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Abstract – A logical link composed of multiple physical links 
is in extensive use in today’s Internet and its use is growing 
due to good scalability, reliability and cost-effectiveness. 
When IP packets are distributed over such physical links, load 
unbalancing and packet reordering may occur. Since packet 
reordering degrades TCP performance, a good traffic 
distribution method must reduce the amount of reordering as 
well as packet loss. Hash-based load balancing is simple and 
ensures no packet reordering, but load unbalancing may occur. 
We have studied hash-based load balancing methods and 
analyzed their performances through simulation. We have 
created a simulation model with OPNET Modeler to generate 
massive TCP traffic, and then studied the load balancing 
performance and TCP throughput. The simulation results 
show that our proposed method, dynamic hashing with flow 
volume, has the best load balancing performance and 
minimum impact on TCP throughput. 
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I. INTRODUCTION  
By bonding multiple physical interfaces together, a logical 

link with the aggregate bandwidth is formed, which performs 
and is administered as a single logical link as shown in Figure 
1. Since a logical link requires only one entry in the routing 
table, it gives easier routing with exponential decrease in 
complexity than multiple entries. A logical link also simplifies 
management/operation and allows the Internet service 
providers to build scalable and reliable networks and reduce 
equipment and link costs. A logical link benefits the switch 
design in that switch port speed is not constrained by the 
limitations of the fiber infrastructure. Switch port speed is 
becoming higher surpassing the growth in link speed. A 
logical link technology allows a switch port to be connected to 
multiple physical links transparently to the switch. With such 
benefits, logical links are widely used in Internet backbone 
links[3]. 

However it is difficult not only to manage such parallel 
links at IP layer but also to efficiently utilize the links. In 
order to accommodate this demand, technologies that 
efficiently aggregate many individual links into a single data 
stream are getting investigated and deployed. Avici’s 
Composite Link[2] and Pluris’s IP-Bond[1] are the examples 
at core router. Similar concepts of bonding multiple physical 
links into one logical link are found elsewhere, such as 

parallel communications link of BBN[16], link aggregation of 
IEEE 802.3ad[8], multilink of PPP-MP[11], and hunt group of 
DEC Gigaswitch[3], etc. In this article, we adopt the term 
multilink to represent the concept of logical link composed of 
multiple parallel links.  

Figure 1: Multilink 

 The concept of multilink should not be confused with 
multipath routing, which is performed by the routing protocol 
at network layer. On the other hand, multilink is for point-to-
point data delivery at data link layer. The traffic overload at 
network layer is handled by conventional methods such as 
WRED, which makes sure that the total traffic amount does 
not exceed the logical link capacity. Multilink handles the data 
stream that already went through such a congestion control 
mechanism. Although the incoming traffic amount to multilink 
does not exceed the combined capacity, it is still possible to 
have an unbalancing among the sublinks while distributing the 
data stream over multiple sublinks. The congestion control at 
network layer may not help such local congestion at multilink 
since it is only concerned on the satisfying the logical link 
capacity as a whole. Even if the network layer congestion 
control can help relieving the local congestion, the time 
granularity, typically seconds, is much greater than the 
required response time at multilink, typically milliseconds. 
Therefore multilink must be able to handle its own local 
congestion without asking for any correction from the sending 
party. 

Our research is focused on the efficient traffic distribution 
over multilink while minimizing the packet loss caused by 
sublink buffer overflow and the out-of-order packet delivery 
that affect the TCP performance. It has been known that such 
packet reordering results in many performance penalties in 
TCP and should be avoided as much as possible[3][17]. For 
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Figure 2: SH (1-Stage) 

Figure 3: DH (2-Stage) 

Figure 4: DHFV  (2-Stage) 

ensuring in-order packet delivery, hashing is a preferred 
technique because of its simplicity. Hashing the invariant 
fields in the packet header generates a unique number for each 
flow, so the packets belonging to a flow can be sent over a 
unique sublink, thus reordering is avoided.  However, static 
hashing (SH) alone does not guarantee a good load balancing. 
Dynamic hashing (DH) can fix the unbalancing by reassigning 
some flows, but it introduces a large amount of packet 
reordering. Our proposed method, dynamic hashing with flow 
volume (DHFV) [10] detects the largest flow and reassigns 
only one flow and shows reduced packet reordering as well as 
excellent load balancing performance. In this paper, we verify 
the load balancing performance and examine the end-to-end 
TCP performance, which is the ultimate goal of traffic 
distribution methods. 

II. LOAD BALANCING BY HASHING 

A. Obtaining a  hash value from a packet 
A flow is a stream of packets sent from an application at a 

source machine to another application at another machine 
while the application is active. For the packets belonging to 
the same flow, there are invariant fields in the header and 
hashing them results in a unique flow ID.  

For all load balancing methods, a hash value is generated 
as following. 

