PIC'n Up The Pace

PIC16/17 MICROCONTROLLER
APPLICATIONS GUIDE

FROM

SQUARE | 1

DAVID BENSON

VERSION 1.0

SERIAL COMMUNICATION

Since PIC16's have few pins, serial communication is, more often than not, the best way for the
microcontroller to communicate with peripheral chips on the same board, or between one PIC16
and another via a short cable. Communication between a PIC16-controlled device and the
outside world is typically done serially (via RS-232 for example).

If you have not been exposed to serial communication, it involves taking data which is in a
parallel format, converting it to serial format for transmission down a single (data) wire and
converting the data back to parallel format at the receiving end. Sending 8 bits of data in
parallel requires 8 wires for data. Sending 8 bits serially requires 1 wire for data.

Serial communication involves varying numbers of wires for the various functions. Usually the
count does not include ground. In this book, we will not worry about the number of wires and
we won't use anyone's protocol or standard. We will just concentrate on understanding what's
going on and getting the job done.

The next chapter covers shift registers. They come in two flavors--serial-in, parallel-out and
parallel in, serial-out. Getting a PIC16C84 to talk to each type is a good way to get started with
serial communication.

The following chapter involves interfacing a PIC16C84 and 93C46 serial EEPROM. This is
another form of serial communication, the design of which is dictated by the 93C46's pin
compliment and internal workings.

Next, we'll get one PIC16C84 talking to another PIC16C84. Several other examples will follow.
By the time you finish, you should feel comfortable with simple serial communication.

Note that the clock signal in the examples is irregular. Timing diagrams for the serial peripheral

devices used as examples show a nice symmetrical clock signal. This is not required. It also is
not possible in many applications.

12

SHIFT REGISTERS

Shift registers are used to convert serial data to parallel or vice versa. "Talking" to shift registers
is a good way to get started learning about serial communication. Shift registers are useful as
parallel output and input ports which may be interfaced with a PIC16 serially.

For our first example, we will use a 74HC164 which is a serial in, parallel out shift register. The
"in" vs. "out" designations are with respect to the shift register. The object is to create and send
8 bits of data to the shift register serially and look at its outputs via DVM, LED's or whatever to
see if the byte got there successfully.

The PIC16C84 will be used in this example.

The data to be sent from the PIC16C84 is initially defined and stored in a file register as 8 bits in
parallel format. In order to convert them to serial format, the 8 bits in the file register are shifted
left (RLF) one at a time. Bit 7 of the file register is sent on its way via a single output port line
after each shift. The most significant bit is sent first because that is what the 74HC164 expects.

Example:

Initial 8 Bits
7 0
o|l1|1]0]|0f0 |0} 1 Contents Of File Register

Shift Left (RLF) First Time

7
i1j1j0j0|j0jO0|1]|U

0 Sentto port line

0 Sent to carry flag L From Carry Flag

U = Unknown
Shift Left Second Time (RLF)
7 - 0
1j]0{0j0|0f1]|U 0
1 Sent to port line __ From CarryFlag

1 Sentto carry flag

The 8 bits are marched out one at a time in succession.

13

SERIAL IN, PARALLEL OUT SHIFT REGISTER - 74HC164

Let's talk about the hardware.
DI 1 — - — 16 Vce
5v. 2 — — 15 7
0.3 — — 14 6
1 4 —| 74HC164 [— 13 5
2 5 — — 12 4
3 6 — —— 11 CLR
Vss 7 — — 10 CLK
Notice the 74HC164 has three control lines.
e Serial Input
e Clear ar Clears outputs to 0's (normally HI)
e Clock g Shifts data through bit 0 toward bit 7

To move data into the shift register, the first data bit is presented to the input. Then it is shifted
in. The second bit is presented and shifted, and so on. Simple!

+5V

N O

Vee 7 6 5 4 ClR CLK

> 74HC164
RA2
RA1 »]] sV 0 1 2 3 Vss
o | B
PIC16C84 10K
+5V

14

Here is how the complete process of sending one byte of data works:

MAIN
PROGRAM

Port A Outputs

v

Initial Control Word To
Port A

v

Clear Shift Register

T

Load W With Data To Be
Sent

v

Call Send Subroutine

v

Circle

SUBROUTINE

Save Copy Of Data

v

Load 8 Counter

BTFSC

testbit {

Clear Port A, 0

Send Reg Bit 7 ?

Set Port A, 0

:

Shift 164 Register

v

Shift Send Register

v

Dec Bit Counter

DECFSZ

GOTO testbit

Send

Prep For
Next Pass

v

Return

15

The shift register outputs are cleared on initialization as part of the power-on reset housekeeping
so that all outputs will be low to start with.

