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Abstract

An autoassociative memory using neural networks is proposed for sensor failure

detection and correction. Conventional systems for failure analysis and detection rely upon

complex models of physical systems; however, neural networks can be used to represent

systems through training for which mathematical models can not be formulated. A neural network

autoassociative memory can be used to predict sensor outputs. Differences between measured

sensor outputs and sensor outputs estimated by the autoassociative memory can be used to

identify faulty sensors. The autoassociative memory can also be used to substitute correct sensor

output values for faulty values. This technique can be successfully used to process data from

dense sensor arrays.

I. Introduction

Sensor failure detection and correction is a very important subject for a variety of

applications. If one or more sensors in a system fail or are failing, they should be identified and

isolated. Whenever a sensor(s) is not functioning correctly, there should be a way to deal with

and potentially correct for this inaccurate sensor data. In conventional approaches dealing with



inaccurate sensor outputs, there must be an appropriate mathematical model of the system.

However, it may not be possible to develop an accurate model for the system, or, it may not be

possible to mathematically solve the model. In either case, conventional systems will either

perform very poorly or simply be impossible to implement.

An autoassociative memory using neural networks is proposed for sensor failure

detection and correction. Neural networks can learn the characteristics of unknown/unmodeled

systems through training samples. By comparing the autoassociative memory output with the

output of the sensors, it is easy to find out which sensor(s) is(are) faulty. In addition, the

autoassociative memory can substitute correct sensor output values for faulty values filtering out

faulty sensor outputs.

II. Autoassociative Memory Using Neural Networks

Neural networks are commonly used for classification and functional approximation. A

neural network with one hidden layer with sufficient hidden nodes can be thought of as a

universal function approximator [1, 2]. The network learns a mapping from the given inputs to

the desired outputs through training samples. The neural network can learn autoassociation from

training samples. The mapping is apparent, i.e. the network output should be equal to the

network input at all times. The autoassociative memory is useful because it can correct noise,

distortion and/or partial input values.

Several researches have used a three layer network (one hidden layer) to implement an

autoassociative memory. Baldi and Hornik [3] showed that a three layer network is equivalent to

PCA (Principal Component Analysis) projection. Later, Bourlard [4] showed that the three layer



network is not superior to PCA. Recently, several researchers have shown that a five layer (three

hidden layers) network can improve on Principal Component Analysis, as a non-linear Principal

Component Analysis [5, 6, 7, 8].

Output Layer
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Bottleneck Layer

Mapping Layer

Input Layer

Figure 1.  Three hidden layer autoassociative neural network

A three hidden layer autoassociative memory can be viewed as a serial combination of

two single-hidden layer networks. The input, mapping, and bottleneck layers represent a

nonlinear function or mapping, which projects the input data into a lower dimension feature

space. The bottleneck layer, demapping layer, and the output layer represent a second network

that remaps an approximation of the input from the feature space of the bottleneck layer output.

Since the bottleneck layer has fewer nodes than in the input and output layers, the net is

constrained to develop a lower dimensional representation in the bottleneck layer. This three

hidden layer autoassociative neural network works as a nonlinear compressor-decompressor

pair[8]. This type of autoassociative memory is quite difficult to train, since lots of nonlinear



nodes are involved in the training, and it often fails to converge to an acceptable training error. If

large number of inputs are involved in the problem, it may not be a practical solution.

III. Autoassociative Memory Using Random Vector Enhanced Phasor Neural Networks

For implementing an autoassociative memory, a random vector enhanced phasor neural

network (RV-PNN) was used [9]. In an RV-PNN autoassociative memory input patterns are

enhanced by the multiplication of the input patterns and randomly chosen vectors. These random

vector enhancements are further discussed in [10, 11].

Suppose that there are n original attributes (features, or elements) and j augmented

attributes in the real domain pattern x. For the augmented attribute xi, the attribute is defined as

xi = ei    for i = n+1, ... , n+j (1)

where ei  = ai1x1 + ... + ainxn  = ai
Tx

ai = [ ai1   ai2   ...   ain ]
T

x = [ x1   x2   ...   xn]
T

and ai is the random vector. The elements of the vector ai are randomly generated on the real

interval [-Ω, Ω].

These augmented patterns are then transformed into complex vectors. One way to

convert the pattern attributes (real numbers) to complex numbers is to assign a phase angle to

each attribute and give it a unit magnitude. The resulting attributes are on the unit circle in the

complex plane (phasors). A phase angle can be assigned by using the Z-score as
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where µ and σ are, respectively, the mean and standard deviation of the input key vectors.