 
Hash value = H (Header invariant fields) modulo k,  

where  H = hash function,  
k = number of sublinks  for static hashing,  or  
k = number of bins for dynamic hashing 

  

For H, we use CRC-32 hashing in all our simulation, 
which is known to have a very good performance, [4][5][9] 
with 96-bit input as shown in Figure 5.   

Figure 5: Hash Input Fields 

1)Static hashing (SH) 
With SH, a particular flow is assigned to a unique sublink 

and the assignment is not changed during operation. SH uses 
the hash value directly to assign a flow to a sublink. Figure 2 
illustrates SH. 

2)Dynamic hashing (DH) 
DH has an additional step from SH. The hash value is first 

used to determine an intermediate bin number, and then used 
next to determines the sublink number as shown in Figure 3. 
DH allows load balancing by changing the number of assigned 
bins to each sublink. Periodically the queue length of each 
sublink is monitored to determine if any sublink is overloaded. 
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In case of overload, a number of bins are reassigned to a 
lighter traffic loaded sublink.   

3)DHFV 
DHFV is an enhanced version of DH, where the flow 

volume for each bin is measured and used to determine the 
bin-to-sublink assignment more intelligently as shown in 
Figure 4. Flow volume is the amount of traffic assigned to a 
bin per unit period. Since each bin is an approximation of a 
flow, it is considered flow volume.  

Among the bin selection strategies, it is know that Largest 
Flow First (LFF) method works best, where the bin with the 
largest flow volume from the overloaded link is moved to the 
underutilized link. It has been shown that there is a high 
temporal locality in flow volume for large flows [10]. That is, 
the flow that had the largest flow volume in the past usually 
produces fairly large flow volume in the future, so moving 
such a flow reduces the bandwidth in the congested sublink 
very effectively. As in DH, the queue length is monitored 
periodically for detecting overloaded link. If there is any 
overloaded link, LFF algorithm is activated. 

III. SIMULATION MODEL 
Our earlier study of packet trace data shows that DHFV-

LFF performs best in load balancing [10]. In this paper, we 
create a simulated network environment with OPNET 
Modeler simulation software and observe whether the 
methods perform similarly in an interactive traffic 
environment as in off-line case. Further we would like to 
know how the packet loss and reordering affect the TCP 
traffic characteristics and which method achieves the best 
performance in TCP throughput. Since the TCP traffic 
accounts for the majority of the Internet traffic and the TCP 
performance is the ultimate user-perceived performance, TCP 
performance is more meaningful than local load balancing 
performance. We now build a simulation model of multilink 
and apply a similar traffic as in real Internet. 

A. Network environment 
We create two subnets connected by a logical DS3 link. 

The logical link is divided into 8 physical sublinks with equal 
bandwidth. The propagation delays of the sublinks are 
identical, but still the packet reordering will occur as a result 
of queue length difference for each sublink. There are 1,200 
hosts on client side and 4 servers on server side. The majority 
of the traffic moves from the server side to the client side, and 
the traffic for that direction is divided into sublinks. More 
detailed OPNET simulation environment are described in 
authors’ another paper[11]. 

B. Traffic generation 
In Internet traffic, it is known that small number of large 

flows occupy big portion of the traffic. [6][13][18] In our trace 
data, obtained from NLANR project [15], only 0.1% of flows 
account for 53% of the traffic amount and less than 1% of 
flows occupied 80%. This bias causes the SH to perform 
poorly. To simulate it, we generate small number of large ftp 
traffic and large number of small traffic. The types of traffics 
are, 

• FTP: exponential distribution with mean of 600 K bytes 
• HTTP: exponential distribution with mean of 10 K bytes 
• Email and DB: exponential distribution with 3 K and 2 

K bytes, respectively 
The above types of traffic are generated by the client 

machines, making about 50,000 flows during 20 seconds. This 
simulated traffic generates a similar traffic to the packet trace 
data with average link utilization rate of 40.45% and peak rate 
of 79.9% and no packet loss. The data on the undivided 
logical link, denoted as a single link, will be used for a 
comparison with multilink. Our goal is achieving the 
performance on multilink as close as possible to single link. 

C. Details of DH and DHFV implementation 
In DH and DHFV, the sublink queue lengths are checked 

in every 25 milliseconds. If there is any sublink buffer(s) that 
has exceeded 50% of the buffer capacity, some of the bins 
belonging to that sublink are reassigned to another sublink. 
Specifically, 10% of the bins are reassigned to another sublink 
in DH, and only one bin with the largest flow volume is 
reassigned in DHFV. If the load-balancing interval (25ms) is 
reduced, the load balancing effect becomes better, but the 
amount of reassignments may increase. 

In DHFV, the flow volume for each bin is collected in 
every 10 ms by adding the sizes of assigned packets. To 
eliminate the fluctuation in measurement, we add multiple 
periods of measurements. Before picking up the largest flow 
volume, 10 of the most recent measurements are added and 
then compared, so the flow volume reflects the most recent 
100 ms of traffic.   

