WORLDWIDE REMOTE CONTROL
WITH C2TERM
BS2

TOHLNOD 310N3Y 3AaiMmaiIdom

CONTENTS AT A GLANCE

Asynchronous Serial Communication X-10 Appliance Control
SERIAL TIMING AND FRAMING
SERIAL PARAMETERS C2TERM
BIT RATE (BAUD) INITIAL X-10 CHECKOUT
PARITY MODEM CHECKOUT
DATA BITS DISPLAY AND BUTTON CHECKOUT
STOP BITS COMPLETE C2TERM APPLICATION
A SERIAL FRAME
Going Further
RS-232 Serial Signals PARTS LIST
Serial Communication by Modem

Want to control or monitor electronic equipment in a remote location? A BS2 and an
inexpensive modem team up to create a dial-up communication and control terminal
- (C2TERM). Using your PC and communication software you can dial up C2TERM from

Programming and
Customizing the
BASIC Stamp

- Computer

Scott Edwards

McGraw-Hill

New York San Francisco Washington, D.C. Auckland Bogota

isbon London Madrid Mexico City Milan
Montreal New Delhi San Juan Singapore
Sydney Tokyo Toronto

144 WORLDWIDE REMOTE CONTROL WITH C2TERM

any phone in the world, enter a password, and control lights and appliances throughout
your home or business.

This project is a good opportunity to get familiar with asynchronous serial communi-
cation and the BS2 instructions Serin and Serout. It also demonstrates the powerful Xout
instruction that transmits command signals through the AC wiring to control lights and

appliances.

Asynchronous Serial Communication

Serial communication is the process of transmitting data one bit at a time. Asynchronous
serial sends the data without a separate synchronizing signal to help the receiver distin-
guish one bit from the next. To make up for the lack of synchronization, asynchronous ser-
ial imposes strict rules for the timing and organization of bits. The reward for obeying
these rules is an efficient, reliable way to send data over a single wire.

For the sake of brevity, let’s agree that throughout the rest of this chapter “serial” means
‘“asynchronous serial.”

SERIAL TIMING AND FRAMING

The basic principle of serial communication is simple—to send multiple bits over a single
wire, just place each bit on that wire for a fixed amount of time. For example, suppose you
wanted to transmit the byte %10010101 to me in the next room." In your room, you have
a switch and a battery that are wired to control a light in mine. We agree beforehand that
you will send one bit per second, starting with the lefthand bit, and that light on means 1
and off means 0.

With the rules established, you flick the switch on and off to match the pattern of bits:

Bits 1 0 0 1 0 1 0 1
Seconds: 0 1 2 3 4 5 6 7
Light: ON OFF OFF ON OFF ON OFF ON

After our experiment, we meet to see whether the message I received matches the one
you sent. I show you my notepad:

000000000000000000000000000000000001001010100000000000600000000000000000

Your message was received faithfully, but it’s buried in the middle of all those zeros I
wrote before and after the actual message. We need another couple of rules: I start copy-
ing one second after an initial 1 (light on), and stop copying after receiving eight bits. We’ll
call that initial 1 the start bit. It’s not part of the data, just a signal from you to me that pre-
cedes the data. We try again:

1. I'm using the % sign to indicate that the number is in binary notation. This is the same way that you represent
binary in a PBASIC program.

146 WORLDWIDE REMOTE CONTROL WITH C2TERM .~

check each incoming byte according to some agreed-upon rule. For example, we could add
one more bit to the serial frame and call it the parity bit. You would count the 1s in the data
to be transmitted to determine whether the total number was even or odd. For an odd num-
ber, you'd make the parity bit a 1; for an even number, 0.

When I received the data, I'd perform the same tally and compare my reckoning of
odd/even to the parity bit. If they matched, I'd be more confident that my copy of that byte
was correct. If they didn’t match, I would figure that the data was possibly incorrect. If I
had a way to signal you, I would do so and tell you to send that byte over. If not, I'd have
to decide what to do with the doubtful byte.

The parity setup described above is called even parity, since the parity bit is set or
cleared according to rules that make the total number of 1s (data bits plus the parity bit)
an even number. The opposite arrangement is called odd parity. A third common option is
no parity at all.

Why do without parity? Parity isn’t a sure-fire check for errors. If one bit is incorrect,
parity will detect it. If two bits are wrong, it won’t. There’s also no guarantee that the par-
ity bit itself won’t be received incorrectly. And then there’s the dilemma of what to do when
parity casts doubt on a particular byte.

For all of these reasons, many systems operate without parity. Instead they may send
other kinds of double-check information as regular data.

DATA BITS
Since the byte is a common unit of storage for computers, it’s natural to assume that serial
communications would transfer data in groups of eight bits—one byte. But it’s not always
so. For example, if you only need to send ordinary text, six or seven bits can be perfectly
adequate. In text-oriented applications, it is common to sacrifice one data bit in order to
make room for the parity bit. This is one of the serial modes that the BS2 supports: 7E1 or
seven data bits, even parity, one stop bit.

Unlike our room-to-room example, the data bits in most serial communication are sent
least-significant-bit (Isb; the bit on the righthand end of a number like %11010010) first.

STOP BITS

The stop bit is a pause between the last data bit and the next start bit. In our room-to-room
example, we saw that the stop bit allows the receiver to reset timing with each new start bit
in order to prevent small timing errors from accumulating over multiple frames of data and
eventually causing data errors.

The stop bit must be at least one bit-time long in order for this to work. However, some
slow devices might need more than one stop bit between frames in order to do other pro-
cessing. The specs for such slowpokes would call for one-and-a-half, two, or more stop bits.
You may never encounter this specification, but you have to know that it’s possible in order
to understand why anyone would bother specifying the number of stop bits when it always
seems to be 1. After all, the number of start bits is not specified, since it is always 1.

Although the BS2’s Serout instruction does not directly support multiple stop bits, it
does allow you to specify pacing in milliseconds. Pacing is a delay between frames of data,
$o it amounts to pretty much the same thing as multiple stop bits. For example, 2400-bps
serial data sent with 1-ms pacing amounts to about 3.4 stop bits. There’s one stop bit built

RS-232 SERIAL SIGNALS 147

into the data frame, plus a 1-ms delay, which amounts to about 2.4 additional bit times.
When a specification calls for multiple stop bits, it’s really saying “this is the minimum
delay between frames that this device can handle,” so it’s OK to exceed that amount.

