MICROPROCESSOR
SYSTEMS DESIGN

68000 HARDWARE, SOFTWARE, AND INTERFACING

ALAN CLEMENTS
TEESSIDE POLYTECHNIC

FES
4]

PWS-KENT PUBLISHING COMPANY
BOSTON

THE SERIAL INPUT/
OUTPUT INTERFACE

The vast majority of general-purpose microcomputers, except some entirely self-
contained portable models, use a serial interface to communicate with remote periph-
erals such as CRT terminals. The serial interface, which moves information from
point to point one bit at a time, is generally preferred to the parallel interface, which
is able to move a group of bits simultaneously. This preference is not due to the high
performance of a serial data link but to its low cost, simplicity, and ease of use. In
this chapter we first describe how information is transmitted serially and then
examine a typical parallel-to-serial and serial-to-parallel chip that forms the interface
between a microprocessor and a serial data link. Because a serial data link can operate
in one of two modes, asynchronous or synchronous, a separate section is devoted to
each mode. We also take a brief look at some of the standards for the transmission of
serial data. The chapter ends with the description of a suitable serial interface for a
68000-based system. Throughout this chapter, the word character refers to the basic
unit of information transmitted over a data link. The term character has been chosen
because many data links transmit information in the form of text, so that the unit of
transmitted information corresponds to a printed character.

Figure 9.1 illustrates the basic serial data link between a computer and a CRT
terminal. A CRT terminal requires a two-way data link because information from the
keyboard is transmitted to the computer and information from the computer is trans-
mitted to the screen. Note that the fransmifted data from the computer becomes the
received data at the CRT terminal. Although this statement is an elementary and
self-evident observation, confusion between transmitted and received data is a
common source of error in the linking of computers and terminals.

A more detailed arrangement of a serial data link in terms of its functional
components is given in figure 9.2. The heart of the data link is the box labeled
“serial interface,” which translates data between the form in which it is stored within
the computer and the form in which it is transmitted over the data link. The conver-
sion of data between parallel and serial form is often performed by a single LSI
device called an asynchronous communications interface adaptor (ACIA).

The line drivers in figure 9.2 have the function of translating the TTL level
signals processed by the ACIA into a suitable form for sending over the transmission
path. The transmission path itself is normally a twisted pair of conductors, which
accounts for its very low cost. Some systems employ more esoteric transmission

627

628

CHAPTER 9 The Serial Input/Output Interface

FIGURE 9.1 Serial data link

Computer
Terminal P \\/ -
Received Transmission Transmitted
data in path data out

paths such as fiber optics or infrared (IR) links. The connection between the line
drivers and transmission path is labeled plug and socket in figure 9.2 to emphasize that
such mundane things as plugs become very important if interchangeability is
required. International specifications cover this situation and other aspects of the data
link.

The two items at the computer end of the data link enclosed in “clouds” in
figure 9.2 represent the software components of the data link. The lower cloud
contains the software that directly controls the serial interface itself by performing
operations such as transmitting a single character or receiving a character and check-
ing it for certain types of error. On top of this software sits the application-level
software, which uses the primitive operations executed by the lower-level software
to carry out actions such as listing a file on the screen.

FIGURE 9.2 Functional units of a serial data link

Terminal Computer

System
software
Transmission path
'cl':WIitietlfI cpa"::;;’e Device driver
oaxial c software
Fiber optics

Infrared beam
Ultrasonic beam

Hardware and

software of
dedicated

system

Serial interface
4

Serial interface

A

v v

Line drivers '<—| }\ j': H Line drivers
Plug and socket

9.1 Asynchronous Serial Data Transmission 629

9.1 ASYNCHRONOUS SERIAL DATA TRANSMISSION

By far the most popular serial interface between a computer and its CRT terminal is
the asynchronous serial interface. This interface is so called because the transmitted
data and the received data are not synchronized over any extended period and
therefore no special means of synchronizing the clocks at the transmitter and receiver
is necessary. In fact, the asynchronous serial data link is a very old form of data
transmission system and has its origin in the era of the teleprinter. ’

Serial data transmission systems have been around for a long time and are
found in the telephone (human speech), Morse code, semaphore, and even the smoke
signals once used by native Americans. The fundamental problem encountered by all
serial data transmission systems is how to split the incoming data stream into indi-
vidual units (i.e., bits) and how to group these units into characters. For example, in
Morse code the dots and dashes of a character are separated by an intersymbol
space, while the individual characters are separated by an intercharacter space, which
is three times the duration of an intersymbol space.

First we examine how the data stream is divided into individual bits and the
bits grouped into characters in an asynchronous serial data link. The key to the
operation of this type of link is both simple and ingenious. Figure 9.3 gives the
format of data transmitted over such a link.

An asynchronous serial data link is said to be character oriented, as information
is transmitted in the form of groups of bits called characters. These characters are
invariably units comprising 7 or 8 bits of “information” plus 2 to 4 control bits and

FIGURE 9.3 Format of asynchronous serial data

Mark T T T T T T T T
| | | 1 | | I I
1 | | 1 I | | |
Space 1 1 1 1 1 1 1 L
el »le le—re—>
'Start Data bits Parity Stop!
ibit bit bit

|
|
| |
|
¢ >

>
! One character !

Example: Letter M = ASCIl $4D = 1001101, (even parity)
Mark 1

Space 0

I |
Start] 1
1 |

__o__
-
-
__o__
__o__
-

630

CHAPTER 9 The Serial Input/Output Interface

frequently correspond to ASCII-encoded characters. Initially, when no information is
being transmitted, the line is in an idle state. Traditionally, the idle state is referred to
as the mark level. By convention this corresponds to a logical 1 level.

When the transmitter wishes to send data, it first places the line in a space level
(i.e., the complement of a mark) for one element period. This element is called the
start bit and has a duration of T seconds. The transmitter then sends the character, 1
bit at a time, by placing each successive bit on the line for a duration of T seconds,
until all bits have been transmitted. Then a single parity bit is calculated by the
transmitter and sent after the data bits. Finally, the transmitter sends a stop bit at a
mark level (i.e, the same level as the idle state) for one or two bit periods. Now the
transmitter may send another character whenever it wishes. The only purpose of the
stop bit is to provide a rest period for the receiver between consecutive characters.
This bit is a relic of the days of electromechanical receivers and is not now strictly
required for technical reasons, existing only for the purpose of compatibility with
older equipment.

As the data wordlength may be 7 or 8 bits with odd, even, or no parity bits,
plus either 1 or 2 stop bits, a total of 12 different possible formats can be used for
serial data transmission—and this is before we consider that there are about seven
commonly used values of T, the element duration. Connecting one serial link with
another may therefore be difficult because so many options are available.

At the receiving end of an asynchronous serial data link, the receiver contin-
ually monitors the line looking for a start bit. Once the start bit has been detected,
the receiver waits until the end of the start bit and then samples the next N bits at
their centers, using a clock generated locally by the receiver. As each incoming bit is
sampled, it is used to construct a new character. When the received character has
been assembled, its parity is calculated and compared with the received parity bit
following the character. If they are not equal, a parity error flag is set to indicate a
transmission error.

FIGURE 9.4 Effect of unsynchronized transmitter and receiver clocks

iStart bit |
\T seconds|

Mark — ! -

Space

T
|
I
1
|
|

I 1
i 1

| I
/21 T/207/2 T/2

[|

Beginning 3t St + 8t End of
of start 2 2 stop bit
bit

NOTE: Vertical lines with arrows indicate the points at which the received data is sampled.

9.1

Asynchronous Serial Data Transmission 631

The most critical aspect of the system is the receiver timing. The falling edge of
the start bit triggers the receiver’s local clock, which samples each incoming bit at its
nominal center. Suppose the receiver clock waits T/2 seconds from the falling edge
of a start bit and samples the incoming data every T seconds thereafter until the stop
bit has been sampled. Figure 9.4 shows this situation. As the receiver’s clock is not
synchronized with the transmitter clock, the sampling is not exact.

Let us assume that the receiver clock is running slow, so that a sample is taken
every T + Ot seconds. The first bit of the data is sampled at (T + 8#)/2 + (T + 6
seconds after the falling edge of the start bit. The stop bit is sampled at time

(T + 88/2 + N(T + 6#), where N is the number of bits in the character following the

start bit. The total accumulated error in sampling the stop bit is therefore
(T + 80/2 + N(T +) — (T/2 + NT), or (2N + 1)0t/2 seconds. For correct oper-
ation, the stop bit must be sampled within T/2 seconds of its center, so that:

T (2N + 1)ét
> —————————

2 2
or

ot < 1

T 2N+1
or

ot < 100 "

h— as a percentage

T S 2N+1 P 8

If N=9 for a 7-bit character + parity bit + 1 stop bit, the maximum permissible
error is 100/19 = 5 percent. Fortunately, almost all clocks are now crystal controlled,
and the error between transmitter and receiver clocks is likely to be a tiny fraction of
1 percent.

The most obvious disadvantage of asynchronous data transmission is the need
for a start, parity, and stop bit for each transmitted character. If 7-bit characters are
used, the overall efficiency is only 7/(7 + 3) X 100 = 70 percent. A less obvious
disadvantage is due to the character-oriented nature of the data link. Whenever the
data link connects a CRT terminal to a computer, few problems arise, as the terminal
is itself character oriented. However, if the data link is being used to, say, dump
binary data to a magnetic tape, problems arise. If the data are arranged as 8-bit bytes
with all 256 possible values corresponding to valid data elements, it is difficult (but
not impossible) to embed control characters (e.g., tape start or stop) within the data
stream because the same character must be used both as pure data (i.e., part of the
message) and for control purposes.

If 7-bit characters are used, pure binary data cannot be transmitted in the form
of one character per byte. Two characters are needed to record each byte and this
condition is clearly inefficient. We will see later how synchronous serial data links
overcome this problem.

632

CHAPTER 9 The Serial Input/Output Interface

We have now described how information can be transmitted serially in the
form of 7- or 8-bit characters. The next step is to show how these characters are
encoded.

ASCII Code

Although computing generally suffers from a lack of standardization, the ASCII code
is one of the few exceptions. Many microcomputers employ the ASCII code to
represent information in character form internally, and for the exchange of informa-
tion between themselves and CRT terminals. The ASCII code, or American Standard
Code for Information Interchange, is one of several codes used to represent alpha-
numeric characters. As long ago as the 1920s, the Baudot or Murray code was
designed for the teleprinter. This code, still used by the international telex service,
represents characters by 5 bits. As this system provides only 2* unique values, one of
the 32 possible values acts as a shift, affecting the meaning of the following charac-
ters. The effective number of characters available is thereby increased.

The ASCII code employs 7 bits to give a total of 128 unique values. These bits
are sufficient to provide a full 96-character upper- and lowercase printing set,
together with 32 characters to control the operation of the data link and the terminal
itself. The ASCII code has now been adopted universally, and is almost identical to
the International Standards Organization ISO-7 code.

Had the ASCII code been developed today, it would almost certainly be an
8-bit code. Unfortunately, the ASCII character set does not include “national” char-

TABLE 9.1 ASCIl code

bbb, (] 1 2 3 4 5 6 7
b,b,bb, 000 001 010 011 100 101 110 111
0 0000 NUL DLC SP 0 @ P ! P
1 0001 SOH DC1 ! 1 A Q a q
2 0010 STX DC2 " 2 B R b r
3 0011 ETX DC3 3 3 C S c s
4 0100 EOT DC4 $ 4 D T d t
5 0101 ENQ NAK % 5 E 8] e u
6 0110 ACK SYN & 6 F \% f v
7 0111 BEL ETB ! 7 G w g w
8 1000 BS CAN (8 H X h X
9 1001 HT EM) 9 I Y i y
A 1010 LT SUB * : J Z j z
B 1011 VT ESC + ; K [k {
C 1100 FF FS , < L \ 1 |
D 1101 CR GS - = M] m }
E 1110 SO RS . > N A n ~
F 1111 SI VS / ? O _ o DEL

9.2 Asynchronous Communications Interface Adaptor (ACIA) 633

acters such as the German umlaut or the French accents. Moreover, a graphical
character set similar to that used by Teletex would have been very helpful. However,
microcomputer manufacturers have tended to design their own graphics codes,
leading to incompatibiliy.

Table 9.1 presents the ASCII code. The binary value of a character is obtained
by reading the three most significant bits at the top of the column in which the
character occurs and then taking the four least significant bits from its row. For
example, the character m is in the column headed 110 and the row headed 1101;
therefore, the binary code for m is 110 1101 (or $6D in hexadecimal).

92 ASYNCHRONOUS COMMUNICATIONS
INTERFACE ADAPTOR (ACIA)

One of the first general-purpose interface devices produced by the semiconductor
manufacturers was the asynchronous communications interface adaptor, or ACIA.
The ACIA relieves the system software of all the basic tasks involved in converting
data between serial and parallel forms; that is, the ACIA contains almost all the logic
necessary to provide an asynchronous data link between a computer and an external
system.

One of the earliest and still popular ACIAs is the 6850 illustrated in figure 9.5.
This particular ACIA will be described because it is much easier to understand than
some of the newer ACIAs and is still widely used in microcomputers. Once the
reader understands how the 6850 ACIA operates, he or she can read the data sheet
of any other ACIA. Like any other digital device, the 6850 has a hardware model, a
software model, and a functional model. We look at the hardware model first. Figure
9.6 gives the hardware model of the 6850 together with its timing diagram. From
the designer’s point of view, the 6850’s hardware can be subdivided into three sec-
tions: the CPU side, the transmitter side, and the receiver side.

