
Internet Traffic Distribution over Multilink
Where High Bandwidth Scalable Switch Port Aggregates Multiple Physical Links

Ju-Yeon Jo, Yoohwan Kim, and Frank L. Merat
Electrical Engineering & Computer Science Department

Case Western Reserve University
Cleveland, OH 44106

H. Jonathan Chao
Electrical & Computer Engineering Department

Polytechnic University
Brooklyn, NY 11201

Abstract – A logical link composed of multiple physical links
is in extensive use in today’s Internet and its use is growing
due to good scalability, reliability and cost-effectiveness.
When IP packets are distributed over such physical links, load
unbalancing and packet reordering may occur. Since packet
reordering degrades TCP performance, a good traffic
distribution method must reduce the amount of reordering as
well as packet loss. Hash-based load balancing is simple and
ensures no packet reordering, but load unbalancing may occur.
We have studied hash-based load balancing methods and
analyzed their performances through simulation. We have
created a simulation model with OPNET Modeler to generate
massive TCP traffic, and then studied the load balancing
performance and TCP throughput. The simulation results
show that our proposed method, dynamic hashing with flow
volume, has the best load balancing performance and
minimum impact on TCP throughput.

Keywords—Multilink; Internet Traffic Distribution; Packet
Reordering; Hashing; TCP Performance

I. INTRODUCTION
By bonding multiple physical interfaces together, a logical

link with the aggregate bandwidth is formed, which performs
and is administered as a single logical link as shown in Figure
1. Since a logical link requires only one entry in the routing
table, it gives easier routing with exponential decrease in
complexity than multiple entries. A logical link also simplifies
management/operation and allows the Internet service
providers to build scalable and reliable networks and reduce
equipment and link costs. A logical link benefits the switch
design in that switch port speed is not constrained by the
limitations of the fiber infrastructure. Switch port speed is
becoming higher surpassing the growth in link speed. A
logical link technology allows a switch port to be connected to
multiple physical links transparently to the switch. With such
benefits, logical links are widely used in Internet backbone
links[3].

However it is difficult not only to manage such parallel
links at IP layer but also to efficiently utilize the links. In
order to accommodate this demand, technologies that
efficiently aggregate many individual links into a single data
stream are getting investigated and deployed. Avici’s
Composite Link[2] and Pluris’s IP-Bond[1] are the examples
at core router. Similar concepts of bonding multiple physical
links into one logical link are found elsewhere, such as

parallel communications link of BBN[16], link aggregation of
IEEE 802.3ad[8], multilink of PPP-MP[11], and hunt group of
DEC Gigaswitch[3], etc. In this article, we adopt the term
multilink to represent the concept of logical link composed of
multiple parallel links.

Figure 1: Multilink

 The concept of multilink should not be confused with
multipath routing, which is performed by the routing protocol
at network layer. On the other hand, multilink is for point-to-
point data delivery at data link layer. The traffic overload at
network layer is handled by conventional methods such as
WRED, which makes sure that the total traffic amount does
not exceed the logical link capacity. Multilink handles the data
stream that already went through such a congestion control
mechanism. Although the incoming traffic amount to multilink
does not exceed the combined capacity, it is still possible to
have an unbalancing among the sublinks while distributing the
data stream over multiple sublinks. The congestion control at
network layer may not help such local congestion at multilink
since it is only concerned on the satisfying the logical link
capacity as a whole. Even if the network layer congestion
control can help relieving the local congestion, the time
granularity, typically seconds, is much greater than the
required response time at multilink, typically milliseconds.
Therefore multilink must be able to handle its own local
congestion without asking for any correction from the sending
party.

Our research is focused on the efficient traffic distribution
over multilink while minimizing the packet loss caused by
sublink buffer overflow and the out-of-order packet delivery
that affect the TCP performance. It has been known that such
packet reordering results in many performance penalties in
TCP and should be avoided as much as possible[3][17]. For

.

.
.L o g ica l

L ink

Su blin k 1
Sublin k 2

Su blin k n

Sublin k n-1

.

.

.