A SERIAL FRAME
Now that we’re acquainted with all the elements let’s diagram a couple of typical serial

| S ;

X
' =
=
o
m
x
m
s
frames. First, 2400 bps 7E1: =
(v}
o
Z
-y
=
o
r-

RS-232 Serial Signals

In addition to the timing and framing of data, serial senders and receivers must also agree
on the electrical details of the connection. There are various standards for serial signaling,
but the most common is RS-232. It uses signal voltages that are outside the range normally
used by the Stamp, but can be readily interfaced by taking a crafty look at the specs.

The Stamp uses 5-volt logic. It outputs 0 volts for a 0 and 5 volts for a 1. When it
accepts inputs from other circuits, it regards a voltage less than 1.5 volts as a 0 and greater
than 1.5 volts as a 1.

This relationship of voltages to 1s and Os is common to many digital-electronic devices,
but it’s not the only one. The serial port(s) on your PC conform to the RS-232 standard,
which specifies wider signaling voltages. It makes intuitive sense—the 5-volt logic used
to communicate between components separated by a few inches might not be ideal for
communication between computers and peripherals separated by 50 feet of cable.

Under the RS-232 spec, a 0 is represented by a higher positive voltage, typically + IOV
and a 1 by a negative voltage, typically —10V. The negative voltage is also the stop-bit state;
positive is the start bit. The idea is that the larger the voltage difference between a 0 and a
1, the less likely that electrical noise picked up over a long cable would make an RS-232
device mistake one state for the other.”

To convert a 5-volt logic level to RS-232 and back normally requires components
called RS-232 line drivers and line receivers. However, it’s common practice to cheat on
the RS-232 standard and do without these parts. Cheating requires a closer examination
of the RS-232 rules.

3. Other serial standards, such as RS-422 and RS-485, use the voltage difference between two signaling wires to
distinguish a 1 from a 0. This offers much better noise immunity over long wire runs without the need for sepa-
rate positive and negative power-supply voltages.

148 WORLDWIDE REMOTE CONTROL WITH C2TERM

An RS-232 sender is supposed to output +5 to +15 volts for a 0. An RS-232 receiver
is required to recognize +3 to +15 volts as a 0. The reason for the reduced lower limit
(+3V) is to allow for the voltage drop over a long wire run. Looking at this with cheating
in mind, a 5-volt logic 1 is equivalent to an RS-232 logic 0.

For a 1, an RS-232 sender is supposed to output —5 to —15 volts. A receiver must rec-
ognize —3 to —15 volts as 1, again allowing some voltage drop through the wiring. There’s
no way to get —3 volts from our 5-volt logic without additional components, but most RS-
232 devices also regard a signal that’s close to 0 volts (ground) as a logic 1. So, provided
that our 5-volt logic’s 0 is close to 0 volts, it will suffice as an RS-232 logic 1.

The BS2 has built-in support for this kind of thinking, as you can program its serial-
output (Serout) instruction to send inverted serial data. Connect the I/O pin directly to the
input of an RS-232 receiver via a short cable and you’re ready to go. I emphasize short
cable (less than 10 feet), because even a small voltage drop or minor noise on the connec-
tion can cause communication errors.

What happens when the Stamp is on the receiving end of a £15-volt RS-232 signal? Its
I/O pins can be damaged by voltages outside the supply range of 0 to 5 volts. However,
there’s an easy fix. A 22k resistor in series with the £15-volt line protects the /O pin. See,
each I/O pin is internally protected by a pair of diodes arranged to short out excessive volt-
ages, typically zaps of static electricity. The series resistor limits the amount of current that
the diodes have to handle, preventing them from overheating.

The BS2 serial-input instruction Serin has an option that allows reception of inverted
serial data. To establish two-way RS-232 communication between the BS2 and a serial port
requires a short cable and a cheap resistor. Who says cheaters never prosper?

An even easier route to get serial data into and out of the BS2 is to borrow the pro-
gramming port. BS2 carrier boards have a DB9 connector that mates with a cable to your
PC’s serial port.

Figure 13-1 shows how a typical RS-232 frame would look on an oscilloscope screen.
(An oscilloscope is a versatile instrument that graphs input voltages versus time.)

Typical RS-232 ports have 9 or 25 pins. Although we have limited our discussion so far
to just the data lines, a serial port often includes a number of control lines used for various
purposes. The most common use of these lines is handshaking, in which one serial device
may indicate that it has data to send and the other signals whether or not it’s ready to
receive. In our application, we won’t be using handshaking. It can be difficult to imple-
ment with a relatively slow computer like the Stamp, and is often unnecessary. We will use
one of the other control lines—the ring—indicator output from the modem—to determine
when to answer the phone.

RS-232 Serial Transmission
(byte 01101001, ASCH code for “i")

start bit
. 10010110

volts +

stop bit
/

...........

One RS-232 serial frame.

SERIAL COMMUNICATION BT MODEM 149

TABLE 13-1 RS-232 CONNECTOR PINOUTS

NAMEFFUNCTION |

 Protective ground 1
“Transmit Data (TD) 2
 Receive Data (RD) 3
 Ready to send (RTS) 4
Clear to Send (CTS) 5
oar :
7
8

TJOHLNOD ILON3H 3AIMATHOM

Data Set Ready (DSR)
Signal Ground (SG)

‘Data Carrier Detect (DCD)

Data Terminal Ready (DTR) 20
Ring Indicator (RI) 22

L - B 5

Table 13-1 shows the pinouts of the two common styles of RS-232 connectors.

The names and functions of the RS-232 pins as listed in the table are slightly deceptive.
They are valid only for what is known as data-terminal equipment (DTE). A PC is consid-
ered DTE, because it can serve as a terminal for sending data. The other flavor of RS-232
devices are called data-communications equipment (DCE). A modem is pretty much the
definition of DCE, since its whole purpose is to facilitate communication.

The distinction between DTE and DCE becomes important when you are trying to fig-
ure out which pin does what on a particular device. Suppose you need to know which pin
transmits serial data. On a PC with a DB25 connector, it’s pin 2, the TD pin. On a modem
with a DB25 connector, it’s pin 3, which the table says is the receive-data pin. It makes a
weird sort of sense—the pin through which the PC transmits data to the modem has to be
the pin through which the modem receives data! This complementary relationship of
inputs and outputs simplifies wiring up cables, since many times you just wire like pins
together (1 to 1, 2 to 2, 3 to 3...), but it really messes up the names.