CPU Side

As far as the CPU is concerned, the 6850 behaves almost exactly like a static read/
write memory; figure 9.6 shows the read and write cycles on the same diagram.
However, one important difference exists between the 6850 and conventional RAM.
The 6850’s memory accesses are synchronized to an external E or enable clock. In
6800- or 6809-based systems, this situation presents no problem as the processor
itself is also synchronized to the E (or ¢2 in 6800 terminology) clock that it pro-
vides. In the case of the 68000, the ACIA must be interfaced either by using VPA*
and VMA# or asynchronously by means of additional logic.

The ACIA is a byte-oriented device and can be interfaced to D, through D,),
and strobed by LDSx, or to D, through D, and strobed by UDS*. The ACIA has a

634

CHAPTER 9 The Serial Input/Output Interface

FIGURE 9.5 The 6850 ACIA

Tx 4 Clock Parity
clock generator generator
Transmitter v v
g+ 141, data register | Transmitter 6 TxD
cso 2 [|d7]de]ds[da]ds]do[di [do] V] shift register "
cs1 10 N Chlg-:glect »
cs2* 21, read-write Transmitter control CTS*
RS 1 5| control
RW 31 Status register
7(6|5{4(3]|2(1]0 | Interrupt 7 IRQ*
wa| | {eere| | |, |, | —frorF || logic g
» < OVRN CB%B/- [TDRE _ < 23 DCD*
Dy e Control register | » RTS*
D, 4L, 7]6[5[4]3[2]1]0f=
D, 20 « ,RIE cor-{t):ol Word select c%',.'o‘%l
Ds "l Data bus Receiver || Parity check
D, 18l buffers control generator
o. 1714
5 16 ||| Receiver data register Receiver .2 RxD
Dg —« |d7]ds[ds[da]d3]d,]d1]do| V| shift register -
D7 15 <>
y
Rx 3 .| Rx clock Synchronous
clock generator logic
VCC VSS
12T 1T
+5V 0V

single register select line, RS, that determines the internal location (ie., register)
addressed by the processor. Typically, RS is connected to the processor’s A,, address
output, so that the lower location is selected by address X and the upper, by address
X+ 2.

Three chip-select inputs are provided, two of which are active-high and one,
active-low. This spectacular display of overkill comes from the days when address
decoders were relatively expensive and memories small. By using the chip selects
alone, you can achieve partial address decoding without any additional components.
In many modemn systems just one of the chip-select inputs takes part in the address
decoding process. The remaining two are permanently enabled. This situation is
unfortunate, as the other two pins could have provided the ACIA with additional
features—such as a RESET* input or an on-chip clock.

9.2 Asynchronous Communications Interface Adaptor (ACIA)

635

The 6850 has an interrupt request output, IRQ#, that can be connected to any
of the 68000’s seven levels of interrupt request input. As the 6850 does not support
vectored interrupts, autovectored interrupts must be used in the way described in
chapter 6.

Unusually, the 6850 does not have a RESET# input because there were not

FIGURE 9.6 Hardware model of the ACIA and its timing diagram

Vee gnd
12 1
v
Doo < 22 : cc SS 2
Doy + 21, RxDfe
Dop 203 RXCLK e
Dos ¢ 19, DCD*
< 18
Do4 < »
) 17,
Dos <
16
Dos 15 6
D07 < 1 6850 TxD ———"4
Ao 1 »RS ACIA TxCLK 4—————5
RW 13 » RW RTS*———»
E > CTS*le2t—
AS* —»] 13 »(CSO
LDS* —Address »CS1
VMA* —p{decoder 9 »CS2*
Agr—Azz —P]
VPA* ¢——
IRQ* « 7 lira*

v
4

Receiver
side

Transmitter
side

Enable
(E)

RS
cs
RW

Data bus
(read)

Data bus
(write)

Processor side

|

tas
I

Peripheral side

tan
Y

L

|
|
1
[
Il
|
|
l

1
!
|
I
|
|
|
1
Lo
i
)
!

%@s,lcs, RAW valid
1

W/

D,

' topr R . H

/// / ; Data valud E}

tosw: th

7

i

%k w5

i

636

CHAPTER 9 The Serial Input/Output Interface

enough pins to provide the function and the manufacturer felt that RESET* was the
most dispensable of functions. When power is first applied, some sections of the
ACIA are reset automatically by an internal power-on-reset circuit. Afterwards, a
secondary reset by software is performed, as we shall describe later.

The CPU side of the 6850 has a clock input labeled E (i.e, ENABLE). As with
other 6800-series peripherals, the E input must be both free running and synchro-
nized to read/write accesses between the ACIA and the processor. The simplest
interface between the ACIA and a 68000 processor is given in figure 9.7. This circuit
is entirely conventional and makes use of the CPU’s synchronous bus control signals.

The lower byte of the 68000’s data bus is connected to the ACIA’s data input/
output pins, D, to D,, which locate all the ACIA's registers in the lower half of
words at odd addresses. Remember that the 68000 address space is arranged so that
lower-order bits (D, to D,,) have odd addresses and higher-order bits (D,, to D ;)
have even addresses. Whenever the 68000 addresses the ACIA, the address decoder
detects the access and forces SELECT_ACIA=* low. This signal drives the 68000’s
VPA=* low via an OR gate, signaling that a synchronous bus cycle is to begin. The
CPU then forces VMA# low and the ACIA is selected by SELECT_ACIA*, VMA«,
and LDS# all being low simultaneously. During this access, R/W from the CPU
determines the direction of data transfer and A, the location of the internal register
selected in the ACIA.

The lower portion of figure 9.7 is intended to show how the ACIA is operated
in the autovectored interrupt mode. When the ACIA forces its IRQ#* line low, a level
5 interrupt is signaled to the CPU. Assuming this level is enabled, IACK5# from the
decoder goes low and is then ANDed with IRQ* from the ACIA and connected to
VPA# via an OR gate. The purpose of ANDing IACK5* with IRQx is to permit an
interrupt acknowledge to the 68000 (via VPA=*) only when the ACIA is putting out
an interrupt request while an interrupt acknowledge at the appropriate level is being
indicated by the CPU.

Receiver and Transmitter Sides of the ACIA

One of the great advantages of peripherals such as the 6850 ACIA is that they
isolate the CPU from the outside world both physically and logically. The physical
isolation means that the engineer who is connecting a peripheral device to a micro-
processor system does not have to worry about the electrical and timing require-
ments of the CPU itself. In other words, all the engineer needs to understand about
the ACIA is the nature of its transmitter-side and receiver-side interfaces. Similarly,
the peripheral performs a logical isolation by hiding the details of information transfer
across it; for example, the operation of transmitting a character from an ACIA is
carried out by the instruction MOVE.B DO0,ACIA_DATA, where register DO con-
tains the character to be transmitted and ACIA_DATA is the address of the data
register in the ACIA. All the actions necessary to actually serialize the data and
append start, parity, and stop bits are carried out automatically (i.e., invisibly) by the
ACIA.

9.2 Asynchronous Communications Interface Adaptor (ACIA) 637

FIGURE 9.7 Interface between a 6850 ACIA and a 68000 CPU

gnd V.
1l 12
Vss Voo
5 22
g°° 21 g°
] N
D3 fg D, Rde—g—
Doa|—2 Dy RXCLKf43—
Doq 1 18/p, DCD*}W2—|
DM 64 17 De }fSenaI
02: 63 16 De TxD i, interface
Dos 82 151p, TXCLK e
11 RIS 24"
Ax 23 > 1PRS CTs* e
W > » R/W
RN‘é 20 14,1
19
vMarH12

AS* 6—»—& ll—_gjo—kz cs2*

Apl—s| E

Aca|—> Address SELECT_ACIA® | 0890
68000 ¢ | decoder - ACIA
CPU Agsl—

IPLO* e
IPL1* $
* 14
IPL2 7415148 P+ rgs+ |
o<
o<«IRQ7*
Yo o—
AS* _i.o E 74 Y1 o—
LS Y2 o—
138 Yspo—
FCO »A Yapo— 74 Yop-
FC1 » B Yso— LS Y o>
FC2 c Yelo— 138 v,
Y;0——E Yo
IACK* Yio»
Aot > A Yso—— IACK5*
Aoz »B Yo
Aoz »C Y, 00— IACK7*

638

CHAPTER 9 The Serial Input/Output Interface

Here, only the essential details of the ACIA’s transmitter and receiver sides are
presented, because the way in which they function is described more fully when we
come to the logical organization of the 6850. The peripheral-side interface of the
6850 is divided into two entirely separate groups—the receiver group, which forms
the interface between the ACIA and a source of incoming data, and the transmitter
group, which forms the interface between the ACIA and the destination for outgoing
data. Incoming and outgoing are used with respect to the ACIA. The nature of these
signals is strongly affected by one particular role of the ACIA—its role as an inter-
face between a computer and the public switched telephone network via a modem.

Receiver Side

Incoming data to the ACIA is handled by three pins: RxD, RxCLK, DCDx. Like all
other inputs and outputs to the ACIA, these are TTL-level compatible signals. The
RxD (receiver data input) pin receives serial data from the transmission path to which
the ACIA is connected. The idle (mark) state at this pin is a TTL logical 1 level. A
receiver clock is provided at the RxCLK (receiver clock) input pin by the systems
designer. The RxCLK clock must be either the same, 16, or 64 times the rate at
which bits are received at the data input terminal. Many modern ACIAs include
on-chip receiver and transmitter clocks, relieving the system designer of the necessity
of providing an additional external oscillator.

The third and last component of the receiver group is an active-low DCD*
(data carrier detect) input. DCDx is intended for use in conjunction with a modem
and, when low, indicates to the ACIA that the incoming data is valid. When inactive-
high, DCD* indicates that the incoming data might be erroneous. This situation may
arise if the level (i.e., signal strength) of the data received at the end of a telephone
line drops below a predetermined value or the connection itself is broken.

Transmitter Side

The transmitter side of the ACIA comprises four pins: TxCLK, TxD, RTS#*, and
CTS#. The transmitter clock input (TxCLK) provides a timing signal from which the
ACIA derives the timing of the transmitted signal elements. In most applications of
the ACIA, the transmitter and receiver clocks are connected together and a common
oscillator used for both transmitter and receiver sides of the ACIA. Serial data is
transmitted from the TxD (transmit data) pin of the ACIA, with a logical one level
representing the idle (mark) state.

An active-low request to send (RTS*) output indicates that the ACIA is ready
to transmit information. This output is set or cleared under software control and can
be used to switch on any equipment needed to transmit the serial data over some
data link. Some use it to switch on a cassette recorder when the ACIA is interfaced
to a magnetic tape recording system.

An active-low clear to send (CTS#) input indicates to the transmitter side of the
ACIA that the external equipment used to transmit the serial data is ready. When
negated, this input inhibits the transmission of data. CTS* is a modem signal that
indicates that the transmitter carrier is present and that transmission may go ahead.

9.2 Asynchronous Communications Interface Adaptor (ACIA) 639

Operation of the 6850 ACIA

The software model of the 6850 has four user-accessible registers, as defined in table
9.2. These registers are a transmit data register (TDR), a receive data register (RDR),
a system control register (CR), and a system status register (SR). As there are four
registers and yet the ACIA has only a single register-select input, RS, a way must be
found to distinguish between registers. The ACIA uses the R/W input to make this
distinction. Two registers are read-only (i.e., RDR, SR) and two are write-only (TDR,
CR). Although a perfectly logical, indeed an elegant, thing to do, I do not like it. I
am perfectly happy to accept read-only registers, but I am suspicious of the write-
only variety because the contents of a write-only register are impossible to verify.
Suppose a program with a bug executed an unintended write to a write-only register.
The change cannot be detected by reading back the contents of the register.

Table 9.2 also gives the address of each register, assuming that the base
address of the ACIA is $00 E001 and that it is selected by LDS*. The purpose of this
exercise is twofold: it shows that the address of the lower-order byte is odd and that
the pairs of read-only and write-only registers are separated by two (i.e, $00 E001
and $00 E003).

Control Register

Because the ACIA is a versatile device and can be operated in any of several differ-
ent modes, the control register permits the programmer to define its operational
characteristics. This job can even be done dynamically if the need ever arises. Table
9.3 shows how the 8 bits of the control register are grouped into four logical fields.

Bits CRO and CR1 determine the ratio between the transmitted or received bit
rates and the transmitter and receiver clocks, respectively. The clocks operate at the
same, 16, or 64 times the data rate. Most applications of the 6850 employ a receiver/
transmitter clock at 16 times the data rate with CRI =0 and CRO = 1. Setting
CR1 = CR2 =1 is a special case and serves as a software reset of the ACIA. A
software reset clears all internal status bits, with the exception of CTS* and DCDx.
A software reset to the 6850 is invariably carried out during the initialization phase
of the host processor’s reset procedures.

The word-select field, bits CR2, CR3, and CR4, determines the format of the

TABLE 9.2 Register-selection scheme of the 6850 ACIA

ADDRESS RS R/W REGISTER TYPE REGISTER FUNCTION

00 E001 0 0 Write only Control register (CR)
00 E001 0 1 Read only Status register (SR)
00 E003 1 0 Write only Transmit data register (TDR)
00 E003 1 1 Read only Receive data register (RDR)

NOTE: Base address of ACIA = $00 E001.