The assembly language program for doing all this is a subroutine (ser_out). It is a code module
which may be modified, if necessary, to reflect port pin assignment, etc. and used for your own
future projects.

;=======T74HC164.ASM 4/25/97==
list p=16c84
radix hex

© e o e — — ————— - —— —— —————— — — —— —— - — - — - — - — — —— - — - ——— — - ——

; cpu equates (memory map)
porta equ 0x05
status equ 0x03
sendreg equ 0x0c
count equ 0x0d
trisa equ 0x85

P - ————— —— ———————— ———— — — ———— - -~ - —————— ———————————

rp0 equ 5
org 0x000
start bsf status,rp0 ;switch to bank 1

movlw b'00000000°' ;outputs
movwf trisa

bef status,rp0 ;switch back to bank 0
movlw 0x04 ;0000 0100
movwf porta ;control word
becf porta,2 ;clear shift register
bsf porta,2
movlw 0x80 ;number to be sent
call ser_out ;to serial out subroutine
circle goto circle ;done
ser_out movwf sendreg ;save copy of number
movlw 0x08 ;init 8 counter
movwf count
testbit bcf porta, 0 ;default
btfsc sendregqg, 7 ;test number bit 7
bsf porta, 0 ;bit is set
shift bsf porta,l ;shift register
bef porta,l
rotlft «rlf sendreg, £ ;shift number left
decfsz count,f ;decrement bit counter
goto testbit ;next bit
return ;done
end

;at blast time, select:
H memory unprotected .
watchdog timer disabled (default is enabled)

.
’

16

; standard crystal (using 4 MHz osc for test) XT
: power-up timer on

.
’

PARALLEL IN, SERIAL OUT SHIFT REGISTER - 74HC165

Bringing 8 bits of data into a PIC16 serially is done in a similar way. We will use a 74HC165
parallel in, serial out shift register.

LOAD 1 — - — 16 Vcc
CLK 2 — — 15 Enab
4 3 — — 14 3
5 4 — — 13 2
74H
6 5 — cies | 12 1
7 6 — — 11 0
Hout 7 — — 10 DI
Vss 8 — — 9 Hout
Notice the 74HC165 has three control lines.
e Serial Output
e Load REa Loads 8 bits into shift register
* Clock g Shifts data MS bit first

The 8 bits of data presented to the shift register are latched in using the load control line. This
must be done so that if the input lines are changing state with time, only the data latched in at
one instant in time will be transmitted to the PIC16. The 8 data bits are shifted out most
significant bit first.

Again, one PIC16C84 port pin is used for serial in. It is convenient to use bit O for serial input.
The program looks at the port as a whole, rotates bit "0" into the carry flag, and rotates the
contents of the carry flag into the least significant bit of the file register assigned to receive the
incoming data. This process is carried out for each of the 8 bits. Notice that the first bit is
available at the serial output line immediately after the data is latched. Shifting 7 times (not 8) is
required to access the remaining bits.

17

18

ov L

PIC16C84

I 11 i
Vcc Enab 3 2 1 DI Hout
p 74HC165
load CLK 4 5 6 Hout Vss
| X

MAIN
PROGRAM

Teach Port A
00000001

v

Teach Port B

v

Inital Word To Port A
00000100 = 0x04

v

Call Receive Subroutine

v

Display At Port B

v

Circle

SUBROUTINE

getbit

Clear Receive Register

v

Load 8 Counter

v

Load Byte Into Shift

Register

]

Load W With Port A
Contents

v

Store In Temp

v

Rotate Bit Into Carry
Flag

v

Rotate Carry Flag Into
Receive Register

v

Decrement 8 Counter

DECFSZ

RLF

No

GOTO shift

v

Return

shift

v

Shift 165 Register

v

GOTO getbit

19

Again, this is code includes a subroutine which you may use in the future.

;=======74HC165.ASM 4/25/97==
list p=16c84
radix hex

; cpu equates (memory map)

porta equ 0x05

portb equ 0x06

status equ 0x03

rcvreg equ 0x0c

count equ 0x0d

temp equ 0x0e

trisa equ 0x85

trisb equ 0x86

; bit equates

rp0 equ)
org 0x000

start bsf status,rp0 ;switch to bank 1

movlw b'00000001* ;bit 0 = input
movwf trisa
movlw b'00000000' ;outputs
movwf trisb
bcf status, rp0 ;switch back to bank 0
movlw 0x04 ;0000 0100
movwf porta ;control word
call ser_in ;ito serial input subroutine
movf rcvreg,w ;get data
movwf portb ;display data via LED's
circle goto circle ;done
ser_in clrf rcvreg ;clear receive register
movlw 0x08 ;init 8 counter
movwf count
bcf porta, 2 ;load shift register
bsf porta, 2
getbit movf porta,w ;read port A
movwf temp ;store copy
rrf temp, £ ;rotate bit into carry flag
rlf rcvreg, £ ;rotate carry flag into rcvreg
decfsz count,f ;decrement counter
goto shift
return ;done
shift bsf porta,l ;shift 1 bit
bcf porta,l
goto getbit ;again
e e
end