For more on RS-232 interfacing, see the reading list in Appendix E.

cd:s—ammoa\:fiow‘} ‘

Serial Communication by Modem

With the exploding popularity of the Internet and online communication, it hardly seems nec-
essary to define the-word modem, but here goes: Modem is a contraction of the words modu-
lator-demodulator, and it refers to a device for sending serial signals via a carrier, like audio
tones transmitted by phone or radio. A phone modem typically consists of some analog circuitry
for generating and detecting audio tones, and a small, fast computer for interpreting them.

The modem’s computer is programmed with routines to communicate with a host com-
puter serially, dial the phone, detect ringing and busy signals, establish a connection with
another modem, exchange data, and hang up.

150 WORLDWIDE REMOTE CONTROL WITH CZTERM

Most modems use the “Hayes” command set, named for the company that set the stan-
dard for modems in the early days of personal computing. This language is also sometimes
called the AT command set, because most commands begin with AT for “attention.”

A modem has two modes of operation—command mode and data mode. When the modem
is not linked to another modem, it’s in command mode, awaiting instructions from the local
computer. The computer can tell the modem to dial or answer a call from another modem.
When two modems make contact, they investigate each other through handshaking—a ritual
exchange of tones and preliminary data that sets the ground rules for communication.*

Once handshaking is complete, the modem goes into data mode. In data mode it acts
like a direct connection between local and remote computers. Once in data mode, a modem
ignores commands unless it is first returned to command mode by a sort of secret knock
(usually “+++” followed by a delay).When the exchange of data is complete, one of the
computers issues the secret knock to return its modem to command mode, then instructs it
to hang up. The other modem senses this loss of carrier, and hangs up too.

The modem you’ll need for this project is an external modem—one designed to be con-
nected through a serial port, not installed inside a desktop computer (internal). Feel free to
use an older, “obsolete” modem, since this project uses no advanced features and commu-
nicates at only 2400 bps.

A benny of using an older modem is that it usually includes a good manual on the AT
command set. In the old days users generally dealt directly with the modem, manually typ-
ing commands through a terminal program.

To really understand how a modem works, you should try using it manually with your
PC and terminal software. If you have Windows installed, there’s a simple terminal “acces-
sory” program. Procomm is a popular commercial package, available in both DOS and
Windows flavors.

Although the modem manual lists dozens of commands, you can get by with few impor-
tant ones. Table 13-2 lists the ones I found helpful in getting the BS2 on line. Once your ter-
minal program is set up and talking to the modem, you may send commands by typing them
at the keyboard. For example, if you type “ATDT 5551234” followed by the Enter key, the
modem will go off-hook (connect to the phone line) and send the touch-tone digits 555-1234.

To sum up, a modem is a small computer that transports your serial data across the phone
lines. Next we’ll look at a system for moving data through the AC power lines of your home.

X-10 Appliance Control

Some people dream about a Jetsons-style home in which every appliance and feature is
under pushbutton control from the comfort of an easy chair. The technology has been
around for years. The only thing missing is some sort of household data network to con-
trol all those appliances. Our homes come equipped with wiring for electricity, phones, and
lately even cable TV, but no network.

4. The handshaking that modems do to establish communication is similar in concept and purpose to the hard-
ware handshaking done through the control lines of the RS-232 port. But don’t confuse the two. For example,
when a terminal program offers you the option to turn off handshaking, it means the extra lines on the serial port,
not the modem-to-modem handshaking process.

X-10 APPLIANCE CONTROL 151

TABLE 13-2 USEF T MODEM COMMAND

TOHLNOD I1LOWN3YH 3AIMATHOM

: Set modem responses to nu ‘ bers (0-10).

“rd (eg
AT&W Store configuration seftings to
ATS0=0 Tum off auto-answer function.
ATSO=n Turn on auto-answer and set for n rings.
ATMO Silence speaker. '
ATM1 ~Turn speaker on while dnalmg, off dunng commumcatnonf
ATED Do niot echo commands. .
ATE1 Echo commands. - ‘ ‘
+++ Escape command: shifts modam from data to command mode after
a pr‘eset time delay (set by register S12). -
ATS12=n Set escape (+++) delay to n number of 20-millisecond units. For

fexample ATSTZ:SO sets the éscape de[ay fo 1 second

In 1978, Sears and Radio Shack introduced household remote-control systems that
didn’t need separate control wiring. Under this system, called X-10, the control signals
ride on the existing AC power wiring. Since an appliance needs power anyway, control
signals are available everywhere there is an appliance.

The X-10 code is an oddball kind of serial data format. It is sent as bursts of 120-kHz
tones timed to coincide with the zero crossings of the AC power line. It’s not necessary to
know all of the gory details of this code, only how it is used. The BS2 instruction Xout
generates the X-10 code automatically.®

5. I’m not providing a lot of detail on the X-10 code format because there’s not much practical use for the infor-
mation. You can’t use it from within PBASIC except via the Xout instruction. If you’re curious, you can contact
X-10 Powerhouse for a detailed tech note; call 201-784-9700 or fax 201-784-9464.

152 WORLDWIDE REMOTE CONTROL WITH C2TERM

To control an appliance with X-10, you must plug it into an X-10 control module. There
are basically two categories of modules: on/off appliance/light controllers and on/off/dim
light controllers. Within these groups, you’ll find units with different power ratings and
other features.

You assign each module an address by setting a pair of dials for a house code (A
through P) and a unit code (also called a key, 1-16). Normally, all of the appliances in a
given house would be assigned the same house code, but households with more than 16
appliances under X-10 control might use two or more house codes. If a nearby neighbor is
using X-10, you want to make sure that your house codes or sets of house codes are dif-
ferent, since X-10 signals sometimes travel house-to-house.

To control X-10 modules from a manual controller, you’d set the house code, press one
of 16 keys to send the unit code, then press a button for the desired action, such as ON,
OFF, DIM, or BRIGHT.

The BS2 instruction Xout mimics this operation. Just tell it what house, unit, and action

* codes you want to send, and it takes care of the rest. Of course, before Xout can do anything,
the signals from the BS2 must be connected to the power line. The only way to do this is
through a safe, optically isolated interface like the X-10 Powerhouse PL-513 or TW-523.
Figure 13-2, part one of the schematic for C2TERM, shows the hookup.