TABLE 9.3 Structure of the ACIA’s control register
BIT CR7 CRé6 CR5 CR4 CR3 CR2 CR1 CRO
Function | Receiver | Transmitter control Word select Counter division
interrupt
enable

CR1 CRO DIVISION RATIO
0 0 1
0 1 16
1 0 64
1 1 Master reset

CR4 CR3 CR2 WORD SELECT

DATA WORD STOP TOTAL
LENGTH PARITY BITS BITS

0 0 0 7 Even 2 11
(0] 0 1 7 Odd 2 11
0 1 0 7 Even 1 10
0 1 1 7 Odd 1 10
1 0 0 8 None 2 11
1 0 1 8 None 1 10
1 1 0 8 Even 1 11
1 1 1 8 Odd 1 11

CRé6 CR5 TRANSMITTER CONTROL

RTS* TRANSMITTER INTERRUPT

o 0 Low (0) Disabled
o) 1 Low (0) Enabled
1 0 High (1) Disabled
1 1 Low (0) Disabled and break

CR7 RECEIVER INTERRUPT ENABLE
o Receiver may not interrupt
1 Receiver may interrupt

9.2 Asynchronous Communications Interface Adaptor (ACIA) 641

received or transmitted characters. The eight possible data formats are given in table
9.3. Note that these bits also enable the type of parity (if any) and the number of
stop bits to be defined under software control, which is one of the nice features of
a programmable peripheral. Possibly the most common data format for the trans-
mission of information between a processor and a CRT terminal is: start bit + 7
data bits + even parity + 1 stop bit. The corresponding value of CR4, CR3, CR2 is
0,10.

The transmitter control field, CR5 and CR6, selects the state of the active-low
request to send (RTS#*) output and determines whether or not the transmitter section
of the ACIA may generate an interrupt by asserting its IRQ* output. In most
systems, RTS#* is active-low whenever the ACIA is transmitting, because RTS* is
used to activate equipment connected to the ACIA. The programming of the trans-
mitter interrupt enable, and for that matter the receiver interrupt enable, is very much
a function of the operating mode of the ACIA. If the ACIA is operated in a polled-
data mode, interrupts are not necessary.

If the transmitter interrupt is enabled, an interrupt is generated by the transmit-
ter whenever the transmit data register (TDR) is empty, signifying the need for new
data from the CPU. When the ACIA’s clear to send (CTSx) input is inactive-high,
the TDR empty flag of the status register is held low, inhibiting any transmitter
interrupt.

Setting both CR6 and CRS5 to a logical 1 simultaneously creates a special case.
When both these bits are high, a break is transmitted by the transmitter data output
pin. A break is a condition in which the transmitter output is held at the active level
(i.e, space or TTL logical zero) continuously. This state may be employed to force an
interrupt at a distant receiver, because the asynchronous serial format precludes the
existence of a space level for longer than about ten bit periods. The term break
originates from the old current-loop data transmission system when a break was
affected by disrupting (i.e., breaking) the flow of current round a loop.

The receiver interrupt enable field consists of 1 bit, CR7, which enables the gener-
ation of interrupts by the reviever when it is set (CR7 = 1) and disables receiver
interrupts when it is clear (CR7 = 0). The receiver asserts its IRQ# output, assuming
CR7 = 1, when the receiver data register full (RDRF) bit of the status register is set,
indicating the presence of a new data character ready for the CPU to read. Two
other circumstances also force a receiver interrupt. An overrun (see later) sets the
RDRF bit and generates an interrupt. Finally, a receiver interrupt can also be gener-
ated by a low-to-high transition at the active-low data carrier detect (DCD#*) input,
signifying a loss of the carrier from a modem. Note that CR7 is a composite interrupt
enable bit and enables all the three forms of receiver interrupt described previously.
To enable either an interrupt caused by the RDR being full or an interrupt caused by
a positive transition at the DCD#* pin alone is impossible.

Status Register

The 8 bits of the read-only status register are depicted in table 9.4 and serve to
indicate the status of both the transmitter and receiver portions of the ACIA at any
instant.

642

CHAPTER 9 The Serial Input/Output Interface

TABLE 9.4 Format of the status register

BIT SR7 SRé SR5 SR4 SR3 SR2 SR1 SRoO

Function IRQ PE OVRN FE CTS DCD TDRE RDRF

SRO—Receiver Data Register Full (RDRF) When set, the RDRF bit indi-
cates that the receiver data register (RDR) is full and a new word has been received.
If the receiver interrupt is enabled by CR7 = 1, a logical one in SRO also sets the
interrupt status bit SR7 (i.e., IRQ). The RDRF bit is cleared either by reading the data
in the receiver data register or by carrying out a software reset on the control
register. Whenever the data carrier detect (DCD+) input is inactive-high, the RDRF
bit remains clamped at a logical zero, indicating the absence of any valid input.

SR1—Transmitter Data Register Empty (TDRE) The TDRE bit is the
transmitter counterpart of the RDRF bit, SRO. A logical 1 in SR1 indicates that the
contents of the transmit data register (TDR) have been sent to the transmitter and
that the register is now ready to transmit new data. TDRE is cleared either by
loading the transmit data register or by performing a software reset. If the transmit-
ter interrupt is enabled, a logical one in bit SR1 (i.e, TDRE) also sets bit SR7 of the
status word. Note again that SR7 is a composite interrupt bit because it is also set by
an interrupt originating from the receiver side of the ACIA. If the clear to send
(CTS%) input is inactive-high, the TDRE bit is held low, indicating that the terminal
equipment is not ready for data.

SR2—Data Carrier Detect (DCD) This status bit, associated with the
receiver side of the ACIA, is normally employed when the ACIA is connected to the
telephone network via a modem. Whenever the DCD# input to the ACIA is
inactive-high, SR2 is set. A logical one on the DCD= line generally signifies that the
incoming serial data is faulty, which also has the effect of clearing the SRO (i.e.,
RDREF) bit, as possible erroneous input should not be interpreted as valid data.

When the DCD#* input makes a low-to-high transition, not only is SR2 set but
the composite interrupt request bit, SR7, is also set if the receiver interrupt is
enabled. Note that SR2 remains set even if the DCD# input later returns active-low.
This action traps any occurrence of DCD+ high, even if it goes high only briefly. To
clear SR2, the CPU must read the contents of the status register and then the con-
tents of the data register.

SR3—Clear to Send (CTS) The CTS* bit directly reflects the status of the
CTS* input on the ACIA’s transmitter side. An active-low level on the CTS# input
indicates that the transmitting device (modem, paper tape punch, teletype, cassette
recorder, etc.) is ready to receive serial data from the ACIA. If the CTS* input and
therefore the CTS# status bit are high, the transmit data register empty bit, SR, is
inhibited (clamped at a logical zero) and no data may be transmitted by the ACIA.
Unlike the DCD= status bit, the logical value of the CTS# status bit is determined
only by the CTS# input and is not affected by any software operation on the ACIA.

9.2 Asynchronous Communications Interface Adaptor (ACIA) 643

SR4—Framing Error (FE) A framing error is detected by the absence of a
stop bit and indicates a synchronization (i.e., timing) error, a faulty transmission, or a
break condition. The framing error status bit, SR4, is set whenever the ACIA deter-
mines that a received character is incorrectly framed by a start bit and a stop bit. The
framing error status bit is automatically cleared or set during the receiver data trans-
fer time and is present throughout the time that the associated character is available.
In other words, an FE bit is generated for each character received and a new charac-
ter overwrites the old one’s FE bit.

SR5—Receiver Overrun (OVRN) The receiver overrun status bit is set
when a character is received by the ACIA but is not read by the CPU before a
subsequent character is received, overwriting the last character, which is now lost.
Consequently, the receiver overrun bit indicates that one or more characters in the
data stream have been lost. The OVRN status bit is set at the midpoint of the last bit
of the second character received in succession without a read of the RDR having
occurred. Synchronization of the incoming data is not affected by an overrun error—
the error is due to the CPU not having read a character, rather than by any fault in
the transmission and reception process. The overrun bit is cleared after reading data
from the RDR or by a software reset.

SR6~—Parity Error (PE) The parity error status bit, SR6, is set whenever the
received parity bit in the current character does not match the parity bit of the
character generated locally in the ACIA from the received data bits. Odd or even
parity may be selected by writing the appropriate code into bits CR2, CR3, and CR4
of the control register. If no parity is selected, then both the transmitter parity
generator and receiver parity checker are disabled. Once a parity error has been
detected and the parity error status bit set, it remains set as long as the erroneous
data remains in the receiver register.

SR7—Interrupt Request (IRQ) The interrupt request status bit, SR7, is a
composite active-high (note!) interrupt request flag, and is set whenever the ACIA
wishes to interrupt the CPU, for whatever reason. The IRQ bit is set active-high by
any of the following events:

1. Receiver data register full (SRO set) and receiver interrupt enabled.

2. Transmitter data register empty (SR1 set) and transmitter interrupt enabled.

3. Data carrier detect status bit (SR2) set and receiver interrupt enabled.

Whenever SR?7 is active-high, the active-low open-drain IRQ# output from the ACIA
is pulled low. The IRQ bit is cleared by a read from the RDR, or by a write to the
TDR, or by a software master reset.

Using the 6850 ACIA

The most daunting thing about many microprocessor interface chips is their sheer
complexity. Often this complexity is more imaginary than real, because such periph-
erals are usually operated in only one of the many different modes that are software

CHAPTER 9 The Serial Input/Output Interface

selectable. This fact is particularly true of the 6850 ACIA. Figure 9.8 shows how the
6850 is operated in a minimal mode. Only its serial data input (RxD) and output
(TxD) are connected to an external system. The request to send (RTS#) output is left
unconnected and clear to send (CTSx) and data carrier detect (DCDx) are both
strapped to ground at the ACIA.

In a minimal (and noninterrupt) mode, bits 2 to 7 of the status register can be
ignored. Of course, the error-detecting facilities of the ACIA are therefore thrown
away. The software necessary to drive the ACIA in this minimal mode consists of
three subroutines: an initialization, an input, and an output routine:

ACIAC EQU $E0001 Address of control/status register
ACIAD EQU ACIAC+2 Address of data register

RDRF EQU 0 Receiver data register full

TDRE EQU 1 Transmitter data register empty

INITIALIZE MOVE.B # %00000011,ACIAC Reset the ACIA
MOVE.B # %00011001,ACIAC Set up control word—disable

RTS interrupts, RTS* low, 8 data
bits, even parity, 1 stop bit,
16 x clock
INPUT BTST.B # RDRF,ACIAC Test receiver status
BEQ INPUT Poll until receiver has data
MOVE.B ACIAD,DO Put data in DO
RTS
QUTPUT BTST.B #TDRE,ACIAC Test transmitter status
BEQ OUTPUT Poll until transmitter ready for data
MOVE.B DO,ACIAD Transmit the data
RTS

The INITIALIZE routine is called once before either input or output is carried
out and has the effect of executing a software reset on the ACIA followed by setting
up its control register. The control word %00011001 (see table 9.3) defines an 8-bit
word with even parity and a clock rate (TxCLK, RxCLK) 16 times the data rate of
the transmitted and received data.

The INPUT and OUTPUT routines are both entirely straightforward. Each
tests the appropriate status bit and then reads data from or writes data to the ACIA’s
data register.

It is also possible to operate the ACIA in a minimal interrupt-driven mode. The
IRQ=* output is connected to one of the 68000’s seven levels of interrupt request
input and arrangements are made to supply the CPU with VPA# during an interrupt
acknowledge cycle. Both transmitter and receiver interrupts are enabled by writing
1, 0, 1 into bits CR7, CR6, CR5 of the status register.

When a transmitter or receiver interrupt is initiated, it is still necessary to
examine the RDRF and TDRE bits of the status register to determine that the ACIA
did indeed request the interrupt and to separate transmitter and receiver requests for
service. The effect of interrupt-driven I/O is to eliminate the time-wasting polling
routines required by programmed 1/O.

Figure 9.9 shows how the ACIA can be operated in a more sophisticated mode.

9.2 Asynchronous Communications Interface Adaptor (ACIA)

FIGURE 9.8 Minimal serial interface using the 6850 ACIA

CPU
interface

TTL levels

RS232C levels

645

o

v

RS232C

RTS*——> RTS*

CTS* [«

DCD*

Status register

[---[TDRE[RDRF]

TxCLK RxCLK
2 2

Baud rate
generator

—e—gnd

A

o

Electrical

interface

L

gnd

.

® |data link
.
\

Connector

FIGURE 9.9 General-purpose serial interface using the 6850 ACIA

CcPU
interface

6850
ACIA

TxD
RTS*
CTs*

RxD

DCD*

[ra]PEJOVRN]FE[CTS]DCD [TDRE[RDRF]

\ 4

RS232C
data link

Y

TxCLK RxCLK
2

Baud rate generator

—>
Do
o]

>0
o}

Electrical

interface

gnd —e—

Py
—@
— @

2

Py
—@

Py

4

Py

9
P

K

Connector

CHAPTER 9 The Serial Input/Output Interface

The reader may be tempted to ask, Why bother with a complex operating mode if
the 6850 works quite happily in a basic mode? The answer is that the operating
mode in figure 9.9 provides more facilities than the basic mode of figure 9.8.

In Figure 9.9 the transmitter side of the ACIA sends an RTS* signal and
receives a CTS* signal from the remote terminal equipment. Now the remote
equipment is able to say, “I am ready to receive your data,” by asserting CTS*. In
the cut-down mode of figure 9.8, the ACIA simply sends data and hopes for the
best.

Similarly, the receiver side of the ACIA uses the data carrier detect (DCDx)
input to signal the host computer that the receiver circuit us in a position to receive
data. If DCDx* is negated, the terminal equipment is unable to send data to the
ACIA.