;note: the 74HC165 gets shifted 7 times

20

;at blast time, select:

memory unprotected

watchdog timer disabled (default is enabled)
standard crystal (using 4 MHz osc for test) XT

power-up timer on

.
’

Ne Ne Ne N

SERIAL IN, PARALLEL OUT - 74HC595

The 74HC595 is similar to the 74HC164. The 8 outputs of the 74HC164 will change state as
data is shifted in. If the chip is being used as a parallel output port, this will not be a good thing.
The 74HC595 has latches which hold the data presented at the output lines. New data may be
shifted in while the outputs remain stable. Then the new data is latched in. This, of course,
requires a 4th control line to latch data.

1 1 — - — 16 Vcc

2 2 — — 15 0

3 3 — — 14 DI

4 4 — — 13 G

5 5 —| 7THHCSS L o LAT

6 6 — — 11 CLK

7 7 — — 10 CLR

Vss 8 — — 9 QH
The 74HC595 has four control lines.

e Serial Input
e Latch g Shift register contents to latches
e Clock _ Shifts data MS bit first
e Clear ¥ Clears shift register

Data is shifted in most significant bit first.

21

RA3
RA2
RA1
RAoO

PIC16C84

Serial Out
For Cascading
+5V | (NC Otherwise)
{ — 3
Vee DI G LAT CLK CLR QH
74HC595
7 5 4 3 2 1 Vss
! [N |

The 74HCS95 has an output line designed for cascading two or more chips. 74HC595's may be
cascaded by:

* o o o

Q'H serial output of first chip connected to serial input of second chip
Connect shift register clear lines together
Connect shift clock lines together
Connect latch data lines together

y v v

Clear «

Clock
Latch Data

Serial In
+5V _|._ +5V —_
Vece O]| G LAT CLK CIR QH Vec © DI G LAT ClK CIR QH
) 74HC595 D) 74HC595

7 6 5 4 3 Vss 7 6 5 4 3 2 1 Vss
IR I T 1T

22

MAIN
PROGRAM

Port A Outputs

v

Initial Control Word To
Port A

v

Clear Shift Register

!

Load W With First Data
Byte To Be Sent

v

Call Send Subroutine

v

Load W With Second
Data Byte To Be Sent

v

Call Send Subroutine

v

Latch Data

v

Circle

SUBROUTINE

testbit

Save Copy Of Data

v

Load 8 Counter

BTFSC

>
v

ClearPort A, 0

Send Reg Bit 7 ?

Set Port A, 0

:

Shift 164 Register

v

Shift Send Register

v

Dec Bit Counter

DECFSZ

GOTO testbit

Send

Prep For
Next Pass

v

Return

23

;=======T74HC595.ASM 4/25/97==
list p=16c84
radix hex

; cpu equates (memory map)

porta equ 0x05
status equ 0x03
sendreg equ 0x0c
count equ 0x0d
trisa equ 0x85

rp0 equ 5
org 0x000
start bsf status,rp0 ;switch to bank 1

movlw b'00000000"' ;outputs
movwf trisa

becf status,rp0 ;switch back to bank 0
movlw 0x04 ;0000 0100
movwf porta ;control word
bef porta,?2 ;clear shift register
bsf porta, 2
movlw 0x80 ;first number to be sent
call ser_out ;to serial out subroutine
movlw 0x0f ;second number to be sent
call ser_out ;to serial out subroutine
bsf porta, 3 ;register contents to latches
bcft porta,3

circle goto circle ;done

ser_out movwf sendreg ;save copy of number
movlw 0x08 ;init 8 counter
movwf count

testbit bcf porta, 0 ;default
btfsc sendreg, 7 ;test number bit 7
bsf porta,0 ;bit is set

shift bsf porta,l ;shift register
bcf porta,l

rotlft «rlf sendreg, £ ;shift number left
decfsz count,f ;decrement bit counter
goto testbit ;next bit
return ;done
end

;at blast time, select:

; memory unprotected

H watchdog timer disabled (default is enabled)

; standard crystal (using 4 MHz osc for test) XT
; power-up timer on

.
’

24

SERIAL EEPROMS

Serial EEPROMs come in three main flavors and a variety of sizes. The 93XXX devices are the
easiest to interface to PIC16's (in my humble opinion). We will use the 93C46 (by Microchip
and others) as an example.