The two X-10 signal hookups are called zPin and mPin. The zPin is an output from the
X-10 interface that sends a pulse to the BS2 at the instant the AC power waveform crosses

Ext I-style ph BS2 pins
ernal-style phone - R1 -
modem, 2400 baud RX DATA (Data from modem) WA P15
or better 22k
R2 2 100k
7 - 8|2
0000000000 H@O] | TXDATA(Data to modem) o1
000QO000O000O0 |
SIGNAL GROUND
Vss (Ground)

RING INDICATOR (1=ringing) jw P13
22k
100k
X-10 powerline

interface, PL-513 or R5 9 10k
TW-523

zPIN
GND
mPIN

+ P12

P11

Connecting the modem and X-10 controller to a BS2.

C2TERM 153

zero volts. This cues the BS2 to take control of mPin, the pin that modulates (controls) the
120-kHz X-10 signal. Xout automatically generates the right signals with the right timing
to broadcast your X-10 commands.

C2TERM

This is a fairly involved project, so we’re going to take it a step at a time. We’ll start with
the X-10 interface.

=
. O
5
§ :
O
m
X
m
=
(=]
-
m
0
o
-
-4
X
=)
-

INITIAL X-10 CHECKOUT

Connect the X-10 interface (PL-513 or TW-523) to your BS2 as shown in Figure 13-2. Do not
connect the modem for now. You may plug the PL-513 or TW-523 into a wall outlet at any time;
it’s designed to provide a safe, isolated connection to the power line. But heed this warning:

You can be hurt or killed by AC line voltages! Do not open the case of the PL-513 or
TW-523 for any reason. These units are designed to be safe, but only in their original,
unmodified form.

Set an X-10 lamp or appliance control module to House A, Unit 1 and plug it into a
wall outlet near the PL-513 or TW-523. Plug a lamp into the control module and turn it
on so that when the module supplies power the lamp will light. Run the following short
program:

zPin con 12 ‘ zPin on P12.

mPin con 11 ‘ mPin on P11.

houseA con 0 ‘ 0=A, 1=B, 2=C...
Unitl con 0 * 0=Unitl, 1=Unit2...
xout mPin, zPin, [houseA\Unitl] ‘ Talk to Unit 1.
xout mPin, zPin, [houseA\uniton] ’ ’ Tell it to turn ON.
pause 1000 ‘ Wait a second.

xout mPin, zPin, [houseA\unitoff] Tell it to turn OFF.
stop ‘ End the program.

If all is well, when you run the program, the lamp will come on for 1 second, then turn
off. If it doesn’t, double-check your setup. In troubleshooting X-10, it can be very useful
to have a manual X-10 control box on hand. If you can operate the modules manually, then
any problem has to be with the BS2 hookup or programming. Less likely, but still possi-
ble, is a problem with the PL-513 or TW-523 powerline interface. But exhaust all other
possibilities before letting yourself suspect this.

Once you have the setup working, try modifying the test routine above to address other
house or unit numbers. Use additional control modules to check your modifications.
Remember that once you have sent a given module’s house and unit number, you have its
attention. To send subsequent commands, you only need to precede them with the house
number, as the test listing demonstrates. This is just like the manual X-10 controllers, so
you may find it useful to rehearse X-10 communication by physically pressing the buttons.

MODEM CHECKOUT .
Before you can use a modem with the BS2, you have to configure it properly and save
those configurations in nonvolatile memory. This requires a temporary hookup to your PC.

154 WORLDWIDE REMOTE CONTROL WITH C2TERM

You will need a modem cable and simple terminal communication software, such as the
free Windows terminal accessory. Set the terminal program for 2400 bps, N81, no hand-
shaking.

For the purposes of configuring the modem, you don’t need to connect it to the phone
line yet.

Once you have the modem connected and powered up and the terminal software con-
figured, try typing AT <return>. The modem should respond with “OK” or “0” depending
on whether it’s currently set for text or numeric responses. If you don’t get any sort of
answer back from the modem, check your cabling and terminal software settings and try
again. Some modems have lights that can help with troubleshooting; an “RD” light should
flash briefly whenever you type a character in the terminal program.

Once the PC and modem are talking, you can type in the configuration commands
shown in Table 13-3. In the table, <Enter> means press the enter key.

The last command, AT&W, causes the modem to commit this new configuration to non-
volatile memory. Even with the power turned off, your modem will remember its new settings.

The next step is to download a test program to the BS2, connect the modem, and run a
test. Unless you have two phone lines or a phone-line simulator (see parts list for source),
you will need some help with this test. You may have to borrow a friend’s computer and
modem. If you have a really helpful (and computer literate) friend, you can have him or her
dial into your BS2/modem test setup. Make sure that they set up for 2400 baud, N81.
Here’s the program that will enable your BS2 to answer the phone:

tLink con 20000 ' Wait 20 seconds for linkup.

N2400 con 16780 ’ Baudmode for 2400 bps inverted.

TXD con 14 ‘ Pin to output serial data.

RxD con 15 ‘ Pin to input serial data.

RI var IN13 ‘ Ring-indication output of modem.

name var byte(10) ‘ String to hold user name.

waitForRing: ' When phone rings, RI goes high.
if RI = 0 then waitForRing ' Wait here while RI is low.

pickUpPhone:

serout TxD,N2400, [“ATA”,cr] ‘ Tell modem to pick up.
pause tLink :
serout TxD,N2400, [“Please enter your name: “,cr,lf]

serin RxD,N2400, [str name\1l0\cr] ' Get user name.

serout TxD,N2400, [“Thanks for calling, “, str name\10,cr,1f]

TABLE 13-3 CONFIGURING A MODEM FOR BS2 COMMUNICATION

TYPE THIS COMMAND ~ MODEM RESPONDS éunpbss

ATSO = 0 <Enter> 0K or o Disable amq-éhswer o
ATS12=50 <Enter> ‘OK’or"0" Set“+++"responsetols
ATVO <Enter> B - Set numeric responses
ATEO <Enter> 0" Disable command echo

C2TERM 155

pause 1000
serout TxD,N2400,100, [“Hanging up now.”,cr,1lf]

Disconnect:

pause 2000

serout TxD,N2400, [“+++"] ‘ Switch to command mode.
pause 2000

serout TxD,N2400, [“ATHO”,cr] ' Send hang-up command.
goto waitForRing ‘ Ready for another call.

This program will answer the phone, wait about 20 seconds for the modems to finish
linking up, send a test message, get the user’s name, send a customized response, and hang
up. If the test message is not received completely, or the BS2 hangs up without the other
computer receiving the test message, try increasing the value of the constant tLink. This
will make the BS2 wait longer for the modems to finish linking up.

