o va — L@ #a —¢€a ¥a —.Q 90 — €0 va — (@ 90 — €0 ¥a — £Q A/V
...... ~——— (SNq)
(sng) M,_:<N< £V bV 8V6VNIV
AHd 0 _
13534 rh L
dz A
P e 0d 7d
¥ 0=d 289,
o] (snq) mOlAm:n“
(snq) < \— < JL Mol .WIOI 0 - L0
/a0 0 E al—1sna) ga 8elL, _.Tiu**“._.‘
1 | =
Z0HI O« M T T T T
p +
M.mmwu\\ o ssaippe 1od Qf

N3 Ol

737

738

MICROCOMPUTERS
Chapter 10

the digit clocking signals from the address
and strobe.

The counter output is thus latched in
the eight 4-bit registers, with the outputs
connected as four 2-digit groups (8 bits
each). The PC can thus bring in all eight
digits with four byte-wide data IN com-
mands, from four successive I/O port ad-
dresses (beginning with the one set on the
DIP switch). In fact, it can do even bet-
ter by reading from a 16-bit register (i.e.,
doing an “IN AX,DX,” rather than an “IN
AL,DX”), which causes two successive byte
reads from consecutive 1/0 port addresses.

Note the simple address decoding
scheme: A ’682 octal comparator gener-
ates a LOW output when the 7 high-order
address bits match the switch settings (and
also the nuisance AEN is LOW); this “base
address” enables a 138 1-of-8 decoder,
strobed by IOR’, which decodes the low-
order three address bits to generate the sep-
arate data IN enabling pulses correspond-
ing to successive port addresses. This is
a common method of handling address
decoding, since you usually assign a few
contiguous port addresses to the various
registers of a single interface.

The status flag is set when the last
digit of each group is received from the
counter; it can be read with a data IN from
PORT+4, where PORT is the address set
with the DIP switch. The flag is cleared
when the CPU reads the last (most sig-
nificant) data byte (from PORT+3). This
interface also has provision to make in-
terrupts, jumper-selectable on either IRQ2
or IRQ3, and enabled by sending a 1 to
PORT (and disabled by sending a 0); note
the lazy address decoding we’ve used for
0UT, to save a gate. In a spirit of good cit-
izenship, both the status flag and interrupt
enable flip-flops are cleared at power-on.

This interface is an example of “pack-
ing” data, the process by which several
numbers are stuffed into one computer
word. If the “numbers” happen to consist
of single bits, you can pack 16 of them into

each 16-bit word. This isn’t as crazy as
it sounds: In digital signal processing you
sometimes deal with periodically sampled
“hard-clipped” waveforms (which you can
think of as 1-bit A/D conversion); for high-
est I/0 throughput rate you pack in hard-
ware (as we did in this example) and read
in bus-wide words. Of course, if speed
is not important, the simplest thing is to
bring in the data with the least hardware
and then do the packing and conversion
in software. In the preceding example, for
instance, you might latch and transfer to
the CPU one digit at a time if you can be
sure that the latency time of the computer
is short enough that no digits will be lost.

EXERCISE 10.8
Modify the interface circuit so that the IRQ line
used by the interface is programmable: Sending
01y to PORT enables interrupts on IRQ2, and
sending 02y to PORT enables interrupts on
IRQ3; both are disabled by sending 0 to PORT,
and also at power-on.

A practical note about this interface cir-
cuit: In general it is best to avoid load-
ing bus lines excessively. Our circuit ties
each Dn line to the outputs of four ’173
three-state registers, which is an undesir-
ably large capacitive load. Although our
circuit would undoubtedly work properly,
it might limit the number of additional
cards you could plug into the bus (particu-
larly if the others sinned in the same way!).
In this example, a single "244 three-state
octal buffer, interposed between the DO-
D7 outputs and the PC data bus, would be
a good solution. It should be enabled with
the AND of the decoded port address and
IOR.

10.23 Number formats

In the preceding example, the bytes (or
words) brought in are not in the computer’s
internal binary-number format; they’re re-
ally BCD, packed two digits per byte (or

DATA COMMUNICATIONS CONCEPTS
10.23 Number formats

739

four per word). To do meaningful com-
putation, it is best to convert them into
an integer or a floating-point number (al-
though there are “decimal-adjust” opera-
tions that let you do arithmetic directly on
packed BCD numbers). Let’s take a look
at the usual number formats used in com-
puters (Fig. 10.24), a subject we touched
on briefly at the beginning of Chapter 8.