The 93C46 is a small non-volatile memory peripheral chip. It is organized as 64 registers of 16
bits each. The programming voltage and write timing are developed on-chip. The self-timed
write cycle takes about 10 milliseconds.

All communication with the 93C46 begins with sending 9 instruction bits. The first bit (MSB) is
alogic "1" start bit. The remaining 8 bits may be an op code or an op code and address
combination. If the operation is a write operation, 16 data bits follow the instruction bits, MSB
first.

The 93C46 is available in an 8-pin DIP.

CS 1 — — 8 Vce
CLK 2 — —— 7 NC
DI 3 —| 9346 | 5 NC
DO 4 — —— 5 Vss
The control lines are:

+ Serial data in

¢ Serial data out

* Clock I

Chip select Ju
Some use rules are:

1) A register must be erased (all 1's) before it can be written to. The chip has a built-in
auto erase cycle which takes place when a write is called for.

2) The chip select pin (CS) must be brought low for a minimum of 1 microsecond
between consecutive instruction cycles to synchronize the internal logic of the device.

3) For read operations, a dummy "0" precedes the 16 data bits. Data is shifted out MSB
first.

25

4) Completion of an erase cycle or write cycle to an individual memory location takes
about 10 milliseconds. The serial data output (D) pin may also be used as a status pin]
during the self-timing phase of these operations t0 indicate the status of the device. |
On completion of erase or write, CS is brought low briefly. After that, D will be low
until the operation is complete. When Dy goes high again, the device is no longer
busy and is accessible for other operations.

The instructions are:

» Read a register

» Write to a register

« FErase a register

» Erase/Write enable (EWEN)

» Erase/Write disable (EWDS)

* Erase all registers (ERAL)

» Write all registers (WRAL) (with same data)

I haven't figured out why anyone would want to write the same data to all registers, but maybe
you will.

There are 6 address bits (to definite 64 register locations) contained in the instruction words that
need them.

More Op Code

Start Op or
Operation Bit Code Address
Read 1 1 0 A5 A4 A3 A2 Al A0
Write 1 0 1 A5 A4 A3 A2 Al A0
Erase 1 1 1 A5 A4 A3 A2 Al A0
EWEN 1 0 0 1 1 X X X X
EWDS 1 0 0 0 0 X X X X
ERAL 1 0 0 1 0 X X X X
WRAL 1 0 0 0 1 X X X X

X = Don't care

Now we need to digest all this and figure out how to write some code to make the thing work.
One way to write a program to communicate with the 93C46 is to send the start bit as a separate

operation which precedes sending the remaining 8 bits. Then the remaining 8 bits will fit into a
file register. This file register is used as a working register to cook up instruction words:

—— Start Bit - Handled Separately

—— Opcode —— More Opcode Or Address

26

The next consideration is what to do with the "X's", i.e., don't cares. Let's make them "0's".
Now the instruction table looks like this:

Hex More Op Code
Op Op or
Operation Code Code Address
Read 1 0 A5 A4 A3 A2 Al A0
Write 0 1 A5 A4 A3 A2 Al A0
Erase 1 1 A5 A4 A3 A2 Al A0
EWEN 0x30 0 0 1 1 0 0 0 0
EWDS 0x00 0 0 0 0 0 0 0 0
ERAL 0x20 0 0 1 0 0 0 0 0
WRAL 0x10 0 0 0 1 0 0 0 0

This method of putting "0Os" in place of "X's" makes the instruction table look less intimidating.
Fux:thcr, there are now four hex opcodes we can use for four of the instructions to make life
easier.

Next we need to deal with addresses in individual register operations. Perhaps the easiest thing
to do is to dedicate a file register for holding the address prior to executing our serial routine.
The routine can grab the address from there and move it to the working register (labeled "cook").
Don't worry about the upper 2 bits in the address register For the address 00 0000 (binary), use
0x00. The range is 0x00 to Ox3F. In the "cook" register we can modify the upper 2 bits to make
them an erase, read, or write op code. At that point, we have cooked up the complete instruction
for the operation.

This example EEPROM serial communication program will be modular meaning a main
program will call subroutines such as "read one register" or "write one register" which will, in
turn, call other subroutines as needed.

To get started, we will need an erase one register subroutine, a write to one register subroutine,
and a read one register subroutine. We will need to precede erase and write with an erase/write
enable (EWEN) and follow with an erase/write disable (EWDS).

Notice that the start bit is sent as part of the code as needed (requiring 2 instructions) and that 8
bits of op code/address/data are sent at a time directly out of the "cook" register.

You can write an "erase all registers" routine on your own if you find a need for one.

These routines may be modified and used in your own programs.