Modem-savvy readers may wonder why I used a time delay to wait for modem linkup
when I could have employed the Serin instruction’s WAIT option to look for the modem con-
nect message. When modems establish a connection, they send the message “CONNECT”
followed by the baud rate and other information to their host computer. When a modem is set
for numeric responses, it sends a code number corresponding to the connection details.

In my experiments with BS2s and modems, I found that the BS2 often had trouble catch-
ing the connect message, which (with many modems) is accompanied by a bunch of random
data. It’s inelegant, but more reliable, to simply have the BS2 wait for the modems to do their
thing before attempting to send any data.® (If it sends data too early, while the modem is still
in command mode, the modem will hang up.)

TOHLNOD FLON3IH IAIMATHOM

DISPLAY AND BUTTON CHECKOUT

As a final check, we’ll add the 4x20 serial display module and the four pushbutton switch-
es that will serve as our user interface. The display works like a simplified, receive-only
version of the PC terminal programs you have used to configure your modem. It under-
stands many of the standard control characters, like carriage return, linefeed, tab and back-
space, in addition to some specially suited to the LCD such as backlight control, fast cur-
sor positioning, and automatic generation of four-line-tall numeric characters. Table 13-4
lists the control codes.

Connect the display and the buttons as shown in Figure 13-3. Set the LCD for 9600
baud, and Plus command set (configuration switches 1 up, 2 down; see the LCD instruc-
tion book for more details). Run the following short program:

clrLCD con 12 ' Clear entire LCD screen.

posCmd con 16 ' Position cursor.

colTen con 74 ‘ Position 10 on the 4x20 screen.

1f con 10 * Linefeed control character.

bigNums con 2 ‘ Begin big numbers.

N9600 con $4054 / Baudmode for inverted, 9600-bps output.
LCD con 10 ‘ Serial LCD on P10.

i var nib ‘ Temporary counter, 0-15.

state var Dbit ' State of button pin.

6. Another explanation for unreliable results with Serin/WAIT during modem linkup stems from the fact that the
BS2 cannot simultaneously send and receive serial data. Given that limitation, what happens if the BS2 initiates
a Serin in the middle of an incoming byte? That’s right; the first 0 in that byte will be mistaken for a start bit, and
the byte will be garbled. Subsequent bytes may also be messed up, depending on the rate at which the data is
being sent and the distribution of Os that might be mistaken for start bits.

156 WORLDWIDE REMOTE CONTROL WITH C2TERM

pause 1000 ‘
serout LCD,N9600, [clrLCD] !
for i = 1 to 4 !

serout LCD,N9600, [“Button “,dec i,”:"
next

‘

serout LCD,N9600, [posCmd, colTen]

checkBtns: !
for i = 9 to 6 ‘
state = 1 !
if ins & (DCD i) then isOne ‘
state = 0
isOne:
serout LCD,N9600, [dec state,lf,bksp]
next ‘!

‘

goto checkBtns

TABLE 13-4 CONTROL CODES FOR

Wait for LCD startup.

Clear the LCD screen.

Print four labels: “Button #:”
cr]

Move to position 10.

Check each button.

For each pin, 9 to 6..

If pin=1 then state=1 else state=0.
—See text for explanation-—

‘ Print state, goto next line
..and backspace over old state.
Do continuously.

4X20 SERIAL LCD

 CONTROL FUNCTION
VALUE CODE
0 cntl-@ ignored before buﬂ‘er' used for time delay
1 cnﬂ-A cursor to position 0 (home)
2 cntl-B begin big-number display
3 cntl-C ignored
4 ent-D blank cursor '
5 cntl-E underline cursor
6 cnti-F blinking-block cursor
7 cntl-G pulse buzzer output (ring bell)
8 cnt-H backspace; back 1 space and erase character
9 cntl-l tab (cursor to next multiple-of-4 position)
10 cntl-J linefeed; cursor to line below E
1 cnti-K vertical tab; cursor to line abbve
12 cntl-L formfeed; clear the screen '
13 cntl-M carriage retum; cursor to statt of line be#ow
14 cnti-N ‘turn backlight on ;
15 cntl-O turn backlight off
16 cntl-P accept cursor-position data :
17 ent-Q clear vertical column
18-31 — !gnored E
32+ — ASCII alphanumenc characier set

C2TERM 157

4x20 Serial LCD +5 45
Module, BPP-420L

0 +5 BS2 pins

TR e P10
R8EAROHIARARATINANND
2§E32ENEANTARRATNIS

o e L ey R My s

TJOULNOD F1LONIYH 3aiMmalIdom

10k all
R6 & R7 3“8 R9
£
S1:up —0 O -— P9
S2: down .._o"l—c P8
S3: enter »—o—'_c P7
S4: escape ..__O_LG P6
User interface
consists of a 4x20 display and

buttons.

When you run the program, the display will clear, then display the states of the four but-
tons in the format “Button 1: 1.” When you press a button, the corresponding state shown
on the display should change to 0. If it doesn’t, or if the wrong state changes when you
press a particular button, check and correct your wiring.

One part of the checkout program is worth extra attention. The program uses a
For...Next loop to check the pins connected to the buttons. For each pin, we want to know
whether it’s 1 or 0 and print the appropriate state on the display. Unfortunately, there’s no
direct way to do this. You can write IF IN6 = 1 THEN... but you cannot use a variable to
set the pin number to 6. No variable means no For...Next loop. Of course, it wouldn’t kill
you to use a separate group of instructions for each of the four pins, but that would bloat
the program.

There is an indirect way to determine the state of individual bits of a variable using
the Stamp’s DCD (decode) function. DCD takes a number from 0 to 15 and returns a 16-
bit value with a 1 in that position, and Os in all other positions. Table 13-5 shows how
this works:

So we can get a number with a 1 in bit 6 by writing DCD 6. Next we can use that num-
ber to determine whether there’s a 1 or a 0 in the same position of another number—such
as the INS variable that holds the states of the BS2’s pins. The logical AND operator (&)
combines two values to give a result that contains a 1 in only those positions in which both

158 WORLDWIDE REMOTE CONTROL WITH C2TERM

TABLE 13-5 THE DCD OPERATOR

FUNCTION ~ RESULT
DCD 0 %0000000000000001

DCD 1 %0000000000000010

DCD 2 %0000000000000100

DCD3 %0000000000001000

DCD 4 %0000000000010000

DCD 5 %oooooooooomcood

DCD6 %0000000001000000 t
DCD7 _%ooooocomooooooo St
DCD8 %0000000100000000 =

| DCD9 %0000001000000000
DCD10 %0000010000000000

DCD 11 %0000100000000000
pco1z - %ooowooooooeooooj

DCD 13 %oowoooooaeooooo o

DCD14 %0100000000000000
DCD15 %1000000000000000

input values contain 1. If you write INS & (DCD 6), the result will be
%0000000000000000 if IN6 is 0 and %0000000001000000 if IN6 is 1. The states of the
rest of the pins doesn’t matter.