Equation (2) converts unbounded real values into phase angles from 0 to 2π. For the complex

number input patterns, complex number random vectors are generated over a magnitude range

which avoids saturation of the transfer function. After the enhancement by equation (1), these

patterns are fed into a sigmoidal transfer function like tanh(real(x)) + i tanh(imag(x)).

These transformed patterns then form the linear associative memory via the Moore-

Penrose pseudoinverse. In linear associative memory model, patterns are linearly transformed by

a relation of the form

y Mxi i=  for i=1 , ... , p (3)

where M is the memory matrix, (xi, yi) is the i-th associated pair of patterns, and p is the total

number of associated patterns. In terms of the key vector matrix X and the recollection vector

matrix Y, the associative memory must satisfy Y = MX. Generally X is not square, and, thus, the

Moore-Penrose pseudoinverse is used for the memory matrix M [12]

M = YX+. (4)

If such a pseudoinverse approach is not possible, gradient-descent learning can be used

instead [9], as

Mnew = Mold + α(Y - Mold X)X* (5)

where * is the conjugate transpose, and α  is the learning rate (a small positive number). By

equation (5), it is possible to construct the pseudoinverse based M matrix iteratively. Since the

learning is linear, this approach is guaranteed to find the global minimum.



When dealing with large amounts of input data, the training time can be a critical issue for

neural networks. Since training a three hidden layer net, or a single hidden layer net for large input

nodes is not trivial, RV-PNNs can be used instead of the backpropagation neural networks to

dramatically decrease the necessary training time.

IV. Sensor Failure Detection/Correction

Sensor failure detection and isolation is very important. If one or more sensors fail or are

failing, they should be identified and isolated for safe operation. Because the sensors are the least

reliable components in the control system and are subjected to harsh conditions, some form of

redundancy is necessary to achieve adequate reliability in many control situations.

Hardware redundancy uses multiple sensors to measure variables. Voting schemes

compare multiple output values from the sensors and can detect and isolate faulty sensors. Since

multiple sensors are deployed, there can be a substantial increase in weight, cost, and space in a

physically redundant system.

Analytical redundancy (AR) uses a reference model for the system and redundant

information from dissimilar sensors to provide an estimate of measured variables. Analytic

formulas must be developed which describe the system. Differences between measured sensor

outputs and estimated sensor outputs, called residuals, are used to identify faulty sensors. This

residual generation is typically based on knowledge of the system [13, 14, 15, 16]. If such

knowledge is not available, analytical redundancy can not be used, or will perform very poorly.

A neural network approach is also a model based approach, but the model is learned

through training. Neural networks can learn the characteristics of unknown/unmodeled systems.



Only input/desired output pairs are needed to train the neural networks. In the proposed method

of sensor failure detection and correction, outputs from the sensors are initially processed by the

RV-PNN autoassociative memory. The residuals are calculated by taking differences between the

sensor outputs and the estimated sensor outputs from the autoassociative memory. As a second

step, the pattern of the residuals can be processed further using methods like statistical decision

theory to identify a particular failure. In addition, the autoassociative memory provides the

correct values for the faulty sensor outputs.

V. Computer Simulation

For this simulation, a single hidden layer neural network was trained and tested using real

world data from an optical sensor array which consisted of 32 sensors. There was no known

analytical relationship between a given input and an estimated output for this sensor array

making this sensor array ideal for neural net signal processing. The performance of a single hidden

layer neural network function estimator is quite satisfactory (less than 0.4% average estimation

error). This result is shown in Figures 2 and 3.



NN Functional Estimator Training Result

0

0.2

0 .4

0 .6

0 .8

1 6 1 1 1 6 2 1 2 6 3 1 3 6 4 1

Sensor Range

N
o

rm
a

li
ze

d
 

S
e

n
s

o
r 

O
u

tp
u

t
N

N
 

O
u

tp
u

t 
/ 

E
rr

o
r(

%
)

Target Output Training Output Training Error X 10 (%)

Avg. Training Error = 0.2%

Figure 2. Training result of the neural network functional estimator

NN Functional Estimator Test Result
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Figure 3. Test result of the neural network functional estimator

As a second step, two autoassociative memories (a three hidden layer autoassociative and

an RV-PNN autoassociative memory) were implemented for the same sensor array and tested

with the neural network function estimator. Figure 4 shows the method used to test the

performance of the autoassociative memories. Gaussian random noise was added to the original



data from the sensor array to simulate measurement noise. This noisy data was fed into the three

hidden layer autoassociative memory and the RV-PNN autoassociative memory, and fed into the

neural net functional estimator for comparison. When the sensor output does not contain any

noise, these associative memories do not affect the function estimator as shown in Figure 5.