27

DEMO CIRCUIT
This circuit will be used to demonstrate interfacing a PIC16 to a 93C46 serial EEPROM:

+5V

T T =

Vcc NC NC Vss
D) 93C46

Cs CLK DI DO

RA3
RA2
RA1
RAO

PIC16C84

680Q

MAIN PROGRAM - INITIAL TEST

The main program will make use of subroutines. It will enable and disable operations, write to a
register, and read back 16 bits of data from a register. If we can make this work, we can do

anything we want with the 93C46.

An erase the contents of a register subroutine is also shown.

28

Teach Port A

v

Teach Port B

v

Initialize Port A

v

LED's Off

v

DefineTest Address

v

Define Data High Byte

v

Define Data Low Byte

v

Call Write Subroutine

v

Call Read Subroutine

v

Display Byte At LED's

v

. Circle

High Or Low Byte

29

30

ewen

ewds

Put EWEN Opcode In
cook

v

Set Port A, Bit 1

v

Shift Clock - Pulse

v

Call Send 8 Bits Sub

v

Return

Put EWDS Opcode In
cook

v

Set Port A, Bit 1

v

Shift Clock - Pulse

v

Call Send 8 Bits Sub

v

Return

Send Start Bit

Send EWEN Opcode

Send Start Bit

Send EWDS Opcode

write

Opcode In
High 2 Bits

Send Start Bit

CS High

v

Call EWEN Subroutine

v

CSLow

v

CSHigh

v

Put Write Address In
cook

v

cook Bit 6 = 1

v

cook Bit7 =0

v

Set Port A, Bit 1

v

Shift Clock - Pulse

v

Call Send 8 Bits Sub

v

Load Data High Byte In
cook

v

Call Send 8 Bits Sub

v

Load Data Low Byte In
cook

v

Call Send 8 Bits Sub

v

CSlLow

v

CSHigh

v

Pulse

Wirite

Send Data

Pulse

31

32

ecycle2

Yes, Write Cycle
Completed

GOTO ecycle2

v

CSlLow

v

Call EWDS Subroutine

Disable

v

CSlow

v

Return

read

Opcode In High 2 Bits

Send Start Bit

CSHigh

v

Put Read Address In
cook

v

cook Bit6 =0

v

cook Bit 7 = 1

v

Set Port A, Bit 1

v

Shift Clock - Pulse

v

Call Send 8 Bits Sub

v

Call Sub Shift 8 bits Out
Of EEPROM

v

Byte In cook To hibyte

v

Call Sub Shift 8 Bits Out
Of EEPROM

v

Low Byte In cook

v

CSlLow

v

Return

Read

—
Note: Dummy 0 Appears
At Output

High Byte In hibyte
Low Byte In cook

33

34

erase

ecyclei

CS High

v

Call EWEN Subroutine

v

CSLlow

v

CSHigh

v

Put Address In cook

v

cook Bit 6 = 1

v

cook Bit 7 =1

v

Set Port A, Bit 1

v

Shift Clock - Pulse

v

Call Send 8 Bits Sub

v

CS Low

v

CSHigh

No

GOTO

Erase/Write Enable

Opcode In High 2 Bits

Send Start Bit

BTF Yes, Erase Cycle Completed

v

CSlow

v

Call EWDS Subroutine

v

CSlow

v

Return

Erase/Write Disable

D15 Is Sent First

Yes

sendbits Load 8 Counter
sbit l
Call Send Bit
DECFSZ
‘ No
GOTO Shift cook Left

v

Return

sftcook

v

Shift cook Left

v

GOTO sbit

35

sendbit

Clear Port A, Bit 1 Default

=0
cook Bit7 =07

#0

BTFSC

Set Port A, Bit 1

:

Shift Clock - Pulse

v

Return

getprom

Load 8 Counter

, i Shift Bit Out Of EEPROM -
Shift Clock - Pulse | First Shift Gets Rid Of Dummy Bit

v

Get Port A Contents

v

Store Copy

v

Rotate LS Bit Into Carry
Flag

RRF

¢ Data 15 Out First

Rotate Carry Flag Into
cook RLF

DECFSZ

S

Yes

Return

;=======93C46.ASM 4/26/97==
list p=16c84
radix hex

; cpu equates (memory map)
status equ 0x03
porta equ 0x05
portb equ 0x06
cook equ 0x0c
hibyte equ 0x0d
count equ 0x0e
address equ 0x0f
data_hi equ 0x10
data_lo equ 0x11
temp equ 0x12
trisa equ 0x85
trisb equ 0x86

rp0 equ 5
org 0x000
start bsf status,rp0 ;switch to bank 1

movlw b'00000001' ;bit 0 = input
movwf trisa

movlw b'00000000' ;outputs
movwf trisb

bcf status,rp0 ;switch back to bank 0
bcf porta,l ;initialize
bcf porta,2 ;initialize
bcf porta,3 ;initialize
movlw 0x00 ;00000000
movwf portb ;LED's off
movlw 0x00 ;define test address
movwf address
movlw 0x80 ;define test hi byte
movwf data_hi
movlw 0x0f ;define test lo byte
movwf data_lo
call write ;write subroutine
call read ;read subroutine
movf cook,w ;get lo byte
movwf portb ;display via LED's
circle goto circle ;done
ewen movlw 0x30 ;ewen op code
movwf cook ;to cook
bsf porta,l ;send start bit
bsf porta,2 ;shift
bcf porta,2
call sendbits ;send ewen op code
return