The final piece of the puzzle lies with the If...Then instruction. We normally use
If...Then on comparisons, in the form IF x <> 0 THEN notZero. But PBASIC will also let
you write IF x THEN notZero, which has the same effect.” If... Then regards 0 to mean false
and any value other than 0 to mean true. That means that the line If ins & (DCD i) Then...
means “If there’s a 1 at the pin whose number is stored in variable i, then...”

This is a very valuable technique, and just a sample of the kinds of programming mira-
cles that can be wrought with Boolean logic. For more on Boolean logic, see Appendix B.

COMPLETE C2TERM APPLICATION

Now that you have checked out each subsystem of C2TERM separately, it’s time to load
the complete program, shown in Figure 13-4, and give it a whirl. C2TERM operates in two
modes, local and remote. Under local mode, the program lets you control X-10 devices by
pressing the buttons to select options on the display. In remote mode, the program presents
similar choices via modem to a remote computer.

7. Be careful when employing this form; the word-logic functions NOT, AND, OR, and XOR normally used with
If...Then can produce unexpected results. See the BS2 manual on the CD-ROM for a complete explanation.

C2TERM 159

The program uses one house code, so it can control 16 X-10 devices. I have assigned
example names to the devices which you are welcome to change. One of the program’s
strong points is its flexible storage and processing of strings, sequences of bytes that make
up a text message or label. The BS2 lets us stash strings in unused portions of the program
memory and assign names (constants) to their starting addresses. The program takes care
of the rest.

Efficient handling of strings is vitally important to this program. In order to be user-
friendly, the program is very chatty—substituting descriptive names for X-10 unit codes.

Embedding lots of text in a PBASIC program is a fast way to run out of program space.
For one thing, each character of a text string takes a full byte of storage space. For another,
many programmers embed each string in a separate Serout instruction. Think about that

‘PROGRAM: X10CTL.BS2 (X-10 local and remote control)

‘This program interfaces a BS2 to a modem, X-10 powerline
‘device, serial LCD module, and switches to provide user-
‘friendly remote and local control of 16 X-10 appliances.
‘For local control, a user can view the name and ON/OFF
‘status of the X-10 device on the LCD screen. By pressing
‘UP/DOWN/ON/OFF buttons, the user can pick an appliance and
‘command it on or off.

‘For remote control, the program monitors the ring-indicator
‘output of a modem. When the phone rings, the BS2 answers
‘it and requests a password. If the password matches, it
‘allows the logged-on user to view and change the states of
‘the X-10 appliances.

‘These constants define characters that help format the 4x20
‘serial LCD screen. Some formatting characters like CR
‘(carriage return) aren’t on this list, because they are already
‘defined by the BS2 for Debug and Serout.

clrLCD con 12 ‘ Clear entire LCD screen.

posCmd con 16 ‘ Position cursor.

colTen con 74 ‘ Position 10 on the 4x20 screen.

1f con 10 ‘ Linefeed control character.

N9600 con $4054 ' Baudmode for inverted, 9600-bps output.
LCD con 10 ‘ Serial output pin for LCD (P1l0).

arrow con “sn ‘ Pointer to highlight selected item.
statCol con 17 ‘ Column in which to show ON/OFF status.
pntrCol con statCol-1 ‘ Column in which to show arrow.

tLink con 20000 * # of milliseconds to wait for link up.
N2400 con $418D / Baudmode for 2400 bps inverted.

TXD con 14 ‘ Pin to output serial data to modem.
RxD con 15 ‘ Pin to input serial data from modem.
FF con 12 ' Form-feed code—clears terminal screen.

myHouse con 0 ' House code—0=A, 1=B, 2=C...
zPin con 12 ‘ zPin on P12.
mPin con 11 ‘ mPin on P11.

Program listing for C2Term.

=
[~
]
X
m
2
]
-
m
0
O
<
-
3
[}
r-

160 WORLDWIDE REMOTE CONTROL WITH C2TERM

‘The Data directives below define the names of the X-10 devices.
‘You can change these names—just make sure they are 16 characters
‘or less, and end in the ASCII null character (0). Subroutines

‘that use these strings start at the address constant (d0, dl, etc.)
‘and continue reading data from EEPROM until they find a null.

‘This is a common and efficient way to store and retrieve

‘text strings of varying length.

‘ ADDRESS STRING DATA

CONSTANT (CHARACTERS/CONTROLS) NULL
b e e — e] ______________
do DATA “Address”, 0
dl : DATA “Path”, 0
d2 DATA “porch”, 0
ds DATA “Pool/Spa”, 0
d4 DATA “Alleyway”, 0
ds DATA “Garden”, 0
de DATA “Garage”, 0
a7 DATA “Kitchen”, 0
ds DATA “Living Rm”, 0
do DATA “Dining Rm”, 0
dio DATA “Master Bdrm”, 0
dil DATA “Pool Pump”, 0
di2 * DATA “Spa Heat”, 0
di3 DATA “Workshop Pwr”, 0
d14 DATA “Attic Fan”, 0
dils DATA “Holiday lights”, 0

‘Note that longer strings can be broken into two or more
‘lines. The only thing that matters is the end-of-string
‘marker, ASCII null.

ON DATA “ON *, 0
OFF DATA “OFF", . 0
_ON DATA “ ON",cr,lf, 0
_OFF DATA “ OQOFF”,cr,1lf, 0
answPhone DATA “ATA”,cCr, 0
Logon DATA “X-10 WORLDWIDE CONTROL”,cr,lf

Prompt DATA “Please enter your ”

Prompt2 DATA “password: “, 0
Standby DATA clrLCD, “***Remote Access¥***”

SB2 DATA cr,cr, “ Please stand by”, 0
hangUpNow DATA cr,1f,”Hanging up now.”,cr,lf, O
pwdOK DATA cr,lf,"Logged on.”,cr,1f, 0
offerChoices DATA cr,1lf,”Enter a device # (1-16)"
choice2 DATA cr,1lf,”to toggle its state”,cr,lf
choice3 DATA “or 0 to log off”,cr,1f, 0
logOf fNow DATA “Log off now (Y/N)? *, 0
confirm DATA cr,lf,”Confirm (Y/N), device: ¥, 0

‘Some variables are used by both the LCD and modem routines.
‘This works because the program does not attempt to service
‘the LCD/buttons and modem at the same time.

strAddr var word ‘ Address of string in EEPROM.