Integers

Signed integers are always represented
in 2’s complement, using either 1, 2,
or 4 bytes, as shown. Thus, the most
significant bit (MSB) tells the sign, even
though 2’s complement is not the same as
sign/magnitude representation (e.g., —1
is 11111111, not 10000001; see Sec-
tion 8.03). You can think of 2’s comple-
ment as offset binary with inverted MSB;
alternatively, you can think of it as an in-
teger with the bit values as shown in the
figure. Many computers let you declare
variables as unsigned integers, in addition
to 2’s complement signed integers. A 2-
byte unsigned integer can have values from
0 to 65535.

Floating-point numbers

Floating-point numbers, also called real
numbers, are usually 32-bit (“single preci-
sion”) or 64-bit (“double precision”),
with an additional 80-bit format some-
times used for temporary values during
calculations. Unfortunately there are
several common representations in use.
The most popular is the recently
completed IEEE standard (officially
known as ANSI/IEEE Std 754-1985),
which has been implemented by nearly
all floating-point chip sets (including
Intel’s 8087/287/387, Motorola’s 68881,
and chip sets from AMD, Weitek, et al.)
and is therefore universal in micro-
computers that accept those chips (this
includes the IBM PC).

Figure 10.24 shows the IEEE 32-bit and
64-bit formats. The 32-bit single-precision
format has 1 sign bit, 8 exponent bits, and
23 bits of fraction. The exponent tells the
power of 2 that the fraction (see below)
should be multiplied by. The exponent is
“biased” by adding 127, so that the ex-
ponent field 01111111 corresponds to an
exponent of 0; exponents thus go from
—127 to +128. The fraction itself uses
an interesting trick, originated by DEC
in their floating-point format. A floating-
point number in binary can always be writ-
ten in the form f.fffx2¢, where f.fff is the
(base-2) mantissa (“significand”), and e is
the (power-of-2) exponent. In order to
maximize the precision you get with a
given number of mantissa bits, you “nor-
malize” it by shifting the mantissa left (and
decrementing the exponent) until the lead-
ing bit is non-zero, thus casting it in the
form 1.fffx2¢. Now, here’s the “hidden-
bit” trick: Since the resulting normalized
significand always has a nonzero MSB, it
would be redundant to display it; i.e., you
don’t put Ifff in the number, just the fff,
with the leading 1 assumed. The resulting
number gains one bit of precision, and has
arange of £1.2x10738 to +3.4x1038.

EXERCISE 10.9
Show that the range of normalized floating-
pointnumbersis as claimed, by constructing the
smallest and largest numbers.

The IEEE double-precision format is
similar, but with the significand precision
more than doubled (by attaching 29
more bits) and with the exponent fortified
by an additional 3 bits. The range of num-
bers is as shown in the figure. There is
also a whopping “extended-precision” (80-
bit) format, as shown. The IEEE format
allows non-normalized numbers also, to
give some additional range at the small end
(at the expense of precision); these
“denormalized” numbers go down to
+1.4x107%%. The standard also defines
zero (¢ = fff = O0; thus there are two