37

o o o e o = ————— - —————— - " - T = - = o e e

ewds movlw 0x00 ;ewds op code

movwf cook ;to cook
bsf porta,l ;send start bit
bsf porta,2 ;shift
bcf porta,2
call sendbits ;send ewds op code
return
write bsf porta,3 ;cs high
call ewen ;erase/write enable
bef porta,3 ;cs low
nop ;1 microsecond min
bsf porta,3 ;cs high
movf address,w ;get address
movwf cook ;store in cook
bcf cook, 7 ;op code
bsf cook, 6 ;ms 2 bits
bsf porta,l ;send start bit
bsf porta,2 ;shift
becf porta,2
call sendbits ;send address

movf data_hi,w ;get data hi
movwf cook
call sendbits ;send data hi
movf data_lo,w ;get data lo
movwf cook

call sendbits ;send data lo
bcf porta,3 ;cs low
nop ;1 microsecond min
bsf porta,3 ;cs high

ecycle?2 btfss porta,0 ;write cycle complete?
goto ecycle2 ;not yet
bef porta,3 ;cs low
nop ;1 microsecond min
bsf porta,3 ;cs high
call ewds ;yes, erase/write disable
bcf porta,3 ;cs low
nop ;1 microsecond min
return

read bsf porta,3 ;cs high
movf address,w ;get address
movwf cook
bsf cook, 7 ;op code
bcf cook, 6 ;ms 2 bits
bsf porta,l ;send start bit
bsf porta,2 ;shift
becf porta,2
call sendbits ;send address
call getprom ;shift hi 8 bits out of eeprom
movf cook, w ;hi byte result in hibyte
movwf hibyte
call getprom ;shift lo 8 bits out of eeprom

38

bef porta, 3 ;cs low

nop ;lmicrosecond min
return ;exit sub with lo byte in cook
sendbits movlw 0x08 ;count=8
movwf count
sbit call sendbit ;send 1 bit
decfsz count,f ;done?
goto sftcook ;no
return ;yes
sftcook rlf cook, £ ;shift cook left
goto sbit ;again
sendbit bcf porta,l ;default
btfsc cook, 7 ;test cook bit 7
bsf porta,l ;bit is set
shiftl bsf porta, 2 ;shift
becf porta, 2
return
getprom movlw 0x08 ;count=8
movwf count
shift2 bsf porta,2 ;shift
becf porta,2
movf porta,w ;read port A
movwf temp ;store copy
rrf temp, £ ;rotate bit into carry flag
rlf cook, £ ;rotate carry flag into cook
decfsz count,f ;decrement counter
goto shift2
return ;done
end

;at blast time, select:

; memory unprotected

watchdog timer disabled (default is enabled)
standard crystal (using 4 MHz osc for test) XT

; power-up timer on
erase bsf porta,3 ;cs high
call ewen ;erase/write enable
bcf porta,3 ;Cs low
nop ;1 microsecond min
bsf porta, 3 ;cs high
movf address,w ;get address
movwf cook ;store in cook
bsf cook, 7 ;op code
bsf cook, 6 ;ms 2 bits
bsf porta,l ;send start bit

bsf porta, 2 ;shift

becf porta,2

call sendbits ;send address
becf porta,3 ;cs low
nop ;1 microsecond min
bsf porta,3 ;cs high

ecyclel btfss porta, 0 ;erase cycle complete?
goto ecyclel ;not yet
bef porta,3 ;cs low
nop ;1 microsecond min
bsf porta,3 ;cs high
call ewds ;yes, erase/write disable
bef porta,3 ;cs low
nop ;1 microsecond min
return

NOPs are used to insure that the 93C46 chip's timing requirements are met.

40

PIC-TO-PIC SERIAL COMMUNICATION

In an effort to expand our serial communication capabilities, we will get a couple of PIC16's to
talk to each other. Actually, we'll do part of the job by getting one PIC16 to talk while the other
listens. We'll see if the listener understood what the talker said. We will set this up so you can
continue on your own by sending more than one word and by interchanging the talk/listen roles
(two-way communication).