(Continued)

C2TERM 161

baud var word ‘ Baud rate for stringOut.

serPin var nib ' Serial output pin for stringOut
LCD_mdm var bit ' String to LCD (0) or modem (1).
char var byte ‘ Character to send to LCD or modem.
reply var byte ¢ User’s reply to modem prompt.

item var nib ' Selection from list of strings.
stats var bit (16) ‘ Status (ON/OFF) of the X10 devices.
slectn var nib * Currently selected item.

tempNl var nib ‘ Nibble-sized temporary counter

‘Most I/O is done by instructions that use pin-number
‘constants; see the constants for the LCD and modem. These
‘variables are used in IF/THEN instructions for simple input.

RI var inl3 ‘ Ring-indication output of modem.
upSw var in8 ‘ Button to move selection arrow up.
dnSw var in9 ‘ Button to move selection arrow down.
onsw var in7 ‘ Button to turn X10 device on.

offSw var iné ‘ Button to turn X10 device off.

Initialization:

pause 2000 ‘ Wait for LCD startup.
gosub newScreen ' Display first screen.

gosub showPntr ‘ Show the selection pointer.

‘Main program loop: The program continuously checks the states of
‘the switches and the ring-indication input from the modem.

‘When any of these become active, it jumps to appropriate routines
‘(answer the modem, move the selection pointer, send an X-10
‘command, etc.).

Main:
if RI=1 then getModem
if onSw = 0 then turnOn ‘ Turn on an X-10 device.
if offSw = 0 then turnOff ‘ Turn off » * "
if (upSw & dnSw) = 1 then main‘’ If neither up or down pushed, try again.
if upSw = 1 then tryDown * If upSw isn’t pushed, check dnSw.
gosub hidePntr ' Up switch: prepare to move pointer.
tempN2 = tempN2+1 ‘ Increment temporary selection.
if tempN2 & %11 <> 0 then posPntr 1f user pressed “up” and new
gosub newScreen ' selection ends in %00, switch screens.
goto posPntr ‘ Reposition the pointer.
tryDown: * Check the down switch.
if dnSw = 1 then main ' Not pressed? Back to main.
gosub hidePntr ‘ Pressed: prepare to move pointer.
tempN2 = tempN2-1 ‘ Decrement temporary selection.
if tempN2 & %11 <> %11 then posPntr * If user pressed “down” and new
tempN2 = tempN2 & %1100 ‘ selection ends in %11, switch screens.
gosub newScreen ‘ Show new screen.
posPntr: ‘ Reposition the pointer.

slectn = tempN2
gosub showPntr

hold:
pause 50 ‘ Brief (50-ms) delay, then make
if (upSw & dnSw) = 0 then hold ‘ sure that switch is released
goto main ‘ before returning to main loop.

(Continued)

=
o
X
r
=
=
O
m
X
m
=
=]
-4
m
(2]
o
4
-l
X
o,,
-

162 WORLDWIDE REMOTE CONTROL WITH C2TERM

getModem:
strAddr = Standby ' Put -standby message on LCD.
gosub stringOut
LCD_mdm = 1 ‘ Direct strings to modem.
strAddr=answPhone ‘ Tell modem to pick up.

gosub stringOut
pause tlLink

strAddr=Logon ‘ Send logon message.

gosub stringOut

serin RxD,N2400,5000,Disconnect, [WAIT (“X10_OK")] ‘ Get PASSWORD.

strAddr=pwdOK ' Confirm password OK.

gosub stringOut

mdmStats:

serout TxD,N2400, [FF] ' Clear user's terminal screen.

for item = 0 to 15 ‘ Display status of 16 devices.
serout TxD,N2400, [DEC2 (item+l),”. *“] ‘ Number device list 1-16.
gosub pickStr ' Get address of the device name.
gosub stringOut ‘ Print the name.

lookup stats(item), [_OFF,_ON],strAddr ' Now print ON/OFF.
gosub stringOut

next ‘ Continue for all 16 devices.
choices:

strAddr=offerChoices ' Let the user pick an action:

gosub stringOut ‘ 1-1l6=toggle device; 0=log off.

serin RxD,N2400,10000,Disconnect, [DEC reply] ‘ Get reply.

if reply = 0 then Done’ 0 is “quit”

slectn = reply-1 ‘ Selection is 0-15; reply is 1-16.

strAddr=confirm * Verify choice.

gosub stringOut

serout TxD,N2400, [DEC2 reply,”->"] ' Show device number.

lookup stats(slectn), [ON,OFF],strAddr ‘ and new state.

gosub stringOut

serin RxD,N2400,10000,Disconnect, [reply] ‘ Get reply.

if reply = “Y” or reply = “y” then switchIlt
goto mdmStats

switchIt:
if stats(slectn) = 1 then turnOFF
goto turnON
Done:
strAddr=1ogOf fNow ‘ Confirm logoff.
gosub stringOut
serin RxD,N2400,10000,Disconnect, [reply] ' Get reply.
if reply = “Y” or reply="y” then Disconnect * If (Y)es, hang up.
goto mdmStats ‘ Else redisplay choices.
Disconnect:
strAddr=hangUpNow ‘ Send hang-up message.
gosub stringOut
pause 2000
serout TxD,N2400, [“+++"] ‘ Put modem into command mode.
pause 2000
serout TxD,N2400, [“ATHO”,cr] ‘ Tell it to hang up.
LCD_mdm = 0 ' Reroute serial to display.
goto Initialization ‘ Re-initialize the display.

‘==stringOut: Output EEPROM strings to LCD or modem.
‘The bit variable LCD_mdm picks the output device; 0=LCD

(Continued)

C2TERM

‘1= modem. The address in variable strAddr is the starting point
‘of the string in EEPROM. The routine outputs EEPROM bytes until
‘it reaches the end-of string character (null).

stringOut:
baud = N9600: serPin = LCD ‘ Output to LCD if LCDmdm=0
if LCD_mdm = 0 then getByte
baud = N2400: serPin = TxD ‘ Output to modem if LCDmdm=1
getByte:
read strAddr, char ' Get the character.
if char <> 0 then continue ‘ If char is 0, then return
return
continue: ‘ ..else continue
serout serPin,baud, [char] * ..and send char to the LCD.
strAddr = straAddr+l ‘ Point to next character in string.

goto getByte ‘ Repeat until char = 0.