Original
Data

Noisy
Data

Autoassociative
Memory

(three hidden
layer

or RV-PNN)

Neural
Net

Functional
Estimator

Gaussian
Random

Noise

Neural
Net

Functional
Estimator

+

Figure 4. Test method

Table 1 shows the performance of the functional estimator with the RV-PNN

autoassociative memory, with the three hidden layer neural autoassociative memory, and without

any associative memory signal conditioning. The S/N ratio in Table 1 was calculated as

10log10(signal variance / noise variance). In this simulation, the functional estimator with the RV-

PNN autoassociative memory and with the three hidden layer autoassociative memory performed

equally well. They both corrected the faulty sensor values quite well in simulated noisy

environments. The difference between the two autoassociative memory models is training time.

The training time for the RV-PNN autoassociative memory is orders of magnitude faster than

that for the three hidden layer autoassociative memory.



Autoassociative Memory Performance
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Figure 5. Autoassociative memory with the neural network function estimator

S/N RV-PNN AM 3 hidden layer AM Plain NN Estimator

Test
No.

Ratio
(dB)

Avg.
estimation
error (%)

Std. dev
of errors

Avg.
estimation
error (%)

Std. dev.
of errors

Avg.
estimation
error (%)

Std. dev.
of errors

1 9.03 1.1 0.99 1.1 0.81 6.6 6.12
2 9.07 1.3 1.51 1.5 2.91 7.0 5.39
3 8.93 1.0 0.81 1.2 0.93 6.6 5.21
4 9.17 1.0 0.66 1.1 1.04 7.5 6.16
5 9.10 1.2 1.04 1.0 0.91 6.7 4.71

6 3.49 2.2 2.40 2.3 2.44 13.4 9.90
7 3.63 1.9 1.52 2.6 2.10 13.2 10.0
8 3.36 2.1 2.32 2.2 3.22 11.0 7.30
9 3.54 2.4 2.45 3.1 4.52 12.8 10.05
10 3.63 2.6 2.82 2.5 2.52 10.6 9.52

Training time on
HP 9000 712/60

workstation
2 minutes 120 minutes 5 minutes

Table 1. Comparison of autoassociative memory models



Figure 6 shows the effect of the autoassociative memory on the individual sensor nodes

for noisy outputs from the sensor array. The autoassociative memory treats these noisy sensor

outputs as faulty sensor values. Without any autoassociative memory signal processing, the

neural net functional estimator by itself has an estimation error of 25.5% for this case of noisy

sensor outputs. Using the same data and autoassociative memory signal processing, the

estimation error drops to 1.4 %. From Figure 6, it is clear that residuals can be generated by

taking the differences between the raw sensor values and the outputs of the autoassociative

memory. In addition, the autoassociative memory can provide correct values for the faulty sensor

values.

Original
Sensor
Output

Noisy
Sensor
Output

Corrected
Sensor

Output by
RV-PNN

AM

Target

Estimatio
with

RV-PNN
AM

Estimation
without

RV-PNN
AM

Figure 6. Effect of the autoassociative memory using RV-PNN
(Data S/N = 3.49dB)



VI. Conclusion

An autoassociative memory using neural networks is proposed for sensor failure

detection and correction. The proposed autoassociative memory model can learn an unknown

system via training. By comparing the autoassociative memory output with the output of the

sensors, faulty sensors can be isolated. The autoassociative memory can also provide correct

sensor output values for faulty values.

Experiments were conducted using an RV-PNN and a three hidden layer neural network

associative memory. Both autoassociative memories resulted in very similar performance in

simulated noisy environments. The RV-PNN autoassociative memory is preferable to the three

hidden layer autoassociative memory because of its faster training time.

Based upon this work, it is proposed that these techniques can be successfully used to

process data from dense sensor arrays for sensor failure detection and correction. Another similar

application would be to use an  autoassociative memory to filter out sensor-to-sensor variations

(e.g. manufacturing tolerances) for mass-produced sensor arrays.
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