Tra ffic D istribu tion U n it T ra ffic R eceiv in g U n it

X

H igh B an dw id th
S w itch PortSw itch / R ou ter

Figure 2: SH (1-Stage)

Figure 3: DH (2-Stage)

Figure 4: DHFV (2-Stage)

ensuring in-order packet delivery, hashing is a preferred
technique because of its simplicity. Hashing the invariant
fields in the packet header generates a unique number for each
flow, so the packets belonging to a flow can be sent over a
unique sublink, thus reordering is avoided. However, static
hashing (SH) alone does not guarantee a good load balancing.
Dynamic hashing (DH) can fix the unbalancing by reassigning
some flows, but it introduces a large amount of packet
reordering. Our proposed method, dynamic hashing with flow
volume (DHFV) [10] detects the largest flow and reassigns
only one flow and shows reduced packet reordering as well as
excellent load balancing performance. In this paper, we verify
the load balancing performance and examine the end-to-end
TCP performance, which is the ultimate goal of traffic
distribution methods.

II. LOAD BALANCING BY HASHING

A. Obtaining a hash value from a packet
A flow is a stream of packets sent from an application at a

source machine to another application at another machine
while the application is active. For the packets belonging to
the same flow, there are invariant fields in the header and
hashing them results in a unique flow ID.

For all load balancing methods, a hash value is generated
as following.

Hash value = H (Header invariant fields) modulo k,

where H = hash function,
k = number of sublinks for static hashing, or
k = number of bins for dynamic hashing

For H, we use CRC-32 hashing in all our simulation,
which is known to have a very good performance, [4][5][9]
with 96-bit input as shown in Figure 5.

Figure 5: Hash Input Fields

1)Static hashing (SH)
With SH, a particular flow is assigned to a unique sublink

and the assignment is not changed during operation. SH uses
the hash value directly to assign a flow to a sublink. Figure 2
illustrates SH.

2)Dynamic hashing (DH)
DH has an additional step from SH. The hash value is first

used to determine an intermediate bin number, and then used
next to determines the sublink number as shown in Figure 3.
DH allows load balancing by changing the number of assigned
bins to each sublink. Periodically the queue length of each
sublink is monitored to determine if any sublink is overloaded.

Source
IP

Destination
IP

Source
Port

Destination
Port

31 63 79 95 bit0

M u l t i l i n k

S u b l i n k 0

S u b l i n k 1

S u b l i n k n - 1

S u b l i n k n - 2

.

.

T o a u n i q u e S u b l i n k

F l o w s
H a s h

(C R C - 3 2)

M o d u l o n

.

. M u lt i l in k

S u b l in k 0

S u b l in k 1

S u b l i n k n - 1

S u b l i n k n - 2

.

.

D y n a m ic L in k A s s ig n m e n t (E C M P , O M P , e t c .)

F l o w s
H a s h

(C R C - 3 2)

M o d u lo b
b - 3

b - 1

0

1

b - 2

.

T o a u n iq u e b in

M u lt i l in k

S u b l i n k 0

S u b l i n k 1

S u b l in k n - 1

S u b l in k n - 2

.

..
.

D y n a m ic L in k A s s ig n m e n t w it h F l o w V o l u m e (e .g . L F F)

F lo w s
H a s h

(C R C - 3 2)

M o d u lo b
b - 3

b - 1

0

1
F lo w V o lu m e

b - 2

.

.

.
.
.
.

T o a u n i q u e b in

In case of overload, a number of bins are reassigned to a
lighter traffic loaded sublink.

3)DHFV
DHFV is an enhanced version of DH, where the flow

volume for each bin is measured and used to determine the
bin-to-sublink assignment more intelligently as shown in
Figure 4. Flow volume is the amount of traffic assigned to a
bin per unit period. Since each bin is an approximation of a
flow, it is considered flow volume.

Among the bin selection strategies, it is know that Largest
Flow First (LFF) method works best, where the bin with the
largest flow volume from the overloaded link is moved to the
underutilized link. It has been shown that there is a high
temporal locality in flow volume for large flows [10]. That is,
the flow that had the largest flow volume in the past usually
produces fairly large flow volume in the future, so moving
such a flow reduces the bandwidth in the congested sublink
very effectively. As in DH, the queue length is monitored
periodically for detecting overloaded link. If there is any
overloaded link, LFF algorithm is activated.