The software necessary to receive data when operating the 6850 in its more
sophisticated mode is considerably more complex than that of the previous example.
Provision for a full input routine is not possible here, as such a routine would include
recovery procedures from the errors detected by the 6850 ACIA. These procedures
are, of course, dependent on the nature of the system and the protocol used to move
data between a transmitter and receiver. However, the following fragment of an
input routine gives some idea of how the 6850's status register is used:

ACIAC EQU ${ACIA address)

ACIAD EQU ACIAC+2

RDRF EQU 0 Receiver_data_register_full

TDRE EQU 1 Transmitter_data_register_empty

DCD EQU 2 Data_carrier_detect

CTS EQU 3 Clear_to_send

FE EQU 4 Framing_error

OVRN EQU 5 Over_run

PE EQU 6 Parity_error

*

INPUT MOVE.B ACIAC,DO Get status from ACIA
BTST #RDRF,DO Test for received character
BNE.S ERROR_CHECK If character received, then test SR
BTST #DCD,DO Else test for loss of signal
BEQ INPUT Repeat loop while CTS clear
BRA.S DCD_ERROR Else deal with loss of signal

ERROR_CHECK BTST #FE,DO Test for framing error
BNE.S FE_ERROR If framing error, deal with it
BTST # OVRN,DO Test for overrun
BNE.S OVRN_ERROR If overrun, deal with it
BTST #PE,DO Test for parity error
BNE.S PE_ERROR If parity error, deal with it
MOVE.B ACIAD,DO Load the input into DO
BRA.S EXIT Return

DCD_ERROR Deal with loss of signal
BRA.S EXIT

FE_ERROR Deal with framing error
BRA.S EXIT

OVRN_ERROR Deal with overrun error
BRA.S EXIT

PE_ERROR Deal with parity error

EXIT RTS

9.3 The 68681 DUART 647

9.3 THE 68681 DUART

The 6850 ACIA is a first-generation interface device designed in the 1970s to work
with the 8-bit 6800 microprocessor and is now rather outdated (although it is still
widely used). Today’s designers would rather implement an asynchronous serial
interface with a more modern component, such as the 68681 DUART (dual universal
asynchronous receiver/transmitter). The 68681 (from now on we will just call it
“DUART") performs the same basic functions as a pair of 6850s plus a baud-rate
generator. Designers prefer to use the DUART for the following reasons:

1. The DUART provides two independent asynchronous serial channels and
therefore replaces two 6850 ACIAs.

2. The DUART has a full 68000 asynchronous bus interface, which means
that it supports asynchronous data transfers and can supply a vector number
during an interrupt acknowledge cycle.

3. The DUART has an on-chip programmable baud-rate generator, which
saves both the cost and board space of a separate baud-rate generator. More-
over, the DUART's baud-rate generator can be programmed simply by loading
an appropriate value into a clock select register. This feature makes it very easy
to connect a system with a DUART to a communications system with an
unknown baud rate. Communications systems based on the 6850 have to
change their baud rate by altering links on the board, making it tedious to
change the baud rate frequently. Note that the DUART can receive and trans-
mit at different baud rates (as can the 6850).

4. The DUART has a quadruple buffered input which means that up to four
characters can be received in a burst before the host processor has to read the
input stream. The host computer has to read each character from a 6850 as it is
received (otherwise an overrun will occur and characters will be lost). Similarly,
the DUART has a double-buffered output, permitting one character to be trans-
mitted while another is being loaded by the CPU.

5. The DUART has 14 I/O pins (6 input, 8 output) that can be used as
modem-control pins, clock input and outputs, or as general-purpose input/
output pins.

6. The 6850 has just one operating mode. The DUART can support several
modes (e.g., a self-test loopback mode).

Figure 9.10 illustrates the internal organization of a 68681 DUART.

Since the 68681 is so much better than the 6850, why, then, have we not used
it to replace the 6850 in this chapter? The answer to this question is very simple.
The 6850 is still widely used and is very much easier to understand than the more
versatile DUART. However, since the DUART has become a standard in 68000-
based systems, we cannot neglect it. The DUART is described in Microprocessor
Tnterfacing and the 68000 (see the bibliography), so the material is not repeated here.

648 CHAPTER 9 The Serial Input/Output Interface

FIGURE 9.10 The 68681 DUART

DTACK*4¢—
R/W*——
CS*——» Internal control logic
RESET*—»f

RS1-RS4

Timing logic
x1/CLK
Crystal
oscillator
x2 >
Baud-rate
generator

Clock selectors

Processor interface External interface

Counter/timer

a8

Channel A

2-character
Tx buffer —» TxDA

nternal data bus

A 4-character |/——RxDA

Rx buffer

Data bus
buffer

3

Channel B

2-character
Tx buffer —»TxDB

4-character l«——RxDB

Interrupt Rx buffer
control
IRQ*«—— logic
IACK* —» I
Input port
Change of
state IPO - IP5
v detectors (4)
cc >
gnd—»

B!

Output port

9.3 The 68681 DUART 649

One way of approaching the DUART is to ignore its sophisticated functions and to
treat it as an advanced ACIA. We will do this and describe how the DUART can be
interfaced to a 68000 without going into fine detail. In short, we will treat the
DUART as a black box.

The DUART’s Registers

The DUART has 16 addressable registers, as illustrated in figure 9.11. Some registers
are read-only, some are write-only, and some are read/write. For our current pur-
poses, we concentrate on the DUART's five control registers that must be config-
ured before it can be used as a transmitter or receiver (the 6850 has just a single
control register). Note that some registers are global and affect the operation of both
the DUART's serial channels, whereas others are local to channel A or to channel B
(in what follows, we use channel A registers). These five control registers are: MR1A
(master register 1), MR2A (master register 2), CSRA (clock select register) CRA
(command register), and ACR (auxiliary control register). Note that MR1A and
MR2A share the same address. After a reset, MR1A is selected at the base address of
the DUART. When MRIA is loaded with data by the host processor, MR2A is
automatically selected at the same address (you can access MRIA again only by
resetting the DUART or by executing a special select MR1A command.

Figure 9.12 provides a simplified extract from the DUART’s data sheet that
describes the five control registers and the status register. Modes of no interest to us
here, such as the DUART's parallel I/O capabilities, have not been included in figure
9.12. The following notes provide sufficient details about the DUART's registers to
enable the reader to use it in its basic operating mode.

The auxiliary control register, ACR, selects the DUART's clock source (internal or
external), selects its baud-rate set (there are two sets—setting ACR, to 0 selects set 1
and setting ACR, to 1 selects set 2), and controls certain parallel input pins. For our
purposes, ACR can be loaded with $80 (to select baud-rate set 2) and ignored.

The clock-select register(s), CSRA and CSRB, permit the programmer to select the
DUART's baud rate (CSRA selects the channel A baud rate and CSRB the channel B
baud rate). Figure 9.12 demonstrates that it is possible to select independent baud
rates for transmission and reception. The values shown here can be loaded into the
clock-select register to select the following popular baud rates (for both transmission
and reception).

VALUE BAUD RATE

44, 300
55, 600
66,, 1,200
88, 2,400
9., 4,800
BB,, 9,600
cC 19,200

CHAPTER 9 The Serial Input/Output Interface

650

*'SpUBWWOD pPa1abBuil SSAIPPY 4«
‘paBueyd aq os|e Aew sjualu0d 19)siBay ‘siajorieyd Jo uoRdaaal 10 UOISSIWISURI] }01100U] 9|GISSOd pue $109)4e palisapun
ul }nsal [|Im uoneoo| siyl Buipeay ‘peas 8q Jou pjnoys pue | HyNa aYy} jo Buiisal A101oey 10§ Pasn S| UOIIBIO| SSBIPPE SIY] «

xxpUBWIWOD 18sa1 1ig | (HJO) 4015169y «xPUBWIWOD J33uN02-dO1S l l L l
«xpuBWIWOD 188 g pod indinp »xPUBWIWOY 131UNOJ-LIBIS 0 L l L

(4Dd0) J91s16a1 uoneinbyuoo wod IndinQ (payolejun) uod induj L 0 l L
(4AI) 18181634 10109A-1dnJIBIY| (YA 19151634 10108A-1dNLIBIY| 0 0 L L
(ag1) g48ynq Japiwisuel | (88y) g 13}jnq 18A1333Y L L 0 L
(g492) g Je1s16a1 puewwo) «SS8%0e J0U 0 0 L 0 L
(g4S2) g 19151684 108)9s-390|) (84S) gJoaisibal smels l 0 0 l
(824N ‘'9LHIN) g 1a1sibalapopy (824N ‘'GLHIN) g 1918161 apopy 0 0 0 L
(47119) 19)s16a1 10MO| JaWIY/IBIUNOY (412) 191UN09 JO §S71UBLIND :9pOW 48JUN0D L l L 0
(4NLD) 18)s16a1 1addn Jawiyi81un0) (4N2) 19)uUN02 JO SN JUSLIND :apOW J19IUN0Y 0 L L 0
(YA Je1s1B6au ysew ydnuisiu) (yst) 19381681 snyeys 1dnuiaiu) l 0 l 0
(4OV) 193s16a4 j013u00 Asejixny (4Od!) 19)s1604 8bueyo pod indu) 0 0 l 0
(val) V layynqg Janiwisued | (vau) V 18}4nq JaAl8day L L 0 0
(wH2) v 48151631 puewwo) «SS8208 J0U 0Q 0 L 0 0
(vdS2) v 4e1s160.1109]98-300() (vys) v J81siBai smeig L 0 0 0
(VZH 'V LHW) viaisiBaiapoy | (VZHW ‘VLHW) v JaisiBalapoiy 00|00

(0 = »xMWH) 83IM (L = «MVH) pesy LSH|¢SH | ESYH | vSH

sJ4a3s18a4 s, | yvNAd 94l

11°6 3WNOI

9.3 The 68681 DUART 651

Each baud-rate value loaded into a clock-select register consists of two 4-bit
values (bits 0—3 select the transmitter baud rate and bits 4—7 select the receiver baud
rate). For example, the instruction MOVEB # $B8,CSRA selects a receive rate of
9,600 baud and a transmit rate of 2,400 baud.

The channel mode control registers define the operating mode of the DUART
(MR1A, MR2A for channel A and MR1B, MR2B for channel B). Figure 9.12 pro-
vides a simplified account of these bits. To operate the DUART in its normal, 8-bit
character mode with no parity, 1 stop bit, and no modem control functions activated,
MRI1A is loaded with 13 , and MR2A, with 07 ,. Remember that these registers
share the same address and that MR2A is selected automatically after MR1A has
been loaded—that is,

MR1A EQU DUART_BASE
MR2A EQU MR1A MR1A, MR2A have same address
MOVE.B #$13 MR1A Load MR1A—no parity, 8 bits
MOVE.B # $07, MR2A Now load MR2A—normal mode, 1 stop bit

The command registers (CRA and CRB) permit the programmer to enable and
disable a channel's receiver or transmitter and to issue certain commands to the
DUART. The command CRA(6 : 4) = 001 resets the master register pointer to
MRIA (since MR2A is automatically selected after MR1A has been loaded). You can
load CRA with 0A, to disable both channels during its setting up phase and then
load it with 05, to enable its transmitter and receiver ports once its other registers
have been set up.

The DUART's status registers (SRA and SRB) are very similar to their 6850
counterpart. The major additions are SRA,, which detects that a break has been
received, SRA, (TxEMT), which indicates that the transmitter buffer is empty (ie.
there are no characters in the DUART's buffer waiting to be transmitted), and SRA,
(FFULL), which indicates that the receiver buffer is full (there are four received char-
acters waiting to be read). You can, of course, forget about these new bits and
operate the DUART exactly like the ACIA just by using the TxRDY and RxRDY
bits of its status register.

The difference between the status bits FFULL and TxRDY is that the FFULL
flag is applied to the whole receiver buffer, whereas RxRDY tells us that there is at
least one free place in the receiver buffer. Similarly, TXEMT tells us that there is no
character in the transmitter buffer and that the buffer is completely empty, whereas
TxRDY tells us that the DUART is ready for another character.

The DUART has sophisticated interrupt control and handling facilities (figure
9.13). The interrupt vector register, IVR, provides a vector number when the DUART
generates an interrupt and receives an IACK response from the 68000. If the IVR has
not been loaded by the programmer since the last time the DUART was reset, the
DUART supplies an uninitialized vector number during an IACK cycle.

The DUART has two interrupt control registers with identical formats: ISR is
an interrupt status register whose bits are set when “interrupt-generating” activities
take place. IMR is an interrupt mask register whose bits are set by the programmer to
enable an interrupt or cleared to mask the interrupt. For example, ISR, is set if

652 CHAPTER 9 The Serial Input/Output Interface

FIGURE 9.12 The DUART's control registers

Clock-select register A (CSRA)

Receiver-clock select Transmitter-clock select
Bit7 Bit 6 Bit5 Bit4 - Bit3 Bit 2 Bit 1 Bit0
Baud rate Baud rate
Set 1 Set 2 Set 1 Set 2
ACRDbit7=0 ACRbit7=1 ACRbit7=0 ACRbit7 =1
0000 50 75 0000 50 75
0001 110 110 0001 110 110
0010 1345 134.5 0010 134.5 134.5
0011 200 150 0011 200 150
0100 300 300 0100 300 300
0101 600 600 0101 600 600
0110 1200 1200 0110 1200 1200
0111 1050 2000 0111 1050 2000
1000 2400 2400 1000 2400 2400
1001 4800 4800 1001 4800 4800
1010 7200 1800 1010 7200 1800
1011 9600 9600 1011 9600 9600
1100 38.4k 19.2k 1100 38.4k 19.2k
Channel A mode register 1 (MR1A) and channel B mode register 1 (MR1B)
Rx RTS Rx IRQ* Error : . Bits-per-
control select mode Parity mode Parity type character
Bit7 Bit6 Bit5 Bit4 Bit3 Bit 2 Bit1 Bit0

S Force pari

01 = Force parity %r= If)owty
10 = No parity 1 = High

11 = Multidrop mode*}-— — — — = — —

Multidrop mode
0 = Data
1 = Address

*The parity bit is used as the address/data bit in multidrop mode.
Channel A command register (CRA) and channel B command register (CRB)

u’s\‘:c;* Miscellaneous commands Transmitter commands Receiver commands
Bit7 | Bit6 Bit 5 Bit4 Bit 3 Bit 2 Bit 1 Bit 0
X

tat 11 Don'tuse, 11 Don'tuse,

101 Reset channel’s break- indeterminate indeterminate
change interrupt

110 Start break

111 Stop break

*Bit seven is not used and may be set to either zero or one.