One important procedure in both DH and DHFV is the 
queue growth trend monitoring to reduce unnecessary 
reassignments. Even if the buffer occupancy is greater than 
50%, no more reassignment is done if the queue length is 
decreasing. This is because the decreasing queue length 
indicates that the previous reassignments became already 
effective. 

D. Parameter settings 
Other parameters are configured as following. 
• Number of sublinks: 8 
• Sublink bandwidth: 5,592,000bps (= DS3 bandwidth/8) 
• Propagation delay for all sublinks: 1 ms 
• TCP version: Reno with SACK option 
• Buffer size: 559,200 (100 ms capacity of each sublink 

bandwidth) 
• Number of bins: 1024 
• Simulation duration: 20 seconds 

IV. SIMULATION RESULTS 

A. Traffic distribution 



The Figures 6 - 8 show the traffic amount in bits that are 
sent through each sublinks. In SH, buffer overflow (flat lines 
on 5,592,000) in a few sublinks are observed.  

Figure 6: SH 

Figure 7: DH 

Figure 8: DHFV 

 

B. Lost traffic 
The Figure 9 shows the amount of lost packets during 

simulation time of 20 seconds, which is caused by buffer 
overflow. The loss is significant for SH (352K bytes) while 
DHFV (11K bytes) and DH (39K bytes) have less loss.  

C. Number of sublink reassignments 
The sublink reassignment causes packet reordering. So the 

number of reassignment is another factor to affect the TCP 
performance. Obviously there is no reassignment with SH, and 
DHFV introduces more than 60 times less reassignments than 
DH as shown in Figure 10. 

D. TCP end-to-end performance 
In single link environment, the amount of transmitted data 

is same as the amount of received data because there is no loss 
and no retransmission. But in SH, DH, and DHFV, there are 
losses and reordering, so senders’ congestion windows are 
decreased and retransmissions occur.  It increases the 
bandwidth usage, amount of total transmission, and the time 
for completing transmission.  

Figure 11 shows the link utilization as a whole. It shows 
that no load balancing method can achieve the same 
performance as the single link.  

All methods finish the transmission eventually if enough 
time is given. So we take a look at the sent and received traffic 
amount for a fixed time. Figure 12 shows the amount of total 
sent traffic and received traffic at TCP layer during 20 
seconds. Due to retransmission, the amount of received traffic 
is always smaller than the amount of sent traffic. The TCP 
throughput at single link shows the maximum achievable 
throughput. (The difference reflects the packets in the sublink 
queues at the moment of simulation end time.) 

DHFV shows a very close performance to single link. It 
performs much better than DH because DHFV does not 
introduce as much packet loss or sublink reassignments as 
DH. In DH, the amount of transmitted data is reduced due to 
reduced TCP congestion window caused by packet reordering. 
SH caused a lot of retransmission due to packet loss, so it 
shows inefficient link usage. 

Figure 9: Lost packets 

Figure 10: Sublink reassignments 
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Figure 11: Link Utilization 

Figure 12: Total TCP Traffic during 20 secs. 

E. Discussions 
Further simulation shows that the unbalancing becomes 

greater as the number of sublinks increase. While the link 
utilization is low, the performance difference is not visible, 
but as the link utilization is increased, the loss in SH and 
reassignment in DH become greater and DHFV performs 
better.  

The performance advantage of DHFV comes from the 
flow bandwidth distribution in Internet traffic, where small 
number of big flows account for the majority of the traffic. 
The sublink buffer overflow is usually caused by the big 
flows, so without reassigning the big flows, load balancing 
cannot be effective. While DH tries to select such flow by 
randomly selecting multiple flows, DHFV precisely selects 
such large flows. If all the flows in Internet traffic have the 
same flow bandwidth, DH would perform best while DHFV 
would fail.  

In current TCP implementation, the performance drop by 
packet reordering is significant. To reduce such penalty, an 
extended version of SACK[14] option, DSACK[7] is 
standardized. Still some performance penalty is unavoidable 
once packet reordering occurs. So it is still desirable to reduce 
the amount of packet reordering as much as possible. 

V. CONCLUSIONS 
Multilink is being employed more extensively and hashing 

is considered a cost-effective way for traffic distribution to 
avoid packet reordering. To achieve load balancing, DH may 
be used, but due to excessive reordering, the TCP performance 
drops. An improved algorithm, DHFV reassigns flows 
selectively to achieve load balancing by reassigning minimum 
amount of flows. With DHFV, the aggregated TCP 
performance is very close to the performance of single link. 

With OPNET Modeler, we have generated application 
traffic to emulate the Internet packet trace data, and 
implemented the load balancing algorithms. The simulation 
results show that DHFV achieves very good load balancing 
with minimum impact on TCP throughput. 
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