III. SIMULATION MODEL
Our earlier study of packet trace data shows that DHFV-

LFF performs best in load balancing [10]. In this paper, we
create a simulated network environment with OPNET
Modeler simulation software and observe whether the
methods perform similarly in an interactive traffic
environment as in off-line case. Further we would like to
know how the packet loss and reordering affect the TCP
traffic characteristics and which method achieves the best
performance in TCP throughput. Since the TCP traffic
accounts for the majority of the Internet traffic and the TCP
performance is the ultimate user-perceived performance, TCP
performance is more meaningful than local load balancing
performance. We now build a simulation model of multilink
and apply a similar traffic as in real Internet.

A. Network environment
We create two subnets connected by a logical DS3 link.

The logical link is divided into 8 physical sublinks with equal
bandwidth. The propagation delays of the sublinks are
identical, but still the packet reordering will occur as a result
of queue length difference for each sublink. There are 1,200
hosts on client side and 4 servers on server side. The majority
of the traffic moves from the server side to the client side, and
the traffic for that direction is divided into sublinks. More
detailed OPNET simulation environment are described in
authors’ another paper[11].

B. Traffic generation
In Internet traffic, it is known that small number of large

flows occupy big portion of the traffic. [6][13][18] In our trace
data, obtained from NLANR project [15], only 0.1% of flows
account for 53% of the traffic amount and less than 1% of
flows occupied 80%. This bias causes the SH to perform
poorly. To simulate it, we generate small number of large ftp
traffic and large number of small traffic. The types of traffics
are,

• FTP: exponential distribution with mean of 600 K bytes
• HTTP: exponential distribution with mean of 10 K bytes
• Email and DB: exponential distribution with 3 K and 2

K bytes, respectively
The above types of traffic are generated by the client

machines, making about 50,000 flows during 20 seconds. This
simulated traffic generates a similar traffic to the packet trace
data with average link utilization rate of 40.45% and peak rate
of 79.9% and no packet loss. The data on the undivided
logical link, denoted as a single link, will be used for a
comparison with multilink. Our goal is achieving the
performance on multilink as close as possible to single link.

C. Details of DH and DHFV implementation
In DH and DHFV, the sublink queue lengths are checked

in every 25 milliseconds. If there is any sublink buffer(s) that
has exceeded 50% of the buffer capacity, some of the bins
belonging to that sublink are reassigned to another sublink.
Specifically, 10% of the bins are reassigned to another sublink
in DH, and only one bin with the largest flow volume is
reassigned in DHFV. If the load-balancing interval (25ms) is
reduced, the load balancing effect becomes better, but the
amount of reassignments may increase.

In DHFV, the flow volume for each bin is collected in
every 10 ms by adding the sizes of assigned packets. To
eliminate the fluctuation in measurement, we add multiple
periods of measurements. Before picking up the largest flow
volume, 10 of the most recent measurements are added and
then compared, so the flow volume reflects the most recent
100 ms of traffic.

One important procedure in both DH and DHFV is the
queue growth trend monitoring to reduce unnecessary
reassignments. Even if the buffer occupancy is greater than
50%, no more reassignment is done if the queue length is
decreasing. This is because the decreasing queue length
indicates that the previous reassignments became already
effective.

D. Parameter settings
Other parameters are configured as following.
• Number of sublinks: 8
• Sublink bandwidth: 5,592,000bps (= DS3 bandwidth/8)
• Propagation delay for all sublinks: 1 ms
• TCP version: Reno with SACK option
• Buffer size: 559,200 (100 ms capacity of each sublink

bandwidth)
• Number of bins: 1024
• Simulation duration: 20 seconds

IV. SIMULATION RESULTS

A. Traffic distribution

The Figures 6 - 8 show the traffic amount in bits that are
sent through each sublinks. In SH, buffer overflow (flat lines
on 5,592,000) in a few sublinks are observed.