Channel A status register (SRA) and channel B status register (SRB)

Received | Framing Parity Overrun
break orror error error TxEMT TxRDY FFULL RxRDY
Bit 7* Bit 6* Bit 5* Bit4 Bit 3 Bit 2 Bit 1 Bit 0
0= No - No 0=No 0=No
1= Yes 1= Yes 1= Yes
* These status bits are appended to the corresponding data character in the receive FIFO and are

valid only when the RxRDY bit is set. A read of the status register provides these bits (seven
through five) from the top of the FIFO together with bits four through zero. These bits are

cleared by a reset error status command. In character mode, they are discarded when the
corresponding data character is read from the FIFQ,

9.3 The 68681 DUART 653

Auxiliary control register (ACR)

BRG set Counter/timer Delta*** Delta*** Delta*** Delta***
Select* mode and source** IP3 IRQ* IP2 IRQ* IP1 IRQ* PO IRQ*
Bit 7 Bit 6 Bit5 Bit 4 Bit3 Bit 2 Bit 1 Bit 0

| Mode Clock source 0 = Disabled|0 = Disabled|0 = Disabled|0 = Disabled
0 Counter External (IP2)**** 1 = Enabled |1 = Enabled {1 = Enabled |1 = Enabled
1

Counter TxCA - 1X clock of
channel A
transmitter

010 Counter TxCB - 1X clock of

channel B
transmitter

011 Counter Crystal or external
clock (X1/CLK)
divided by 16

100 Timer External (IP2)****

101 Timer External (IP2)
divided by 16****

110 Timer Crystal or external
clock (X1/CLK)

111 Timer Crystal or external
clock (X1/CLK)
divided by 16

* Should only be changed after both channels have been reset and are disabled.
** Should only be altered while the counter/timer is not in use (i.e., stopped if in counter mode,
output and/or interrupt masked if in timer mode).
*** Delta is equivalent to change-of-state.

**** |n these modes, because IP2 is used for the counter/timer clock input, it is not available for use

as the channel B receiver-clock input.

4

Channel A mode register 2 (MR2A) and channel B mode register 2 (MR2B)

CTS
Channel mode Tx RTS enable Stop bit length
control .
transmitter
Bit7 Bit6 Bit5 Bit4 Bit 3 Bit 2 gi_] gi_o
6-8 bits/ 5 bits/
character character

0= 0.563 1.063
Local loopback 1= 0.625 1.125
Remote loopback 0= 0.688 1.188
1= 0.750 1.250
0= 0.813 1.313
1= 0.875 1.375
0 0.938 1.438
11 000 1.500
NOTE: 0= .563 1.563
If an external 1X clock is used for the (9) 1001= 1.625 1.625
transmitter, MR2 bit 3 = 0 selects one stop (A) 1010= 1.688 1.688
bit and MR2 bit 3 = 1 selects two stop bits (B) 1011= 1.750 1.750
to be transmitted. (C) 1100= 1.813 1.813
(D) 1101= 1.875 1.875
(E) 1110= 1.938 1.938
(F) 1111= 2.000 2.000

654

CHAPTER 9 The Serial Input/Output Interface

FIGURE 9.13 The DUART's interrupt control registers

Interrupt vector register IVR

Interrupt vector bits D7 — DO

Interrupt status register ISR

7 6 5 4 3 2 1 0
Input Delta RxRDYB/ | TxRDYB Counter/ Delta RxRDYA/ | TxRDYA
port break B FFULLB timer break A FFULLA
change
Interrupt mark register IMR
7 6 5 4 3 2 1 0
Input Delta RxRDYB/ | TxRDYB Counter/ Delta RxRDYA/ | TxRDYA
port break B FFULLB timer break A FFULLA
change
NOTE:
RxRDY/FFULL Interrupt if RxRDY bit in status register set
TxRDY Interrupt if TxRDY bit in status register set

Bit 6 of the channel mode register (MR1A, or MR1B,) determines whether interrupt status
register bits ISR, and ISR, are set on RxRDY or FFULL. If MRIA, = 0, ISR is set on

RxRDY (i.e. at least one character received). If MR1A, = 1, ISR is set on FFULL (i.e.,

receiver buffer full).

TxRDYA is asserted to indicate that the channel A transmitter is ready for a charac-
ter. If IMR is set to 1, the DUART will generate an interrupt when channel A is
ready to transmit a character.

We said earlier that the DUART has multipurpose I/O pins, which can be used
as simple I/O pins or to perform special functions. Input pins IPO-IP5 are configured
by bits in the CSRA/B and ACR registers. These pins can be programmed to provide
inputs for the DUART's timer/counter, its baud-rate generator, and its clear to send
modem control. When MR2A, = 1, pin IPO acts as a channel A active-low clear to
send input. Similarly, IP1 can be configured as channel B’s CTS# input by setting
MR2B, to 1. If the DUART is programmed to use its CTS* pins (i.e, MRSA/B, =
1), data is not transmitted by the DUART whenever CTS* is high—that is, the
remote receiver can negate CTS* to stop the DUART sending further data. Figure
9.14 demonstrates how CTS* is used in conjunction with RTS* (see the following
discussion).

9.3 The 68681 DUART

FIGURE 9.14

Flow control and the DUART

655

X Y
DUART DUART
TxD 30 J>c {>o 31 RxD
Rep 3 —o] — om0
RTS* 29 >° e, 4>0 7 CTS*
RTS*H——o<] T o2 Rrse

Yto X XtoY
flow flow
CTS* enables the control control RTS* asserted by

transmitter. If

CTS* is negated, no
further characters
are transmitted until
CTS* is once more

asserted.

receiver when it
is ready for data.
When it cannot
receive more data,
RTS* is negated.

NOTE the following steps to configure the DUART to perform flow control:

*x Set MR2A, to 1 and MR2A, to 1 to configure OPO as
RTS output

MOVE.B
MOVE.B

L R R O R R R R IR R R R

MOVE.B

$83 MR1A
#$27 MR2A

Note that RTS* must initially be asserted

manually—after that, RTS=* is asserted

automatically whenever the receiver is ready to
receive more data. Note also that the contents

of the DUART’s output port register are
inverted before they are fed to the output

pins. That is, to assert RTS# low, it is
necessary to load a one into the appropriate

bit of the OPR.

#3%01,0PR Set OPR, to assert RTS#*

The 8-bit output port is controlled by an output port configuration register
(OPCR) and certain bits of the ACR, MR1A, MR2A, MR1B, and MR2B registers.
Output bits can be programmed as simple outputs cleared and set under programmer
control, timer and clock outputs, and status outputs. Some of the output functions

that can be selected are the following:

656 CHAPTER 9 The Serial Input/Output Interface

PIN FUNCTION ACTION

OPo RxRTSA* Asserted if channel A Rx is able to receive a character
OPo TxRTSA#* Negated if channel A Tx has nothing to transmit

OP1 RxRTSB=* Asserted if channel B Rx is able to receive a character
OP1 TxRTSB* Negated if channel B Tx has nothing to transmit
OP4 RxRDYA Asserted if channel A Rx has received a character
OP5 RxRDYB Asserted if channel B Rx has receiveda character
OPé6 TxRDYA Asserted if channel A Tx ready for data

OP7 TxRDYB Asserted if channel B Tx ready for data

Note the difference between the RxRTS* and TxRTS# functions. RxRTS* is
used by a receiver to indicate to the remote transmitter that it (the receiver) is able to
accept data. RxRTS#* is connected to the transmitter's CTS* input to perform flow
control (figure 9.14). The TxRTS* function is used to indicate to a modem that the
DUART has further data to transmit.

Programming the 68681 DUART

Once the DUART has been configured, it can be used to transmit and receive charac-
ters exactly like the 6850. The following fragment of code provides basic initial-
ization, receive, and transmit routines for the DUART.

* DUART equates
MR1A EQU 1 Mode register 1
MR2A EQU 1 Mode register 2 (same address as MR1A)
SRA EQU 3 Status register
CSRA EQU 3 Clock select register
CRA EQU 5 Command register
RBA EQU 7 Receiver buffer register (i.e., serial in)
TBA EQU 7 Transmitter buffer register (i.e., data out)
IPCR EQU 9 Input port change register
ACR EQU 9 Auxiliary control register
ISR EQU 11 Interrupt status register
IMR EQU 11 Interrupt mask register
IVR EQU 25 Interrupt vector register
*
* Initialize the DUART
*
INITIAL LEA DUART,AQ A0 points at DUART base address
*
* Note the following three instructions are not necessary
* after a hardware reset to the DUART. They are included to
* show how the DUART is reset.
*
MOVE.B #$30,CRA(A0) Reset port A transmitter
MOVE.B # $20,CRA(A0Q) Reset port A receiver
MOVE.B #$10,CRA(A0) Reset port A MR (mode register) pointer

Select baud rate, data format and operating modes by
setting up the ACR, MR1 and MR2 registers

9.3 The 68681 DUART

*
*
*

PUT_CHAR

Input_poll

*
*
*

PUT_CHAR

Output_poli

*

657

MOVE.B # $00,ACR(AQ) Select baud-rate set 1

MOVE.B #$BB,CSRA(A0) Set both Rx and Tx speeds to 9600 baud

MOVE.B #$93,MR1A(A0) Set port A to 8 bits, no parity, 1 stop bit,
enable RxRTS output

MOVE.B 4 $37, MR2A(A0) Select normal operating mode, enable
TxRTS, TxCTS, 1 stop bit

MOVE.B 4 $05,CRA(AQ) Enable port A transmitter and receiver

RTS

Input a single character from port A (polled mode) into D2

MOVEM.L DO-D1/A0,—(SP) Save working registers

LEA DUART,A0 AO points to DUART base address
MOVE.B SRA(AQ),D1 Read the port A status register

BTST # RxRDY,D1 Test receiver ready status

BEQ Input_poll UNTIL character received

MOVE.B RBA(AQ),D2 Read the character received by port A

MOVEM.L (SP)+,D0-D1/A0 Restore working registers
RTS

Transmit a single character in DO from port A (polled mode)

MOVEM.L D0-D1/A0,—(SP) Save working registers

LEA DUART,AQ A0 points to DUART base address
MOVE.B SRA(A0),D1 Read port A status register

BTST # TxRDY,D1 Test transmitter ready status

BEQ Output_poll UNTIL transmitter ready

MOVE.B DO, TBA(AQ) Transmit the character from port A

MOVEM.L (SP)+.D0-D1/A0 Restore working registers
RTS

In spite of the DUART's complexity, you can see that it may be operated in a
simple, noninterrupt-driven, character-by-character input/output mode, exactly like
the ACIA, once its registers have been set up. On at least one occasion we have
tested software written for a 6850-based system on a board with a DUART by
making the following modifications to the 6850’s I/O routines.

6850 1/O DUART 1/O
SETUP LEA ACIAA0 SETUP LEA DUART,AQ
MOVE.B 4 $03,(A0) MOVE.B #$13,(A0)
MOVE.B #$15,(A0) MOVE.B #$07,(A0)
RTS MOVE.B # $BB.2(A0)
MOVE.B 4 $05,4(A0)
RTS
LEA ACIA A0 LEA DUART,A0
INPUT BTST.B 40,0(A0) INPUT BTST.B #0,2(A0)
BNE INPUT BNE INPUT
MOVE.B 2(A0),00 MOVE.B 6(A0),D0
RTS RTS
OUTPUT BTSTB #1,0(A0) OUTPUT BTST.B #2,2(A0)
BNE OUTPUT BNE OUTPUT

MOVE.B DO0,2(A0) MOVE.B D0,6(A0)

CHAPTER 9 The Serial Input/Output Interface

658

a10

894

S

8ad
a1l

gSH

a54d

aay

adaL

N O[O 0}

,u%

5z-9a
g jsuuey)

f]

ACL—

«8S10 ¥

*VS1D [

©) 00| <

Zi
8
5
68YLOW [C
[
g
9
3

—||> (4 5
ATL+

vl
8gyLOW |2 »8S1H U

ZL *VSIY 62

—|

N| WO

,LL“

5z-8a
v [suueyy

©|ol—|m
(=2}
-
py

L [2 0€|

4dg

989 €

T [|

4dg1 23

L89890W

LdO
0d0
aaxL
vaxy

X OQD

»A0V1a
*MWH

/X ,13834

POSOIED

*GSO_ 0L
*9S0 6

«LSO (L

8ELSIVLNS

L¢Gesnse

LT 6L

sy

m_<

@[] m

(RA=TASH 114

vi

v—<

N—<
Ly
o_.<

9L

*S20I

8L

:hv.u<_lno

8ELSTIVLNS

€ €0
T oy
[oy

Ve
€€
143
LE
0€
62

o

v

5

€l

9

AG+ XVI 2L

«v0HI

8VLSTIVLNS

olswz b

/x4
8¢

50

D r~| O

I

o

z

<
=4
wn

Qz) ‘—:

sy
8oy

000890W

*2dl
+L7dI
»07di
g

a

S|2UUBYD |BIISS OMI PUB ‘NdD 00089 ® ‘L YVN B USSMIa] 30BI1U|

%m ‘.2;5

a
voq
€0g
z0q
og
00

«AJV1d
«MWY
»13S34

SI'6 IWNOH

9.4 Synchronous Serial Data Transmission 659

The interface between a DUART and both a 68000 and two serial data links is
illustrated in figure 9.15. As you can see, the DUART's 68000 interface is entirely
conventional and requires no further comment. In this case, the DUART uses its
internal baud-rate generator to supply clocks to both serial channels. The baud-rate
generator uses a 3.6864-MHz quartz crystal, which is widely available.