‘==pickStr: Get starting address of names for X10 devices 0-15

‘and place in variable strAddr.
pickStr:
lookup item, [d0,d1,d2,d3,d4,d45,d46,d47,d48,d9,d10,d11,d12,d13,d14,d15],strAddr
return

‘==showStat: Display the status (ON or OFF) of the currently
‘selected X10 device. That cluttered Serout instruction tells the
‘LCD to expect a position value (posCmd), then calculates what the
‘current position should be. It takes the last two bits of the
‘selection (slectn & %11) to get the LCD line number. Multiplying
‘that by 20 gets the beginning of one of the 4 lines, 0-3. Adding
‘the constant statCol (17) gets the exact position—character 17

‘of the selected line. Finally, adding 64 gives the single-byte
‘value that the serial LCD expects. Once the cursor is in position,
‘the routine looks up the address for the text that says “ON” or
‘“QFF” depending on the state of the selected X10 device, and goes
‘to stringOut to print that text on the LCD. Since stringOut is
‘the last instruction in the routine, a Goto is used instead of

‘a Gosub. This saves an unnecessary Return instruction.
showStat:

serout LCD,N9600, [posCmd, (((slectn & %11)*20)+statCol)+64]

lookup stats(slectn), [OFF,ON],strAddr

goto stringOut

‘==show/hidePntr: Show or hide the arrow that points to the currently
‘selected X10 device status. Basically the same kind of cursor-
‘positioning job as showStat above; see those comments for explanation.
showPntr:

serout LCD,N9600, [posCmd, (((slectn&%11l)*20) +pntrCol) +64,arrow]
return
hidePntr:

serout LCD,N9600, [posCmd, (((slectn&%11l)*20)+pntrCol)+64," *]
return

‘z=newScreen: Display a screenful of X10 status information on LCD.
‘This routine clears the LCD and then writes the names and states
‘of four X10 devices to it. Which four devices is determined by bits
‘2 and 3 of the variable tempN2, a nibble variable that keeps coun
‘of the arrow position on the screen.

newScreen:
serout LCD,N9600, [clrLCD] ' Clear the LCD screen.
for tempNl = 0 to %11°‘ Display four devices/states.
slectn = tempN2 | tempNl ' Combine bits 2,3 of tempN2 with

(Continued)

163

TJOHLINOD ILON3YH 3AIMATHOM

164 WORLDWIDE REMOTE CONTROL WITH C2TERM

item = slectn ‘
gosub pickStr

gosub stringOut
gosub showStat

..bits 0,1 of tempNl.
‘ Get the string.

‘ Display it.

’ Show device status

next ' ..for four devices

return !

..and return.

‘==turnON/OFF: Turn the selected X10 device on or off in response
‘to the buttons. After the X10 code is sent, this subroutine
‘makes sure that the user has released the on or off button

‘in order to avoid sending redundant codes.

turnON:
stats(slectn) = 1
xout mPin,zPin, [myHouse\slectn]
xout mPin, zPin, [myHouse\uniton]
if LCD_mdm = 1 then mdmStats
gosub showStat

holdl:
if onSw=0 then holdl

goto main

Talk to unit

Tell it to turn ON.

If modem selected, skip LCD.
Update the LCD.

Wait til button up.
Back to main loop.

turnOFF:
stats(slectn) = 0
xout mPin, zPin, [myHouse\slectn] / Talk to unit
xout mPin,zPin, [myHouse\unitoff] ‘ Tell it to turn OFF.
if LCD_mdm = 1 then mdmStats ‘ If modem selected, skip LCD.
gosub showStat ‘ Update the LCD.
hold2:
if offSw=0 then hold2 ‘ Wait til button up.

goto main ‘ Back to main loop.

(Continued)

for a minute: each Serout instruction has to be stored as a tag that identifies the instruction
as “Serout;” an I/O pin number from 0 to 16 (/O pins 0 to 15, plus 16, representing the
programming port); and a baudmode representing the serial data rate and format.

Making some educated guesses, let’s assume that the name Serout is represented by 7 bits,
the pin number by 5 bits and the baudmode by 16 bits—that’s 28 bits (nearly 4 bytes) of pro-
gram memory used—before Serout has said anything! This program has 22 occasions to send
data serially, so it might have had more than 80 bytes of overhead associated with using Serout.

Instead, the program stores text as strings and uses a routine called stringOut to reduce
22 Serouts to just 10. Now there’s also overhead involved with Gosub and Return, but
chances are good that the technique saved perhaps 50 bytes of program memory.

The program also manages to be frugal with program memory in another way. It uses a bit
variable called LCD_mdm to switch stringOut and other subroutines between the LCD and
the modem. When LCD_mdm is 0, the subs talk to the LCD; when it’s 1, they talk to the
modem. This saves us from writing near-identical, but separate, code for the LCD and modem.

Going Further

Why the mania about conserving code space in this program? Well, I just know that after
the initial novelty wears off, you’re going to want to add more features to this program,

GOING FURTHER 165

and I wanted to leave you plenty of room. The same philosophy applies to the hardware
design; I could have interfaced the LCD directly (as in the RS-485 terminal project), but
that would have deprived you of both code space and I/O pins.

An exciting use for those extra I/Os might be to add some monitoring capability to the
program. Add a temperature sensor here, an intrusion detector there, and pretty soon you
have a state-of-the-art home-control system—all based on a computer that fits in less than
one square inch.

PARTS LIST

Resistors (all 1/4W, 10% or better)

R1, R3—22,000 ohms

R2, R4—100,000 ohms

R5-R9—10,000 ohms

Other Components

S1-S4—any normally-open pushbutton switches

External-type phone modem, AT command set, 2400 baud or better

X-10 powerline interface, model PL-513 or TW-523 (Parallax or home-automation suppliers)

4x20 Serial LCD—model BPP-420L (Parallax, Jameco, JDR Microdevices, or Scott -
Edwards Electronics, Inc.)

Phone-line simulator kit—Party Line by Digital Products Company.

TJOHLNOD 310N3H 3aiMmatdom