SEND RECEIVE
RA1 RAO
+5V +5V
PIC16C84 % PIC16C84
10K 10K
RA2 1 RA2 RB7-0
Close = Send Close = Ready 680Q
j_ To Receive \
= == =N/ 8LEDs

Two '84 on a board modules may be used for this experiment.
Both PIC16's are PIC16C84's with 4.0 MHz clock oscillators. For the transmitting chip, port A,
bit 1 is used to transmit. The receiver uses port A, bit 0 is used to receive. We will choose the

bit time interval as 256 internal clock (1 MHz) cycles. Both transmitter and receiver will use
TMRO for timing.

When the transmit data (TD) line is high, the condition is known as "mark". When TD is low,
the condition is known as "space." The terminology comes from the old teletype days.

When one word (8 bits) is sent, the TD line output vs. time will look like this:

— Start Bit
Mark / Mark
_J 7 6 5 4 3 2 1 0 r
Data Bits \\
— Stop Bit

41

The TD line sits at mark logic "1" until the word is sent. It drops to "0" first. This is the start
bit which tells the receiver PIC16 that an 8-bit word is coming.

The transmitter transmits bits at some rate (bits per second = baud ratc) The receiver must be
set up to receive bits at the same rate. When the receiving PIC16's receive program is running, it
sits in a loop looking for a start bit (hlgh-to-low transition on the receive data (RD) line. When
that transition takes place, the receiver's program waits for a time equal to half the width of the
start bit. It looks at the RD line to see if it is still low. If not, a false start occurred and the
program goes back to looking at the RD line. If the RD line is low, valid data follows and the
program starts TMRO (free-running mode) for a time interval equal to the width of a bit. Then it
looks at the RD line to see if a "0" or a "1" is present. It grabs that bit and shifts it into a file
register (shifting left, MSB received first). The program waits a bit-width (to middle of second
bit, bit 6) and grabs it and stores it. This process is repeated until all 8 data bits have been
received. The 8-bit word received is then displayed at the port B LED's so you can see if the
correct data was received.

- Slight Offset

Start
Bit Bit7 Bit6

256 | 256 Ltc.

128 ZSGJ 256 |

Wait 1/2 Bit e
Detect Start _/ Read First Bit

)
\ Bit Width
Start Timer - Free Run

Stop
Bit

The use of TMRO is explained in Easy PIC'n.

The default method for bit testing is used in the send program. The output bit may be cleared
when it should be set, but it gets cleared right after that. It doesn't matter because the receiver
samples the bit in the center. What goes on at the beginning or end will have no effect.

Flow charts and code for this simple example follow. The technique will be used for the serial
LCD interface in the next chapter.

42

SEND
MAIN

Port A, Bit 1 Output

v

Port A, Bit 1 HI = Mark

v

Define Data

v

Data To Send Register

RECEIVE
MAIN

Yes

Switch Closed ?

Call Serial Out Sub

v

Circle

Port A, Bits 0 And 2
Inputs

v

Port B Outputs

Switch Closed ?

Yes

Clear rcvreg

v

Call Serial In Sub

v

rcvreg Into W

v

Display At Port B LED's

v

Circle

43

SERIAL OUT
SUBROUTINE
ser_out

time1

Ignore Interrupts

v

Set Up TMRO

v

Shift Count = 8

v

Start Bit Out

v

Start TMRO

v

Clear TMRO Offlow Flag

BTFSC

44

=< meoar >

Yes

Clear TMRO Offlow Flag

nxtbit

time2

DECFSZ ﬂ Yes

=< moat >

Yes

Clear TMRO O/tlow Flag

No

GOTO nxtbit

:

Rotate MSB Into Carry

v

Clear Output Bit

Carry Flag Status ?

Set Output Bit

<

v

Output Mark

Return

| Stop Bit

@ - - ———

list
radix

p=16c84
hex

4/29/97==

cpu equates (memory map)

tmr0 equ 0x01
status equ 0x03
porta equ 0x05
intcon equ 0x0b
sendreg equ 0x0c
count equ 0x0d
optreg equ 0x81
trisa equ 0x85
; bit equates
c equ 0
rp0 equ 5
org 0x000
start bsf status, rp0
movlw b'00000100°
movwf trisa
becf status, rp0
bsf porta,l
movlw 0x80
movwf sendreg
switch btfsc porta,2
goto switch
call ser_out
circle goto circle
ser_out bcf intcon, 5
bcf intcon, 7
clrf tmr0
clrwdt
bsf status, rp0
movlw b'11011000°
movwf optreg
bcf status, rp0
movlw 0x08
movwf count
bef porta,l
clrf tmr0
bcf intcon, 2
timel btfss intcon,2
goto timel
becf intcon, 2
nxtbit rlf sendregq, £
bef porta,l
btfsc status,c
bsf porta,l
time2 btfss intcon, 2

;switch to bank 1
;port A inputs/outputs

;8witch back to bank 0
;output mark, bit 1
;number to be sent

;8tore

;start send?