The serial data links each provide a request to send output and a clear to send
input to provide flow control of both transmitted and received data.

94 SYNCHRONOUS SERIAL DATA TRANSMISSION

The type of asynchronous serial data link described in section 9.1 is widely
employed to link relatively slow peripherals such as printers and VDTs with pro-
cessors. Where information has to be transferred between the individual computers
of a network, synchronous serial data transmission is a more popular choice. In a
synchronous serial data transmission system, the information is transmitted contin-
uously without gaps between adjacent groups of bits. We use the expression groups
of bits because synchronous systems can transmit entire blocks of pure binary infor-
mation at a time, rather than transmitting information as a sequence of ASCII-
encoded characters. Before continuing, we need to point out that synchronous serial
data links are often used in a much more sophisticated way than their asynchronous
counterparts, which simply move data between a processor and its peripheral. This
section covers only the basic details of a synchronous serial data link.

Two problems face the designer of a synchronous serial system. One is how to
divide the incoming data stream into individual bits and the other is how to divide
the data bits into meaningful units.

Bit Synchronization

As synchronous serial data transmission involves very long (effectively infinite)
streams of data elements, the clocks at the transmitting and receiving ends of a data
link must therefore be permanently synchronized. If a copy of the transmitter’s clock
were available at the receiver, no difficulty would be encountered in breaking up the
data stream into individual bits. As this arrangement requires an extra transmission
path between the transmitter and the receiver, it is not a popular solution to the
problem of bit synchronization.

A better solution is found by encoding the data to be transmitted in such a
way that a synchronizing signal is included with the data signal. Here, we do not
delve deeply into the ways in which this situation may be achieved but show one
popular arrangement.

The basic method of extracting a timing signal from synchronous serial data is
illustrated in figure 9.16. The serial data stream is combined with a clock signal to
give the encoded signal, which is actually transmitted over the data link. The encod-

CHAPTER 9 The Serial Input/Output Interface
FIGURE 9.16 Phase-encoded synchronous serial bit stream

0o ! 1

I

0 | 1
| |
|
|

|
|
Data stream before :
encoding ! » !
i
|

Phase encoded signal

e i . « | |
1Bit cell' | ! ! I |
Logical zero Logical one
represented by represented by -

1 transition j transition

ing algorithm is simple. A logical one is represented by a positive transition in the
center of a bit cell and a logical zero by a negative transition. This form of encoding
is called phase encoding (PE) or Manchester encoding and is widely used. At the
receiver, the incoming data can readily be split into a clock signal and a data signal.
Integrated circuits that modulate or demodulate Manchester-encoded signals are
readily available.

Word Synchronization

Having divided the incoming stream into individual data elements (i.e., bits), the next
step is to group the bits together into meaningful units. We have called these words,
although they may vary from 8 bits long to thousands of bits long. At first sight,
dividing a continuous stream of bits into individual groups of bits might appear to
be a most difficult task. Infactitisquiteaneasytasktoformbitsintowords. Here we have
deleted interword spacing in the plain text, making it harder, but not impossible, to
read. The reader examines the string of letters and looks for recognizable groups
corresponding to valid words in English. A similar technique can be applied to con-
tinuous streams of binary data. Two basic modes of operation of synchronous serial
data links exist: character oriented and bit oriented. In the former, the data stream is
divided into separate characters and in the latter it is divided into much longer blocks
of pure binary data.

Character-Oriented Data Transmission

In character-oriented data transmission systems, the information to be transmitted is
encoded in the form of (usually) ASCII characters. One of the most popular
character-oriented systems is called BISYNC, or binary synchronous data transmis-

CHAPTER 9 The Serial Input/Output Interface

FIGURE 9.16 Phase-encoded synchronous serial bit stream

0

I

I

Data stream before :
encoding ! :
I | ! !

| I]
1 1 |
] i 1
phase encodedsignat | § | 4 | F | £ F 1 L F Ty
| | :
| |
| |

— : :
1Bit cell i ' ! i |
Logical zero Logical one
represented by represented by

—t transition _+‘ transition

ing algorithm is simple. A logical one is represented by a positive transition in the
center of a bit cell and a logical zero by a negative transition. This form of encoding
is called phase encoding (PE) or Manchester encoding and is widely used. At the
receiver, the incoming data can readily be split into a clock signal and a data signal.
Integrated circuits that modulate or demodulate Manchester-encoded signals are
readily available.

Word Synchronization

Having divided the incoming stream into individual data elements (i.e., bits), the next
step is to group the bits together into meaningful units. We have called these words,
although they may vary from 8 bits long to thousands of bits long. At first sight,
dividing a continuous stream of bits into individual groups of bits might appear to
be a most difficult task. Infactitisquiteaneasytasktoformbitsintowords. Here we have
deleted interword spacing in the plain text, making it harder, but not impossible, to
read. The reader examines the string of letters and looks for recognizable groups
corresponding to valid words in English. A similar technique can be applied to con-
tinuous streams of binary data. Two basic modes of operation of synchronous serial
data links exist: character oriented and bit oriented. In the former, the data stream is
divided into separate characters and in the latter it is divided into much longer blocks
of pure binary data.

Character-Oriented Data Transmission

In character-oriented data transmission systems, the information to be transmitted is
encoded in the form of (usually) ASCII characters. One of the most popular
character-oriented systems is called BISYNC, or binary synchronous data transmis-

9.4 Synchronous Serial Data Transmission 661

sion. Take, for example, the four-character string “Alan;” it would be sent as the
sequence of four 7-bit characters. The individual letters are ASCII encoded as:

A = $41
1 =$6C
a=$%$61
n = $6E

Putting these together and reading the data stream from left to right with the first
bit representing the least significant bit of the “A,” we get:

1000001001101110000110111011

Some method is needed of identifying the beginning of a message. Once this has
been done, the bits can be divided into characters by arranging them into groups of
seven (or eight if a parity bit is used) for the duration of the message.

The ASCII code includes a number of characters specifically designed to control
the flow of data over a synchronous serial data link. One such character is SYN (as in
SYNchronization), whose code is $16, or 0010110. SYN is used to denote the begin-
ning of a message. The receiver reads the incoming bits and looks for the string
0010110, representing a SYN and therefore the start of a message. Unfortunately,
such a simple scheme is fatally flawed. The end of one character might be combined
with the neginning of the following character to create a false SYN pattern. To avoid
this situation, two SYN characters are transmitted sequentially. The receiver reads
the first SYN and then looks for the second. If the receiver does not find another
SYN, it assumes a false synchronization and continues looking for a valid SYN.

In addition to the synchronization character, the ASCII code provides other
characters, such as STX (start of text), to help the user format data into meaningful
units. However, character-oriented data transmission systems are not as popular as
bit-oriented systems and are therefore not dealt with further here.

Bit-Oriented Data Transmission

Although the ASCII code is excellent for representing text, it is ill-fitted to the
representation of pure binary data. Pure binary data can be anything from a core
dump (a block of memory) or a program in binary form to floating-point numbers.
When data is represented in character form, choosing one particular character (e.g.,
SYN) as a special marker is easy. When the data is in a pure binary form, choosing
any particular data word as a reserved marker or flag is apparently impossible. Bit-
oriented protocols (BOPs) have been devised to handle pure binary data.

Fortunately, a remarkably simple and very elegant technique can be used to
solve this problem. The beginning of each new block of data, called a frame, is
denoted by the special (i.e., unique) binary sequence 01111110. Whenever the recei-
ver detects this pattern, it knows that it has found the start (or end) of a block of

662

CHAPTER 9 The Serial Input/Output Interface

data. The special sequence 01111110 is called an opening or closing flag. Of course, we
still have the problem of what to do if we wish to send the pattern 01111110 as part
of the data stream to be transmitted. Clearly, it cannot be sent in the form it occurs
naturally, as the receiver would regard it as an opening or closing flag.

The transmitter avoids the preceding problem by a process called bit-stuffing.
Whenever the pattern 011111 is detected at the transmitter (i.e., five Is in series), the
transmitter says, “If the next two bits are a 1 followed by a 0, a spurious flag will be
created.” Therefore, the transmitter inserts (i.e., stuffs) a O after the fifth logical one in
succession in order to avoid the generation of a flag pattern. In this way, a flag can
never appear by accident in the transmitted data stream.

At the receiver, the incoming bit stream is examined and opening or closing
flags are deleted from the data stream. If the sequence 0111110 is found, the 0
following the fifth logical 1 is deleted, as it must have been inserted at the transmit-
ter. In this way, any bit pattern may be presented to the transmitter, as bit-stuffing
prevents the accidental occurrence of the opening or closing flag. Figure 9.17 illus-
trates the process of bit-stuffing.

Modern bit-oriented synchronous serial data transmission systems have largely
been standardized and use the HDLC data format. HDLC stands for high-level data
link control. Information is transmitted in the form of packets or frames, with each
packet separated by one or two flags as described previously. The format of a typical
HDLC frame is given in figure 9.18. Following the opening flag is an address field of
8 bits, which defines the address of the secondary station (or slave) in situations

FIGURE 9.17 Process of bit-stuffing

...

§Seria| data§

link
Transmitter 1 Receiver
Zero Fiag iFlag Zero
insertion insertion : :removal deletion
: !(detection
:of start
:of frame)

Example: 0111110 —— 01111100 — 0111110
0111111 — 01111101 — 0111111
01111111 — 011111011 — 01111111
Original Data with Data after
data stuffed zero deletion

zero

9.4 Synchronous Serial Data Transmission 663

FIGURE 9.18 High-level data link control format

Information
01111110 | Address | Control (optional) FCS | 01111110
Opening Closing
flag flag

where a master station may be in communication with several slaves. An address
field allows the master to send a message to one of its slaves without ambiguity.
Any slave receiving a message whose address does not match that in the address
field of a frame ignores that frame. Figure 9.19 shows the arrangement of a typical
master-slave system. Remember that we have already stated that synchronous serial
transmission systems are frequently used in more sophisticated ways than their asyn-
chronous counterparts.

Following the address field is an 8-bit control field that controls the operation
of the data link. The purpose of this field is to permit an orderly exchange of
messages and to help detect and deal with lost messages. All that need be said here
is that the control field provides the HDLC scheme with some very powerful facili-
ties that are almost entirely absent in simple synchronous serial data links described
earlier. The control field is followed by an optional data field (information field, or I
field) containing the data to be transmitted. The I field is optional because frames
may be transmitted for purely control purposes without an I field. Immediately after
the I field (or control field if the I field is absent) comes the frame check sequence,
FCS, which is a very powerful error-detecting code of 16 bits’ length that is able to

FIGURE 9.19 Master-slave data transmission

Slave Slave

Master

Data link

Slave

664 CHAPTER 9 The Serial Input/Output Interface

detect the vast majority of errors (single or multiple bit) in the preceding fields. We
are not able to go into detail about the theory of the FCS here, but the following
notes should help.

The p bits in the packet, or frame, between the opening flag and the FCS itself
are regarded as forming the coefficients of a polynomial of degree p. This polynomial
is divided by a standard polynomial using modulo two arithmetic to yield a quotient
and a 16-bit remainder. The quotient is discarded and the remainder forms the 16-bit
FCS. At the receiver, the bits between the opening flag and received FCS are divided
by the same generator polynomial to yield a local FCS. If the local FCS is the same
as the received FCS, we can assume that the frame is free from all transmission errors.
If they differ, the current frame is rejected.

Following the FCS is a closing flag, 01111110. Some arrangements require a
closing flag for the current frame to be followed by an opening flag for the next
frame. Other systems use one flag both to close the current frame and to open the
next frame.

Clearly, a synchronous system is more efficient than an asynchronous system
because of the absence of start, parity, and stop bits for each transmitted character.
However, the real advantage of a synchronous system combined with the HDLC
frame structure is its ability to control a data transmission system.

9.5 SERIAL INTERFACE STANDARDS
(RS-232 AND RS-422/RS-423)

Because of the low cost of a serial interface and transmission path, the serial data link
is used to connect a very wide range of peripherals to computer equipment. Once
only teletypes and modems were likely to be connected to a computer by serial data
links. Today, almost any peripheral, from CRT terminals to graphics tablets to disk
drives, may use serial data links. Therefore, the data link should be standardized so
that a peripheral from one manufacturer can be plugged into the serial port of a
computer from another manufacturer.

Such a serial interface standard has been created by the Electronic Industries
Association (EIA) and is known as the RS-232C serial interface.

The RS-232C Serial Interface

The EIA RS-232C standard was largely intended to link data terminal equipment
(DTE) with data communications equipment (DCE). The DCE corresponds to the
computer or terminal and the DTE corresponds to the modem or similar line
equipment. RS-232C specifies the electrical and mechanical aspects of the serial inter-
face together with the functions of the signals forming the interface. In theory, any
RS-232C-compatible DCE can be connected directly to any RS-232C-compatible
DTE. '

9.5 Serial Interface Standards (RS-232 and RS-422/RS-423) 665

Alas, the life of the computer technician is filled with time-wasting requests by
programmers to get their printer to work with their computer—both of which have
“RS-232C" serial interfaces. We put “RS-232C” in quotation marks because many
(the majority?) equipment suppliers implement their own subset of an RS-232C inter-
face. The likelihood that the subset of the RS-232C interface in the printer is incom-
patible with the subset in the computer is highly probable.

Mechanical Interface

Fortunately, the vast majority of equipment suppliers adhere to the mechanical
aspects of the RS-232C standard and use the D-type connectors illustrated in figure
9.20. This connector is available in 9-, 15-, 25-, 37-, and 50-pin versions, but only the
25-way D connector may be used with RS-232C standard serial data links. The
pinout of this connector is given in table 9.5, although we must appreciate the fact
that very few implementations of the RS-232C standard implement the full standard.