Figure 6: SH

Figure 7: DH

Figure 8: DHFV

B. Lost traffic
The Figure 9 shows the amount of lost packets during

simulation time of 20 seconds, which is caused by buffer
overflow. The loss is significant for SH (352K bytes) while
DHFV (11K bytes) and DH (39K bytes) have less loss.

C. Number of sublink reassignments
The sublink reassignment causes packet reordering. So the

number of reassignment is another factor to affect the TCP
performance. Obviously there is no reassignment with SH, and
DHFV introduces more than 60 times less reassignments than
DH as shown in Figure 10.

D. TCP end-to-end performance
In single link environment, the amount of transmitted data

is same as the amount of received data because there is no loss
and no retransmission. But in SH, DH, and DHFV, there are
losses and reordering, so senders’ congestion windows are
decreased and retransmissions occur. It increases the
bandwidth usage, amount of total transmission, and the time
for completing transmission.

Figure 11 shows the link utilization as a whole. It shows
that no load balancing method can achieve the same
performance as the single link.

All methods finish the transmission eventually if enough
time is given. So we take a look at the sent and received traffic
amount for a fixed time. Figure 12 shows the amount of total
sent traffic and received traffic at TCP layer during 20
seconds. Due to retransmission, the amount of received traffic
is always smaller than the amount of sent traffic. The TCP
throughput at single link shows the maximum achievable
throughput. (The difference reflects the packets in the sublink
queues at the moment of simulation end time.)

DHFV shows a very close performance to single link. It
performs much better than DH because DHFV does not
introduce as much packet loss or sublink reassignments as
DH. In DH, the amount of transmitted data is reduced due to
reduced TCP congestion window caused by packet reordering.
SH caused a lot of retransmission due to packet loss, so it
shows inefficient link usage.

Figure 9: Lost packets

Figure 10: Sublink reassignments

0 8
27

265

0

50

100

150

200

250

300

S ingle Link DHFV DH S H

0 128

6692

0
0

1000

2000

3000

4000

5000

6000

7000

8000

Single Link DHFV DH SH

Th
e

nu
m

be
r

of
 r

ea
ss

ig
nm

en
ts

Figure 11: Link Utilization

Figure 12: Total TCP Traffic during 20 secs.

E. Discussions
Further simulation shows that the unbalancing becomes

greater as the number of sublinks increase. While the link
utilization is low, the performance difference is not visible,
but as the link utilization is increased, the loss in SH and
reassignment in DH become greater and DHFV performs
better.

The performance advantage of DHFV comes from the
flow bandwidth distribution in Internet traffic, where small
number of big flows account for the majority of the traffic.
The sublink buffer overflow is usually caused by the big
flows, so without reassigning the big flows, load balancing
cannot be effective. While DH tries to select such flow by
randomly selecting multiple flows, DHFV precisely selects
such large flows. If all the flows in Internet traffic have the
same flow bandwidth, DH would perform best while DHFV
would fail.

In current TCP implementation, the performance drop by
packet reordering is significant. To reduce such penalty, an
extended version of SACK[14] option, DSACK[7] is
standardized. Still some performance penalty is unavoidable
once packet reordering occurs. So it is still desirable to reduce
the amount of packet reordering as much as possible.

V. CONCLUSIONS
Multilink is being employed more extensively and hashing

is considered a cost-effective way for traffic distribution to
avoid packet reordering. To achieve load balancing, DH may
be used, but due to excessive reordering, the TCP performance
drops. An improved algorithm, DHFV reassigns flows
selectively to achieve load balancing by reassigning minimum
amount of flows. With DHFV, the aggregated TCP
performance is very close to the performance of single link.

With OPNET Modeler, we have generated application
traffic to emulate the Internet packet trace data, and
implemented the load balancing algorithms. The simulation
results show that DHFV achieves very good load balancing
with minimum impact on TCP throughput.