;not yet

;to serial out subroutine
;done

;disable tmr0 interrupts
;disable global interrupts
;clear timer/counter

;clear wdt prep prescaler assign
;to page 1

;set up timer/counter

;back to page 0
;init shift counter

;start bit

;start timer/counter
;clear tmr0 overflow flag
;timer overflow?

;no

;yes, clear overflow flag
;rotate msb into carry flag
;clear port A, bit 1
;test carry flag

;bit is set

;timer overflow?

45

goto time2 ;no

bef intcon,2 ;clear overflow flag

decfsz count,f ;shifted 8?2

goto nxtbit ;no

bsf porta,l ;yes, output mark
time3 btfss intcon, 2 ;timer overflow?

goto time3 ;no

return ;done

end

P e o - — —— — ———— —— -——

;at blast time, select:

; memory unprotected

H watchdog timer disabled (default is enabled)

H standard crystal (using 4 MHz osc for test) XT
; power-up timer on

46

sbit

Ignore Interrupts

v

Set Up TMRO

v

Shift Count = 8

>

o>

Yes

Start TMRO 0x80

v

Clear TMRO O/flow Flag

False
Input

GOTO sbit

SERIAL IN

SUBROUTINE
ser_in
Read Port A
Store In temp
Half
Cycle ¢
RRFtemp
RLF revreg

DECFsSz ﬁ Yes

No

GOTO time2

v

Start TMRO - Free Run

v

Clear TMRO Offlow

Clear TMRO Offlow Flag

Bit 0 In Carry Flag

Carry Flag Into rcvreg

47

; =======P2PRCV.ASM 4/29/97==
list p=16c84
radix hex

; cpu equates (memory map)
tmr0 equ 0x01
status equ - 0x03
porta equ 0x05
portb equ 0x06
intcon equ 0x0b
rcvreg equ 0x0c
count equ 0x0d
temp equ 0x0e
optreg equ 0x81
trisa equ 0x85
trisb equ 0x86
e e —————
; bit equates
rp0 equ 5
org 0x000
’
start bsf status, rp0 ;switch to bank 1

movlw b'00000101' ;port A inputs/outputs
movwf trisa

movlw b'00000000' ;port B outputs

movwf trisb

bcf status,rp0 ;back to bank 0
clrf portb
clrf rcvreg .
switch btfsc porta,2 ;operator ready to receive?
goto switch ;no
call ser_in ;yes, to serial in subroutine
movf rcvreg,w ;get byte received
movwf portb ;display via LED's
circle goto circle ;done
jem——————— - O,
ser_in bcf intcon, 5 ;disable tmr0 interrupts
bcf intcon,7 ;disable global interrupts
clrf tmr0 ;clear timer/counter
clrwdt ;clear wdt prep prescaler assign
bsf status,rp0 ;to page 1

movlw b'11011000' ;set up timer/counter
movwf optreg
becf status, rp0
movlw 0x08
movwf count

back to page 0
init shift counter

.
’
-
’

sbit btfsc porta,0 ;look for start bit
goto sbit ;mark
movlw 0x80 ;start bit received, half bit time
movwf tmr0 ;load and start timer/counter
bef intcon, 2 ;clear tmr0 overflow flag
timel btfss intcon, 2 ;timer overflow?
goto timel ;no

48

btfsc porta,0 ;start bit still low?
goto sbit ;false start, go back
clrf tmr0 ;yes, half bit time - start timer/ctr
bcf intcon, 2 ;clear tmr0 overflow flag
time2 btfss intcon, 2 ;timer overflow?
goto time2 ;no
bcf intcon, 2 ;yes, clear tmr0 overflow flag
movf porta,w ;read port A
movwf temp ;store
rrf temp, £ ;rotate bit 0 into carry flag
rlf rcvreg, f ;rotate carry into rcvreg bit 0
decfsz count,f ;shifted 8?2
goto time2 ;no
time3 btfss intcon, 2 ;timer overflow?
goto time3 ;ino
return ;yes, byte received
e ——————
end

;at blast time, select:

memory unprotected

watchdog timer disabled (default is enabled)
standard crystal (using 4 MHz osc for test) XT
; power-up timer on

To run the programs:

Run "send" first with switch off (RA2) - establish proper level on TD = mark.
Run receive second with switch off (RA2) - get ready to receive.

Stabilize, then switch on = ready.
Send switch on.

Multiple bytes may be transmitted from the file registers by using the FSR and indirect
addressing and a counter. Multiple bytes may be transmitted from a table in program memory
by using relative addressing and a counter. Examples of both will be shown in the LCD

Interface chapter.

49