FIGURE 9.20 D-type connector

0.42in_
End L1
Male 0.38 in
*—** Female 0.31in

| [| i
Side C — in
elevation] J _fo.z in0.46L

[y
-
[0
(3]
5
4

! 11
fot | ©) %99999999999@? ® | osn

Male 1.58 in
Female 1.51 in

TABLE 9.5 Pinout of the RS$-232C 25-way connector

PIN NAME FUNCTION
1 Protective ground Electrical equipment frame and dc power ground
2 Transmitted data Serial data generated by the DTE
3 Received data Serial data generated by the DCE
4 Request to send When asserted indicates that the DTE is ready
to transmit primary data
5 Clear to send When asserted indicates that the DCE is ready
to transmit primary data
6 Data set ready When asserted indicates that the DCE is not in
a test, voice, or dial mode, that all initial
handshake, answer tone, and timing delays have
expired
7 Signal ground Common ground reference for all circuits except
protective ground
8 Received line When asserted indicates that carrier signals
signal detector are being received from the remote equipment
9 Reserved
10 Reserved
11 Unassigned
12 Secondary When asserted indicates that the secondary
received line channel data carrier signals are being received
signal detector from the remote equipment
13 Secondary clear When asserted indicates that the DCE is ready
to send to transmit secondary data
14 Secondary Low-speed secondary data channel generated by
transmitted data the DTE
15 Transmitted The signal on this line provides the DTE with
signal element signal element timing information
timing
16 Secondary Low-speed secondary channel data generated by
received data the DCE
17 Receiver signal The signal on this line provides the DTE with
element timing signal element timing information
18 Unassigned
19 Secondary request When asserted indicates that the DTE is ready
to send to transmit secondary channel data
20 Data terminal When asserted indicates that the data terminal
ready is ready
21 Signal quality When asserted indicates that the received
detector signal is probably error free; when negated
indicates that the received signal is probably
in error
22 Ring indicator When asserted indicates that modem has detected
a ringing tone on the telephone line
23 Data signal rate Selects between two possible data rates
detector
24 Transmit signal The signal on this line provides the DCE with
element timing signal element timing information
25 Unassigned

666

9.5 Serial Interface Standards (RS-232 and RS-422/RS-423) 667

Electrical Interface

The RS-232C standard is intended to provide serial communication facilities over
relatively short distances and its electrical specifications reflect this. Table 9.6 gives
the basic electrical parameters of the standard and figure 9.21 shows how the electri-
cal interface may be implemented.

The circuit of figure 9.21 uses a single-ended bipolar unterminated circuit; that
is, the circuit is single-ended (i.e., unbalanced) because the signal level to be transmit-
ted is referred to ground and one of the signal-carrying conductors is grounded at
both ends of the data link. The circuit is unterminated because no requirement exists
in the RS-232C standard to match the characteristic impedance of the receiver to that
of the transmission path.

One of the key parameters in table 9.6 is the receiver maximum input threshold
of —3 to +3 V. A space is guaranteed to be recognized if the input is more
positive than +3 V and a mark is guaranteed to be recognized if the input is more
negative than —3 V. The threshold separating mark and space levels is truly mas-
sive. Unless a transmitter can produce a voltage swing at the end of a transmission
path of greater than 6 V, the received signal falls outside the minimum requirements
of RS-232C. However, most real receivers for RS-232C signals have practical input
thresholds well below —3 to + 3 V. Therefore, as most engineers have noticed, it is
often possible to have much longer transmission paths than the standard stipulates.

Interfacing to RS-232C lines is now very easy, as the major semiconductor
manufacturers have produced suitable line drivers and receivers. Figure 9.22 gives

TABLE 9.6 EIA RS-232C electrical interface characteristic

CHARACTERISTIC VALUE
Operating mode Single ended
Maximum cable length 15 m
Maximum data rate 20 kilobaud
Driver maximum output —25V<V< 425V
voltage (open-circuit)
Driver minimum output —25V<V< —=5Vor+5V<V<+25V
voltage (loaded output)
Driver minimum output 300 Q
resistance (power off)
Driver maximum output current 500 mA
(short-circuit)
Maximum driver output slew rate 30 V/us
Receiver input resistance 3-7 kQ
Receiver input voltage —25V<V;< 425V
Receiver output state when Mark (high)

input open-circuit
Receiver maximum input threshold —3to +3V

CHAPTER 9 The Serial Input/Output Interface

FIGURE 9.21 RS-232C interface

DTE DCE
+12V +5V
L o'\T"/ T LBv s
signal signal
-12V oV
+5V +12V
TTL 0V] V\ ov ML
signal oV Twisted pair _12v signal
(not part of
Data terminal RS-232C Data communications
equipment standard) equipment

details of the 1488 quad RS-232C line driver and figure 9.23 gives details of the
1489 quad RS-232C line receiver. An example of the application of these chips is
given in figure 9.24. Note that the 1489 receiver has an input control pin that can be
used to define the amount of hysteresis at the input. We may leave this pin floating,
in which case the input switching threshold is approximately 1 V.

RS-232C Interconnection Subset

So far we have seen three forms of RS-232C interconnection: the most basic arrange-
ment of figure 9.8, the somewhat more complete circuit of figure 9.9, and the full
RS-232C interface of table 9.5. A glance at table 9.5 makes it very clear that the
RS-232C standard is aimed squarely at linking computer equipment with modems.
Consequently, many of the facilities offered by the RS-232C standard are irrelevant
to the engineer who wishes to connect a CRT terminal to a microcomputer.

Figure 9.25 shows a possible connection between two DTEs. As one DTE is
the sink for the other’s data, making the cross-connections shown in figure 9.25 is
necessary. These cross-connections are frequently made at the junction of the cable
and the connector. Such a cable linking a DTE to another DTE is called a null modem
cable. When a DTE is connected to a modem (i.e, DCE) such a crossover is not
necessary.

Many DTEs do not even use the subset of figure 9.25; for example, at the
computer end of a computer-to-printer serial data link, no request to send (RTS)
output may be provided. If the printer requires that its carrier detect input be driven
by RTS, we need to strap the printer’s carrier detect input to a logical one condition.

The 1987 Revision of RS-232C

The RS-232C was updated in 1987 because it no longer represented current practice.
Engineers were using it in ways not anticipated by those who drew up the original
standard. RS-232C has now been replaced by EIA232D. The new standard is, as we

9.5 Serial Interface Standards (RS-232 and RS-422/RS-423)

FIGURE 9.22 The 1488 quad line driver

FUNCTIONAL DESCRIPTION

The 1488 is a quad line driver that conforms to EIA specification
RS-232C. Each driver accepts one or two TTLU/DTL inputs and

| produces a high-level logic signal on its output. The high and low
logic levels on the output are defined by the positive and negative
power supplies of plus and minus 9 volts, the output levels are
guaranteed to meet the + 6-volt specification with a 3 k(2 load.

LOGIC sYMBOL

;

AIN—2 3 _Aout

B1IN—2

6
82 IN B OUT

:

10

There is an internal 300) resistor in series with the output to C1IN 8
provide current limiting in both the high and low logic levels. c2 |N1DO—C ouT
The 1488 driver is intended for use with the 1489 or 1IN 13
1489A quad line receivers. 1 :DC,_L
D T
D2 IN 12 ou
V™ =pin1
V* = pin 14
gnd = pin 7
CIRCUIT DIAGRAM
(one driver shown)
Vo .
IN1 0——-—[4—4% %
N
—— AAA—o0O0utput
\
CONNECTION DIAGRAM
Top view
v I 14pv* V-=-12V
AINI2 130 D1IN V= +12V
AOUT I3 120 D2 IN
B1IN [4 110D OUT
B2IN[5 100 C1IN
B OUT [i6 91 C2IN
gnd 07 gcouT

670 CHAPTER 9 The Serial Input/Output Interface

FIGURE 9.23 The 1489 quad line receiver

FUNCTIONAL DESCRIPTION LOGIC SYMBOL

The 1489 and 1489A are quad line receivers whose electrical characteristics 1 3

conform to EIA specification RS-232C. Each receiver has a single data input that can IN A AOUT

accept signal swings of up to + 30 V. The output of each receiver is TTL/DTL 2

compatible, and includes a 2 kQ resistor pull-up to V... An internal feedback RC.A

resistor causes the input to exhibit hysterisis so that a.c. noise immunity is 4 6

maintained at a high level even near the switching threshold. For both devices, INB B OUT

when a driver is in a low state on the output, the input may drop as low as 1.25 V 5

without affecting the output. Both devices are guaranteed to switch to the R.C.B

high state when the input voltage is below 0.75 V. Once the output has switched to 10 9

the high state, the input may rise to 1.0 V for the 1489 or 1.75 V for the INC CouT

1489A without causing a change in the output. The 1489 is guaranteed to

switch to a low output when its input reaches 1.6 V and the 1489A is R.C.C 9

guaranteed to switch to a low output when its input reaches 2.25 V. Because of the 13 11

hysterisis in switching thresholds, the devices can receive signals with IND D OUT

superimposed noise or with slow rise and fall times without generating oscillations

on the output. The threshold levels may be offset by a constant voltage by applying R.C.D 12

ad.c. bias to the response control input. A capacitor added to the response control .

input will reduce the frequency response of the receiver for applications in the Vee = pin 14

presence of high-frequency noise spikes. The companion line driver is the 1488. gnd = pin 7
CIRCUIT DIAGRAM

(one receiver)

¢ OV,
%———qOutput
Response controlo———T—«/\/w
Input r_ﬁ
7o)

@ @ @ A4

CONNECTION DIAGRAM

Top view
AINTI 141 V¢
AR.C. (|2 131 DIN
AOQUT (3 120 DR.C.
BIN(4 110 DOUT
BR.C. [[5 100 CIN
B OUT (6 9 CR.C.
gnd (7 8l CouUT

might expect, compatible with the old standard, and only slight modifications have
been made in order to match RS-232C more closely to its European equivalents
CCITT V24 and V28 and to take account of actual current practice in linking DCEs
to DTEs. The following are some of the changes to RS-232C:

1. The RS-232C pin 1, a protective ground, has been replaced by a shield. Pin
1 may be used to connect the screen of an interface cable to the frame of the

9.5 Serial Interface Standards (RS-232 and RS-422/RS-423)

FIGURE 9.24 Example of an RS-232C data link

FIGURE 9.25 Connecting two DTEs together

DTE

Ring indicator

Data terminal ready
Carrier detect
Signal ground

Data set ready
Clear to send
Request to send
Received data
Transmitted data

Protective ground

+12V
1 /
2
=D [21 1488 o3 e
T 7
12V gnd
RTS*12 4 6 4
6850 , 5| 1488 e
ACIA o
5
cTs+ 24 1489 P— .
6 3
RxD* 2 1489 4 < ®
14 Ve
8
bep* |23 8 1ag0 110« 8
7 7
gnd -
\
gnd—— ¢

671

DTE

22, 22
20 2
8 ¢ 8
7 7
6 ¢ ,6
5. 5
4, &

r 3 3 b
1 1

Ring indicator

Data terminal ready
Carrier detect
Signal ground

Data set ready
Clear to send
Request to send
Received data
Transmitted data

Protective ground

672

CHAPTER 9 The Serial Input/Output Interface

DTE; that is, pin 1 is connected to the screen at only one end of the data link
(this avoids ground-loop problems).

2. EIA232D now specifies the mechanical characteristics of the 25-pin inter-
faces. The old RS-232C specification only recommended the use of 25-pin D
connectors in an appendix.

3. Provision for local and remote loopback testing has been made by defining
three new signals (on pins 21, 18, and 25 of the D connector). Pin 21 is RL
(remote loopback) and is asserted by the DTE to tell the local DCE to instruct
the remote DCE to go into its loopback mode, allowing the local DTE to test
both DCEs and the channel linking them; that is, the remote DCE at the other
end of the data link will return signals received from the local DCE via the
communication channel. Since the data is echoed back, it is very easy to test
the operation of the data link by comparing the transmitted data with that
echoed back. Modern peripherals such as the 68681 DUART provide auto-
matic echo modes to facilitate testing. In the old RS-232C standard, pin 21 was
a signal-quality detector used by the modem to indicate when a signal was of
such a poor quality that it was no longer reliable.)

Pin 18 in the new EIA232D standard is called LL (local loopback) and acts
like pin 21, except that it establishes a loopback path through the local DCE
only. Local loopback permits the system to be tested from the local CPU to the
local DCE and back.

Pin 25 is called TM (test mode) and is asserted by the DCE to inform the
DTE that the DCE is in a test mode because it has received either RL or LL
from the local DTE or a message from the remote DCE requesting a test mode.

4. The recommendation that the RS-232C cable length be restricted to no
more than 15 m (50 ft) has been removed; EIA232D permits longer transmis-
sion paths, whose length is determined by the electrical loading on the cable.
One of the reasons for including this modification is that many users of the
RS232C standard have been tolerating longer transmission paths than the legal
maximum of 15 m.

The RS-422 and RS-423 Serial Interfaces

The RS-232C interface is now thought to be rather limited because of its low band-
width and its maximum transmission path of only 15 m. Two improved standards for
serial data links have been approved by the EIA. These standards are the RS-422 and
RS-423, which define the electrical characteristics of a data link. Unlike RS-232C,
these standards refer only to the electrical aspects of a data link.

Table 9.7 gives the basic electrical parameters of the RS-423 and RS-422 stan-
dards and figure 9.26 shows how they are arranged. The RS-423 standard differs
little from the RS-232C standard of table 9.6. Indeed, the only real difference is that
the RS-423 standard specifies much smaller receiver thresholds, permitting both a
longer cable length and a higher signaling rate.