MICROCOMPUTERS
740 Chapter 10

1 7
integer *1 m -128 to +127
B, 8,
1 15
integer *2 [5[2'® 2°| -32,7681032,767
Bis By
1 31
integer 4 [2'{2% 2°| ~2,147,483,648 to 2,147,483,647
B3, 8o
1 8 23
. T - = = (=15 x 1.fff x 2¢7'%7
:?;ElE)4 [si27 _exp 29027 2°2 fraction 2% T 12%10-% 10 £3.4 % 10%
31 =77 By
! 1 52, s e~1023
| *8 [of - 2 ’ o] V== x 1fffx2
(Ieeg) [siz° _exw 2°{27' 2 fraction 2-%2] +2.2x107%98 1o £1.8 x 103%8
Bs3 Bs; By
’
1 15 64
3 3 S e-16383
real *10 [T — - —31 v=(-DSxfiffx2
(IEEE) IS£2"‘ exp 2°1 20 271 2 2{ f{actlon 2 l £8x 10-4933 1o +6 x 10493
Bye Bsa By
1 8 23
*4 T v=(-1)5x0.1fff x 267128
:gale)“ [s2” exp 2°j2°% 2% fraction 27%] £2.9x10°% 10 £1.7 x 10%
B, B33 Bo
real *4 ’ : ’ T 24 v={(-1)Sx0.fff x 16¢°84
(1BM) [si2° exp 2°{2"' 272 ftraction 2-%| £5.1x 10" t0 £1.4x 1078
31 B2 B,
24 8
* T v =fff x 2¢
MIL 1re735‘0A4) [2°2772°% fraction 2°21-272° exp 2°) +£1.5x10"% 10 £1.7x 10%
331 Ba 30

Figure 10.24. Number formats.

zeros, +0 and —0), infinity (e = all 1s,
fff = 0; therefore both signs), and a curious
class of reserved quantities known officially
as NANs (NAN = “not a number”)

The other important microcomputer
floating-point format is DEC’s, used in the
MicroVAX and LSI-11 computers (and
their ancestors, the VAX and PDP-11 mini-
computers). It is very close to the IEEE
standard, with the same number of expo-
nent and mantissa bits (including the use
of a hidden bit) used for single-precision
numbers. In fact, the only differences are
the exponent bias (128 instead of 127) and
the fact that the mantissa has no leading
bits, being instead of the form .1fff (with
the “1” hidden). DEC defines only one
zero (all bits zero), and does not permit
non-normalized numbers or infinity; there
are, however, analogs of the IEEE NAN:S.

DEC also has a 64-bit double-precision
format.

The last two formats in Figure 10.24 are
used in large or special-purpose computers,
but not in microcomputers. The “IBM”
format has been used in mainframe IBM
computers for some time and even in
minicomputers like the Nova line from
Data General. The 7-bit biased exponent
tells the power of 16, rather than 2, giving
greater exponent range. The mantissa
therefore may have up to three leading
zeros; i.e., a normalized fraction has a
nonzero most significant hex digit.

EXERCISE 10.10
In order to understand the meaning of this last
statement, write out the IBM representation of
the number 1.0. Now write the next smaller
number that can be represented in this format.

DATA COMMUNICATIONS CONCEPTS
10.23 Number formats

741

By its choice of exponent radix the IBM
format sacrifices some precision for dy-
namic range. Furthermore, the precision
varies somewhat from one number to
another, owing to the variable number
of leading binary zeros; this is known as
“wobble.” IBM format has no infinities or
NANSs, and only one zero (all bits zero);
it does permit non-normalized numbers.
IBM also has a 64-bit double-precision
format.

The last format in the figure is MIL-
STD-1750A, used in military systems. It
is unusual in departing from the “sign/
magnitude” convention of the previous
formats, using instead a 2’s complement
mantissa with a 2’s complement exponent.
(Actually, the previous formats are more
accurately described as sign/magnitude
mantissa with offset-binary exponents.) It
has no infinities, NANs, or non-normalized
numbers; it, too, has a double-precision
version.

Number storage in memory

Microprocessor designers like to express
their individuality by storing numbers in
memory in peculiar orders. The 8086/8
(therefore the IBM PC and compatibles)

stores numbers beginning with the least
significant byte in the lowest-numbered
memory byte; the 68000 family does it the
other way around. Lots of luck!

1/O data conversion

We detoured earlier to discuss number
formats in the context of our hardware in-
terface with its packed-BCD format. What
is the best way to handle the kind of 8-digit
data you would get from such an interface?
Depending on the type of input data, the
number of significant digits, its range of
variation, etc., it may be best to convert
the incoming data to floating-point (for
greatest dynamic range) or to integers (for
best resolution) or to do some other sort
of numerical massaging (e.g., taking differ-
ences from the average value, or between
successive data). This might be done in
the particular device’s software “driver,”
the section of program that handles the
actual input of data. In this sense the soft-
ware cannot be optimized without an un-
derstanding of the hardware and what its
data means. Just another reason why it is
important to know your way around the
wonderful world of electronic hardware!