References
[1] Vadim Antonov and David Bernstein, “The Pluris Massively Parallel

Router (MPR),” Gigabit Networking Workshop, 1998.
[2] Avici White Paper, “The Use of Composite Links to Facilitate the

Creation of a New Optical Adaptation Layer,” http://www.avici.com.
[3] Jon C. R. Bennett, Craig Partridge, and Nicholas Shectman, "Packet

Reordering is Not Pathological Network Behavior," IEEE/ACM
Transactions on Networking, vol. 7, No. 6, pp. 789-798, December
1999.

[4] Zhiruo Cao, Zheng Wnag, and Ellen Zegura, "Performance of Hashing-
Based Schemes for Internet Load Balancing," In Proceedings of IEEE
Infocom, pp. 332-341, 2000.

[5] Girish Chandranmenon and George Varghese, “Trading Packet Headers
for Packet Processing,” IEEE/ACM Transactions on Networking, vol. 4,
No. 2, pp. 141-152, 1996.

[6] Anja Feldmann, Jennifer Rexford, and Ramon Caceres, “Efficient
policies for carrying Web traffic over flow-switched networks,”
IEEE/ACM Transactions, Vol. 6, No 6, pp. 673-685, Dec. 1998.

[7] Sally Floyd, Jamshid Mahdavi, Matt Mathis, and Matt podolsky, “An
Extension to the Selective Acknowledgement (SACK) Option for TCP,”
July 2000. RFC 2883.

[8] IEEE Standard 802.3ad-2000, Link Aggregation (CSMA/CD:
ETHERNET)

[9] Raj Jain, "A Comparison of Hashing Schemes for Address Lookup in
Computer Networks," IEEE Transactions on Communication, vol. 40,
pp. 1570-1573, Oct. 1992.

[10] Ju-Yeon Jo, Yoohwan Kim, H. Jonathan Chao, and Frank Merat,
“Internet Traffic Load Balancing using Dynamic Hashing with Flow
Volume,” Proceedings of SPIE ITCom, July 2002.

[11] Ju-Yeon Jo, Yoohwan Kim, and H. Jonathan Chao, “TCP Performance
Comparison under Various Load Balancing Methods using OPNET”
OPNETWORK 2002, Aug. 2002.

[12] K. Kslower, B. Lloyd, G. McGregor, D. Carr, and T. Coradetti, “The
PPP Multilink Protocol (MP)”, Aug. 1996 RFC 1990.

[13] Ratul Mahajan, Sally Floyd, and David Wetherall, “Controlling High-
Bandwidth Flows at the Congested Router,” In Proceedings of
International Conf. On Network Protocols (ICNP), November 2001.

[14] Matt Mathis, Jamshid Mahdavi, Sally Floyd, and A. Romanow, “TCP
Selective Acknowledgement Option,” Oct. 1996 RFC 2018.

[15] NATIONAL LABORATORY FOR APPLIED NETWORK
RESEARCH (NLANR). Network traffic packet header traces.
http://moat.nlanr.net/Traces/Traces/daily/20011204/IND-1007501453-
1.tsh.

[16] Craig Partridge and Walter Milliken, “Method and Apparatus for
Multiplexing Bytes Over Parallel Communications Links Using Data
Slices”, US Patent 6,160,819, Dec. 12, 2000.

[17] Vern Paxson, “End-to-End Internet Packet Dynamics”, IEEE/ACM
Transactions on Networking, vol. 7, No. 3, pp. 277-292, June 1999.

[18] Carey Williamson, “Internet Traffic Measurement,” IEEE Internet
Computing, Nov./Dec. 2001, pp. 70-74.

28
29
30
31
32
33
34
35
36
37
38

Single Link DHFV DH SH

M
ill

io
ns

To
ta

l b
yt

es
 /

20
 s

ec
s

Traffic Sent Traffic Received

	Introduction
	Load Balancing by hashing
	Obtaining a hash value from a packet
	Static hashing (SH)
	Dynamic hashing (DH)
	DHFV

	Simulation Model
	Network environment
	Traffic generation
	Details of DH and DHFV implementation
	Parameter settings

	Simulation Results
	Traffic distribution
	Lost traffic
	Number of sublink reassignments
	TCP end-to-end performance
	Discussions

	Conclusions