9.5 Serial Interface Standards (RS-232 and RS-422/RS-423) 673
TABLE 9.7 EIA RS5-422 and RS-423 electrical interfaces
CHARACTERISTIC RS-423 VALUE RS-422 VALUE
Operating mode Single ended Differential
Maximum cable length 700 m (2,000 ft) 1,300 m (4,000 ft)
Maximum data rate 300 kilobaud 10 megabaud

Driver maximum output
voltage (open-circuit)

Driver minimum output
voltage (loaded output)

Driver minimum output
resistance (power off)

Driver maximum output
short-circuit current

Maximum driver output
slew rate

Receiver input resistance

Receiver maximum input
voltage

Receiver maximum input

threshold

—6V<V,<+6V
—-36V<V, < +36V

100 mA between —6 and +6 V
150 mA

Determined by cable

length and modulation rate

>4 kQ
—-25V<V,;< 425V

—02to 02V

6 V between
outputs

2 V between
outputs

100 uA between
+6and —0.25 V

150 mA

No limit on slew
rate necessary

>4 kQ
—12to +12V

—02to +02V

FIGURE 9.26 RS-432 and RS-422 serial interfaces

Single-ended RS-423

Single-ended RS-423

receiver

transmitter
Serial data
input
gnd
Differential RS -422
transmitter
Serial data
input

gnd

T gnd

Serial data
output

Twisted-pair
data link
Differential RS-422
receiver
* Serial data
_ output
Twisted-pair gnd

data link

674 CHAPTER 9 The Serial Input/Output Interface

The RS-422 standard offers a significant improvement over both the RS-232C
and RS-423 standards by adopting a balanced transmission mode. Balanced transmis-
sion requires two transmission paths per signal, because information is transmitted as
a differential voltage between the two conductors. Noise voltages due to ground
currents are introduced as common mode voltages that affect both transmission paths
equally and have little effect on the differential signal between the lines. RS-422
systems can operate over distances of 15 m at 10 megabaud or over distances of
1300 m at 100 kilobaud.

9.6 SERIAL INTERFACE FOR THE 68000

Instead of providing a relatively sterile textbook example of a 68000 serial interface
based on the ACIA, examining the serial interface in Motorola’s MEX68KECB single
board microcomputer is most instructive. After all, this board is designed by real
engineers to provide the maximum functionality while minimizing the board area
taken up by the interface components and keeping their cost low.

Figure 9.27 shows how the ECB is arranged with respect to a terminal and a
host computer. In a minimal mode, only the terminal interface on port 1 is necessary.
This interface permits the user to interact with the ECB and to develop and debug
software. The ECB has a parallel printer interface and an audio cassette interface,
allowing programs and data to be printed and stored on tape, respectively. Un-
fortunately, the serial interface is rather slow and does not have any file-handling
capability.

By connecting the ECB to a host computer via the ECB’s second serial inter-
face, port 2, a moderately powerful 68000 development system can be created.
During my own initial 68000 development work, I used a 6809-based system
running under the Flex 09 operating system as a host computer. After a reset, the

FIGURE 9.27 Relationship between the ECB, its console terminal, and a host

computer
Host
computer
Terminal
Port 1 Port 2
1|
MEX68KECB

single board computer
(target computer)

9.6 Serial Interface for the 68000 675

ECB communicates with the terminal through port 1. If the command TM {exit
character) is entered, the ECB goes into its transparent mode. The expression {exit
character) represents the character that must be entered from the terminal to leave
the transparent mode. The default value is control A (ASCII $01).

Once the transparent mode has been entered, the terminal is effectively con-
nected to port 2 and the 68000 on the ECB simply monitors the input from the
terminal until it encounters the exit character. Therefore, the user can operate the
host computer as if the ECB did not exist; for example, in the transparent mode I am
able to edit a 68000 assembly language program on my host system and then
assemble it into 68000 machine code using a cross-assembler. Once this process has
been done, the exit character is entered and the terminal is once more “connected”
to the ECB.

The next step is to transfer the machine code file on disk in the host system to
the memory on the ECB. This step is performed by the load command, which moves
object data in S-record format from an external device to the 68000’s memory.
S-record format is a way of representing machine code memory dumps. The syntax
of the load command is

LO[port number][;{options)][=text].

Square brackets enclose options. Port number 2 (the default port number) specifies
the host computer. Other options are not of interest here. The “[=text]” field is
available only with port 2 and causes the text following the “ =" to be sent to port
2 before the loading is carried out, thus allowing the user to communicate with the
host computer. Suppose, for example, that we have a program on disk in the host
system in S-record format whose file name is PROG23.BIN. To transfer this program

to the 68000’s memory space, we enter
LO2;=LIST PROG23.BIN

from the terminal, which sends the message “LIST PROG23.BIN” to the host com-
puter. The message is interpreted by the operating system as meaning “list the file
named PROG23.BIN.” This file is then transmitted to port 2 and stored in the
68000’s memory by its monitor software. When the loading is complete, the
program can be executed and debugged using any of the ECB's facilities. Finally, the
transparent mode may be entered and the source file, PROG23.TXT, reedited on the
host system. This process is repeated until the software has been debugged.

Figure 9.28 gives the circuit diagram of the serial interface of port 1 and port 2
on the ECB. This diagram has been slightly simplified and redrawn from that appear-
ing in the ECB user manual. Figure 9.28 includes both the serial interface between the
ACIAs and the ports and the interface between the ACIAs and the 68000.

Interface between the ACIAs and the 68000
on the ECB

The CPU side of the ACIAs is fairly conventional as they are both connected
directly to the 68000’s data bus without additional buffering. Port 1 is connected to
D,, to D,, and strobed by UDS*, whereas port 2 is connected to D,, to D,, and

CHAPTER 9 The Serial Input/Output Interface

676

(wapouws 10 1s0y)

elep x| @ 9“ o9n YUm
iz
ATL— 6

z uod
3Lz
AZL- z
sioe i von Jog 57| +s10
1SO|—<
oL
wia wn |5 “—{+S14
9 e
v
-
he 32 g ub —p—1+000
axye: va 5 >—{axy
axL o oen [° D e
(D
pub
1v00 L0$
ssaippe aseg
Slde- 5 vsn 7 Z vod
VIOV 0589
88yl zin
X1 OXY
ou\— n_& }
(H4
7 Lwviow WW
.|e vIN
HH 1% [¥4
(1leuiwiay) «13S3d 5y 2
L wog] asy w\/\(\.
L ——
{4 VSHr—ru6
€
aa OXL OXd
B T :
N . +DHIZVIOY
- >
sa o.a ﬁ - ~DHI VIV
€
Sloe- o ven [z
0v00 L0$ 3
00S1 ssaippe aseg sy -
ATL- zL ven > 1 4oy
ALz (2 a Gl m.o,
S>||,\/\/\r|_ 9q
Hige €1 asn Py »57]+S10 sq 91 vig
L n—ﬁ_
¥,
88pL nm CETe
m_. .—Q
eep xy & an [. XL (jeuiwaay) zg AR
3 +—5|d | uod . a
68vL VIOV Az =g
0589 ogb——
>y €N iz %

*VdA

A

(po11w17 Bj0J0I0| JO UOIssIwad AqQ pajuladay) *adejualul |B1UBS S,gDJ Y1 Jo weddelp 1NduID §T'6 IUNOIL

9.6 Serial Interface for the 68000 677

strobed by LDS*. Address line A, is connected to the register select input, RS, of
each ACIA and is used to distinguish between the control/status and data register.

To simplify address decoding, each of the three ACIA’s chip-select inputs are
pressed into service: CS2# is connected to UDS* or LDSx to select between ACIAs,
CSI is connected to the output of the primary address decoding network,
ACIA_CS1, and CSO is connected to A, from the CPU. Primary address decoding is
performed by 1C29a, a five-input NOR gate, and IC30, a three-line-to-eight-line
decoder. These two chips decode A, to A,, to produce an active-low signal, Y1%,
from IC30. Y1* is combined with VMA=* from the 68000 in a NOR gate, IC33a, to
give the active-high ACIA_CSI signal. Note that the ACIAs are not fully address
decoded and take up the half of the 64K-byte page of memory space from $01 0000
to $01 FFFF for which A6 = 1.

Because the ACIA is interfaced to the 68000’s synchronous bus, VPA* must be
asserted whenever an ACIA is accessed. ICs 32a, 34b, and 45¢ perform this function.
Note that VPA« is also asserted when the VPAIRQ# input to IC45c is asserted.

The final aspect of the interface between the ACIA and the CPU to be dealt
with is the interrupt-handling hardware. Both ACIAs have independent interrupt
request outputs. IRQ#* from port 1 is wired to the level 5 input of a 74LS148 priority
encoder (IC40) and IRQ* from port 2 is wired to the level 6 interrupt input.

During an interrupt acknowledge cycle, the output of the four-input AND gate
IC19b goes active-high to generate an IACK signal. When a level 4 through 7
interrupt is acknowledged, A, is high during the IACK cycle. Therefore, by combin-
ing A,, with IACK in IC25d, an active-low VPAIRQ# signal generated. VPAIRQx is
fed back to VPA# via IC45c, as indicated earlier. This arrangement converts interrupt
levels 4 to 7 into autovectored interrupts, greatly simplifying the hardware design at
the cost of reducing the number of possible interrupt vectors.

Serial Interface Side of the ACIAs

IC14, an MC14411 baud-rate generator, provides the transmitter and receiver clocks
of the two ACIAs with a source of element timing at 16 times the baud rate of the
transmitted or received signal elements. Jumpers on the ECB must be positioned to
select the appropriate clock output from the MC14411 for both ACIAs. We should
note that if the terminal is to communicate with the host computer, both ACIAs
must operate at the same baud rate.

Little comment need be made about the connection of the ACIA’s RS-232C
signals to their respective ports. However, one interesting feature has been added to
the ECB. Whenever the RTS* output of the port 1 (i.e. terminal) ACIA is asserted
active-low, both ports 1 and 2 operate independently. However, whenever RTS#
from ACIA1 is negated, ICs 6c, 8a, 8d, and 5c route the incoming data from port 1
to the outgoing data on port 2. Incoming data on port 2 is routed to port 1 via ICs
6b, 8b, 8c, and 7c when RTS* is negated. Consequently, negating RTS* connects
port 1 to port 2. This is, of course, exactly what happens when the ECB enters its
transparent mode. The software required to operate this type of serial link is
described in detail in the section dealing with a monitor in chapter 11.

678

CHAPTER 9 The Serial Input/Output Interface

SUMMARY

In this chapter we have looked at the serial interface used to link digital systems to
video display terminals and to modems. The simplest method of transmitting serial
data is based on a character-oriented asynchronous protocol. If microprocessors had
to perform the task of controlling serial links themselves, a considerable part of their
power would be lost. We have examined the 6850 ACIA, which performs all serial
to parallel and parallel to serial conversion itself. Once a 6850 ACIA is interfaced to
a microprocessor, all the microprocessor has to do is to read data from or write data
to the appropriate port. Moreover, the ACIA also checks the received data for both
transmission and framing errors, further reducing the burden placed on the host
microprocessor. Part of the power of the 6850 lies in its ability to cater for a wide
variety of serial formats that are selectable under program control. The 6850 also
provides three modem control signals, which further simplifies the design of a serial
data link between a microprocessor system and a terminal or modem.

We have looked at the electrical interface between the serial transmission path
and the microprocessor system. As the TTL-level voltages found in digital equipment
are not best suited to transmission paths longer than a few meters, we have
described the RS-232C, the RS-422, and the RS423 standards for the transmission of
serial data over transmission paths that extend to 1000 meters or more.

Problems

1. What is the difference between asynchronous and synchronous transmission systems?
What are the advantages and disadvantages of each mode of transmission?

2. What are the functions of the DCD*, CTS#, and RTS# pins of the 6850 ACIA?

3. The control register of a 6850 ACIA is loaded with the value $B5. Define the operating
characteristics of the ACIA resulting from this value.

4. The status register of the 6850 is read and is found to contain $43. How is this value
interpreted?

5. Write an exception-handling routine for a 6850 ACIA to deal with interrupt-driven
input. Each new character received is placed in a 4K-byte circular buffer. Your answer must
include schemes to (a) deal with buffer overflow and (b) deal with transmission errors.

6. Is connection of the output of an RS-423 transmitter to the input of an RS-232C
receiver possible without violating the parameters of either standard? Is connection of an
RS-232C output to an RS-423 input possible?

7. An asynchronous transmission system employs unsynchronized transmitter and receiver
clocks, both of which are controlled by quartz crystals. It is guaranteed that the worst-case
frequency difference between the clocks will never exceed .01 percent. A designer wishes to
transmit long bursts of data asynchronously over a serial data link. Each data burst employs a
start bit, a single parity bit, and a stop bit. What is the maximum permitted burst length if the
designer caters for a maximum frequency error between transmitter and receiver clocks of 80

Problems

679

percent of the stated worst case? (The designer cannot employ the stated worst case value.
Why?)

8. Define the following errors associated with asynchronous serial transmission systems
and state how each might occur in practice:
a. Framing error b. Receiver overrun error
c. Parity error

9. Describe how bit-stuffing is employed by synchronous serial data links to ensure data
transparency. Can you think of any other way in which data transparency can be achieved
without resorting to bit-stuffing?

10. What are the advantages of the 68681 DUART over the 6850 ACIA?
11. Wirite a similar procedure to that of problem 5 for the 68681 DUART.

12. The DUART has a programmable baud-rate generator that is set by loading the appro-
priate value in clock-select register. This feature makes it possible to adapt to an “unknown”
data rate. Write a subroutine that receives a string of carriage returns from a system (at an
unknown speed) and adjusts the baud rate to match the incoming data. When the unknown
baud rate has been determined, the DUART returns the string “ready.”

